JP3733950B2 - Assembling method of semiconductor device - Google Patents

Assembling method of semiconductor device Download PDF

Info

Publication number
JP3733950B2
JP3733950B2 JP2003007172A JP2003007172A JP3733950B2 JP 3733950 B2 JP3733950 B2 JP 3733950B2 JP 2003007172 A JP2003007172 A JP 2003007172A JP 2003007172 A JP2003007172 A JP 2003007172A JP 3733950 B2 JP3733950 B2 JP 3733950B2
Authority
JP
Japan
Prior art keywords
semiconductor element
resin
semiconductor
plate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003007172A
Other languages
Japanese (ja)
Other versions
JP2004221341A (en
Inventor
忠彦 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003007172A priority Critical patent/JP3733950B2/en
Publication of JP2004221341A publication Critical patent/JP2004221341A/en
Application granted granted Critical
Publication of JP3733950B2 publication Critical patent/JP3733950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子のバンプ形成面の裏面に接着材により補強部材を接合して成る半導体装置の製造方法に関するものである。
【0002】
【従来の技術】
電子機器の基板などに実装される半導体装置は、ウェハ状態で回路パターン形成が行われた半導体素子にリードフレームのピンや金属バンプなどを接続するとともに樹脂などで封止するパッケージング工程を経て製造されている。最近の電子機器の小型化に伴って半導体装置の小型化も進み、中でも半導体素子を薄くする取り組みが活発に行われている。
【0003】
薄化された半導体素子は外力に対する強度が弱くハンドリング時のダメージを受けやすいことから、従来より薄化された半導体素子を用いた半導体装置は、半導体素子を補強のための樹脂層で封止する構造が一般的である。この樹脂層形成は、個片化された半導体素子に補強用の樹脂部材を個別に接着材によって接着する方法が用いられる。この接着方法として、液状の接着材を塗布する方法や予めテープ状に形成された接着材を用いる方法などが用いられる。
【0004】
【発明が解決しようとする課題】
しかしながら樹脂層形成に上述の方法を用いる場合には、従来より以下のような課題があった。まず液状の接着材を塗布する方法では、搭載された半導体素子が接着材の流動性によって移動することによる位置ずれが生じやすく、形状精度の確保が難しい。またこの位置ずれを防止するために予めテープ状に成型された接着材を用いる方法では、このような接着材の準備のためにコストアップを招くという問題点があった。
【0005】
そこで本発明は、薄化された半導体素子に形状不良を生じることなく安価なコストで補強部材を接着することができる半導体装置の組立方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の半導体装置の組立方法は、表面に複数の外部接続用端子が形成された半導体素子の裏面にこの半導体素子よりも剛性の高い構造体を樹脂によって接着した半導体装置の組立方法であって、前記構造体となる板状部材の半導体素子接着位置に高チキソ性を有する第1の樹脂を点状に供給する第1樹脂供給工程と、第1樹脂供給工程後の板状部材の半導体素子接着範囲に低チキソ性を有する第2の樹脂を塗布する第2樹脂塗布工程と、複数の半導体素子を前記半導体素子接着位置に整列状態で搭載して半導体素子の裏面側を前記第1の樹脂に接触させることにより半導体素子を板状部材に対して位置保持させる半導体素子搭載工程と、前記第1の樹脂および第2の樹脂を硬化させて前記半導体素子を板状部材に接着する樹脂硬化工程とを含む。
【0007】
本発明によれば、構造体となる板状部材に高チキソ性の第1の樹脂を点状に供給し、次いで定チキソ性の第2の樹脂を供給した後に半導体素子を搭載することにより、半導体素子の位置を第1の樹脂によって固定することができ、薄化された半導体素子に形状不良を生じることなく安価なコストで補強部材を接着することができる。
【0008】
【発明の実施の形態】
次に本発明の実施の形態を図面を参照して説明する。図1(a)は本発明の一実施の形態の半導体装置の斜視図、図1(b)は本発明の一実施の形態の半導体装置の部分断面図、図2、図3は本発明の一実施の形態の半導体装置の組立方法の工程説明図、図4は本発明の一実施の形態の半導体装置に用いられる板状部材の斜視図、図5は本発明の一実施の形態の半導体装置の組立に使用される電子部品搭載装置の斜視図、図6は本発明の一実施の形態の半導体装置の組立に使用されるダイシング装置の斜視図、図7は本発明の一実施の形態の半導体装置の組立に使用されるダイシング装置の部分断面図、図8(a)は本発明の一実施の形態の実装構造の断面図、図8(b)は本発明の一実施の形態の実装構造の部分断面図、図9(a)は本発明の一実施の形態の半導体装置の斜視図、図9(b)は本発明の一実施の形態の半導体装置の平面図である。
【0009】
まず図1を参照して、半導体装置について説明する。図1(a)、(b)において、半導体装置1は、半導体素子2の裏面に樹脂層5によってバンパ4(構造体)を接着した構成となっており、半導体素子2の表面の縁部に沿って形成された複数の外部接続用端子である電極2a上には、バンプ3が形成されている。
【0010】
ここで半導体素子2は機械研磨やエッチングなどの方法によって薄化処理が行われた後の状態である。一般に、半導体素子をバンプを介して基板に実装した状態では、半導体素子の厚み寸法が小さいほど実装後の接合信頼性が優れている。これは、半導体素子2と基板の熱応力の差に起因してバンプ3の接合部に応力が集中しようとしても、半導体素子2自体が厚さ方向に変形(撓み)を生じることで応力を分散するからである。このため、本実施の形態では、上述のように半導体素子2を薄化処理して厚みt1が10〜150μmの範囲となるように設定し、厚さ方向への変形(撓み)を可能としている。
【0011】
薄化処理は、半導体素子2の回路形成面の反対面を砥石等を用いた機械研磨によって粗加工を行い、ドライエッチングや薬液によるウェットエッチングで仕上げ加工を行う。機械研磨を行うと裏面に多数のマイクロクラックを有するダメージ層が形成される。このダメージ層は、半導体素子の抗折強度を低下させる要因となるものであるが、仕上げ加工によりこのダメージ層を除去して半導体素子2の抗折強度を高めることができる。
【0012】
バンパ4は、半導体装置1の搭載時などのハンドリングにおいて半導体装置1を安定して保持することを容易にするとともに、基板などへ実装された後の半導体装置1を外力から保護する機能を有するものである。したがってバンパ4は、金属やセラミックまたは樹脂などの構造材を、上記機能を満たすような形状、すなわち半導体素子2よりも高い剛性を有するような厚みt2で、半導体素子2の外形よりも大きい外形形状に加工したものが用いられる。
【0013】
ここで半導体素子2をバンパ4に接着する樹脂層5には、低弾性係数の変形しやすい材質の接着用樹脂が用いられており、半導体素子2の厚み方向への変形を許容した状態で半導体素子2をバンパ4に接着するようになっている。これにより、半導体装置1を基板に実装した状態において、基板の変形状態に応じて半導体素子2が追従変形するようになっている。本実施の形態では、樹脂層5を形成する樹脂として、後述するようにチキソ性が異なる2種類の樹脂を用いるようにしている。
【0014】
図1に示すように、樹脂層5は半導体素子2の全周にわたって4辺の端部からはみ出しており、はみ出した樹脂部5aは半導体素子2の側面2bに沿って這い上がり側面2bを部分的に覆うような形状となっている。この側面2bを覆う樹脂部5aは、半導体素子2の縁部を補強する補強部を形成している。
【0015】
半導体素子2の縁部には、半導体ウェハをダイシングして個片の半導体素子2に切り出す際に生じた微小なクラックがそのまま残留しやすく、このクラックから破損を生じる場合がある。側面2bを覆う樹脂部5aは、このような微小なクラックを含んだ半導体素子2の縁部を補強するとともに、後述するように半導体装置1を基板10に実装した状態において、基板と半導体素子2との熱変形の差によって発生する応力に起因して半導体素子2が過剰に変形するのを防止する機能を有する。
【0016】
次に図2、図3を参照して、半導体装置1の組立方法について説明する。図2(a)において、板状部材6は半導体装置1の一部を構成するバンパ4が切り離される前の中間部品である。図3に示すように、板状部材6の上面には、格子形状に突出した仕切部6aが設けられており、仕切部6aで囲まれる凹部6bは半導体素子2が接着される半導体素子接着位置となっている。仕切部6aは、後述するように凹部6b内に半導体素子2の接着用の樹脂を塗布する際に、樹脂が半導体接着位置を超えて周囲に広がるのを規制するダム部となっている。
【0017】
板状部材6の下面の仕切部6aに対応する位置には、溝部6cが形成されている。溝部6cは、厚み寸法t4の板状部材6の下面側から格子状の溝を切り込んで形成され、これにより上面からの厚み寸法t3がt4よりも小さい肉薄部となっている。この肉薄部は、板状部材6をバンパ4に切断分離する際の切断位置と一致している。
【0018】
次に図2(b)に示すように、板状部材6の各凹部6b内の半導体素子接着位置には、ディスペンサ7Aによって第1の樹脂5Aが吐出され、複数箇所に突形状の点状に供給される(第1樹脂供給工程)。第1の樹脂5Aは高チキソ性を有しており、流動性が低くディスペンサ7Aによって吐出された後においても流れ拡がることがなく、突形状がそのまま維持される。
【0019】
次いで、図2(c)に示すように、第1樹脂供給工程後の各凹部6b内の半導体素子接着位置には、第2の樹脂5Bがディスペンサ7Bによって吐出され、凹部6b内に塗布される(第2樹脂塗布工程)。第2の樹脂5Bは低チキソ性を有しており流動性に富むため、既に供給された第1の樹脂5Aの周囲を濡れ拡がって、各凹部6b内を満たす。この第2の樹脂5Bの塗布において、凹部6bの周囲にはダム部としての仕切部6aが設けられていることから、第2の樹脂5Bが半導体接着位置を超えて周囲に広がることが防止される。
【0020】
また第2樹脂塗布工程においては、塗布後に半導体素子2によって押し拡げられた第2の樹脂5Bが半導体素子2の端部から外側にはみ出した際に、前述のように半導体素子2の側面2bを覆うのに過不足がないような適正塗布量の第2の樹脂5Bがディスペンサ7から吐出される。
【0021】
この後、第2の樹脂5Bが塗布された板状部材6は半導体素子接着工程に送られる。この半導体素子接着工程では、図3(a)に示すように、半導体素子2を板状部材6の半導体素子接着位置に整列状態で搭載する(半導体素子搭載工程)。この半導体素子搭載工程において用いられる電子部品搭載装置について、図4を参照して説明する。図4において、部品供給テーブル11には半導体素子2が格子状に貼着された粘着シート12が装着されている。部品供給テーブル11の下方には、半導体素子剥離機構13が配設されており、半導体素子剥離機構13を半導体素子剥離機構駆動部14によって駆動することにより、エジェクタピン機構13aによって粘着シート12の下面を突き上げ、これにより半導体素子2を搭載ヘッド16によってピックアップする際に、半導体素子2が粘着シート12の上面から剥離される。
【0022】
部品供給テーブル11の側方には基板保持部15が配設されており、基板保持部15上には樹脂供給後の板状部材6が保持されている。部品供給テーブル11および基板保持部15の上方には、搭載ヘッド駆動部19によって駆動される搭載ヘッド16が配設されている。搭載ヘッド16は吸着ノズル8を備えており、粘着シート12から半導体素子2をピックアップし、基板保持部15上の板状部材6に搭載する。
【0023】
部品供給テーブル11の上方にはカメラ17が配設されており、カメラ17は粘着シート12に貼着された半導体素子2を撮像する。カメラ17によって撮像された画像を半導体素子認識部20で認識処理することにより、粘着シート12における半導体素子2の位置が認識される。位置認識結果は制御部21に送られるとともに、半導体素子剥離機構駆動部14に送られる。これにより、搭載ヘッド16による半導体素子2のピックアップ時には、吸着ノズル8およびエジェクタピン機構13aがピックアップ対象の半導体素子2に位置合わせされる。
【0024】
基板保持部15の上方にはカメラ18が配設されており、カメラ18は基板保持部15に保持された板状部材6を撮像する。カメラ18によって撮像された画像を搭載位置認識部22で認識処理することにより、板状部材6における半導体素子搭載位置が検出される。位置認識結果は制御部21に送られ、制御部21がこの位置認識結果に基づいて搭載ヘッド駆動部19を制御することにより、搭載ヘッド16による半導体素子2の搭載時には、吸着ノズル8に保持された半導体素子2が検出された搭載位置に位置合わせされる。
【0025】
この電子部品搭載装置によって半導体素子2を板状基板6に搭載する際には、図3(a)に示すように、半導体素子2のバンプ3が形成された表面側を吸着ノズル8によって吸着保持し、まず半導体素子2の裏面を点状に供給された第1の樹脂5Aの突部に接触させる。そしてさらに半導体素子2を下降させて、第2の樹脂5Bを半導体素子2の裏面によって押し拡げる。
【0026】
この樹脂押し拡げ動作において、樹脂5の塗布量に応じて吸着ノズル8による押し付け高さを調整することにより、各半導体素子2の縁部外側(矢印A参照)にはみ出した第2の樹脂5が、半導体素子2の側面2bを這い上がって側面2bを覆うようにする(図1(b)に示す樹脂5a参照)。このときダイシング時のダメージが残留しやすい半導体素子2の裏面側の端部が完全に覆われて補強されていれば、側面2bは完全に覆われていても、または部分的にのみ覆われていてもどちらでも良い。
【0027】
本実施の形態では、半導体素子2を1個づつ搭載ヘッド16で樹脂5に押し付けながら搭載するので、一括して搭載(貼り付け)する場合よりも搭載荷重(押し付け力)を小さくできる。よって電子部品搭載装置としては、ダイボンディング装置や、チップマウンター等を流用することができる。また、搭載後の半導体素子2は、高粘性の第1の樹脂5Aによって板状部材6に対して位置保持されることから、第2の樹脂5Bの流動による半導体素子2の位置ずれや高さ姿勢の変動が発生せず、半導体素子2の搭載時の状態をそのまま維持することができる。
【0028】
このようにして半導体素子2が搭載された板状部材6は加熱炉に送られる。そしてここで所定温度で加熱されることにより、図2(d)に示すように第1の樹脂5A、第2の樹脂5Bが熱硬化し、半導体素子2を板状部材6に接着する樹脂層5が形成される樹脂硬化工程)。このとき、各半導体素子2の縁部外側にはみ出した第2の樹脂5Bは、熱硬化の過程において一時的に粘度低下することにより表面張力によって半導体素子2の側面2bにさらに這い上がり、側面2bを覆った形状のまま硬化する。これにより、第2の樹脂5Bの硬化後において、図1(b)に示す補強部としての樹脂部5aが形成される。
【0029】
なお上記実施の形態では、半導体素子2の搭載後に板状部材6を加熱炉に送ることにより第1の樹脂5A、第2の樹脂5Bを熱硬化させるようにしているが、搭載ヘッド16として加熱手段を内蔵したものを用い、半導体素子2を搭載しながら加熱するようにしてもよい。
【0030】
搭載ヘッド16によって加熱する場合には、図2(d)に示す専用の加熱工程を省略してもよく、このようにすれば加熱炉を省略して設備の簡略化を図ることができるという利点がある。ただし、この場合には搭載ヘッド16のタクトタイムが熱硬化時間によって制約されるため、全体の生産性としては搭載工程と加熱工程を別々に行う場合よりも低下する。また、樹脂層5を形成するための樹脂種類として上記実施の形態では熱硬化性の樹脂を用いる例を示しているが、これに変えて熱可塑性の樹脂素材を用いるようにしてもよい。
【0031】
このようにして半導体素子2が接着された板状部材6は切断工程に送られ、ここで図2(e)に示すように、半導体素子2が接着された板状部材6を回転切断刃24aによって隣接する半導体素子2の間の切断位置で切断する(切断工程)。これにより、板状部材6が半導体素子2ごとのバンパ4に切断分離され、半導体装置1の組立が完成する。
【0032】
この切断工程について、図5,図6を参照して説明する。図5は、この切断に用いられるダイシング装置を示している。基板固定部23の上面には、半導体素子2が搭載され樹脂硬化が完了した板状部材6は基板固定部23上に載置される。基板固定部23の上方には、回転切断刃24aを備えた切断ヘッド24が配設されており、回転切断刃24aを回転させながら切断ヘッド24をX方向、Y方向に移動させることにより、板状部材6が溝部6cに一致した切断位置に沿って切断される。
【0033】
図6に示すように、基板固定部23の上面には板状部材6上の半導体素子2に対応した位置毎に吸引保持部25が設けられており、吸引保持部25の上面には吸引溝25aが形成されている。吸引溝25aは、基板固定部23の内部に設けられた吸引孔23aに連通しており、吸引孔23aはさらに真空吸引源26に接続されている。板状部材6の下面を吸引保持部25に当接させた状態で真空吸引源26を駆動することにより、板状部材6は吸引保持部25によって吸着保持され、これにより板状部材6の位置が固定される。
【0034】
そしてこのようにして位置が固定された板状部材6の仕切部6a上に回転切断刃24aを位置合わせし、回転切断刃24aを回転させながら下降させることにより、溝部6c内の肉薄部が切断される。このとき、隣接する半導体素子2間の間隔よりも刃幅が小さい回転切断刃24aを用いることにより、板状部材6は個片に分離された後のバンパ4が半導体素子2の端面からはみ出した形状で切断される。したがって、個片分離された半導体装置1においては、バンパ4の外形は半導体素子2の外形よりも大きくなる。
【0035】
またこの切断においては、予め下面に溝部6cが形成されていることから、回転切断刃24aによる切断代が小さくなっている。これにより切断工程における回転切断刃24aの必要下降量を極力小さくすることができ、切断刃下降時に刃先が基板固定部23に接触して破損する事故を防止することができる。
【0036】
次に上述の半導体装置1を基板に実装して成る電子部品実装構造について図7を参照して説明する。図7(a)に示すように、半導体装置1は基板10の上面に形成された電極10aにバンプ3を半田接合して接続することにより基板10に実装される。図7(b)は,バンプ3から外側に位置する半導体素子2の変形状態を示している。本実施の形態に示すような薄化された半導体素子2をバンプ3を介して基板10に接合した構造では、半導体素子2と基板10の熱変形の差によって発生する応力に起因して、バンプ3から外側の範囲は基板10側に大きく撓む傾向にある(破線で示す半導体素子2参照)。そしてこの変形に伴ってバンプ3の外側近傍の半導体素子2の下面には高いレベルの表面応力が生じ、半導体素子2を破損させる原因となる場合がある。
【0037】
これに対し、本実施の形態に示すように、半導体素子2の側面2bを覆う樹脂5aによって補強された半導体装置1を基板10に実装した場合には、最外周のバンプ3から外側の範囲における半導体素子2の下方への撓みは大幅に低減される。すなわち、樹脂部5aは半導体素子2の側面2bを覆って半導体素子2の過度の曲げ変形を防止するように作用する。そしてこの作用により、半導体素子2の下方への撓み変形が防止され、半導体素子2の曲げ変形による破損を防止することができる。
【0038】
なお、図8に示す半導体装置1Aのように、半導体素子2の縁部からはみ出した樹脂部5aの範囲を半導体素子2の対角線方向に限定し、樹脂部5aで半導体素子2の側面を覆う補強部を、半導体素子2の角部のみに形成するようにしてもよい。この場合には、図2(b)においてディスペンサ7Bによって第2の樹脂5Bを塗布する際に、図8(b)に示す範囲のみに第2の樹脂5Bを塗布するように、ディスペンサ7の塗布軌跡をX字状に設定するとともにディスペンサ7からの吐出量を制御する。このように補強部の形成範囲を半導体素子2の角部に限定することにより、半導体装置完成後の実装状態において最も破損が生じやすい角部を集中的に補強することができる。
【0039】
また本実施の形態では、第1樹脂供給工程と第2樹脂供給工程をディスペンサで行っているが、他の装置(例えばスクリーン印刷機)で行ってもよい。特にスクリーン印刷機を用いれば、ディスペンサに比べて生産性を向上させることができる。
【0040】
【発明の効果】
本発明によれば、構造体となる板状部材に高チキソ性の第1の樹脂を点状に供給し、次いで定チキソ性の第2の樹脂を供給した後に半導体素子を搭載することにより、半導体素子の位置を第1の樹脂によって固定することができ、薄化された半導体素子に形状不良を生じることなく安価なコストで補強部材を接着することができる。
【図面の簡単な説明】
【図1】(a)本発明の一実施の形態の半導体装置の斜視図
(b)本発明の一実施の形態の半導体装置の部分断面図
【図2】本発明の一実施の形態の半導体装置の組立方法の工程説明図
【図3】本発明の一実施の形態の半導体装置の組立方法の工程説明図
【図4】本発明の一実施の形態の半導体装置に用いられる板状部材の斜視図
【図5】本発明の一実施の形態の半導体装置の組立に使用される電子部品搭載装置の斜視図
【図6】本発明の一実施の形態の半導体装置の組立に使用されるダイシング装置の斜視図
【図7】本発明の一実施の形態の半導体装置の組立に使用されるダイシング装置の部分断面図
【図8】(a)本発明の一実施の形態の実装構造の断面図
(b)本発明の一実施の形態の実装構造の部分断面図
【図9】(a)本発明の一実施の形態の半導体装置の斜視図
(b)本発明の一実施の形態の半導体装置の平面図
【符号の説明】
1,1A 半導体装置
2 半導体素子
2a 電極
3 バンプ
4 バンパ
5 樹脂層
5A 第1の樹脂
5B 第2の樹脂
6 板状部材
6a 仕切部
6b 凹部
7A,7B ディスペンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device in which a reinforcing member is bonded to the back surface of a bump forming surface of a semiconductor element with an adhesive.
[0002]
[Prior art]
A semiconductor device mounted on a substrate of an electronic device is manufactured through a packaging process in which a lead frame pin or a metal bump is connected to a semiconductor element on which a circuit pattern is formed in a wafer state and sealed with a resin or the like. Has been. Along with the recent miniaturization of electronic devices, the miniaturization of semiconductor devices is also progressing, and in particular, efforts to make semiconductor elements thinner are being actively carried out.
[0003]
Since a thinned semiconductor element is weak against external force and easily damaged during handling, a semiconductor device using a thinned semiconductor element is sealed with a resin layer for reinforcement. The structure is common. For this resin layer formation, a method in which a reinforcing resin member is individually bonded to an individual semiconductor element with an adhesive is used. As this adhesion method, a method of applying a liquid adhesive material, a method of using an adhesive material previously formed in a tape shape, or the like is used.
[0004]
[Problems to be solved by the invention]
However, when the above-described method is used for forming the resin layer, there have been the following problems. First, in the method of applying a liquid adhesive, misalignment due to movement of the mounted semiconductor element due to the fluidity of the adhesive is likely to occur, and it is difficult to ensure shape accuracy. In addition, in the method using an adhesive previously molded into a tape shape in order to prevent this positional deviation, there is a problem that the cost is increased due to the preparation of such an adhesive.
[0005]
Accordingly, an object of the present invention is to provide a method for assembling a semiconductor device capable of bonding a reinforcing member at a low cost without causing a shape defect in a thinned semiconductor element.
[0006]
[Means for Solving the Problems]
The method for assembling a semiconductor device according to claim 1 is a method for assembling a semiconductor device in which a structure having rigidity higher than that of the semiconductor element is bonded to the back surface of the semiconductor element having a plurality of terminals for external connection formed on the front surface by a resin. A first resin supply step of supplying a first resin having a high thixotropy to the semiconductor element bonding position of the plate-like member serving as the structure in a dotted manner; and a plate-like member after the first resin supply step. A second resin application step of applying a second resin having low thixotropy in a semiconductor element adhesion range; and mounting a plurality of semiconductor elements in an aligned state at the semiconductor element adhesion position, and the rear surface side of the semiconductor element is the first A semiconductor element mounting step for holding the position of the semiconductor element with respect to the plate-like member by contacting the resin, and a resin for curing the first resin and the second resin to adhere the semiconductor element to the plate-like member Hardener Including the door.
[0007]
According to the present invention, by supplying a high thixotropic first resin to a plate-like member as a structure in a dotted manner, and then supplying a constant thixotropic second resin, a semiconductor element is mounted, The position of the semiconductor element can be fixed by the first resin, and the reinforcing member can be bonded at a low cost without causing a shape defect in the thinned semiconductor element.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. 1A is a perspective view of a semiconductor device according to an embodiment of the present invention, FIG. 1B is a partial cross-sectional view of the semiconductor device according to an embodiment of the present invention, and FIGS. FIG. 4 is a perspective view of a plate member used in the semiconductor device according to the embodiment of the present invention, and FIG. 5 is a semiconductor according to the embodiment of the present invention. 6 is a perspective view of an electronic component mounting apparatus used for assembling the apparatus, FIG. 6 is a perspective view of a dicing apparatus used for assembling a semiconductor device according to an embodiment of the present invention, and FIG. 7 is an embodiment of the present invention. FIG. 8A is a sectional view of a mounting structure according to an embodiment of the present invention, and FIG. 8B is a sectional view of the embodiment of the present invention. FIG. 9A is a perspective view of a semiconductor device according to an embodiment of the present invention, and FIG. It is a plan view of a semiconductor device of an embodiment of the present invention.
[0009]
First, a semiconductor device will be described with reference to FIG. 1A and 1B, the semiconductor device 1 has a configuration in which a bumper 4 (structure) is bonded to the back surface of the semiconductor element 2 by a resin layer 5. Bumps 3 are formed on the electrodes 2a, which are a plurality of external connection terminals formed along.
[0010]
Here, the semiconductor element 2 is in a state after being thinned by a method such as mechanical polishing or etching. Generally, in a state where a semiconductor element is mounted on a substrate via bumps, the smaller the thickness dimension of the semiconductor element, the better the bonding reliability after mounting. This is because even if the stress is concentrated on the joint portion of the bump 3 due to the difference in thermal stress between the semiconductor element 2 and the substrate, the stress is distributed by the semiconductor element 2 itself being deformed (bent) in the thickness direction. Because it does. For this reason, in the present embodiment, the semiconductor element 2 is thinned as described above and set so that the thickness t1 is in the range of 10 to 150 μm, thereby enabling deformation (deflection) in the thickness direction. .
[0011]
In the thinning process, the surface opposite to the circuit formation surface of the semiconductor element 2 is roughly processed by mechanical polishing using a grindstone or the like, and finish processing is performed by dry etching or wet etching with a chemical solution. When mechanical polishing is performed, a damaged layer having a large number of microcracks on the back surface is formed. Although this damage layer is a factor that lowers the bending strength of the semiconductor element, the damage layer can be removed by finishing to increase the bending strength of the semiconductor element 2.
[0012]
The bumper 4 has a function of facilitating stable holding of the semiconductor device 1 during handling such as when the semiconductor device 1 is mounted and also protecting the semiconductor device 1 after being mounted on a substrate or the like from an external force. It is. Accordingly, the bumper 4 has a shape that satisfies the above-described function, such as a metal, ceramic, or resin, that is, a thickness t2 that has higher rigidity than the semiconductor element 2 and is larger than the outer shape of the semiconductor element 2. What was processed into is used.
[0013]
Here, the resin layer 5 for bonding the semiconductor element 2 to the bumper 4 is made of an adhesive resin made of a material having a low elastic coefficient and easily deformed, and the semiconductor element 2 is allowed to be deformed in the thickness direction. The element 2 is bonded to the bumper 4. Thereby, in a state where the semiconductor device 1 is mounted on the substrate, the semiconductor element 2 is deformed following the deformation state of the substrate. In the present embodiment, two types of resins having different thixotropic properties are used as the resin for forming the resin layer 5 as described later.
[0014]
As shown in FIG. 1, the resin layer 5 protrudes from the end portions of the four sides over the entire circumference of the semiconductor element 2, and the protruding resin part 5 a crawls along the side surface 2 b of the semiconductor element 2 and partially forms the side surface 2 b. It has a shape that covers it. The resin portion 5 a that covers the side surface 2 b forms a reinforcing portion that reinforces the edge of the semiconductor element 2.
[0015]
At the edge of the semiconductor element 2, minute cracks generated when the semiconductor wafer is diced and cut into individual semiconductor elements 2 are likely to remain as they are, and breakage may occur from the cracks. The resin portion 5a covering the side surface 2b reinforces the edge of the semiconductor element 2 including such a microcrack, and in a state where the semiconductor device 1 is mounted on the substrate 10 as described later, the substrate and the semiconductor element 2 The semiconductor element 2 has a function of preventing the semiconductor element 2 from being excessively deformed due to the stress generated by the difference in thermal deformation with respect to.
[0016]
Next, an assembling method of the semiconductor device 1 will be described with reference to FIGS. In FIG. 2A, the plate-like member 6 is an intermediate part before the bumper 4 constituting a part of the semiconductor device 1 is cut off. As shown in FIG. 3, a partition 6a protruding in a lattice shape is provided on the upper surface of the plate-like member 6, and a recess 6b surrounded by the partition 6a is a semiconductor element bonding position to which the semiconductor element 2 is bonded. It has become. As will be described later, the partition 6a is a dam that restricts the resin from spreading beyond the semiconductor bonding position when the resin for bonding the semiconductor element 2 is applied in the recess 6b.
[0017]
A groove portion 6 c is formed at a position corresponding to the partition portion 6 a on the lower surface of the plate-like member 6. The groove 6c is formed by cutting a lattice-like groove from the lower surface side of the plate-like member 6 having a thickness dimension t4, and thereby has a thin portion whose thickness dimension t3 from the upper surface is smaller than t4. This thin portion coincides with the cutting position when the plate-like member 6 is cut and separated into the bumper 4.
[0018]
Next, as shown in FIG. 2 (b), the first resin 5A is discharged by the dispenser 7A to the semiconductor element bonding position in each recess 6b of the plate-like member 6, and is formed in a protruding dot shape at a plurality of locations. It is supplied (first resin supply step). The first resin 5A has high thixotropy, has low fluidity, and does not spread even after being discharged by the dispenser 7A, and the protruding shape is maintained as it is.
[0019]
Next, as shown in FIG. 2C, the second resin 5B is discharged by the dispenser 7B and applied to the recess 6b at the semiconductor element bonding position in each recess 6b after the first resin supply step. (Second resin application step). Since the second resin 5B has low thixotropy and high fluidity, the second resin 5B wets and spreads around the already supplied first resin 5A and fills the inside of each recess 6b. In the application of the second resin 5B, since the partition portion 6a as a dam portion is provided around the recess 6b, the second resin 5B is prevented from spreading beyond the semiconductor bonding position. The
[0020]
Further, in the second resin application step, when the second resin 5B that has been spread by the semiconductor element 2 after application protrudes outward from the end of the semiconductor element 2, the side surface 2b of the semiconductor element 2 is removed as described above. An appropriate amount of the second resin 5 </ b> B that is not excessive or insufficient for covering is discharged from the dispenser 7.
[0021]
Thereafter, the plate-like member 6 to which the second resin 5B is applied is sent to the semiconductor element bonding step. In this semiconductor element bonding step, as shown in FIG. 3A, the semiconductor element 2 is mounted in an aligned state at the semiconductor element bonding position of the plate-like member 6 (semiconductor element mounting step). An electronic component mounting apparatus used in this semiconductor element mounting process will be described with reference to FIG. In FIG. 4, the component supply table 11 is provided with an adhesive sheet 12 on which the semiconductor elements 2 are attached in a lattice shape. Below the component supply table 11, a semiconductor element peeling mechanism 13 is disposed. When the semiconductor element peeling mechanism 13 is driven by the semiconductor element peeling mechanism driving unit 14, the ejector pin mechanism 13a causes the lower surface of the adhesive sheet 12 to be lower. Thus, when the semiconductor element 2 is picked up by the mounting head 16, the semiconductor element 2 is peeled off from the upper surface of the adhesive sheet 12.
[0022]
A substrate holding unit 15 is disposed on the side of the component supply table 11, and the plate-like member 6 after resin supply is held on the substrate holding unit 15. A mounting head 16 driven by a mounting head driving unit 19 is disposed above the component supply table 11 and the substrate holding unit 15. The mounting head 16 includes the suction nozzle 8, picks up the semiconductor element 2 from the adhesive sheet 12, and mounts it on the plate-like member 6 on the substrate holding unit 15.
[0023]
A camera 17 is disposed above the component supply table 11, and the camera 17 images the semiconductor element 2 adhered to the adhesive sheet 12. The position of the semiconductor element 2 on the adhesive sheet 12 is recognized by performing a recognition process on the image captured by the camera 17 by the semiconductor element recognition unit 20. The position recognition result is sent to the control unit 21 and also sent to the semiconductor element peeling mechanism driving unit 14. Thereby, when the semiconductor element 2 is picked up by the mounting head 16, the suction nozzle 8 and the ejector pin mechanism 13a are aligned with the semiconductor element 2 to be picked up.
[0024]
A camera 18 is disposed above the substrate holding unit 15, and the camera 18 images the plate-like member 6 held by the substrate holding unit 15. The mounting position recognition unit 22 recognizes the image captured by the camera 18 to detect the semiconductor element mounting position on the plate member 6. The position recognition result is sent to the control unit 21, and the control unit 21 controls the mounting head driving unit 19 based on the position recognition result, so that it is held by the suction nozzle 8 when the semiconductor element 2 is mounted by the mounting head 16. The semiconductor element 2 is aligned with the detected mounting position.
[0025]
When the semiconductor element 2 is mounted on the plate-like substrate 6 by this electronic component mounting apparatus, the surface side on which the bump 3 of the semiconductor element 2 is formed is sucked and held by the suction nozzle 8 as shown in FIG. First, the back surface of the semiconductor element 2 is brought into contact with the protrusions of the first resin 5A supplied in the form of dots. Then, the semiconductor element 2 is further lowered, and the second resin 5 </ b> B is expanded by the back surface of the semiconductor element 2.
[0026]
In this resin expansion operation, the second resin 5 that protrudes outside the edge of each semiconductor element 2 (see arrow A) is adjusted by adjusting the pressing height of the suction nozzle 8 according to the amount of the resin 5 applied. Then, the side surface 2b of the semiconductor element 2 is scooped up so as to cover the side surface 2b (see the resin 5a shown in FIG. 1B). At this time, if the end portion on the back surface side of the semiconductor element 2 where damage during dicing is likely to remain is completely covered and reinforced, the side surface 2b is completely covered or only partially covered. But either is fine.
[0027]
In the present embodiment, since the semiconductor elements 2 are mounted one by one while being pressed against the resin 5 by the mounting head 16, the mounting load (pressing force) can be reduced as compared with the case where the semiconductor elements 2 are collectively mounted (pasted). Therefore, a die bonding apparatus, a chip mounter, or the like can be used as the electronic component mounting apparatus. Further, since the semiconductor element 2 after being mounted is held in position with respect to the plate-like member 6 by the highly viscous first resin 5A, the positional deviation and height of the semiconductor element 2 due to the flow of the second resin 5B. The posture is not changed, and the state when the semiconductor element 2 is mounted can be maintained as it is.
[0028]
Thus, the plate-like member 6 on which the semiconductor element 2 is mounted is sent to the heating furnace. Then, by heating at a predetermined temperature, the first resin 5A and the second resin 5B are thermally cured as shown in FIG. 2D, and the resin layer that adheres the semiconductor element 2 to the plate member 6 Resin curing step in which 5 is formed). At this time, the second resin 5B that protrudes outside the edge of each semiconductor element 2 rises further to the side surface 2b of the semiconductor element 2 due to surface tension due to a temporary viscosity drop during the thermosetting process, and the side surface 2b It is cured with the shape covered. Thereby, after hardening of the 2nd resin 5B, the resin part 5a as a reinforcement part shown in FIG.1 (b) is formed.
[0029]
In the above embodiment, the first resin 5A and the second resin 5B are thermally cured by sending the plate-like member 6 to the heating furnace after the semiconductor element 2 is mounted. A device incorporating a means may be used, and heating may be performed while the semiconductor element 2 is mounted.
[0030]
When heating by the mounting head 16, the dedicated heating step shown in FIG. 2 (d) may be omitted, and in this way, the heating furnace can be omitted and the equipment can be simplified. There is. However, in this case, since the tact time of the mounting head 16 is limited by the thermosetting time, the overall productivity is lower than when the mounting process and the heating process are performed separately. Moreover, although the example which uses a thermosetting resin is shown in the said embodiment as a resin kind for forming the resin layer 5, it may replace with this and may use a thermoplastic resin raw material.
[0031]
The plate-like member 6 to which the semiconductor element 2 is bonded in this way is sent to a cutting step, and as shown in FIG. 2 (e), the plate-like member 6 to which the semiconductor element 2 is bonded is turned into a rotary cutting blade 24a. Is cut at a cutting position between adjacent semiconductor elements 2 (cutting step). As a result, the plate-like member 6 is cut and separated into bumpers 4 for each semiconductor element 2, and the assembly of the semiconductor device 1 is completed.
[0032]
This cutting process will be described with reference to FIGS. FIG. 5 shows a dicing apparatus used for this cutting. On the upper surface of the substrate fixing portion 23, the plate-like member 6 on which the semiconductor element 2 is mounted and the resin curing is completed is placed on the substrate fixing portion 23. A cutting head 24 having a rotary cutting blade 24a is disposed above the substrate fixing portion 23, and the cutting head 24 is moved in the X direction and the Y direction while rotating the rotary cutting blade 24a. The shaped member 6 is cut along a cutting position coinciding with the groove 6c.
[0033]
As shown in FIG. 6, suction holding portions 25 are provided on the upper surface of the substrate fixing portion 23 at positions corresponding to the semiconductor elements 2 on the plate-like member 6, and suction grooves are provided on the upper surface of the suction holding portion 25. 25a is formed. The suction groove 25 a communicates with a suction hole 23 a provided in the substrate fixing portion 23, and the suction hole 23 a is further connected to a vacuum suction source 26. By driving the vacuum suction source 26 in a state where the lower surface of the plate-like member 6 is in contact with the suction holding portion 25, the plate-like member 6 is sucked and held by the suction holding portion 25, thereby the position of the plate-like member 6. Is fixed.
[0034]
Then, the rotary cutting blade 24a is positioned on the partition portion 6a of the plate-like member 6 fixed in this manner, and the thin portion in the groove 6c is cut by lowering the rotary cutting blade 24a while rotating it. Is done. At this time, by using the rotary cutting blade 24a whose blade width is smaller than the interval between the adjacent semiconductor elements 2, the bumper 4 after the plate-like member 6 is separated into individual pieces protrudes from the end face of the semiconductor element 2. Cut in shape. Therefore, in the semiconductor device 1 separated into pieces, the outer shape of the bumper 4 is larger than the outer shape of the semiconductor element 2.
[0035]
In this cutting, since the groove 6c is formed in advance on the lower surface, the cutting allowance by the rotary cutting blade 24a is reduced. Thereby, the required lowering amount of the rotary cutting blade 24a in the cutting process can be made as small as possible, and it is possible to prevent an accident that the cutting edge comes into contact with the substrate fixing portion 23 when the cutting blade is lowered.
[0036]
Next, an electronic component mounting structure formed by mounting the above-described semiconductor device 1 on a substrate will be described with reference to FIG. As shown in FIG. 7A, the semiconductor device 1 is mounted on the substrate 10 by connecting the bumps 3 to the electrodes 10a formed on the upper surface of the substrate 10 by solder bonding. FIG. 7B shows a deformed state of the semiconductor element 2 located outside the bump 3. In the structure in which the thinned semiconductor element 2 is bonded to the substrate 10 via the bump 3 as shown in this embodiment, the bump is caused by the stress generated by the difference in thermal deformation between the semiconductor element 2 and the substrate 10. The range from 3 to the outside tends to be greatly bent toward the substrate 10 (see the semiconductor element 2 indicated by a broken line). Along with this deformation, a high level surface stress is generated on the lower surface of the semiconductor element 2 near the outside of the bump 3, which may cause the semiconductor element 2 to be damaged.
[0037]
On the other hand, as shown in the present embodiment, when the semiconductor device 1 reinforced by the resin 5a covering the side surface 2b of the semiconductor element 2 is mounted on the substrate 10, the outermost bump 3 is in the outer range. The downward deflection of the semiconductor element 2 is greatly reduced. That is, the resin portion 5 a acts to cover the side surface 2 b of the semiconductor element 2 and prevent excessive bending deformation of the semiconductor element 2. By this action, downward deformation of the semiconductor element 2 is prevented, and damage due to bending deformation of the semiconductor element 2 can be prevented.
[0038]
Note that, as in the semiconductor device 1A shown in FIG. 8, the range of the resin portion 5a that protrudes from the edge of the semiconductor element 2 is limited to the diagonal direction of the semiconductor element 2, and the side surface of the semiconductor element 2 is covered with the resin portion 5a. The part may be formed only at the corner of the semiconductor element 2. In this case, when the second resin 5B is applied by the dispenser 7B in FIG. 2 (b), the application of the dispenser 7 is performed so that the second resin 5B is applied only to the range shown in FIG. 8 (b). The trajectory is set in an X shape and the discharge amount from the dispenser 7 is controlled. By limiting the formation range of the reinforcing portion to the corner portion of the semiconductor element 2 in this manner, the corner portion that is most likely to be damaged in the mounted state after completion of the semiconductor device can be intensively reinforced.
[0039]
Moreover, in this Embodiment, although the 1st resin supply process and the 2nd resin supply process are performed with a dispenser, you may perform with another apparatus (for example, screen printing machine). In particular, if a screen printing machine is used, productivity can be improved as compared with a dispenser.
[0040]
【The invention's effect】
According to the present invention, by supplying a high thixotropic first resin to a plate-like member as a structure in a dotted manner, and then supplying a constant thixotropic second resin, a semiconductor element is mounted, The position of the semiconductor element can be fixed by the first resin, and the reinforcing member can be bonded at a low cost without causing a shape defect in the thinned semiconductor element.
[Brief description of the drawings]
1A is a perspective view of a semiconductor device according to an embodiment of the present invention; FIG. 1B is a partial cross-sectional view of a semiconductor device according to an embodiment of the present invention; FIG. FIG. 3 is a process explanatory diagram of a semiconductor device assembly method according to an embodiment of the present invention. FIG. 4 is a diagram of a plate-like member used in a semiconductor device according to an embodiment of the present invention. FIG. 5 is a perspective view of an electronic component mounting apparatus used for assembling a semiconductor device according to an embodiment of the present invention. FIG. 6 is a dicing used for assembling a semiconductor device according to an embodiment of the present invention. FIG. 7 is a partial cross-sectional view of a dicing apparatus used for assembling a semiconductor device according to an embodiment of the present invention. FIG. 8A is a cross-sectional view of a mounting structure according to an embodiment of the present invention. (B) Partial cross-sectional view of a mounting structure according to an embodiment of the present invention. Plan view of a semiconductor device of an embodiment of a perspective view of a semiconductor device of the facilities in the form (b) The present invention Description of Reference Numerals]
DESCRIPTION OF SYMBOLS 1,1A Semiconductor device 2 Semiconductor element 2a Electrode 3 Bump 4 Bumper 5 Resin layer 5A 1st resin 5B 2nd resin 6 Plate-like member 6a Partition part 6b Recessed part 7A, 7B Dispenser

Claims (1)

表面に複数の外部接続用端子が形成された半導体素子の裏面にこの半導体素子よりも剛性の高い構造体を樹脂によって接着した半導体装置の組立方法であって、前記構造体となる板状部材の半導体素子接着位置に高チキソ性を有する第1の樹脂を点状に供給する第1樹脂供給工程と、第1樹脂供給工程後の板状部材の半導体素子接着範囲に低チキソ性を有する第2の樹脂を塗布する第2樹脂塗布工程と、複数の半導体素子を前記半導体素子接着位置に整列状態で搭載して半導体素子の裏面側を前記第1の樹脂に接触させることにより半導体素子を板状部材に対して位置保持させる半導体素子搭載工程と、前記第1の樹脂および第2の樹脂を硬化させて前記半導体素子を板状部材に接着する樹脂硬化工程とを含むことを特徴とする半導体装置の組立方法。A method of assembling a semiconductor device in which a structure having a rigidity higher than that of a semiconductor element is bonded to a back surface of a semiconductor element having a plurality of external connection terminals formed on the front surface by a resin, wherein the plate-like member serving as the structure is A first resin supply step for supplying a first resin having a high thixotropy at a semiconductor element adhesion position in a dot shape, and a second resin having a low thixotropy for a semiconductor element adhesion range of a plate-like member after the first resin supply step. A second resin application step of applying the resin, and mounting a plurality of semiconductor elements in an aligned state at the semiconductor element adhesion position, and bringing the back surface side of the semiconductor elements into contact with the first resin to form a plate A semiconductor device comprising: a semiconductor element mounting step for holding a position with respect to a member; and a resin curing step for curing the first resin and the second resin to adhere the semiconductor element to a plate member. of Stand way.
JP2003007172A 2003-01-15 2003-01-15 Assembling method of semiconductor device Expired - Fee Related JP3733950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007172A JP3733950B2 (en) 2003-01-15 2003-01-15 Assembling method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007172A JP3733950B2 (en) 2003-01-15 2003-01-15 Assembling method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004221341A JP2004221341A (en) 2004-08-05
JP3733950B2 true JP3733950B2 (en) 2006-01-11

Family

ID=32897347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007172A Expired - Fee Related JP3733950B2 (en) 2003-01-15 2003-01-15 Assembling method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3733950B2 (en)

Also Published As

Publication number Publication date
JP2004221341A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100762208B1 (en) Semiconductor device and its manufacturing method and mounting method of semiconductor device
US7183124B2 (en) Surface mount saw device manufacturing method
KR100593407B1 (en) Semiconductor device and assembly method of semiconductor device
JP3733950B2 (en) Assembling method of semiconductor device
JP3826831B2 (en) Assembling method of semiconductor device
JP3925389B2 (en) Resin adhesive for semiconductor device assembly
JP3894097B2 (en) Semiconductor device
US20040080047A1 (en) Semiconductor device and resin binder for assembling semiconductor device
JP3649129B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5018675B2 (en) Semiconductor device
JPH1117050A (en) Circuit board and manufacture thereof
JP4043720B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3580240B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2006237635A (en) Method of assembling semiconductor device
JP3580244B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3870827B2 (en) Implementation method
JP2003309216A (en) Semiconductor device
JP3858719B2 (en) Reinforcing materials for semiconductor devices
JP3654199B2 (en) Manufacturing method of semiconductor device
JPH0982755A (en) Semiconductor device and manufacture thereof
JP2004311603A (en) Method for manufacturing semiconductor device
JP3646677B2 (en) Display panel
JP2003305860A (en) Device connection method, device, and manufacturing apparatus for device connection
JP2002217527A (en) Semiconductor device, its manufacturing method and method for disposing anisotropic conducting film
JP2002163625A (en) Ic card and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees