JP3733602B2 - Battery cooling system - Google Patents

Battery cooling system Download PDF

Info

Publication number
JP3733602B2
JP3733602B2 JP29176094A JP29176094A JP3733602B2 JP 3733602 B2 JP3733602 B2 JP 3733602B2 JP 29176094 A JP29176094 A JP 29176094A JP 29176094 A JP29176094 A JP 29176094A JP 3733602 B2 JP3733602 B2 JP 3733602B2
Authority
JP
Japan
Prior art keywords
battery
temperature
cooling
calculating
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29176094A
Other languages
Japanese (ja)
Other versions
JPH08148190A (en
Inventor
茂 隅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29176094A priority Critical patent/JP3733602B2/en
Publication of JPH08148190A publication Critical patent/JPH08148190A/en
Application granted granted Critical
Publication of JP3733602B2 publication Critical patent/JP3733602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Temperature (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、充放電中のバッテリの温度を冷却装置を用いて制御するバッテリ冷却装置に関する。
【0002】
【従来の技術】
従来のバッテリ冷却装置としては、例えば特開平4−352207号公報等に開示されたものがある。
このものは、バッテリの周囲温度を検出し、この検出温度に基づいて冷却装置を制御してバッテリの温度を制御することにより、充電電流及び充電時間が多くならず、放電電流及び放電終止電圧までの持続時間が少なくならないようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来装置では、バッテリの周囲温度を基にして冷却装置を制御する構成としているために、バッテリの出力が急増するような場合、温度検出の遅れにより冷却装置によるバッテリの冷却が遅れ、バッテリ本体の温度が許容温度を越えてしまう惧れがある。
【0004】
即ち、バッテリの出力が増大してバッテリ温度が上昇する場合、バッテリの熱容量によって、バッテリ内部の温度上昇による熱がバッテリ本体の表面側に伝達されるまでに時間がかかる。このため、バッテリ内部の実際の温度と、バッテリ周囲の検出温度とに差があり、特に、出力が急増する場合にその温度差は大きくなるので、従来のようにバッテリ周囲温度に基づいて冷却装置を制御する構成では、バッテリの冷却が間に合わず、許容温度を越える惧れがある。
【0005】
本発明は、このような従来の問題点に着目してなされたもので、バッテリの内部温度を的確に把握して適切なバッテリの冷却ができるバッテリ冷却装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
このため、請求項1記載の第1の発明によるバッテリ冷却装置では、図1示すように、バッテリの端子電圧を検出する電圧検出手段と、該電圧検出手段で検出したバッテリ開放時の開放端子電圧に基づいてバッテリの残存容量を算出する残存容量算出手段と、バッテリの充放電電流を検出する電流検出手段と、検出電流値に基づいてバッテリの温度上昇率を算出する温度上昇率算出手段と、バッテリを冷却する冷却手段と、算出した残存容量と温度上昇率とに基づいて放電終了時のバッテリ温度を推定する温度推定手段と、該温度推定手段で推定したバッテリ温度に基づいて前記冷却手段の駆動を制御する制御手段とを備えて構成した。
【0007】
また、請求項記載の第の発明では、図に示すように、バッテリの充放電電流を検出する電流検出手段と、検出電流値と予め記憶されたバッテリ内部抵抗値とからバッテリ発熱量を算出する発熱量算出手段と、バッテリを冷却する冷却手段と、バッテリの放熱量を検出する放熱量検出手段と、バッテリの発熱量と放熱量とに基づいてバッテリの温度上昇率を算出する温度上昇率算出手段と、温度上昇率に基づいて前記冷却手段の駆動を制御する制御手段とを備えて構成し、前記放熱量検出手段、具体的には、バッテリが介装された冷却風通路内でバッテリの上流側と下流側にそれぞれ配置される温度センサと、前記冷却風通路の冷却風流量を検出する流量センサと、両温度センサと流量センサからの各検出値に基づいてバッテリの放熱量を演算する演算手段とで構成した
【0008】
【作用】
求項記載の発明の構成において、バッテリの残存容量とその時の温度上昇率とから、放電終了時のバッテリ温度を推定し、この推定値が許容上限温度を越えた場合に、冷却手段によって冷却を行う。
【0009】
これにより、残存容量が少なくて放電終了までの時間が短いような場合に、冷却手段を無駄に駆動したり、冷却能力を増大させたりすることを防止できる。
また、請求項記載の発明の構成において、バッテリの発熱量と放熱量とから温度上昇率を算出し、この温度上昇率に基づいて冷却手段の駆動を制御するので、外気温度等の影響で放熱量が異なる場合でも、適切に冷却手段の冷却能力を設定することができる。
【0010】
【実施例】
以下、本発明の実施例を図面に基づいて説明する。
3は、第1の発明のバッテリ冷却装置の実施例の構成図である。
において、バッテリ1は、モータコントローラ5を介してモータ6に接続する。モータ6は、例えば電気自動車の動力源として使用される。この場合、走行状態の変化によってモータ6の負荷が変動してバッテリ1の給電線に流れる電流量が変化する。電流検出手段としての電流センサ3は、バッテリ1の給電線に流れる電流値を検出する。バッテリ1の端子電圧を検出する電圧検出手段としての電圧センサ7は、モータ6が停止してバッテリ1の電流が停止した時のバッテリ端子電圧(バッテリ開放電圧V 0 )を測定する。冷却ファン制御部4は、例えばマイクロコンピュータ等を内蔵し、電圧センサ7で検出され たバッテリ開放時の端子電圧V 0 に基づいてバッテリの残存容量を算出する残存容量算出機能と、電流センサ3の検出電流値に基づいてバッテリの温度上昇率を算出する温度上昇率算出機能と、算出した残存容量と温度上昇率とに基づいて放電終了時のバッテリ温度を推定する温度推定機能と、推定した放電終了時のバッテリ温度に基づいて冷却ファン2の駆動を制御する制御機能とを備えて構成される。
【0025】
【0029】
に図のフローチャートを参照して動作を説明する。
ステップ31では、電流センサ3及び電圧センサ7から電流値Iとバッテリ開放時の端子電圧V0を読み込む。バッテリ開放時の端子電圧V0は、車両走行前、或いは一時停止中に読み込めばよい。
ステップ32では、残存容量を算出する。具体的には、ステップ31で検出した開放時の端子電圧V0に基づいて、予め記憶させた端子電圧V0と放電深度(DOD)との関係を示す図に示すマップから放電深度を検索し、検索した放電深度から残存容量を算出する。
【0030】
ステップ33では、ステップ31で読み込んだ放電電流値について一定時間当りの平均放電電流値を算出する。
ステップ34では、ステップ33で算出した平均放電電流値IAVEと、予め記憶させたバッテリの内部抵抗値R、及びバッテリの熱容量Cb(J/℃)から下記()式によりバッテリ1の温度上昇率ΔT(℃/sec)を算出する。
【0031】
ΔT=(IAVE2 ×R/Cb ・・・ (
ステップ35では、ステップ32で算出した残存容量とステップ34で算出した温度上昇率とから、図に示すようにバッテリ放電終了時のバッテリ温度TBを推定する。
ステップ36では、推定したバッテリ温度TBとバッテリ1の許容上限温度T0を比較し、TB>T0の時には、ステップ37に進み、冷却ファン2を作動させる。また、冷却ファン2が既に作動している時には、その制御値を変更して冷却風量を増加させる。
【0032】
かかる構成によれば、残存容量が少ないために、放電終了までの時間が短く発熱量が少ない場合には、温度上昇率が高くても冷却ファン2を駆動させなくて済むので、冷却ファン2による消費電力を低減できる。
次に、第の発明の一実施例を説明する。
に本実施例のハード構成を示す。尚、上述の実施例と同一部分には同一符号を付して説明を省略する。
【0033】
において、バッテリ1を、一端側に冷却ファン2を配置した冷却風通路8に介装する。冷却風通路8内のバッテリ1の上流側には、バッテリ1に供給する冷却風の温度を検出する第1温度センサ9を設け、下流側には、バッテリ1を通過した後の冷却風の温度を検出する第2温度センサ10を設ける。また、バッテリ1の下流側に、冷却風流量を検出する流量センサ11を配置する。そして、これら各センサ9〜11の出力信号は、電流センサ3の出力信号と共に冷却ファン制御部4に入力される。
【0034】
冷却ファン制御部4は、電流センサ3の検出値と予め記憶されたバッテリ内部抵抗値とからバッテリ発熱量を算出する発熱量算出機能と、第1及び第2温度センサ9,10及び流量センサ11からの信号に基づいてバッテリ1の放熱量を検出する放熱量検出機能と、バッテリ1の発熱量と放熱量とに基づいてバッテリ1の温度上昇率を算出する温度上昇率算出機能と、温度上昇率に基づいて冷却ファン2の駆動を制御する制御機能を備えて構成される。
【0035】
次に図のフローチャートを参照して動作を説明する。
ステップ41では、電流センサ3、両温度センサ9,10及び流量センサ11からの信号を読み込む。
ステップ42では、読み込んだ電流値Iと、予め記憶してあるバッテリ1の内部抵抗値Rとからバッテリ1の発熱量Q1(=I2 ×R)を算出する。
【0036】
ステップ43では、第1温度センサ9で検出されるバッテリ1上流側の冷却風温度T1と、第2温度センサ10で検出されるバッテリ1通過後の冷却風温度T2と、流量センサ11で検出される冷却風量m(Kg/s)とを用いて下記の()式により、バッテリ1の放熱量Q2を算出する。
Q2 =m×Cp×(T2 −T1 ) ・・・ (
ここで、Cp(J/Kg/℃)は空気の比熱である。
【0037】
ステップ44では、ステップ42,43で求めた発熱量Q1 と放熱量Q2 と予め記憶したバッテリ1の熱容量Cbとから下記の()式により温度上昇率ΔTを算出する。
ΔT=(Q1 −Q2 )/Cb ・・・ (
ステップ45では、ステップ44で算出した温度上昇率ΔTに応じた制御値を出力して冷却ファン2を駆動制御する。
【0038】
かかる構成によれば、バッテリ1の発熱量が同一でも、外気温度によって放熱量が異なり温度上昇率が異なるが、この外気温度による温度上昇率の違いを考慮してバッテリ1の温度上昇を正確に検出することができるので、冷却ファン2によるバッテリ1の冷却を適切に行うことができる。その結果、冷却ファン2による電力消費を低減することができる。
【0039】
【発明の効果】
以上説明したように請求項1記載の発明によれば、残存容量が少ないために、放電終了までの時間が短く発熱量が少ない場合等に、無駄な冷却ファンの駆動を防止できるので、冷却ファンによる消費電力を低減できる。
また、請求項記載の発明によれば、外気温度の影響を考慮して冷却ファンの駆動を制御できるので、バッテリの冷却を適切にでき、その結果、冷却ファンによる電力消費を低減することができる。
【図面の簡単な説明】
【図1】第1の発明の構成を説明するブロック図
【図2】第2の発明の構成を説明するブロック図
【図3】第1の発明の実施例の構成図
【図4】の発明の一実施例の動作を説明するフローチャート
【図5】同上実施例の開放端子電圧と放電深度との関係を示す図
【図6】同上実施例の残存容量とバッテリ温度の関係を示す図
【図7】の発明の一実施例の構成図
【図8】同上実施例の動作を説明するフローチャート
【符号の説明】
1 バッテリ
2 冷却ファン
3 電流センサ
4 冷却ファン制御部
7 電圧センサ
8 冷却風通路
9,10 温度センサ
11 流量センサ
[0001]
[Industrial application fields]
The present invention relates to a battery cooling device that controls the temperature of a battery being charged / discharged by using a cooling device.
[0002]
[Prior art]
As a conventional battery cooling device, for example, there is one disclosed in JP-A-4-352207.
By detecting the ambient temperature of the battery and controlling the temperature of the battery by controlling the cooling device based on the detected temperature, the charging current and the charging time are not increased, and the discharge current and the discharge end voltage are reduced. The duration of the is not reduced.
[0003]
[Problems to be solved by the invention]
However, since the above-mentioned conventional device is configured to control the cooling device based on the ambient temperature of the battery, when the output of the battery increases rapidly, the cooling of the battery by the cooling device is delayed due to the delay in temperature detection, The temperature of the battery body may exceed the allowable temperature.
[0004]
That is, when the battery output increases and the battery temperature rises, it takes time until the heat due to the temperature rise inside the battery is transferred to the surface side of the battery body due to the heat capacity of the battery. For this reason, there is a difference between the actual temperature inside the battery and the detected temperature around the battery, and particularly when the output increases rapidly, the temperature difference becomes large. In the configuration for controlling the battery, the battery cannot be cooled in time, and the allowable temperature may be exceeded.
[0005]
The present invention has been made paying attention to such conventional problems, and an object of the present invention is to provide a battery cooling device capable of accurately grasping the internal temperature of the battery and appropriately cooling the battery.
[0006]
[Means for Solving the Problems]
Therefore, in the battery cooling device according to the first invention of the first aspect, as shown in FIG. 1, a voltage detecting means for detecting the terminal voltage of the battery-open at the time of battery open detected by said voltage detecting means Remaining capacity calculation means for calculating the remaining capacity of the battery based on the terminal voltage, current detection means for detecting the charge / discharge current of the battery, and temperature increase rate calculation means for calculating the temperature increase rate of the battery based on the detected current value Cooling means for cooling the battery, temperature estimating means for estimating the battery temperature at the end of discharging based on the calculated remaining capacity and temperature increase rate, and the cooling based on the battery temperature estimated by the temperature estimating means And a control means for controlling the drive of the means.
[0007]
In the second invention of claim 2, wherein, as shown in FIG. 2, a current detecting means for detecting the charge and discharge current of the battery, the detection current value and battery heating value and a previously stored battery internal resistance The heat generation amount calculating means for calculating the battery, the cooling means for cooling the battery, the heat dissipation amount detecting means for detecting the heat dissipation amount of the battery, and the temperature for calculating the rate of temperature rise of the battery based on the heat generation amount and the heat dissipation amount of the battery and increase rate calculating unit, based on the temperature increase rate constitutes a control means for controlling driving of the cooling means, the pre-Symbol radiation amount detection unit, specifically, cooling air battery is interposed A temperature sensor disposed on each of the upstream side and the downstream side of the battery in the passage, a flow rate sensor for detecting the cooling air flow rate in the cooling air passage, Heat dissipation It is constituted by a calculating means for calculating a.
[0008]
[Action]
In the configuration of the invention Motomeko 1, wherein the remaining capacity of the battery and the temperature rise rate at that time, the battery temperature at the end of discharge was estimated, when the estimated value exceeds the allowable upper limit temperature, the cooling means Cool down.
[0009]
Thereby, when the remaining capacity is small and the time until the end of the discharge is short, it is possible to prevent the cooling means from being driven wastefully and increasing the cooling capacity.
Further, in the configuration of the invention according to claim 2 , the temperature increase rate is calculated from the heat generation amount and the heat dissipation amount of the battery, and the driving of the cooling means is controlled based on the temperature increase rate. Even when the amount of heat radiation is different, the cooling capacity of the cooling means can be set appropriately.
[0010]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3 is a block diagram of an embodiment of the battery cooling device of the first invention.
In FIG. 3 , the battery 1 is connected to the motor 6 via the motor controller 5. The motor 6 is used as a power source of an electric vehicle, for example. In this case, the load of the motor 6 fluctuates due to a change in the running state, and the amount of current flowing through the power supply line of the battery 1 changes. A current sensor 3 as current detection means detects a current value flowing through the power supply line of the battery 1. A voltage sensor 7 as a voltage detecting means for detecting a terminal voltage of the battery 1 measures a battery terminal voltage (battery open voltage V 0 ) when the motor 6 stops and the current of the battery 1 stops . The cooling fan control unit 4 includes, for example, a microcomputer and the remaining capacity calculation function for calculating the remaining capacity of the battery based on the terminal voltage V 0 when the battery is opened detected by the voltage sensor 7, and the current sensor 3. A temperature increase rate calculation function for calculating the battery temperature increase rate based on the detected current value, a temperature estimation function for estimating the battery temperature at the end of discharge based on the calculated remaining capacity and the temperature increase rate, and the estimated discharge And a control function for controlling the driving of the cooling fan 2 based on the battery temperature at the end.
[0025]
[0029]
With reference to the flowchart of FIG. 4 in the following operation will be described.
In step 31, the current value I and the terminal voltage V0 when the battery is released are read from the current sensor 3 and the voltage sensor 7. The terminal voltage V0 when the battery is released may be read before the vehicle travels or during a temporary stop.
In step 32, the remaining capacity is calculated. Specifically, the discharge depth is retrieved from the map shown in FIG. 5 showing the relationship between the terminal voltage V0 stored in advance and the depth of discharge (DOD) based on the terminal voltage V0 at the time of opening detected in step 31. The remaining capacity is calculated from the searched discharge depth.
[0030]
In step 33, an average discharge current value per fixed time is calculated for the discharge current value read in step 31.
In step 34, the temperature of the battery 1 is increased from the average discharge current value I AVE calculated in step 33, the internal resistance value R of the battery stored in advance, and the heat capacity Cb (J / ° C.) of the battery according to the following equation ( 1 ). The rate ΔT (° C./sec) is calculated.
[0031]
ΔT = (I AVE ) 2 × R / Cb ( 1 )
In step 35, from the calculated temperature rise rate charge and the step 34 calculated in step 32, it estimates the battery temperature T B at the battery discharge ends as shown in FIG.
In step 36, the estimated battery temperature T B is compared with the allowable upper limit temperature T 0 of the battery 1, and when T B > T 0 , the process proceeds to step 37 and the cooling fan 2 is operated. When the cooling fan 2 is already operating, the control value is changed to increase the cooling air volume.
[0032]
According to this configuration, since the remaining capacity is small, when the time until the end of discharge is short and the amount of heat generated is small, the cooling fan 2 does not have to be driven even if the temperature rise rate is high. Power consumption can be reduced.
Next, an embodiment of the second invention will be described.
FIG. 7 shows a hardware configuration of this embodiment. Note that the actual施例the same portions of the above description thereof will be given the same reference numerals.
[0033]
In FIG. 7 , the battery 1 is interposed in a cooling air passage 8 in which a cooling fan 2 is disposed on one end side. A first temperature sensor 9 for detecting the temperature of the cooling air supplied to the battery 1 is provided on the upstream side of the battery 1 in the cooling air passage 8, and the temperature of the cooling air after passing through the battery 1 is provided on the downstream side. A second temperature sensor 10 for detecting the above is provided. Further, a flow rate sensor 11 for detecting the cooling air flow rate is disposed downstream of the battery 1. The output signals of these sensors 9 to 11 are input to the cooling fan controller 4 together with the output signal of the current sensor 3.
[0034]
The cooling fan control unit 4 includes a calorific value calculation function for calculating the battery calorific value from the detected value of the current sensor 3 and the battery internal resistance value stored in advance, the first and second temperature sensors 9 and 10, and the flow sensor 11. A heat release amount detection function for detecting the heat release amount of the battery 1 based on a signal from the battery, a temperature increase rate calculation function for calculating a temperature rise rate of the battery 1 based on the heat release amount and the heat release amount of the battery 1, and a temperature rise A control function for controlling the driving of the cooling fan 2 based on the rate is provided.
[0035]
Next, the operation will be described with reference to the flowchart of FIG.
In step 41, signals from the current sensor 3, the two temperature sensors 9, 10 and the flow sensor 11 are read.
In step 42, the calorific value Q1 (= I 2 × R) of the battery 1 is calculated from the read current value I and the internal resistance value R of the battery 1 stored in advance.
[0036]
In step 43, the cooling air temperature T1 on the upstream side of the battery 1 detected by the first temperature sensor 9, the cooling air temperature T2 after passing through the battery 1 detected by the second temperature sensor 10, and the flow sensor 11 detect. The heat radiation amount Q2 of the battery 1 is calculated by the following equation ( 2 ) using the cooling air amount m (Kg / s).
Q2 = m.times.Cp.times. (T2-T1) ( 2 )
Here, Cp (J / Kg / ° C.) is the specific heat of air.
[0037]
In step 44, the temperature increase rate ΔT is calculated by the following equation ( 3 ) from the heat generation amount Q1, the heat dissipation amount Q2 obtained in steps 42 and 43, and the heat capacity Cb of the battery 1 stored in advance.
ΔT = (Q1−Q2) / Cb ( 3 )
In step 45, the cooling fan 2 is driven and controlled by outputting a control value corresponding to the temperature increase rate ΔT calculated in step 44.
[0038]
According to such a configuration, even if the heat generation amount of the battery 1 is the same, the amount of heat release differs depending on the outside air temperature, and the temperature increase rate differs. Since it can detect, the cooling of the battery 1 by the cooling fan 2 can be performed appropriately . As a result, it is possible to reduce the power consumption by the cooling fan 2.
[0039]
【The invention's effect】
According to the invention of claim 1, wherein As described above, in order residual presence capacity is small, such as when a small amount of heat generated short time until the discharge end, it is possible to prevent the driving of useless cooling fan, cooling Power consumption by the rejection fan can be reduced.
According to the second aspect of the present invention, since the driving of the cooling fan can be controlled in consideration of the influence of the outside air temperature, the battery can be appropriately cooled, and as a result, the power consumption by the cooling fan can be reduced. it can.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration of a first invention. FIG. 2 is a block diagram illustrating a configuration of a second invention.
FIG. 3 is a block diagram of an embodiment of the first invention.
Figure 4 is a flowchart for explaining the operation of the first embodiment of the invention
FIG. 5 is a graph showing the relationship between the open terminal voltage and the depth of discharge in the same example as above.
FIG. 6 is a graph showing the relationship between the remaining capacity and the battery temperature in the above embodiment.
FIG. 7 is a block diagram of an embodiment of the second invention.
FIG. 8 is a flowchart for explaining the operation of the embodiment .
1 Battery 2 Cooling Fan 3 Current Sensor 4 Cooling Fan Controller 7 Voltage Sensor 8 Cooling Air Passage 9 and 10 Temperature Sensor
11 Flow sensor

Claims (2)

バッテリの端子電圧を検出する電圧検出手段と、
該電圧検出手段で検出したバッテリ開放時の開放端子電圧に基づいてバッテリの残存容量を算出する残存容量算出手段と、
バッテリの充放電電流を検出する電流検出手段と、
検出電流値に基づいてバッテリの温度上昇率を算出する温度上昇率算出手段と、
バッテリを冷却する冷却手段と、
算出した残存容量と温度上昇率とに基づいて放電終了時のバッテリ温度を推定する温度推定手段と、
該温度推定手段で推定したバッテリ温度に基づいて前記冷却手段の駆動を制御する制御手段と、
を備えたことを特徴とするバッテリ冷却装置。
Voltage detection means for detecting the terminal voltage of the battery;
A remaining capacity calculating means for calculating a remaining capacity of the battery based on the open terminal voltage when the battery is opened detected by the voltage detecting means;
Current detection means for detecting the charge / discharge current of the battery;
A temperature increase rate calculating means for calculating a temperature increase rate of the battery based on the detected current value;
A cooling means for cooling the battery;
Temperature estimating means for estimating the battery temperature at the end of discharging based on the calculated remaining capacity and the rate of temperature increase;
Control means for controlling the driving of the cooling means based on the battery temperature estimated by the temperature estimating means;
A battery cooling device comprising:
バッテリの充放電電流を検出する電流検出手段と、
検出電流値と予め記憶されたバッテリ内部抵抗値とからバッテリ発熱量を算出する発熱量算出手段と、
バッテリを冷却する冷却手段と、
バッテリの放熱量を検出する放熱量検出手段と、
バッテリの発熱量と放熱量とに基づいてバッテリの温度上昇率を算出する温度上昇率算出手段と、
温度上昇率に基づいて前記冷却手段の駆動を制御する制御手段と、
を備えて構成し
前記放熱量検出手段を、バッテリが介装された冷却風通路内でバッテリの上流側と下流側にそれぞれ配置される各温度センサと、前記冷却風通路の冷却風流量を検出する流量センサと、両温度センサと流量センサからの各検出値に基づいてバッテリの放熱量を演算する演算手段とで構成したことを特徴とするバッテリ冷却装置。
Current detection means for detecting the charge / discharge current of the battery;
A calorific value calculating means for calculating the calorific value of the battery from the detected current value and the battery internal resistance value stored in advance;
A cooling means for cooling the battery;
A heat dissipation amount detecting means for detecting the heat dissipation amount of the battery;
A temperature increase rate calculating means for calculating a temperature increase rate of the battery based on the heat generation amount and the heat dissipation amount of the battery;
Control means for controlling the driving of the cooling means based on the rate of temperature rise;
And configured to include a,
Each of the temperature sensors arranged on the upstream side and the downstream side of the battery in the cooling air passage in which the battery is interposed, and a flow rate sensor for detecting the cooling air flow rate in the cooling air passage, A battery cooling device comprising: a temperature calculating unit that calculates a heat radiation amount of a battery based on detection values from both temperature sensors and a flow rate sensor .
JP29176094A 1994-11-25 1994-11-25 Battery cooling system Expired - Fee Related JP3733602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29176094A JP3733602B2 (en) 1994-11-25 1994-11-25 Battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29176094A JP3733602B2 (en) 1994-11-25 1994-11-25 Battery cooling system

Publications (2)

Publication Number Publication Date
JPH08148190A JPH08148190A (en) 1996-06-07
JP3733602B2 true JP3733602B2 (en) 2006-01-11

Family

ID=17773069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29176094A Expired - Fee Related JP3733602B2 (en) 1994-11-25 1994-11-25 Battery cooling system

Country Status (1)

Country Link
JP (1) JP3733602B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952920A4 (en) * 2013-01-30 2016-09-21 Mitsubishi Electric Corp Battery monitoring device, power storage system, and control system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848780B2 (en) * 2006-01-27 2011-12-28 トヨタ自動車株式会社 Control device for cooling fan
JP5026823B2 (en) * 2006-06-22 2012-09-19 プライムアースEvエナジー株式会社 Battery cooling system
DE102010063376A1 (en) * 2010-12-17 2012-06-21 Bayerische Motoren Werke Aktiengesellschaft Temperature control method for an electrochemical energy store in a vehicle
KR101252210B1 (en) * 2011-08-10 2013-04-05 기아자동차주식회사 Cooling control method of high voltage battery system in electric vehicle
JP5818669B2 (en) * 2011-12-19 2015-11-18 三菱電機株式会社 Power transmission / reception device, power transmission / reception system, and power transmission / reception method
WO2013185994A1 (en) 2012-06-11 2013-12-19 Siemens Aktiengesellschaft Temperature control system for a high-temperature battery or a high-temperature electrolyzer
JP6163879B2 (en) * 2013-05-29 2017-07-19 日産自動車株式会社 Battery temperature estimation device and battery temperature estimation method
WO2015153770A1 (en) * 2014-04-01 2015-10-08 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
WO2016136507A1 (en) * 2015-02-23 2016-09-01 日本碍子株式会社 Storage battery control device
US10128544B2 (en) * 2015-09-02 2018-11-13 General Electric Company Cooling for battery units in energy storage system
JP6806602B2 (en) * 2017-03-17 2021-01-06 株式会社東芝 Temperature control device
CN109599626B (en) 2017-09-30 2021-01-19 比亚迪股份有限公司 Temperature adjusting method and temperature adjusting system for vehicle
CN109599632B (en) 2017-09-30 2020-11-20 比亚迪股份有限公司 Temperature adjusting method and temperature adjusting system for vehicle-mounted battery
CN109599630B (en) * 2017-09-30 2021-02-23 比亚迪股份有限公司 Temperature regulation system for vehicle-mounted battery
WO2021191987A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Power management device and power storage system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952920A4 (en) * 2013-01-30 2016-09-21 Mitsubishi Electric Corp Battery monitoring device, power storage system, and control system
US9910099B2 (en) 2013-01-30 2018-03-06 Mitsubishi Electric Corporation Battery monitoring device, power storage system, and control system

Also Published As

Publication number Publication date
JPH08148190A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
JP3733602B2 (en) Battery cooling system
US7492129B2 (en) Temperature abnormality detecting apparatus and method for secondary battery
JP5314235B2 (en) Secondary battery temperature control device, secondary battery heating system, and program
JP3644241B2 (en) Charge control device for battery pack and control method thereof
JP5378023B2 (en) Power supply device for vehicle and cooling method thereof
JP3687212B2 (en) Battery cooling system
US20070212598A1 (en) Apparatus for controlling temperature of secondary battery, vehicle battery pack, and computer-readable medium storing program for controlling temperature of secondary battery
JP2000040536A (en) Battery warming up device
JP2001313092A (en) Cooling device for secondary battery
JP3733629B2 (en) Secondary battery temperature control device
JP2004023803A (en) Voltage controller for battery pack
JP2001314046A (en) Charging apparatus and method of battery pack and electric vehicle
JP3491528B2 (en) Electric vehicle charging device
EP1052757A2 (en) Charge control apparatus for a battery pack
JP3505826B2 (en) Regenerative braking device for electric vehicles
JP2006115640A (en) Adjusting device for capacity of battery pack
JPH1175327A (en) Charging of battery unit and device therefor
JPH0992347A (en) Battery cooling device
JP3972789B2 (en) Charge amount adjustment device for battery pack
JP2004281077A (en) Cooling control device of battery pack
JP2005253154A (en) Power supply unit
JP2006020372A (en) Controller for battery vehicle
JP2002058169A (en) Power supply system for motor vehicle
JPH08186901A (en) Ventilating fan controller
JP4259411B2 (en) DC-DC converter

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees