JP3826831B2 - Assembling method of semiconductor device - Google Patents

Assembling method of semiconductor device Download PDF

Info

Publication number
JP3826831B2
JP3826831B2 JP2002114539A JP2002114539A JP3826831B2 JP 3826831 B2 JP3826831 B2 JP 3826831B2 JP 2002114539 A JP2002114539 A JP 2002114539A JP 2002114539 A JP2002114539 A JP 2002114539A JP 3826831 B2 JP3826831 B2 JP 3826831B2
Authority
JP
Japan
Prior art keywords
semiconductor element
resin
plate
semiconductor device
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002114539A
Other languages
Japanese (ja)
Other versions
JP2003309219A (en
Inventor
忠彦 境
満 大園
義之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002114539A priority Critical patent/JP3826831B2/en
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to AU2003236251A priority patent/AU2003236251A1/en
Priority to KR1020047016582A priority patent/KR100593407B1/en
Priority to CNB038084864A priority patent/CN100409430C/en
Priority to PCT/JP2003/004693 priority patent/WO2003088355A1/en
Priority to US10/509,025 priority patent/US7446423B2/en
Priority to EP03746477A priority patent/EP1487014A4/en
Priority to TW092108718A priority patent/TWI229396B/en
Publication of JP2003309219A publication Critical patent/JP2003309219A/en
Application granted granted Critical
Publication of JP3826831B2 publication Critical patent/JP3826831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の裏面にこの半導体素子よりも剛性の高い構造体を樹脂によって接着した半導体装置の組立方法に関するものである。
【0002】
【従来の技術】
半導体素子をパッケージングして製造される電子部品を回路基板に実装する電子部品実装構造として、電子部品に形成された半田バンプなどの突出電極を回路基板に接合した構造が知られている。このような実装構造において、実装後の接合信頼性を実現する上で求められるヒートサイクル時の応力レベルの低減、すなわち実装後の環境温度変化によって半導体素子とワークとの熱膨張率の差に起因して半導体素子と半田バンプとの接合部に発生する応力を低く抑えることを目的として、半導体素子を150μm以下に極力薄くする試みが進行している。
【0003】
本出願人は、薄く加工された半導体素子を組み込んだ新たな半導体装置を提案した(特願2000−335492号)。この半導体装置は、半導体素子の裏側にバンパー(構造体)を樹脂で接合することにより取り扱いを容易にすると同時に、半導体素子自身の変形を許容することにより接合部の応力を分散して接合信頼性を高めることができるといった長所を有している。
【0004】
【発明が解決しようとする課題】
しかしながら、上述の半導体装置の組立方法はまだ確立しておらず、低コストで組立ができる新規な方法が望まれている。
【0005】
そこで本発明は、薄化された半導体素子の裏面に構造体を有する半導体装置を効率よく製造することができる半導体装置の組立方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の半導体装置の組立方法は、表面に複数の外部接続用端子が形成された半導体素子の裏面にこの半導体素子よりも剛性の高い構造体を樹脂によって接着した半導体装置の組立方法であって、前記構造体となる板状部材に樹脂を供給する第1工程と、複数の半導体素子の裏面側を前記樹脂を介して前記板状部材に整列状態で接着する第2工程と、前記半導体素子が接着された板状部材を隣接する半導体素子間で切断する第3工程を含み、前記第1工程において、ディスペンサによって前記樹脂を板状部材に塗布するようにし、また前記板状部材の半導体素子接着位置の周囲に前記樹脂の広がりを規制するダム部を設け、このダム部の内側にディスペンサで樹脂を塗布する。
【0009】
【補正の内容】
請求項記載の半導体装置の組立方法は、請求項1記載の半導体装置の組立方法であって、前記第1工程において、板状部材にシート状の樹脂を貼り付ける。
【0010】
請求項記載の半導体装置の組立方法は、請求項1記載の半導体装置の組立方法であって、前記第2工程は、板状部材に供給された樹脂上に複数の半導体素子を搭載する搭載工程と、複数の半導体素子が搭載された板状部材を加熱する加熱工程を含む。
【0011】
請求項記載の半導体装置の組立方法は、請求項1記載の半導体装置の組立方法であって、前記第2工程は、板状部材に供給された樹脂上に半導体素子を搭載しながら樹脂を加熱する工程を含む。
【0012】
請求項記載の半導体装置の組立方法は、請求項1記載の半導体装置の組立方法であって、前記第2工程において、前記樹脂を半導体素子の側面に這い上がらせる。
【0013】
請求項記載の半導体装置の組立方法は、請求項1記載の半導体装置の組立方法であって、前記半導体素子の電極形成面には、再配線層が形成されている。
【0014】
本発明によれば、構造体となる板状部材に樹脂を供給し、半導体素子の裏面側を樹脂を介して板状部材に整列状態で接着した後に、半導体素子が接着された板状部材を隣接する半導体素子間で切断することにより、薄化された半導体素子を構造体に接着した半導体装置を容易に効率よく組み立てることができる。
【0015】
【発明の実施の形態】
(実施の形態1)
図1(a)は本発明の実施の形態1の半導体装置の斜視図、図1(b)は本発明の実施の形態1の半導体装置の部分断面図、図2は本発明の実施の形態1の半導体装置の組立方法の工程説明図、図3は本発明の実施の形態1の半導体装置に用いられる板状部材の斜視図、図4は本発明の実施の形態1の半導体装置の組立に使用される電子部品搭載装置の斜視図、図5は本発明の実施の形態1の半導体装置の組立に使用されるダイシング装置の斜視図、図6は本発明の実施の形態1の半導体装置の組立に使用されるダイシング装置の部分断面図、図7(a)は本発明の実施の形態1の実装構造の断面図、図7(b)は本発明の実施の形態1の実装構造の部分断面図、図8(a)は本発明の実施の形態1の半導体装置の斜視図、図8(b)は本発明の実施の形態1の半導体装置の平面図である。
【0016】
まず図1を参照して、半導体装置について説明する。図1(a)、(b)において、半導体装置1は、半導体素子2の裏面に樹脂5によってバンパ4(構造体)を接着した構成となっており、半導体素子2の表面の縁部に沿って形成された複数の外部接続用端子である電極2a上には、バンプ3が形成されている。
【0017】
ここで半導体素子2は機械研磨やエッチングなどの方法によって薄化処理が行われた後の状態である。一般に、半導体素子をバンプを介して基板に実装した状態では、半導体素子の厚み寸法が小さいほど実装後の接合信頼性が優れている。これは、半導体素子2と基板の応力の差に起因してバンプ3の接合部に応力が集中しようとしても、半導体素子2自体が厚さ方向に変形(撓み)を生じることで応力を分散するからである。このため、本実施の形態では、上述のように半導体素子2を薄化処理して厚みt1が10〜150μmの範囲となるように設定し、厚さ方向への変形(撓み)を可能としている。
【0018】
薄化処理は、半導体素子2の回路形成面の反対面を砥石等を用いた機械研磨によって粗加工を行い、ドライエッチングや薬液によるウェットエッチングで仕上げ加工を行う。機械研磨を行うと裏面に多数のマイクロクラックを有するダメージ層が形成される。このダメージ層は、半導体素子の抗折強度を低下させる要因となるものであるが、仕上げ加工によりこのダメージ層を除去して半導体素子2の抗折強度を高めることができる。
【0019】
バンパ4は、半導体装置1の搭載時などのハンドリングにおいて半導体装置1を安定して保持することを容易にするとともに、基板などへ実装された後の半導体装置1を外力から保護する機能を有するものである。したがってバンパ4は、金属やセラミックまたは樹脂などの構造材を、上記機能を満たすような形状、すなわち半導体素子2よりも高い剛性を有するような厚みt2で、半導体素子2の外形よりも大きい外形形状に加工したものが用いられる。
【0020】
ここで半導体素子2をバンパ4に接着する樹脂5には、低弾性係数の変形しやすい材質が用いられており、半導体素子2の厚み方向への変形を許容した状態で半導体素子2をバンパ4に接着するようになっている。これにより、半導体装置1を基板に実装した状態において、基板の変形状態に応じて半導体素子2が追従変形するようになっている。
【0021】
図1に示すように、樹脂5は半導体素子2の全周にわたって4辺の端部からはみ出しており、はみ出した樹脂5aは半導体素子2の側面2bに沿って這い上がり側面2bを部分的に覆うような形状となっている。この側面2bを覆う樹脂5aは、半導体素子2の縁部を補強する補強部を形成している。
【0022】
半導体素子2の縁部には、半導体ウェハをダイシングして個片の半導体素子2に切り出す際に生じた微小なクラックがそのまま残留しやすく、このクラックから破損を生じる場合がある。側面2bを覆う樹脂5aは、このような微小なクラックを含んだ半導体素子2の縁部を補強するとともに、後述するように半導体装置1を基板10に実装した状態において、基板と半導体素子2との熱変形の差によって発生する応力に起因して半導体素子2が過剰に変形するのを防止する機能を有する。
【0023】
次に図2を参照して、半導体装置1の組立方法について説明する。図2(a)において、板状部材6は半導体装置1の一部を構成するバンパ4が切り離される前の中間部品である。図3に示すように、板状部材6の上面には、格子形状に突出した仕切部6aが設けられており、仕切部6aで囲まれる凹部6bは半導体素子2が接着される半導体素子接着位置となっている。仕切部6aは、後述するように凹部6b内に半導体素子2の接着用の樹脂5を塗布する際に、樹脂5が半導体接着位置を超えて周囲に広がるのを規制するダム部となっている。
【0024】
板状部材6の下面の仕切部6aに対応する位置には、溝部6cが形成されている。溝部6cは、厚み寸法t4の板状部材6の下面側から格子状の溝を切り込んで形成され、これにより上面からの厚み寸法t3がt4よりも小さい肉薄部となっている。この肉薄部は、板状部材6をバンパ4に切断分離する際の切断位置と一致している。
【0025】
次に図2(b)に示すように、板状部材6の各凹部6bにはディスペンサ7によって樹脂5が塗布され、これにより半導体素子2接着用の樹脂5が供給される(第1工程)。この樹脂5の塗布において、凹部6bの周囲にはダム部としての仕切部6aが設けられていることから、樹脂5が半導体接着位置を超えて周囲に広がることが防止される。
【0026】
また塗布に際しては、塗布後に半導体素子2によって押し広げられた樹脂5が半導体素子2の端部から外側にはみ出した際に、前述のように半導体素子2の側面2bを覆うのに過不足がないような適正塗布量の樹脂5がディスペンサ7から吐出される。
【0027】
この後、樹脂5が供給された板状部材6は半導体素子接着工程に送られる。この半導体素子接着工程では、図2(c)、(d)に示すように、半導体素子2を板状部材6に塗布された樹脂5上に搭載し(搭載工程)、次いで樹脂5を加熱して(加熱工程)、樹脂5を熱硬化させることによって、複数の半導体素子2の裏面側を樹脂5を介して板状部材6の各凹部6bに整列状態で接着する(第2工程)。
【0028】
この搭載工程において半導体素子2の搭載に用いられる電子部品搭載装置について、図4を参照して説明する。図4において、部品供給テーブル11には半導体素子2が格子状に貼着された粘着シート12が装着されている。部品供給テーブル11の下方には、半導体素子剥離機構13が配設されており、半導体素子剥離機構13を半導体素子剥離機構駆動部14によって駆動することにより、エジェクタピン機構13aによって粘着シート12の下面を突き上げ、これにより半導体素子2を搭載ヘッド16によってピックアップする際に、半導体素子2が粘着シート12の上面から剥離される。
【0029】
部品供給テーブル11の側方には基板保持部15が配設されており、基板保持部15上には樹脂供給後の板状部材6が保持されている。部品供給テーブル11および基板保持部15の上方には、搭載ヘッド駆動部19によって駆動される搭載ヘッド16が配設されている。搭載ヘッド16は吸着ノズル8を備えており、粘着シート12から半導体素子2をピックアップし、基板保持部15上の板状部材6に搭載する。
【0030】
部品供給テーブル11の上方にはカメラ17が配設されており、カメラ17は粘着シート12に貼着された半導体素子2を撮像する。カメラ17によって撮像された画像を半導体素子認識部20で認識処理することにより、粘着シート12における半導体素子2の位置が認識される。位置認識結果は制御部21に送られるとともに、半導体素子剥離機構駆動部14に送られる。これにより、搭載ヘッド16による半導体素子2のピックアップ時には、吸着ノズル8およびエジェクタピン機構13aがピックアップ対象の半導体素子2に位置合わせされる。
【0031】
基板保持部15の上方にはカメラ18が配設されており、カメラ18は基板保持部15に保持された板状部材6を撮像する。カメラ18によって撮像された画像を搭載位置認識部22で認識処理することにより、板状部材6における半導体素子搭載位置が検出される。位置認識結果は制御部21に送られ、制御部21がこの位置認識結果に基づいて搭載ヘッド駆動部19を制御することにより、搭載ヘッド16による半導体素子2の搭載時には、吸着ノズル8に保持された半導体素子2が検出された搭載位置に位置合わせされる。
【0032】
この電子部品搭載装置によって半導体素子2を板状部材6に搭載する際には、図2(c)に示すように、半導体素子2のバンプ3が形成された表面側を吸着ノズル8によって吸着保持し、半導体素子2の裏面を樹脂5に押し付ける。このとき、樹脂5の塗布量に応じて吸着ノズル8による押し付け高さを調整することにより、各半導体素子2の縁部外側(矢印A参照)にはみ出した樹脂5が、半導体素子2の側面2bを這い上がって側面2bを覆うようにする(図1(b)に示す樹脂5a参照)。このときダイシング時のダメージが残留しやすい半導体素子2の裏面側の端部が完全に覆われて補強されていれば、側面2bは完全に覆われていても、または部分的にのみ覆われていてもどちらでも良い。
【0033】
本実施の形態では、半導体素子2を1個づつ搭載ヘッド16で樹脂5に押し付けながら搭載するので、一括して搭載(貼り付け)する場合よりも搭載荷重(押し付け力)を小さくできる。よって電子部品搭載装置としては、ダイボンディング装置や、チップマウンター等を流用することができる。
【0034】
このようにして半導体素子2が搭載された板状部材6は加熱炉に送られる。そしてここで所定温度で加熱されることにより、図2(d)に示すように樹脂5が熱硬化する。このとき、各半導体素子2の縁部外側にはみ出した樹脂5は、熱硬化の過程において一時的に粘度低下することにより表面張力によって半導体素子2の側面2bにさらに這い上がり、側面2bを覆った形状のまま硬化する。これにより、樹脂5の硬化後において、図1(b)に示す補強部としての樹脂5aが形成される。そしてこれにより第2工程が完了する。
【0035】
なお上記実施の形態では、半導体素子2の搭載後に板状部材6を加熱炉に送ることにより樹脂5を熱硬化させるようにしているが、搭載ヘッド16として加熱手段を内蔵したものを用い、半導体素子2を搭載しながら加熱するようにしてもよい。
【0036】
搭載ヘッド16によって加熱する場合には、図2(d)に示す専用の加熱工程を省略してもよく、このようにすれば加熱炉を省略して設備の簡略化を図ることができるという利点がある。ただし、この場合には搭載ヘッド16のタクトタイムが熱硬化時間によって制約されるため、全体の生産性としては搭載工程と加熱工程を別々に行う場合よりも低下する。また、樹脂5として上記実施の形態では熱硬化性の樹脂を用いる例を示しているが、これに変えて熱可塑性の樹脂素材を用いるようにしてもよい。
【0037】
このようにして樹脂5が硬化した板状部材6は切断工程に送られ、ここで図2(e)に示すように、半導体素子2が接着された板状部材6を回転切断刃24aによって隣接する半導体素子2の間の切断位置で切断する(第3工程)。これにより、板状部材6が半導体素子2ごとのバンパ4に切断分離され、半導体装置1の組立が完成する。
【0038】
この切断工程について、図5,図6を参照して説明する。図5は、この切断に用いられるダイシング装置を示している。基板固定部23の上面には、半導体素子2が搭載され樹脂硬化が完了した板状部材6は基板固定部23上に載置される。基板固定部23の上方には、回転切断刃24aを備えた切断ヘッド24が配設されており、回転切断刃24aを回転させながら切断ヘッド24をX方向、Y方向に移動させることにより、板状部材6が溝部6cに一致した切断位置に沿って切断される。
【0039】
図6に示すように、基板固定部23の上面には板状部材6上の半導体素子2に対応した位置毎に吸引保持部25が設けられており、吸引保持部25の上面には吸引溝25aが形成されている。吸引溝25aは、基板固定部23の内部に設けられた吸引孔23aに連通しており、吸引孔23aはさらに真空吸引源26に接続されている。板状部材6の下面を吸引保持部25に当接させた状態で真空吸引源26を駆動することにより、板状部材6は吸引保持部25によって吸着保持され、これにより板状部材6の位置が固定される。
【0040】
そしてこのようにして位置が固定された板状部材6の仕切部6a上に回転切断刃24aを位置合わせし、回転切断刃24aを回転させながら下降させることにより、溝部6c内の肉薄部が切断される。このとき、隣接する半導体素子2間の間隔よりも刃幅が小さい回転切断刃24aを用いることにより、板状部材6は個片に分離された後のバンパ4が半導体素子2の端面からはみ出した形状で切断される。したがって、個片分離された半導体装置1においては、バンパ4の外形は半導体素子2の外形よりも大きくなる。
【0041】
またこの切断においては、予め下面に溝部6cが形成されていることから、回転切断刃24aによる切断代が小さくなっている。これにより切断工程における回転切断刃24aの必要下降量を極力小さくすることができ、切断刃下降時に刃先が基板固定部23に接触して破損する事故を防止することができる。
【0042】
次に上述の半導体装置1を基板に実装して成る電子部品実装構造について図7を参照して説明する。図7(a)に示すように、半導体装置1は基板10の上面に形成された電極10aにバンプ3を半田接合して接続することにより基板10に実装される。図7(b)は,バンプ3から外側に位置する半導体素子2の変形状態を示している。本実施の形態に示すような薄化された半導体素子2をバンプ3を介して基板10に接合した構造では、半導体素子2と基板10の熱変形の差によって発生する応力に起因して、バンプ3から外側の範囲は基板10側に大きく撓む傾向にある(破線で示す半導体素子2参照)。そしてこの変形に伴ってバンプ3の外側近傍の半導体素子2の下面には高いレベルの表面応力が生じ、半導体素子2を破損させる原因となる場合がある。
【0043】
これに対し、本実施の形態に示すように、半導体素子2の側面2bを覆う樹脂5aによって補強された半導体装置1を基板10に実装した場合には、最外周のバンプ3から外側の範囲における半導体素子2の下方への撓みは大幅に低減される。すなわち、樹脂5aは半導体素子2の側面2bを覆って半導体素子2の過度の曲げ変形を防止するように作用する。そしてこの作用により、半導体素子2の下方への撓み変形が防止され、半導体素子2の曲げ変形による破損を防止することができる。
【0044】
なお、図8に示す半導体装置1Aのように、半導体素子2の縁部からの樹脂5aのはみ出しを半導体素子2の対角線方向に限定し、樹脂5aで半導体素子2の側面を覆う補強部を、半導体素子2の角部のみに形成するようにしてもよい。この場合には、図2(b)においてディスペンサ7によって樹脂5を塗布する際に、図8(b)に示す範囲のみに樹脂5を塗布するように、ディスペンサ7の塗布軌跡をX字状に設定するとともにディスペンサ7からの吐出量を制御する。このように補強部の形成範囲を半導体素子2の角部に限定することにより、半導体装置完成後の実装状態において最も破損が生じやすい角部を集中的に補強することができる。
【0045】
(実施の形態2)
図9は本発明の実施の形態2の半導体装置の組立方法の工程説明図である。本発明の実施の形態2では、板状部材に樹脂を供給する第1工程において、ディスペンサを用いずに予めシート状に形成された樹脂を貼着するものである。
【0046】
図9(a)において、板状部材6Aは実施の形態1に示す板状部材6の上面の仕切部6aを除去した形態となっており、板状部材6Aの下面には同様の溝部6cが形成されている。板状部材6Aの上面には、樹脂シート5Aが貼着される。樹脂シート5Aは、実施の形態1において用いた樹脂5と同様の樹脂素材を粘着シート状に成形したものであり、樹脂5自体の粘着性によって板状部材6Aに貼着される。
【0047】
この後、樹脂シート5Aが貼着された板状部材6は半導体素子接着工程に送られる。この半導体素子接着工程では、図9(b)、(c)に示すように、半導体素子2を板状部材6に貼着された樹脂シート5A上に搭載し(搭載工程)、次いで樹脂シート5Aを加熱して(加熱工程)、樹脂シート5Aの樹脂成分を熱硬化させることによって、複数の半導体素子2の裏面側を熱硬化した樹脂シート5Aを介して板状部材6に整列状態で接着する(第2工程)。
【0048】
上述の加熱工程においては、加熱炉によって所定温度で加熱されることにより、樹脂シート5Aの樹脂成分が熱硬化する。このとき、各半導体素子2の縁部外側に位置している樹脂5は熱硬化の過程において一時的に粘度が低下し、これにより流動性が増して表面張力によって半導体素子2の側面2bに這い上がる。そしてさらに加熱を継続することにより、樹脂シート5Aの樹脂成分は側面2bを覆った形状のまま硬化する。これにより、樹脂シート5Aの硬化後において、図1(b)に示す補強部としての樹脂5aが形成される。そしてこれにより第2工程が完了する。
【0049】
このようにして樹脂シート5Aが完全硬化した板状部材6Aは切断工程に送られ、ここで半導体素子2が接着された板状部材6Aを、隣接する半導体素子2の間で切断する(第3工程)。これにより、板状部材6Aが半導体素子2毎のバンパ4に切断分離され、半導体装置1の組立が完成する。
【0050】
(実施の形態3)
図10(a)は本発明の実施の形態3の半導体装置の斜視図、図10(b)は本発明の実施の形態3の半導体装置の部分断面図である。
【0051】
図10(a)において、半導体装置1Bは再配線層付半導体素子30の裏面に樹脂5によってバンパ4(構造体)を接着した構成となっており、再配線層付半導体素子30の表面にはバンプ3が格子状に複数形成されている。図9(b)に示すように、再配線層付半導体素子30は、実施の形態1に示す半導体素子2と同様に薄化処理された半導体素子2Aの上面(電極形成面)に再配線層9を形成した構成となっている。
【0052】
半導体素子2Aの表面の縁部には、外部接続用端子である電極2aが形成されており、各電極2aは再配線層9の表面に電極2aに対応した個数だけ形成された電極9aと、内部配線9bによって導通している。そして電極9a上には、半導体装置1Bを実装するためのバンプ3が形成されている。
【0053】
本実施の形態3では、再配線層9を設けることにより、実施の形態1に示す半導体装置1と比較して、同一投影面積内により多数のバンプ3を形成することができ、より高密度の実装が可能となっている。この半導体装置1Bを組み立てるには、実施の形態1、2に示す半導体装置の組立方法おいて、半導体素子2を再配線層付半導体素子30に置き換えればよい。
【0054】
これにより、再配線層付半導体素子30の側面30aには、はみ出した樹脂5aが側面30aを覆った補強部が形成される。このような構成の半導体装置1Bにおいて、再配線層付半導体素子30の側面30aを覆った補強部を形成することにより、前述のように実装後に再配線層付半導体素子30の縁部に生じる曲げ変形が防止され、再配線層9内の内部配線9bの破断を防止することができる。
【0055】
【発明の効果】
本発明によれば、構造体となる板状部材に樹脂を供給し、半導体素子の裏面側を樹脂を介して板状部材に整列状態で接着した後に、半導体素子が接着された板状部材を隣接する半導体素子間で切断するようにしたので、薄化された半導体素子を構造体に接着した半導体装置を容易に効率よく組み立てることができる。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態1の半導体装置の斜視図
(b)本発明の実施の形態1の半導体装置の部分断面図
【図2】本発明の実施の形態1の半導体装置の組立方法の工程説明図
【図3】本発明の実施の形態1の半導体装置に用いられる板状部材の斜視図
【図4】本発明の実施の形態1の半導体装置の組立に使用される電子部品搭載装置の斜視図
【図5】本発明の実施の形態1の半導体装置の組立に使用されるダイシング装置の斜視図
【図6】本発明の実施の形態1の半導体装置の組立に使用されるダイシング装置の部分断面図
【図7】(a)本発明の実施の形態1の実装構造の断面図
(b)本発明の実施の形態1の実装構造の部分断面図
【図8】(a)本発明の実施の形態1の半導体装置の斜視図
(b)本発明の実施の形態1の半導体装置の平面図
【図9】本発明の実施の形態2の半導体装置の組立方法の工程説明図
【図10】(a)本発明の実施の形態3の半導体装置の斜視図
(b)本発明の実施の形態3の半導体装置の部分断面図
【符号の説明】
1,1A,1B 半導体装置
2,2A 半導体素子
2a 電極
2b 側面
3 バンプ
4 バンパ
5 樹脂
5A 樹脂シート
6 板状部材
6a 仕切部
6b 凹部
7 ディスペンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for assembling a semiconductor device in which a structure having rigidity higher than that of a semiconductor element is bonded to the back surface of the semiconductor element with a resin.
[0002]
[Prior art]
As an electronic component mounting structure for mounting an electronic component manufactured by packaging a semiconductor element on a circuit board, a structure in which protruding electrodes such as solder bumps formed on the electronic component are bonded to the circuit board is known. In such a mounting structure, the stress level during the heat cycle required for realizing joint reliability after mounting is reduced, that is, due to the difference in the thermal expansion coefficient between the semiconductor element and the workpiece due to the environmental temperature change after mounting. In order to keep the stress generated at the joint between the semiconductor element and the solder bump low, attempts have been made to make the semiconductor element as thin as 150 μm or less.
[0003]
The present applicant has proposed a new semiconductor device incorporating a thinly processed semiconductor element (Japanese Patent Application No. 2000-335492). This semiconductor device facilitates handling by bonding a bumper (structure) to the back side of the semiconductor element with a resin, and at the same time allows the deformation of the semiconductor element itself to disperse the stress of the bonded portion, thereby improving the bonding reliability. It has the advantage that it can be improved.
[0004]
[Problems to be solved by the invention]
However, the method for assembling the semiconductor device described above has not yet been established, and a new method that can be assembled at low cost is desired.
[0005]
Accordingly, an object of the present invention is to provide a method for assembling a semiconductor device that can efficiently manufacture a semiconductor device having a structure on the back surface of a thinned semiconductor element.
[0006]
[Means for Solving the Problems]
The method for assembling a semiconductor device according to claim 1 is a method for assembling a semiconductor device in which a structure having rigidity higher than that of the semiconductor element is bonded to the back surface of the semiconductor element having a plurality of terminals for external connection formed on the front surface by a resin. A first step of supplying a resin to the plate-like member serving as the structure, a second step of adhering back surfaces of a plurality of semiconductor elements to the plate-like member in an aligned state via the resin, look including the third step of the semiconductor element is cut between the semiconductor elements adjacent to the plate-like member that is adhered, in said first step, so as to applying the resin to a plate-shaped member by a dispenser, also the plate-like member A dam portion for restricting the spread of the resin is provided around the semiconductor element bonding position, and the resin is applied to the inside of the dam portion with a dispenser.
[0009]
[Contents of correction]
A method for assembling a semiconductor device according to a second aspect is the method for assembling a semiconductor device according to the first aspect, wherein, in the first step, a sheet-like resin is attached to the plate-like member.
[0010]
A method for assembling a semiconductor device according to claim 3 is the method for assembling a semiconductor device according to claim 1, wherein the second step is mounting in which a plurality of semiconductor elements are mounted on the resin supplied to the plate-like member. And a heating step of heating a plate-like member on which a plurality of semiconductor elements are mounted.
[0011]
A method for assembling a semiconductor device according to claim 4 is the method for assembling a semiconductor device according to claim 1, wherein the second step is a step of mounting a resin while mounting a semiconductor element on the resin supplied to the plate-like member. Heating.
[0012]
A method for assembling a semiconductor device according to a fifth aspect is the method for assembling a semiconductor device according to the first aspect, wherein, in the second step, the resin is made to crawl onto a side surface of the semiconductor element.
[0013]
A method for assembling a semiconductor device according to a sixth aspect is the method for assembling a semiconductor device according to the first aspect, wherein a rewiring layer is formed on an electrode forming surface of the semiconductor element.
[0014]
According to the present invention, the resin is supplied to the plate-like member that becomes the structure, the back surface side of the semiconductor element is bonded to the plate-like member through the resin in an aligned state, and then the plate-like member to which the semiconductor element is bonded is obtained. By cutting between adjacent semiconductor elements, a semiconductor device in which a thinned semiconductor element is bonded to a structure can be easily and efficiently assembled.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
1A is a perspective view of the semiconductor device according to the first embodiment of the present invention, FIG. 1B is a partial cross-sectional view of the semiconductor device according to the first embodiment of the present invention, and FIG. 2 is the embodiment of the present invention. FIG. 3 is a perspective view of a plate-like member used in the semiconductor device according to the first embodiment of the present invention, and FIG. 4 is an assembly of the semiconductor device according to the first embodiment of the present invention. FIG. 5 is a perspective view of a dicing apparatus used for assembling the semiconductor device according to the first embodiment of the present invention, and FIG. 6 is a semiconductor device according to the first embodiment of the present invention. FIG. 7A is a sectional view of the mounting structure according to the first embodiment of the present invention, and FIG. 7B is a sectional view of the mounting structure according to the first embodiment of the present invention. FIG. 8A is a partial sectional view, FIG. 8A is a perspective view of the semiconductor device according to the first embodiment of the present invention, and FIG. It is a plan view of the semiconductor device of the first embodiment of the.
[0016]
First, a semiconductor device will be described with reference to FIG. 1A and 1B, the semiconductor device 1 has a configuration in which a bumper 4 (structure) is bonded to the back surface of the semiconductor element 2 with a resin 5 along the edge of the surface of the semiconductor element 2. Bumps 3 are formed on the electrodes 2a which are a plurality of external connection terminals formed in this manner.
[0017]
Here, the semiconductor element 2 is in a state after being thinned by a method such as mechanical polishing or etching. Generally, in a state where a semiconductor element is mounted on a substrate via bumps, the smaller the thickness dimension of the semiconductor element, the better the bonding reliability after mounting. This is because even if the stress is concentrated on the joint portion of the bump 3 due to the difference in stress between the semiconductor element 2 and the substrate, the semiconductor element 2 itself is deformed (flexed) in the thickness direction to disperse the stress. Because. For this reason, in the present embodiment, the semiconductor element 2 is thinned as described above and set so that the thickness t1 is in the range of 10 to 150 μm, thereby enabling deformation (deflection) in the thickness direction. .
[0018]
In the thinning process, the surface opposite to the circuit formation surface of the semiconductor element 2 is roughly processed by mechanical polishing using a grindstone or the like, and finish processing is performed by dry etching or wet etching with a chemical solution. When mechanical polishing is performed, a damaged layer having a large number of microcracks on the back surface is formed. Although this damage layer is a factor that lowers the bending strength of the semiconductor element, the damage layer can be removed by finishing to increase the bending strength of the semiconductor element 2.
[0019]
The bumper 4 has a function of facilitating stable holding of the semiconductor device 1 during handling such as when the semiconductor device 1 is mounted and also protecting the semiconductor device 1 after being mounted on a substrate or the like from an external force. It is. Accordingly, the bumper 4 has a shape that satisfies the above-described function, such as a metal, ceramic, or resin, that is, a thickness t2 that has higher rigidity than the semiconductor element 2 and is larger than the outer shape of the semiconductor element 2. What was processed into is used.
[0020]
Here, the resin 5 for adhering the semiconductor element 2 to the bumper 4 is made of a material having a low elastic coefficient and easily deformed, and the semiconductor element 2 is allowed to be deformed in the thickness direction while the semiconductor element 2 is allowed to deform in the thickness direction. It comes to adhere to. Thereby, in a state where the semiconductor device 1 is mounted on the substrate, the semiconductor element 2 is deformed following the deformation state of the substrate.
[0021]
As shown in FIG. 1, the resin 5 protrudes from the ends of the four sides over the entire circumference of the semiconductor element 2, and the protruding resin 5 a crawls along the side surface 2 b of the semiconductor element 2 and partially covers the side surface 2 b. It has a shape like this. The resin 5 a covering the side surface 2 b forms a reinforcing portion that reinforces the edge of the semiconductor element 2.
[0022]
At the edge of the semiconductor element 2, minute cracks generated when the semiconductor wafer is diced and cut into individual semiconductor elements 2 are likely to remain as they are, and breakage may occur from the cracks. The resin 5a covering the side surface 2b reinforces the edge of the semiconductor element 2 including such micro cracks, and in a state where the semiconductor device 1 is mounted on the substrate 10 as described later, It has a function of preventing the semiconductor element 2 from being excessively deformed due to the stress generated by the difference in thermal deformation.
[0023]
Next, a method for assembling the semiconductor device 1 will be described with reference to FIG. In FIG. 2A, the plate-like member 6 is an intermediate part before the bumper 4 constituting a part of the semiconductor device 1 is cut off. As shown in FIG. 3, a partition 6a protruding in a lattice shape is provided on the upper surface of the plate-like member 6, and a recess 6b surrounded by the partition 6a is a semiconductor element bonding position to which the semiconductor element 2 is bonded. It has become. As will be described later, the partition 6a is a dam that restricts the resin 5 from spreading beyond the semiconductor bonding position when the resin 5 for bonding the semiconductor element 2 is applied in the recess 6b. .
[0024]
A groove portion 6 c is formed at a position corresponding to the partition portion 6 a on the lower surface of the plate-like member 6. The groove 6c is formed by cutting a lattice-like groove from the lower surface side of the plate-like member 6 having a thickness dimension t4, and thereby has a thin portion whose thickness dimension t3 from the upper surface is smaller than t4. This thin portion coincides with the cutting position when the plate-like member 6 is cut and separated into the bumper 4.
[0025]
Next, as shown in FIG. 2B, the resin 5 is applied to each recess 6b of the plate-like member 6 by the dispenser 7, thereby supplying the resin 5 for bonding the semiconductor element 2 (first step). . In the application of the resin 5, since the partition portion 6 a as a dam portion is provided around the recess 6 b, the resin 5 is prevented from spreading beyond the semiconductor bonding position.
[0026]
In addition, when the resin 5 spread by the semiconductor element 2 after application protrudes outward from the end portion of the semiconductor element 2 during application, there is no excess or deficiency in covering the side surface 2b of the semiconductor element 2 as described above. An appropriate amount of resin 5 is discharged from the dispenser 7.
[0027]
Thereafter, the plate-like member 6 supplied with the resin 5 is sent to the semiconductor element bonding step. In this semiconductor element bonding step, as shown in FIGS. 2C and 2D, the semiconductor element 2 is mounted on the resin 5 applied to the plate member 6 (mounting process), and then the resin 5 is heated. Then, the resin 5 is thermally cured to bond the back surfaces of the plurality of semiconductor elements 2 to the respective recesses 6b of the plate-like member 6 in an aligned state via the resin 5 (second process).
[0028]
An electronic component mounting apparatus used for mounting the semiconductor element 2 in this mounting process will be described with reference to FIG. In FIG. 4, the component supply table 11 is provided with an adhesive sheet 12 on which the semiconductor elements 2 are attached in a lattice shape. Below the component supply table 11, a semiconductor element peeling mechanism 13 is disposed. When the semiconductor element peeling mechanism 13 is driven by the semiconductor element peeling mechanism driving unit 14, the ejector pin mechanism 13a causes the lower surface of the adhesive sheet 12 to be lower. Thus, when the semiconductor element 2 is picked up by the mounting head 16, the semiconductor element 2 is peeled off from the upper surface of the adhesive sheet 12.
[0029]
A substrate holding unit 15 is disposed on the side of the component supply table 11, and the plate-like member 6 after resin supply is held on the substrate holding unit 15. A mounting head 16 driven by a mounting head driving unit 19 is disposed above the component supply table 11 and the substrate holding unit 15. The mounting head 16 includes the suction nozzle 8, picks up the semiconductor element 2 from the adhesive sheet 12, and mounts it on the plate-like member 6 on the substrate holding unit 15.
[0030]
A camera 17 is disposed above the component supply table 11, and the camera 17 images the semiconductor element 2 adhered to the adhesive sheet 12. The position of the semiconductor element 2 on the adhesive sheet 12 is recognized by performing a recognition process on the image captured by the camera 17 by the semiconductor element recognition unit 20. The position recognition result is sent to the control unit 21 and also sent to the semiconductor element peeling mechanism driving unit 14. Thereby, when the semiconductor element 2 is picked up by the mounting head 16, the suction nozzle 8 and the ejector pin mechanism 13a are aligned with the semiconductor element 2 to be picked up.
[0031]
A camera 18 is disposed above the substrate holding unit 15, and the camera 18 images the plate-like member 6 held by the substrate holding unit 15. The mounting position recognition unit 22 recognizes the image captured by the camera 18 to detect the semiconductor element mounting position on the plate member 6. The position recognition result is sent to the control unit 21, and the control unit 21 controls the mounting head driving unit 19 based on the position recognition result, so that it is held by the suction nozzle 8 when the semiconductor element 2 is mounted by the mounting head 16. The semiconductor element 2 is aligned with the detected mounting position.
[0032]
When the semiconductor element 2 is mounted on the plate-like member 6 by this electronic component mounting apparatus, the surface side on which the bumps 3 of the semiconductor element 2 are formed is sucked and held by the suction nozzle 8 as shown in FIG. Then, the back surface of the semiconductor element 2 is pressed against the resin 5. At this time, by adjusting the pressing height by the suction nozzle 8 in accordance with the application amount of the resin 5, the resin 5 that protrudes outside the edge of each semiconductor element 2 (see arrow A) becomes the side surface 2 b of the semiconductor element 2. To cover the side surface 2b (see resin 5a shown in FIG. 1B). At this time, if the end portion on the back surface side of the semiconductor element 2 where damage during dicing is likely to remain is completely covered and reinforced, the side surface 2b is completely covered or only partially covered. But either is fine.
[0033]
In the present embodiment, since the semiconductor elements 2 are mounted one by one while being pressed against the resin 5 by the mounting head 16, the mounting load (pressing force) can be reduced as compared with the case where the semiconductor elements 2 are collectively mounted (pasted). Therefore, a die bonding apparatus, a chip mounter, or the like can be used as the electronic component mounting apparatus.
[0034]
Thus, the plate-like member 6 on which the semiconductor element 2 is mounted is sent to the heating furnace. Then, by heating at a predetermined temperature, the resin 5 is thermoset as shown in FIG. At this time, the resin 5 that protrudes to the outside of the edge of each semiconductor element 2 further rises to the side surface 2b of the semiconductor element 2 due to surface tension by temporarily decreasing the viscosity in the process of thermosetting, and covers the side surface 2b. Cures in shape. Thereby, after the resin 5 is cured, the resin 5a as the reinforcing portion shown in FIG. 1B is formed. This completes the second step.
[0035]
In the above-described embodiment, the resin 5 is thermally cured by sending the plate-like member 6 to the heating furnace after the semiconductor element 2 is mounted. Heating may be performed while the element 2 is mounted.
[0036]
When heating by the mounting head 16, the dedicated heating step shown in FIG. 2 (d) may be omitted, and in this way, the heating furnace can be omitted and the equipment can be simplified. There is. However, in this case, since the tact time of the mounting head 16 is limited by the thermosetting time, the overall productivity is lower than when the mounting process and the heating process are performed separately. Moreover, although the example using a thermosetting resin is shown in the said embodiment as the resin 5, you may make it use a thermoplastic resin raw material instead.
[0037]
The plate-like member 6 in which the resin 5 is cured in this way is sent to a cutting step, where, as shown in FIG. 2 (e), the plate-like member 6 to which the semiconductor element 2 is bonded is adjacent by a rotary cutting blade 24a. Cutting is performed at a cutting position between the semiconductor elements 2 to be performed (third step). As a result, the plate-like member 6 is cut and separated into bumpers 4 for each semiconductor element 2, and the assembly of the semiconductor device 1 is completed.
[0038]
This cutting process will be described with reference to FIGS. FIG. 5 shows a dicing apparatus used for this cutting. On the upper surface of the substrate fixing portion 23, the plate-like member 6 on which the semiconductor element 2 is mounted and the resin curing is completed is placed on the substrate fixing portion 23. A cutting head 24 having a rotary cutting blade 24a is disposed above the substrate fixing portion 23, and the cutting head 24 is moved in the X direction and the Y direction while rotating the rotary cutting blade 24a. The shaped member 6 is cut along a cutting position coinciding with the groove 6c.
[0039]
As shown in FIG. 6, suction holding portions 25 are provided on the upper surface of the substrate fixing portion 23 at positions corresponding to the semiconductor elements 2 on the plate-like member 6, and suction grooves are provided on the upper surface of the suction holding portion 25. 25a is formed. The suction groove 25 a communicates with a suction hole 23 a provided in the substrate fixing portion 23, and the suction hole 23 a is further connected to a vacuum suction source 26. By driving the vacuum suction source 26 in a state where the lower surface of the plate-like member 6 is in contact with the suction holding portion 25, the plate-like member 6 is sucked and held by the suction holding portion 25, thereby the position of the plate-like member 6. Is fixed.
[0040]
Then, the rotary cutting blade 24a is positioned on the partition portion 6a of the plate-like member 6 fixed in this manner, and the thin portion in the groove 6c is cut by lowering the rotary cutting blade 24a while rotating it. Is done. At this time, by using the rotary cutting blade 24a whose blade width is smaller than the interval between the adjacent semiconductor elements 2, the bumper 4 after the plate-like member 6 is separated into individual pieces protrudes from the end face of the semiconductor element 2. Cut in shape. Therefore, in the semiconductor device 1 separated into pieces, the outer shape of the bumper 4 is larger than the outer shape of the semiconductor element 2.
[0041]
In this cutting, since the groove 6c is formed in advance on the lower surface, the cutting allowance by the rotary cutting blade 24a is reduced. Thereby, the required lowering amount of the rotary cutting blade 24a in the cutting process can be made as small as possible, and it is possible to prevent an accident that the cutting edge comes into contact with the substrate fixing portion 23 when the cutting blade is lowered.
[0042]
Next, an electronic component mounting structure formed by mounting the above-described semiconductor device 1 on a substrate will be described with reference to FIG. As shown in FIG. 7A, the semiconductor device 1 is mounted on the substrate 10 by connecting the bumps 3 to the electrodes 10a formed on the upper surface of the substrate 10 by solder bonding. FIG. 7B shows a deformed state of the semiconductor element 2 located outside the bump 3. In the structure in which the thinned semiconductor element 2 is bonded to the substrate 10 via the bump 3 as shown in this embodiment, the bump is caused by the stress generated by the difference in thermal deformation between the semiconductor element 2 and the substrate 10. The range from 3 to the outside tends to be greatly bent toward the substrate 10 (see the semiconductor element 2 indicated by a broken line). Along with this deformation, a high level surface stress is generated on the lower surface of the semiconductor element 2 near the outside of the bump 3, which may cause the semiconductor element 2 to be damaged.
[0043]
On the other hand, as shown in the present embodiment, when the semiconductor device 1 reinforced by the resin 5a covering the side surface 2b of the semiconductor element 2 is mounted on the substrate 10, the outermost bump 3 is in the outer range. The downward deflection of the semiconductor element 2 is greatly reduced. That is, the resin 5 a covers the side surface 2 b of the semiconductor element 2 and acts to prevent excessive bending deformation of the semiconductor element 2. By this action, downward deformation of the semiconductor element 2 is prevented, and damage due to bending deformation of the semiconductor element 2 can be prevented.
[0044]
Note that, as in the semiconductor device 1A shown in FIG. 8, the protrusion of the resin 5a from the edge of the semiconductor element 2 is limited to the diagonal direction of the semiconductor element 2, and a reinforcing part that covers the side surface of the semiconductor element 2 with the resin 5a is provided. You may make it form only in the corner | angular part of the semiconductor element 2. FIG. In this case, when the resin 5 is applied by the dispenser 7 in FIG. 2B, the application locus of the dispenser 7 is X-shaped so that the resin 5 is applied only to the range shown in FIG. It sets and controls the discharge amount from the dispenser 7. By limiting the formation range of the reinforcing portion to the corner portion of the semiconductor element 2 in this manner, the corner portion that is most likely to be damaged in the mounted state after completion of the semiconductor device can be intensively reinforced.
[0045]
(Embodiment 2)
FIG. 9 is a process explanatory diagram of the semiconductor device assembly method according to the second embodiment of the present invention. In Embodiment 2 of the present invention, in the first step of supplying the resin to the plate-like member, the resin previously formed into a sheet shape is pasted without using a dispenser.
[0046]
In FIG. 9A, the plate-like member 6A is formed by removing the partition 6a on the upper surface of the plate-like member 6 shown in the first embodiment, and a similar groove 6c is formed on the lower surface of the plate-like member 6A. Is formed. A resin sheet 5A is attached to the upper surface of the plate-like member 6A. The resin sheet 5A is formed by molding a resin material similar to the resin 5 used in Embodiment 1 into an adhesive sheet shape, and is adhered to the plate-like member 6A due to the adhesiveness of the resin 5 itself.
[0047]
Thereafter, the plate-like member 6 to which the resin sheet 5A is adhered is sent to the semiconductor element bonding step. In this semiconductor element bonding step, as shown in FIGS. 9B and 9C, the semiconductor element 2 is mounted on the resin sheet 5A attached to the plate member 6 (mounting process), and then the resin sheet 5A. Is heated (heating step), and the resin component of the resin sheet 5A is thermally cured to adhere to the plate member 6 in an aligned state via the thermally cured resin sheets 5A. (Second step).
[0048]
In the above-described heating step, the resin component of the resin sheet 5A is thermally cured by being heated at a predetermined temperature by a heating furnace. At this time, the resin 5 located outside the edge of each semiconductor element 2 temporarily decreases in viscosity in the process of thermosetting, thereby increasing the fluidity and reaching the side surface 2b of the semiconductor element 2 by surface tension. Go up. Further, by further heating, the resin component of the resin sheet 5A is cured with the shape covering the side surface 2b. Thereby, after the resin sheet 5A is cured, the resin 5a as the reinforcing portion shown in FIG. 1B is formed. This completes the second step.
[0049]
The plate-like member 6A in which the resin sheet 5A is completely cured in this way is sent to the cutting step, where the plate-like member 6A to which the semiconductor element 2 is bonded is cut between adjacent semiconductor elements 2 (third Process). Thereby, the plate-like member 6A is cut and separated into bumpers 4 for each semiconductor element 2, and the assembly of the semiconductor device 1 is completed.
[0050]
(Embodiment 3)
FIG. 10A is a perspective view of the semiconductor device according to the third embodiment of the present invention, and FIG. 10B is a partial cross-sectional view of the semiconductor device according to the third embodiment of the present invention.
[0051]
In FIG. 10A, the semiconductor device 1B has a configuration in which a bumper 4 (structure) is bonded to the back surface of the semiconductor element 30 with a rewiring layer by a resin 5 on the surface of the semiconductor element 30 with a rewiring layer. A plurality of bumps 3 are formed in a lattice shape. As shown in FIG. 9B, the rewiring layer-attached semiconductor element 30 has a rewiring layer on the upper surface (electrode formation surface) of the thinned semiconductor element 2A in the same manner as the semiconductor element 2 shown in the first embodiment. 9 is formed.
[0052]
Electrodes 2a, which are external connection terminals, are formed on the edge of the surface of the semiconductor element 2A, and each electrode 2a includes electrodes 9a formed on the surface of the rewiring layer 9 by the number corresponding to the electrodes 2a, The internal wiring 9b is conducting. A bump 3 for mounting the semiconductor device 1B is formed on the electrode 9a.
[0053]
In the third embodiment, by providing the rewiring layer 9, a larger number of bumps 3 can be formed in the same projected area than in the semiconductor device 1 shown in the first embodiment, and the higher density. Implementation is possible. In order to assemble the semiconductor device 1B, the semiconductor element 2 may be replaced with the semiconductor element 30 with a rewiring layer in the method of assembling the semiconductor device shown in the first and second embodiments.
[0054]
As a result, a reinforced portion in which the protruding resin 5a covers the side surface 30a is formed on the side surface 30a of the semiconductor element 30 with the rewiring layer. In the semiconductor device 1B having such a configuration, by forming a reinforcing portion that covers the side surface 30a of the semiconductor element 30 with the rewiring layer, the bending generated at the edge of the semiconductor element 30 with the rewiring layer after mounting as described above. Deformation is prevented, and breakage of the internal wiring 9b in the rewiring layer 9 can be prevented.
[0055]
【The invention's effect】
According to the present invention, the resin is supplied to the plate-like member that becomes the structure, the back surface side of the semiconductor element is bonded to the plate-like member in alignment through the resin, and then the plate-like member to which the semiconductor element is bonded is obtained. Since cutting is performed between adjacent semiconductor elements, a semiconductor device in which a thinned semiconductor element is bonded to a structure can be easily and efficiently assembled.
[Brief description of the drawings]
1A is a perspective view of a semiconductor device according to a first embodiment of the present invention. FIG. 1B is a partial cross-sectional view of the semiconductor device according to the first embodiment of the present invention. FIG. 2 is a semiconductor according to the first embodiment of the present invention. FIG. 3 is a perspective view of a plate-like member used in the semiconductor device according to the first embodiment of the present invention. FIG. 4 is used for assembling the semiconductor device according to the first embodiment of the present invention. FIG. 5 is a perspective view of a dicing apparatus used for assembling the semiconductor device according to the first embodiment of the present invention. FIG. 6 is an assembly of the semiconductor device according to the first embodiment of the present invention. 7 is a partial sectional view of the dicing apparatus used. FIG. 7A is a sectional view of the mounting structure according to the first embodiment of the present invention. FIG. 8B is a partial sectional view of the mounting structure according to the first embodiment of the present invention. (A) Perspective view of the semiconductor device according to the first embodiment of the present invention (b) Semiconductor according to the first embodiment of the present invention FIG. 9 is a process explanatory view of a method for assembling a semiconductor device according to a second embodiment of the present invention. FIG. 10 (a) is a perspective view of a semiconductor device according to a third embodiment of the present invention. Partial cross-sectional view of the semiconductor device of Embodiment 3
1, 1A, 1B Semiconductor device 2, 2A Semiconductor element 2a Electrode 2b Side face 3 Bump 4 Bumper 5 Resin 5A Resin sheet 6 Plate-like member 6a Partition part 6b Recess 7 Dispenser

Claims (6)

表面に複数の外部接続用端子が形成された半導体素子の裏面にこの半導体素子よりも剛性の高い構造体を樹脂によって接着した半導体装置の組立方法であって、前記構造体となる板状部材に樹脂を供給する第1工程と、複数の半導体素子の裏面側を前記樹脂を介して前記板状部材に整列状態で接着する第2工程と、前記半導体素子が接着された板状部材を隣接する半導体素子間で切断する第3工程を含み、前記第1工程において、ディスペンサによって前記樹脂を板状部材に塗布するようにし、また前記板状部材の半導体素子接着位置の周囲に前記樹脂の広がりを規制するダム部を設け、このダム部の内側にディスペンサで樹脂を塗布することを特徴とする半導体装置の組立方法。 A method for assembling a semiconductor device in which a structure having rigidity higher than that of a semiconductor element is bonded to a back surface of a semiconductor element having a plurality of external connection terminals formed on the surface thereof by a resin, and the plate-like member serving as the structure A first step of supplying a resin, a second step of bonding the back surfaces of a plurality of semiconductor elements to the plate-like member in an aligned state via the resin, and a plate-like member to which the semiconductor element is bonded are adjacent to each other. Including a third step of cutting between the semiconductor elements. In the first step, the resin is applied to the plate-like member by a dispenser, and the spread of the resin around the semiconductor element bonding position of the plate-like member is performed. a dam portion for regulating provided method of assembling a semi-conductor device you characterized by applying the resin with a dispenser inside the dam portion. 前記第1工程において、板状部材にシート状の樹脂を貼り付けることを特徴とする請求項1記載の半導体装置の組立方法。2. The method of assembling a semiconductor device according to claim 1, wherein in the first step, a sheet-like resin is attached to the plate-like member. 前記第2工程は、板状部材に供給された樹脂上に複数の半導体素子を搭載する搭載工程と、複数の半導体素子が搭載された板状部材を加熱する加熱工程を含むことを特徴とする請求項1記載の半導体装置の組立方法。The second step includes a mounting step of mounting a plurality of semiconductor elements on a resin supplied to the plate-shaped member, and a heating step of heating the plate-shaped member mounted with the plurality of semiconductor elements. 2. A method for assembling a semiconductor device according to claim 1. 前記第2工程は、板状部材に供給された樹脂上に半導体素子を搭載しながら樹脂を加熱する工程を含むことを特徴とする請求項1記載の半導体装置の組立方法。2. The method of assembling a semiconductor device according to claim 1, wherein the second step includes a step of heating the resin while mounting the semiconductor element on the resin supplied to the plate member. 前記第2工程において、前記樹脂を半導体素子の側面に這い上がらせることを特徴とする請求項1記載の半導体装置の組立方法。2. The method of assembling a semiconductor device according to claim 1, wherein, in the second step, the resin is crazed up to a side surface of the semiconductor element. 前記半導体素子の電極形成面には、再配線層が形成されていることを特徴とする請求項1記載の半導体装置の組立方法。2. The method of assembling a semiconductor device according to claim 1, wherein a rewiring layer is formed on an electrode forming surface of the semiconductor element.
JP2002114539A 2002-04-17 2002-04-17 Assembling method of semiconductor device Expired - Fee Related JP3826831B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002114539A JP3826831B2 (en) 2002-04-17 2002-04-17 Assembling method of semiconductor device
KR1020047016582A KR100593407B1 (en) 2002-04-17 2003-04-14 Semiconductor device and assembly method of semiconductor device
CNB038084864A CN100409430C (en) 2002-04-17 2003-04-14 Semiconductor device and method for assembling the same
PCT/JP2003/004693 WO2003088355A1 (en) 2002-04-17 2003-04-14 Semiconductor device and method for assembling the same
AU2003236251A AU2003236251A1 (en) 2002-04-17 2003-04-14 Semiconductor device and method for assembling the same
US10/509,025 US7446423B2 (en) 2002-04-17 2003-04-14 Semiconductor device and method for assembling the same
EP03746477A EP1487014A4 (en) 2002-04-17 2003-04-14 Semiconductor device and method for assembling the same
TW092108718A TWI229396B (en) 2002-04-17 2003-04-15 Semiconductor device and assembling method of the semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114539A JP3826831B2 (en) 2002-04-17 2002-04-17 Assembling method of semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006118921A Division JP2006237635A (en) 2006-04-24 2006-04-24 Method of assembling semiconductor device

Publications (2)

Publication Number Publication Date
JP2003309219A JP2003309219A (en) 2003-10-31
JP3826831B2 true JP3826831B2 (en) 2006-09-27

Family

ID=29396313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114539A Expired - Fee Related JP3826831B2 (en) 2002-04-17 2002-04-17 Assembling method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3826831B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912701B2 (en) * 2012-03-15 2016-04-27 アルプス電気株式会社 Method for manufacturing magnetic detection device

Also Published As

Publication number Publication date
JP2003309219A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
KR100762208B1 (en) Semiconductor device and its manufacturing method and mounting method of semiconductor device
US7183124B2 (en) Surface mount saw device manufacturing method
TW201824406A (en) Semiconductor chip mounting device and method for manufacturing semiconductor device
KR100593407B1 (en) Semiconductor device and assembly method of semiconductor device
JP3826831B2 (en) Assembling method of semiconductor device
JP3925389B2 (en) Resin adhesive for semiconductor device assembly
JP3894097B2 (en) Semiconductor device
US7071577B2 (en) Semiconductor device and resin binder for assembling semiconductor device
JP5018675B2 (en) Semiconductor device
JP3733950B2 (en) Assembling method of semiconductor device
JP2006237635A (en) Method of assembling semiconductor device
JP3870827B2 (en) Implementation method
JP3649129B2 (en) Semiconductor device manufacturing method and semiconductor device
JP2003309216A (en) Semiconductor device
JP4043720B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP3580240B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3022910B2 (en) Method for manufacturing semiconductor device
JP3580244B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP3858719B2 (en) Reinforcing materials for semiconductor devices
JPH0236556A (en) Pin grid array and mounting of semiconductor element
JP3654199B2 (en) Manufacturing method of semiconductor device
JP2004311603A (en) Method for manufacturing semiconductor device
JP3597459B2 (en) IC chip bonding structure and bonding method
JP3646677B2 (en) Display panel
JP4650351B2 (en) Circuit board and electronic component mounting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees