JP3734125B2 - 微生物数測定装置 - Google Patents

微生物数測定装置 Download PDF

Info

Publication number
JP3734125B2
JP3734125B2 JP11466898A JP11466898A JP3734125B2 JP 3734125 B2 JP3734125 B2 JP 3734125B2 JP 11466898 A JP11466898 A JP 11466898A JP 11466898 A JP11466898 A JP 11466898A JP 3734125 B2 JP3734125 B2 JP 3734125B2
Authority
JP
Japan
Prior art keywords
light
microorganisms
electric field
optical fiber
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11466898A
Other languages
English (en)
Other versions
JPH11299477A (ja
Inventor
竜一 八浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP11466898A priority Critical patent/JP3734125B2/ja
Publication of JPH11299477A publication Critical patent/JPH11299477A/ja
Application granted granted Critical
Publication of JP3734125B2 publication Critical patent/JP3734125B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は溶液中の微生物数を測定するための微生物数測定装置に関するものである。
【0002】
【従来の技術】
従来、溶液中の微生物数を測定する方法として特開昭57−50652号公報に記載されたもの等の多数の技術が知られている。
【0003】
しかし、従来の技術による微生物数の測定方法は、試料液に専用の薬剤、例えば酵素や色素を投入して生化学反応を起こさせ、その反応経過や結果を蛍光や発光によって測定するものであり、その測定感度は比較的高いが、微生物分野と生化学分野に関する専門知識が必要であったり、また専用で高価な大型の測定装置が必要となったり、さらには専任者による作業が必要となる等、とても一般的かつ簡易に微生物数を測定することができるものではなかった。
【0004】
そこで、特開昭59−91900号公報に記載されたものをはじめとする、物理的手段のみを使い、薬剤を一切用いないで、小型で、試料系に組み込んで自動測定ができ、簡易に測定できる微生物数検出装置が提案されたが、微生物数が10の8乗cells/ml(1ml中に微生物数が1億個)以上にならないと検出できないなどその応用範囲に著しい制限が加えられていた。
【0005】
【発明が解決しようとする課題】
このように、従来の技術による微生物数測定装置で測定感度を上げるためには、何らかの薬剤を使用したり、専用の測定装置,専門知識を持った専任者による操作が必要なものであった。また薬剤を使用しない簡易型の装置では、このような専任者を必要とはしないための簡易な測定が可能になるが、試料液に含まれた微生物数が非常に多くないと測定が難しく、これでは低感度の測定器しか得られないし、試料液中に薄い濃度で分布している微生物を移動させて局部的に濃度を上げて感度を向上させたくても、これを実施できる簡易でメンテナンスフリーな手段がないという問題があった。
【0006】
そこでこれらの問題を解決するため本発明は、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能で、メンテナンスフリーの微生物数測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するために本発明の微生物数測定装置は、電界集中部を充たした液体に光を入射する入射部を有すとともに、前記液体中の微生物により散乱された光を検出する受光部を有した測定部を備え、制御手段が電源回路により電界を形成して微生物を誘電泳動させ、前記測定部は前記受光部が検出した光の散乱強度に基づいて微生物数を算出することを特徴とする。
【0008】
これにより、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0009】
【発明の実施の形態】
発明は、微生物含有の液体を導入することができ、内部に複数の電極と、該電極間に形成される電界を集中するための電界集中部が設けられたセルと、前記セル中に前記電界を形成するための交流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、前記電界集中部を充たした液体に光を入射する入射部を有すとともに、前記液体中の微生物により散乱された光を検出する受光部を有した測定部を備え、前記入射部と前記受光部は、いずれも光ファイバを備えており、前記電極は、前記光ファイバと一体化されており、前記制御手段は、前記電源回路により前記電界を形成して微生物を誘電泳動させ、前記測定部は前記受光部が検出した光の散乱強度に基づいて微生物数を算出することを特徴とする微生物数測定装置であるから、微生物数の少ない試料においても微生物を電極付近に集中させた後に光学的な手段である入射部と受光部によってその数を測定することができ、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができる。また、一体化することで構造が簡単化でき、簡単な構成でありながら高精度の測定を行うことができる。
【0010】
本発明は、前記電極が、前記光ファイバのクラッド外周にコーティングされた導電性の薄膜であるものを含む
【0011】
本発明は、前記光ファイバから液体中に入射された光の光束の広がる範囲内に前記電極の端部が配置されたものを含む。したがって、前記電界集中部に微生物を集中させる早い段階から測定を行なうことができ、感度と精度の高い測定結果を得ることができる。
【0012】
本発明は、前記光ファイバのコア及びクラッドが有機高分子で構成されているものを含む。したがって、光ファイバが劣化することがなく、簡単な構成でありながら高精度の測定を行うことができる。
【0015】
発明は、微生物含有の液体を導入することができ、内部に複数の電極と、該電極間に形成される電界を集中するための電界集中部が設けられたセルと、前記セル中に前記電界を形成するための交流電圧を前記電極に印加する電源回路と、前記電源回路を制御するための制御手段と、前記電界集中部の液体に光を入射する入射部と前記液体中の微生物により散乱された光を検出する受光部を有すとともに、前記光のうち散乱されずにそのまま透過した光の偏波面の回転を検出する偏波面検出部を有した測定部を備え、前記制御手段は、前記電源回路により前記電界を形成して微生物を誘電泳動させ、前記測定部は前記受光部が検出した光の散乱強度に基づいて微生物数算出を行い、前記偏波面の回転量により微生物の同定を行うことを特徴とする微生物数測定装置であるから、偏波面の回転から微生物の組成や代謝に関する情報を取出すことができ、簡単な構成でありながら高精度の測定と微生物の同定を行うことができる。
【0016】
以下、本発明の実施の形態について、図1〜図3を用いて説明する。
(実施の形態1)
本発明の一実施の形態である微生物数測定装置について図面を参照しながら詳細に説明する。図1は本発明の実施の形態1における微生物数測定装置の全体構成図、図2は本発明の実施の形態1における電界集中部近傍の詳細説明図、図3は微生物数測定時に観察される散乱光強度の時間変化の説明図である。
【0017】
図1,2及び3において、1はセル、2は電磁弁、3は電極、4は電源回路、5は光源側の光ファイバ、6は受光側の光ファイバ、7は光源、8は受光器、9は測定回路、10はメモリ、11は制御手段、12は試料系配管である。光ファイバ5やレンズ等の光学素子が、光源7からの光をセル1内に設けた後述する電界集中部に入射する本実施の形態1の入射部に相当し、光ファイバ6と受光器8等が本実施の形態1の受光部に相当するものである。さらに、21は電極底部、22は針状突起、23は電極3間のギャップ、30は光源側の光ファイバ5から出射される光束の広がる範囲、31は受光側の光ファイバ6による光の受光範囲である。光束の広がる範囲というのは、出射された光が束となって円錐状に広がる領域を意味する。
【0018】
図1及び図2に示すように、誘電泳動によって試料液中の微生物を所定位置に移動させるために、電極3が微小なギャップ23を介して対向して設けられている。本実施の形態1においては電極3は円錐状の電極底部21と円錐先端から鋭く突き出した針状突起22を備えている。このギャップ23付近の構成が本実施の形態1の電界集中部にあたる。電界集中部は空間の中で局部的に電界が集中する構成であればよく、実施の形態1のように微少なギャップ23を挟んでの電極3の構成のように最もシンプルな構成でもよいし、絶縁体でセルに絞り部を形成して試料溶液を充たす構成等、いろいろの構成を採用できる。なお、電極底部21と針状突起22に関しては電極3の少なくとも一方がこの構成を備えるのでもよい。本実施の形態1では針状突起22は白金から構成され、ギャップ23を挟んで一直線上で対向するように設けられる。またここではギャップ23の間隔が100μmに設定されているが、ギャップ23の間隔は測定対象となる微生物の大きさ等の影響を受けるため必要に応じて調節される。例えば、酵母のような大きなものでは広く、リケッチアのように小さなものについては狭くする必要がある。また、ギャップ23の間隔は、広いほど大量の微生物を濃縮することができ、測定のダイナミックレンジも広くなるが、測定までの時間が長く必要になり、誘電泳動のために必要な電力も大きくなる。逆にギャップ23を狭くすると、電力と測定のために必要となる時間は少なくなるが、測定のダイナミックレンジは狭くなってしまうものである。以上のような理由から本実施の形態1においては、ギャップ23の間隔を100μmとしているが、この値は10〜300μmの範囲で適宜調節されることが望ましい。さらに図示されていないが、針状突起22の先端部分を除く部分と電極底部21に絶縁性でかつ疎水性のフッソ系薄膜コーティング等の有機高分子コーティングが施されている。この有機高分子コーティングにより光ファイバが劣化することがなく、簡単な構成でありながら高精度の測定を行うことができる。
【0019】
電源回路4は液体中の微生物等を誘電泳動させるための交流電流を電極3間に供給する。この電源回路4は電磁弁2等と共に制御手段11によって制御される。制御手段11は、図示しないマイクロプロセッサと、予め設定されたプログラムを保存するためのメモリ、タイマー、さらに測定回路9との間の信号の伝送路等から構成され、前記プログラムにしたがって電磁弁2の開閉を行い、電源回路4を制御して、電極3へ特定の周波数と電圧をもった交流電圧を印加する。さらに制御手段11は測定回路9と信号の送受信を行う。
【0020】
光源側の光ファイバ5は石英ガラスを主材料としコア径50ミクロン、クラッド径125ミクロンでコアの屈折率に分布を持ち樹脂製の保護外皮すなわち絶縁性でかつ疎水性のフッソ系薄膜等の有機高分子コーティングが施されている。光ファイバ5は一方を光源側に、他方をギャップ23に近接して配置され、両端面は光学的に平坦に研磨されている。また図示しないが既述したように、光源7と光源側の光ファイバ5の間にはレンズ等の光学素子が配置され、光源7の光を光ファイバ5に効率よく入射させている。光ファイバ5のギャップ23側の端面からは光ファイバ5内を伝わってくる光源7の光が図2の30に示すような範囲に広がって出射する。本実施の形態1においてはこの光束の広がる範囲30と少なくとも一方の針状突起22の先端が互いに重なるように配置されている。いいかえるなら、電極3の端部が液中に入射された光の広がる円錐状空間内に配置されることになる。なお、本実施の形態1では石英ガラスを主成分とする光ファイバを用いたが、有機高分子を主成分とする光ファイバを用いてもよい。有機高分子を主成分とする光ファイバは、石英ガラスを主成分とする光ファイバと比較して光の伝播時の減衰が大きいことが知られているが、本実施の形態1のように伝播距離が通信用途等と比較して極端に短い場合にはなんら問題は生じない。
【0021】
受光側の光ファイバ6は光ファイバ5同様石英ガラスを主材料としコア径50ミクロン、クラッド径125ミクロンでコアの屈折率に分布を持ち、樹脂製の保護外皮すなわち絶縁性でかつ疎水性のフッソ系薄膜等の有機高分子コーティングが施されている。光ファイバ6は一方を受光器側に、他方をギャップ23に近接して配置され、両端面は光学的に平坦に研磨されている。また図示しないが、受光器8と光源側光ファイバ6の間にはレンズ等の光学素子が配置され、光ファイバ5を伝って来た光が効率よく受光器8で検出される。光ファイバ6のギャップ23側の端面では図2の31に示す受光範囲の内側から光ファイバ6に入射した光だけが受光器8で検出される。受光範囲31以外の範囲から光ファイバ6に入射した光は光ファイバ6内の光の伝播条件を満たすことができず、受光器8に至る以前に減衰して消滅してしまうものである。光ファイバ6についても有機高分子を主成分とする光ファイバを用いることができる。
【0022】
本実施の形態1においては、光ファイバ5と光ファイバ6は同一平面内で互いに135度の角度をもって配置される。この135度というのは望ましい角度の1つであって、散乱光を測定するのが容易な角度であれば他の角度でもよく、例えば10度付近から170度付近までの角度を採用することができる。さらに、受光範囲31と光束の広がる範囲30が少なくとも一方の針状突起22の先端部分と互いに重なるように配置される。いいかえると少なくとも一方の電極3の端部が光源側と受光側の光束の範囲内に配置されることになる。
【0023】
また、本実施の形態1においては上記した通り、光ファイバ5、6は共に図示しないがギャップ23側の端面に疎水性のフッソ系薄膜等の有機高分子がコーティングされている。石英ガラスは経年変化により次第に吸水しクラックを生じて劣化することが知られているが、本実施の形態1では端面に疎水性の薄膜を施すことにより水の侵入を阻止し劣化を防止している。
【0024】
ところで、光ファイバ5,6のコア径及び屈折率分布の有無を適宜選択することにより、光束の広がる範囲30と受光範囲31は変更することができる。すなわち、コア径を小さくすると光束の広がる範囲30と受光範囲31は狭くなり、より光エネルギー密度が高くかつバックグラウンドノイズの少ない測定を行なうことが可能になる。しかしながら、コア径の小さな光ファイバは光源7及び受光器8との光学的な結合効率を高めることが難しくなる。そこで実施の形態1ではコア径50ミクロン、クラッド径125ミクロンでコアの屈折率に分布を持つ光ファイバを用いることにより、簡易な構成で効率の良い検出を行なっている。
【0025】
次に測定回路9は、図示しないマイクロプロセッサ、光源7を点灯させるためのリレー、受光器8からの信号を検出する検出回路、制御手段11との間の信号を伝える伝送路等から構成され、誘電泳動で捕捉された微生物に起因する散乱光強度を測定し、後述する方法に従って微生物数を算出する。さらに必要に応じて演算結果をメモリ10に格納したり、予め保存されているデータを読み出して比較を行う等して、試料系に含まれている微生物数を算出する。なお、このマイクロプロセッサは制御手段11と測定回路9とで共用することができる。また測定回路9と制御手段11は、互いに通信することにより、予め設定されたプログラムに従って一連の測定動作を連携して円滑に進めることができる。
【0026】
以下、試料の導入からセル1内の微生物の濃縮、測定、洗浄にいたるまでの一連の流れを説明する。初期状態では試料系配管12とセル1を遮断するための電磁弁2は開放状態にあり、試料系配管12の液体はセル1内を自由に通過している。所定のタイミングで、予めプログラムによって設定された測定動作に入ると制御手段11は電磁弁2を閉状態にし、セル1を試料系配管12から遮断し、セル1内のみの閉鎖系を構成する。その後、制御手段11は、セル1内の液体の流動が収まると予想される予め設定された所定時間が経過すると、測定回路9に測定開始の信号を送って測定の開始を指令する。
【0027】
測定開始の指令を受けた測定回路9は、直ちに光源7を点灯させ散乱光強度を測定する。そしてこの値を初期値としてメモリ10に格納し、初期値の測定が終了したことを信号を送って制御手段11に伝える。以下、制御手段11と測定回路9は必要に応じて適宜信号のやり取りを行い、予め設定されたプログラムに従った円滑な動作を行う。
【0028】
次いで制御手段11は電源回路8を制御して電極3間に周波数100kHzでピーク電圧100Vの正弦波交流電圧を印加させる。なお、ここで交流電圧というのは、正弦波のほか、ほぼ一定の周期で流れの向きを変える電圧のことであり、かつ両方向の電流の平均値が等しいものである。
【0029】
予め設定された所定時間が経過した後に送出される制御手段11からの信号により測定回路9は再び散乱光強度を測定し、その値をメモリ10に格納する。
【0030】
その後、予め設定された時間毎に、制御手段11と測定回路9は連携して散乱光強度の測定を繰り返す。測定手段は測定された散乱光強度をその都度メモリ10に格納する。このように、誘電泳動による微生物のギャップ23付近への移動を行ないながら散乱光強度の測定を繰り返すことによって、散乱光強度の時間変化を調べることができる。
【0031】
誘電泳動のための交流電圧印加開始後予めプログラムされた所定の回数の散乱光強度の測定を行うと、測定回路9はメモリ10に格納されている複数の散乱光強度測定結果から、その時点までの電極3間の散乱光強度の時間変化の傾きを計算し、後述する変換式に従って試料系の微生物数を算出する。
【0032】
ところで、高周波の交流電圧の印加によって発生する交流電界の作用で、セル1内の微生物はその誘電的な性質によって最も電場が強くかつ不均一な部分、すなわち電界集中部に泳動される。本実施の形態1では電極3のギャップ23付近の構成が電界集中部にあたり、中でも最も電界が集中するのは一直線上に対向する針状突起22の先端を結んだ部分すなわちギャップ23である。ギャップ23付近の微生物は電極3間に生じる電界作用によってギャップ23へ向かって泳動される。最初に泳動された微生物は針状突起22の先端に付着し、以降に移動してくる微生物は対向する電極に向かってギャップ23を架橋するように並ぶ。以降の状態は試料液体中に存在する微生物数とギャップ23の間隔に依存するが、十分に微生物数が多い時にはギャップ23が微生物24から構成される鎖によって架橋されるほどになり、さらにギャップ23を中心として目視できるラグビーボール状の微生物体の固まりを生じるほどになる。この際、当初からギャップ23付近に浮遊していた微生物は直ちにギャップ23部分へ移動するし、ギャップ23から離れたところに浮遊していた微生物は距離に応じて所定時間経過後にギャップ23部に至るため、一定時間後にギャップ23付近の所定領域に集まっている微生物の数はセル1内の微生物数に比例する。これは当然のことながら試料系配管12に存在する微生物数に比例するものである。ギャップ23付近に移動する微生物が増加するにしたがってギャップ23付近で集まった微生物によって散乱される光の強度は大きくなる。この散乱光を検出し適宜演算を行うことによって試料中の微生物数を算出することができる。
【0033】
本実施の形態1では前述したように受光範囲31と光束の広がる範囲30が少なくとも一方の針状突起22の先端部分と互いに重なるように配置されているため、試料中に含まれる微生物数が非常に少ない場合でも正確な検出が可能である。なぜ受光範囲31と光束の広がる範囲30が少なくとも一方の針状突起22の先端部分に互いに重なるように配置されていると微生物数が非常に少ない場合でも正確な検出が可能であるのかというと、前述したように誘電泳動によって最初に泳動された微生物は針状突起22の先端に付着し、それ以降に移動してくる微生物は対向する電極に向かってギャップ23を架橋するように並ぶからであり、試料に含まれる微生物数が非常に少ない場合には、泳動された微生物はほとんどが針状突起22の先端近傍に集まるからである。先端部分に集まった微生物を正確に検出するには光束の広がる範囲30と針状突起22の先端が接していれば充分であるが、試料の温度によっては針状突起22を含む電極3や光ファイバ5、6が熱膨張/熱収縮して互いの位置関係が微小ながらずれるために針状電極22と光束の広がる範囲30を正確に接触させておくことができず、結果として測定値に誤差を生じる。前述したずれが針状突起22先端と光束の広がる範囲30が重なる方向にずれる場合には、正確な微生物数を算出することができるため問題はとくに生じない。しかしながら、前述したずれが針状突起22先端と光束の広がる範囲30が離れる方向にずれる場合には、針状突起22の先端に付着した微生物による散乱光を全く検出できなくなり正確な微生物数の算出ができなくなってしまうものである。
【0034】
本実施の形態1では予め熱膨張等を考慮して受光範囲31と光束の広がる範囲30が少なくとも一方の針状突起22の先端部分と互いに重なるように配置されているため、試料の温度が様々に変化しても安定した測定が可能である。このような配置では、針状突起22の先端部分による散乱が生じるが、この散乱光強度はすでに説明したように誘電泳動のための電圧を印加する前に行われる初期値の測定によってその後の演算で差し引きされ、測定結果に誤差を生じることはない。また、測定は迅速に行なわれるため、測定中の試料の温度変化が測定結果に影響することもない。
【0035】
このようにして測定される散乱光強度の時間変化を示したのが図3である。そして図3からも分かるように、測定初期の散乱光強度の時間変化の傾き(勾配)も散乱光強度の時間変化と同様に、微生物数に対応して増加しているのが分かる。散乱光強度の時間変化で微生物数を算出する場合、過渡状態をすぎて平衡状態になってから測定した方が正確であるから、どうしても時間が長くかかるが、測定初期の散乱光強度の時間変化の傾き(勾配)によって微生物数を算出する場合は、比較的短時間で微生物数を算出できるという特徴がある。
【0036】
さて、散乱光強度変化と試料系配管12の微生物数を関連付けるためには散乱光強度と微生物数間の変換式が必要である。この変換式は微生物数が明らかな校正用試料を、本実施の形態1で説明した微生物数測定装置の測定系を用いて予め測定し、その時の微生物数と散乱光強度の間の相関関係からばらつきを回帰分析して得られる曲線をあらわす関数をもちいる。この変換式をメモリ10に記憶させ、微生物数が未知の試料を測定する場合には、所定時間内における散乱光強度変化の値を代入することにより試料系の微生物数を算出できる。
【0037】
ここで実施の形態1の試料系としては、例えば酵母の培養液等の単一微生物系を想定しているが、混合微生物系であっても、微生物の種類とその構成比が大きく変化しない限り、前もって同様の変換式を算出しておいて測定することが可能である。
【0038】
以上説明したように、微生物数を算出後、予めプログラムされた所定の時間が経過すると、測定装置10は測定終了の通知を制御手段11に送る。これを受け、制御手段11は電極3への通電を停止するとともに電磁弁2を開放して洗浄に入る。ギャップ23付近に集まった微生物は、電磁弁2の開放により流入する試料系配管12の液体によって洗い流される。
【0039】
本実施の形態1においては電極3の針状突起22の先端を除いた部分と電極底部21の部分にフッソ系薄膜等の絶縁性かつ疎水性の有機高分子がコーティングされているため、移動してきた微生物は電極表面にほとんど付着することなく洗い流され、一連の測定動作が終了する。
【0040】
このように本実施の形態1では、誘電泳動による微生物の濃縮を行いながら、定期的に測定回路9による電極3間の散乱光強度を測定することができ、散乱光強度の時間変化を検出することができるので、比較的短時間で、簡易な構造でありながら、測定感度が高く、また自動測定も可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0041】
(実施の形態2)
本発明の実施の形態2における微生物数測定装置について図面を参照しながら詳細に説明する。図4は本発明の実施の形態2における微生物数測定装置の全体構成図、図5は本発明の実施の形態2における電界集中部近傍の詳細説明図、図6は本発明の実施の形態2における電界集中部への微生物の移動状態を説明するための図である。
【0042】
本実施の形態2の微生物数測定装置は、実施の形態1の微生物数測定装置と重複する部分があるため、実施の形態1と異なる部分について詳細な説明を加える。
【0043】
図4及び図5、図6において41は誘電泳動のための電圧を印加する電極を一体化した光源側光ファイバ、42は誘電泳動のための電圧を印加する電極を一体化した受光側光ファイバ、43は光ファイバ41と光ファイバ42のなすギャップ、44は光ファイバ41から出射される光束の広がる範囲、45は光ファイバ42の受光範囲、46は誘電泳動によって電界集中部に移動してきた微生物である。
【0044】
図4及び図5,図6に示すように、セル1内には誘電泳動によって試料液中の微生物を所定位置に移動させるために、誘電泳動のための電圧を印加する電極が一体化された光源側の光ファイバ41と、同じく電極が一体化された受光側の光ファイバ42が一直線上に対向して設けられている。光ファイバ41と光ファイバ42のクラッド表面には白金がコートされており、この白金のコートは電源回路4と電気的に接続されている。このように本実施の形態2では実施の形態1と異なり誘電泳動のための電極が光ファイバと別体に設けられるのではなく、コートとして被覆されることで両者が一体となっている。従って、実施の形態2における電界集中部は光ファイバ41と光ファイバ42のギャップ43となる。
【0045】
実施の形態2におけるギャップ43の間隔は300ミクロンである。ギャップ43も実施の形態1におけるギャップ23同様間隔は測定対象となる微生物の大きさ等の影響を受けるため必要に応じて調節される。
【0046】
実施の形態2における光ファイバ41と光ファイバ42は有機高分子を材料とし、コア径は100ミクロンである。光ファイバ41,42はコア径が大きいため出射される光束の広がる範囲44、受光範囲45は実施の形態1に比較して広くなる。
【0047】
以下に、試料の導入からセル1内の微生物の濃縮、測定、洗浄にいたるまでの一連の流れを説明するが、実施の形態2においても誘電泳動によって微生物を電界集中部に移動させ、微生物に起因する散乱光強度の時間変化を測定した後に演算して試料中の微生物数を算出するという考え方は同じである。また、濃縮、測定、洗浄に至る一連の動作は実施の形態1と同様であるので説明を実施の形態1に譲って省略する。実施の形態2が実施の形態1と大きく異なる点は、誘電泳動のための電極と測定のための光ファイバが一体化されているという構成にある。以下この点に絞って詳細に説明する。
【0048】
試料導入後、測定開始の指令を受けた測定回路9は、直ちに光源7を点灯させ散乱光強度を測定し、その値を初期値としてメモリ10に格納する。この時に測定される値は光源7から光ファイバ41を伝ってギャップ43を介して光ファイバ42に入射したものである。実施の形態1で説明した如く、光ファイバ41,42はそれぞれ光束の広がる範囲44と受光範囲45をもっている。光ファイバ41,42は一直線上に対向しているが、光源7からの光は光ファイバ41のギャップ43に近い方の端面で光束の広がる範囲44のように広がるため、すべてが光ファイバ42に入射するわけではない。光ファイバ43に入射する光は幾何光学的には光ファイバ41内を直進してきた成分、量子光学的には低次の伝播モードをもったものに限られる。
【0049】
さて、初期値の測定後誘電泳動が開始され、予め設定された所定時間が経過した後に送出される制御手段11からの信号により測定回路9は再び散乱光強度を測定し、その値をメモリ10に格納する。この時には、試料中に存在する濃度に応じて一定の数の微生物が電界集中部に移動してきている。
【0050】
ここで、実施の形態2における微生物の移動は実施の形態1とは異なり図6に示すようになる。実施の形態2における誘電泳動のための電圧を印加する電極は光ファイバ41,42のクラッド表面に設けられており、電極のみを考えた場合には対向する円筒形状をしていると考えることができる。従って最も電界が強くなる部分も光ファイバ41,42のクラッド表面を互いに結んだ円筒形となる。この円筒形状の最も電界の強い集中した部分から離れるに従い電界は弱まっていく。よって、光ファイバ41,42のコアが対向する部分の電界は前記円筒形状の強電界部分よりも電界強度は弱い。つまり、実施の形態2では誘電泳動による微生物の移動は前記円筒形状の強電界部分に向かって生じることになる。以下、前記円筒形状の強電界部分を単に強電界部分と記述する。
【0051】
光束の広がる範囲44と強電界部分は互いに重なっているため強電界部分に移動してきた微生物46は光を散乱するようになる。この時散乱される光はランダムな方角に向かうが、受光範囲45と強電界部分が重なっているために光ファイバ42方向に散乱された光は光ファイバ42に入射し受光器8によって検出される。したがって、強電界部分に存在する微生物46の数に依存した検出光の増加が認められるようになる。
【0052】
以下、実施の形態1と同様に、予め設定された時間毎に制御手段11と測定回路9は連携して散乱光強度の測定を繰り返し、演算によって試料中の微生物数を算出した後、洗浄が行われ測定動作が終了する。
【0053】
ここで実施の形態2の試料系としては、実施の形態1同様例えば酵母の培養液等の単一微生物系を想定している。また、混合微生物系であっても、微生物の種類とその構成比が大きく変化しない限り、前もって同様の変換式を算出しておいて測定することが可能である。
【0054】
このように本実施の形態2においては誘電泳動のための電極と測定のための光学系が一体で構成されており、簡易な構成を実現している。また、光ファイバ41,42は有機高分子系の材料からなるため液体中での劣化がほとんどなく、簡易な構造でありながら、測定感度が高く、また自動測定も可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0055】
(実施の形態3)
本発明の実施の形態3における微生物数測定装置について図面を参照しながら詳細に説明する。図7は本発明の実施の形態3における微生物数測定装置の全体構成図である。図8は本発明の実施の形態3における電界集中部近傍の詳細説明図である。
【0056】
本実施の形態3の微生物数測定装置は、実施の形態1の微生物数測定装置と重複する部分があるため、実施の形態1と異なる部分について詳細な説明を加える。
【0057】
図7において50は光源側の偏波面保存光ファイバ、51は微生物体に起因する光源光の偏波面の回転を測定するための偏波面保存光ファイバ、52は旋光度測定のための受光器を含む光学系、53は直線偏光を出射する光源である。
【0058】
偏波面保存光ファイバ50,51は入射した光の偏波面を保ったまま伝播することが可能な偏波面保存型の光ファイバであり、石英ガラスから構成されている。光学系52は、図示しない複数のレンズと偏光板とファラデー素子と光の強度を検出できる受光器を組み合わせて構成され、偏波面保存光ファイバ51を伝播してきた光の偏波面の回転角を測定することができる。光源53は、やはり図示しないレーザーダイオードと複数のレンズと偏光板から構成され、偏光板によって規制される特定角度の直線偏光のみを偏波面保存光ファイバ50に入射できるものである。偏波面保存光ファイバ50と光ファイバ6は同一平面内で互いに135度の角度をもって配設され、偏波面保存光ファイバ50と偏波面保存光ファイバ51は同一直線状に対向して配設される。この135度というのは望ましい角度の1つであって、散乱光を測定するのが容易な角度であれば他の角度でもよく、例えば90度から170度付近までの角度を採用することができる。そして、偏波面保存光ファイバ51と光学系52等が本実施の形態3の偏波面検出部を構成し、偏波面保存光ファイバ50から入射された光のうち散乱されないで、微生物の中を透過する光が後述する旋光性により偏波面が回転するのを検出するものである。
【0059】
ここで、偏光および偏波面の回転について説明する。光は電界と磁界が互いに直交しながら伝播するきわめて周波数の高い電磁波である。したがって無線周波数での電波と同様垂直/水平等の直線偏光、円偏光、無偏光等を考えることができる。白熱電球等の一般的な光源では放出される光の電界の振動方向はバラバラでいわゆる無偏光の状態である。無偏光状態の光を特定の方向に配向した分子からなる結晶等に通過させることにより特定方向に偏光した光だけを選択的に取り出すことができる。またこのような性質を持った物質は偏光板として光学分野で広く利用されている。
【0060】
一方、特定の構造を持った分子は光との相互作用前後でその光の偏波面を分子固有の一定値だけ回転させることが知られており、この性質は旋光性と呼ばれている。分子の旋光性は特に有機化学においては不斉炭素の存在で説明されており、有機物質の定性、定量に利用されている。また、生化学の分野で議論されることの多い蛋白質、アミノ酸等はほとんどすべてが不斉炭素をもっており、従って旋光性をもっており、定性、定量が可能である。
【0061】
旋光性による光の偏波面の回転角度は、物質の種類とその濃度と光路長に依存し、二種類以上の旋光性物質が共存するときは回転角度はその二物質の存在比率に応じた回転角度の和になる。光路長と光路に存在する旋光性物質の濃度が規定されれば、旋光性による光の偏波面の回転角度の変化は物質固有の値となり、定性分析が可能になる。その他にも、特定方向に偏光した光と旋光性をもった物質とを相互作用させることにより物質についてのさまざまな情報を引き出すことができる。
【0062】
実施の形態3における偏波面の角度およびその変化を測定する偏波面検出部について説明すると、旋光度測定のための受光器を含む光学系52内で、偏波面保存光ファイバ51からの光はその偏波面を保持したままレンズでコリメートされファラデー素子に入射される。ファラデー素子と後方の受光器との間には偏光板があり、特定方向に偏光した光のみが偏光板を通過して受光器に入射し検出される。そして、このファラデー素子に印加する電圧を変化させると、ファラデー素子内を通過する光の偏波面は印加電圧に応じて回転し、ファラデー素子によって偏波面が回転した光のうち偏光板で規制される所定角度になったときのみ受光器に到達し検出される。従って、ファラデー素子に印加する電圧を掃引し、受光器への入射光の強度が最大になったときの印加電圧が偏波面保存光ファイバ51によって伝播されてきた光の偏波面の角度と相関することになる。すなわち、偏波面保存光ファイバ51によって伝播されてくる光の偏波面が変化すると、受光器への入射光強度を最大にするためのファラデー素子への印加電圧が変化し、この電圧の変化および変化量によって偏波面が変化したこと、及びその変化量を知ることができる。このように、受光器への入射光強度とファラデー素子への印加電圧を調べることによって偏波面の角度とその変化を知ることができるものである。
【0063】
本発明は、実施の形態3で説明したように、偏波面検出部において偏波面の角度を算出するものであるが、以下煩雑になるのでこのような一連の動作を単に測定するという表現で説明する。なお、上記の測定回路9による測定は、回路のみで行うのでも、マイクロプロセッサでソフト的に行うのでも全く同様であり、いずれの場合も含むものである。また、光源に用いるレーザーダイオードからの出力光はある程度偏光しているが、厳密な直線偏光を得るために本実施の形態3では偏光板を通過させてから入射している。
【0064】
以下に、試料の導入からセル1内の微生物の濃縮、測定、洗浄にいたるまでの一連の流れを説明するが、実施の形態3においても誘電泳動によって微生物を電界集中部に移動させ、微生物に起因する散乱光強度の時間変化を測定した後に演算して試料中の微生物数を算出するという微生物数測定の考え方は同じである。また、濃縮、洗浄等の動作は実施の形態1と同様であるので説明を実施の形態1に譲って省略する。実施の形態3が実施の形態1と大きく異なる点は、実施の形態1で説明した方法で微生物数を測定した後に更に微生物に起因する光源光の偏波面の回転を測定することにより、微生物の同定を行うことにある。以下この点に絞って詳細に説明する。
【0065】
試料導入後、測定開始の指令を受けた測定回路9は、直ちに光源7を点灯させ受光器8の信号を調べて散乱光強度を測定し、その値を初期値としてメモリ10に格納すると同時に旋光度測定のための受光器を含む光学系52によって偏波面角度を測定し、その値を初期値として取得しメモリ10に格納する。
【0066】
その後、実施の形態1ですでに説明した流れによって一連の微生物数測定のための動作が終了すると、測定回路9は旋光度測定のための受光器を含む光学系52によって偏波面の角度を再び測定する。直線偏光を出射する光源53からの光の一部はギャップ23に存在する微生物によって散乱され、それによって微生物数が測定されるが、一部は散乱されずに透過して偏波面保存光ファイバ51に入射される。この透過光は微生物体の表面および微生物体を取り巻く代謝物等の物質と相互作用し、それらの物質のもつ旋光性によってその偏波面を回転させられる。
【0067】
こうして生じる偏波面の角度の初期値からの変化量は誘電泳動によって濃縮された微生物の種類に関する情報を含む。なぜならば、微生物はその種類によって特定の蛋白質、糖質等から構成され、その種類や比率は微生物種によって固有のものだからである。このように微生物が固有の種類/比率の蛋白質、糖類等から構成されており、すでに説明したようにこれらの物質はほとんどが固有の旋光性をもっているため、微生物数や光路長など条件を共通にして偏波面の角度の回転角度を測定すれば微生物の特定ができるものである。なお、微生物の同定を行うため実施の形態3の試料系としては、例えば混合微生物を固体培地上で培養しその中の単一コロニーから釣菌した試料などの単一微生物系を想定している。
【0068】
以上説明したように、濃度すなわち微生物数と、光路長が一定であれば微生物の種類によって偏波面の回転角度は一定の値をもつようになる。実施の形態3においては微生物数は光の散乱強度を検出することで測定し、光路長を一定長に固定することで、微生物の種類ごとに偏波面の角度の初期値からの変化量を微生物数で割ることにより、各微生物に特有な単位微生物数あたりの偏波面の回転角度を算出することができる。このようにして算出した各種類の微生物の単位微生物数あたりの偏波面の回転角について予めメモリ10に記憶しておき、これと測定した単位微生物数あたりの偏波面の回転角度とを比較することで、泳動された微生物の種類を同定することができるものである。微生物数の測定と同定が終了した後は、実施の形態1と同様にして洗浄が行われ測定動作が終了する。
【0069】
このように本実施の形態では微生物の数を測定すると同時にその種類を知ることができ、簡易な構造でありながら、測定感度が高く、また自動測定も可能でメンテナンスフリーの微生物数測定装置を提供することができる。
【0070】
【発明の効果】
本発明によれば、薬剤や特別な装置を必要とすることなく、簡易で高感度な測定ができ、自動測定が可能でメンテナンスフリーの微生物数測定装置を提供することができる。また、微生物数の測定のほか、単一微生物系であれば微生物の種類を同定できるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1における微生物数測定装置の全体構成図
【図2】本発明の実施の形態1における電界集中部近傍の詳細説明図
【図3】微生物数測定時に観察される散乱光強度の時間変化の説明図
【図4】本発明の実施の形態2における微生物数測定装置の全体構成図
【図5】本発明の実施の形態2における電界集中部近傍の詳細説明図
【図6】本発明の実施の形態2における電界集中部への微生物の移動状態を説明するための図
【図7】本発明の実施の形態3における微生物数測定装置の全体構成図
【図8】本発明の実施の形態3における電界集中部近傍の詳細説明図
【符号の説明】
1 セル
2 電磁弁
3 電極
4 電源回路
5,6,41,42 光ファイバ
7 光源
8 受光器
9 測定回路
10 メモリ
11 制御手段
12 試料系配管
21 電極底部
22 針状突起
23 ギャップ
30,44 光束の広がる範囲
31,45 受光範囲
43 ギャップ
46 微生物

Claims (5)

  1. 微生物含有の液体を導入することができ、内部に複数の電極と、該電極間に形成される電界を集中するための電界集中部が設けられたセルと、
    前記セル中に前記電界を形成するための交流電圧を前記電極に印加する電源回路と、
    前記電源回路を制御するための制御手段と、
    前記電界集中部を充たした液体に光を入射する入射部を有すとともに、前記液体中の微生物により散乱された光を検出する受光部を有した測定部を備え、
    前記入射部と前記受光部は、いずれも光ファイバを備えており、
    前記電極は、前記光ファイバと一体化されており、
    前記制御手段は、前記電源回路により前記電界を形成して微生物を誘電泳動させ、
    前記測定部は前記受光部が検出した光の散乱強度に基づいて微生物数を算出することを特徴とする微生物数測定装置。
  2. 前記電極は、前記光ファイバのクラッド外周にコーティングされた導電性の薄膜であることを特徴とする請求項1記載の微生物数測定装置。
  3. 前記光ファイバから液体中に入射された光の光束の広がる範囲内に前記電極の端部が配置されたことを特徴とする請求項1または2に記載の微生物数測定装置。
  4. 前記光ファイバのコア及びクラッドが有機高分子で構成されていることを特徴とする請求項のいずれかに記載の微生物数測定装置。
  5. 微生物含有の液体を導入することができ、内部に複数の電極と、該電極間に形成される電界を集中するための電界集中部が設けられたセルと、
    前記セル中に前記電界を形成するための交流電圧を前記電極に印加する電源回路と、
    前記電源回路を制御するための制御手段と、
    前記電界集中部の液体に光を入射する入射部と前記液体中の微生物により散乱された光を検出する受光部を有すとともに、前記光のうち散乱されずにそのまま透過した光の偏波面の回転を検出する偏波面検出部を有した測定部を備え、
    前記制御手段は、前記電源回路により前記電界を形成して微生物を誘電泳動させ、
    前記測定部は前記受光部が検出した光の散乱強度に基づいて微生物数算出を行い、前記偏波面の回転量により微生物の同定を行うことを特徴とする微生物数測定装置。
JP11466898A 1998-04-24 1998-04-24 微生物数測定装置 Expired - Fee Related JP3734125B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11466898A JP3734125B2 (ja) 1998-04-24 1998-04-24 微生物数測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11466898A JP3734125B2 (ja) 1998-04-24 1998-04-24 微生物数測定装置

Publications (2)

Publication Number Publication Date
JPH11299477A JPH11299477A (ja) 1999-11-02
JP3734125B2 true JP3734125B2 (ja) 2006-01-11

Family

ID=14643618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11466898A Expired - Fee Related JP3734125B2 (ja) 1998-04-24 1998-04-24 微生物数測定装置

Country Status (1)

Country Link
JP (1) JP3734125B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020028434A1 (en) 2000-09-06 2002-03-07 Guava Technologies, Inc. Particle or cell analyzer and method
JP4057422B2 (ja) 2001-01-25 2008-03-05 プレシジョン・システム・サイエンス株式会社 微小物識別装置およびその識別方法
JP4612037B2 (ja) * 2001-01-25 2011-01-12 プレシジョン・システム・サイエンス株式会社 微小物識別装置およびその識別方法
JP4779261B2 (ja) * 2001-08-30 2011-09-28 パナソニック株式会社 微粒子分離方法、微粒子分離装置、およびセンサ

Also Published As

Publication number Publication date
JPH11299477A (ja) 1999-11-02

Similar Documents

Publication Publication Date Title
Fattinger et al. The difference interferometer: a highly sensitive optical probe for quantification of molecular surface concentration
Fu et al. Laser-induced fluorescence detection system for microfluidic chips based on an orthogonal optical arrangement
FI94805C (fi) Anturi biologista, biokemiallista ja kemiallista koestusta varten
CN108680505B (zh) 一种多通道波长调制型光纤spr检测系统
US6974673B2 (en) Coupled capillary fiber based waveguide biosensor
JP3152758U (ja) 表面プラズマ共鳴測定器
US7295311B2 (en) Methods and apparatus for electrophoretic mobility determination using phase light scattering analysis
Wei et al. Multi-channel SPR sensor based on the cascade application of the Single-mode and multimode optical fiber
EP2496930A1 (en) Method for detection of an analyte in a fluid sample
GB2156970A (en) Optical detection of specific molecules
JP2018009824A (ja) 試料分析方法及び試料分析装置
Chabay Optical waveguides. Photon plumbing for the chemistry lab: fiber optics, waveguides, and evanescent waves as tools for chemical analysis
WO2006025158A1 (ja) 光学的測定装置および方法並びにナノ粒子測定方法および装置
US20090213383A1 (en) Apparatus and method for detecting one or more substances
JP3734125B2 (ja) 微生物数測定装置
Potyrailo et al. Optical time-of-flight chemical detection: absorption-modulated fluorescence for spatially resolved analyte mapping in a bidirectional distributed fiber-optic sensor
CA1266998A (en) Dielectric waveguide sensors and their use in immunoassays
CA2014405A1 (en) Biosensors
JPH09257701A (ja) 表面プラズモン共鳴センサ
JP2004117048A (ja) 表面プラズモン共鳴を利用する測定装置およびそれに用いる測定用基板
CN219475395U (zh) 快速spr检测系统
Fattinger et al. The difference interferometer: a highly sensitive optical probe for molecular surface-coverage detection
CN105259117A (zh) 一种基于模式干涉的细芯级联光纤生物传感装置
JP3763195B2 (ja) 微生物数測定装置及び微生物数測定方法
CN219573914U (zh) 一种用于spr检测的生物传感芯片

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees