KR101252210B1 - Cooling control method of high voltage battery system in electric vehicle - Google Patents

Cooling control method of high voltage battery system in electric vehicle Download PDF

Info

Publication number
KR101252210B1
KR101252210B1 KR1020110079632A KR20110079632A KR101252210B1 KR 101252210 B1 KR101252210 B1 KR 101252210B1 KR 1020110079632 A KR1020110079632 A KR 1020110079632A KR 20110079632 A KR20110079632 A KR 20110079632A KR 101252210 B1 KR101252210 B1 KR 101252210B1
Authority
KR
South Korea
Prior art keywords
battery system
total
battery
cooling
cooling fan
Prior art date
Application number
KR1020110079632A
Other languages
Korean (ko)
Other versions
KR20130017286A (en
Inventor
김달
Original Assignee
기아자동차주식회사
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기아자동차주식회사, 현대자동차주식회사 filed Critical 기아자동차주식회사
Priority to KR1020110079632A priority Critical patent/KR101252210B1/en
Publication of KR20130017286A publication Critical patent/KR20130017286A/en
Application granted granted Critical
Publication of KR101252210B1 publication Critical patent/KR101252210B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 전기 자동차용 고전압 배터리시스템의 냉각제어방법에 관한 것으로, 2개 이상 배터리시스템(10,20..)을 구비한 전기 자동차에서 각 배터리(11,21..)에서 발생하는 발열량(W1,W2...Wn)을 이용해 각 배터리시스템(10,20..)에 구비된 각각의 냉각팬(12,22..)의 가동률(D1,D2...Dn)을 결정하고, 결정된 가동률에 근거해서 각 냉각팬(12,22..)을 구동함으로써, 에너지의 낭비 없이 전기 자동차에 구비된 각 배터리(11,21..)를 효율적으로 냉각시킬 수 있게 되고, 더 나아가 상대적으로 온도가 높은 배터리시스템에 구비된 배터리만을 추가로 더 냉각시킬 수 있게 됨으로써 보다 효율적으로 배터리를 냉각시킬 수 있도록 된 것이다.The present invention relates to a cooling control method of a high-voltage battery system for an electric vehicle, the heat generation (W) generated in each battery (11, 21 ..) in an electric vehicle having two or more battery systems (10, 20 ..) 1, the utilization rate (D 1, D 2 ... D n) of each of the cooling fan (12,22 ...) provided in each of the battery system (10, 20 ...) by pressing the W 2 ... W n) By driving the respective cooling fans 12, 22 .. based on the determined operation rate, it is possible to efficiently cool each battery (11, 21 ..) provided in the electric vehicle without wasting energy, Furthermore, only the battery provided in the battery system having a relatively high temperature can be further cooled, thereby cooling the battery more efficiently.

Description

전기 자동차용 고전압 배터리시스템의 냉각제어방법{COOLING CONTROL METHOD OF HIGH VOLTAGE BATTERY SYSTEM IN ELECTRIC VEHICLE}Cooling control method of high voltage battery system for electric vehicle {COOLING CONTROL METHOD OF HIGH VOLTAGE BATTERY SYSTEM IN ELECTRIC VEHICLE}

본 발명은 2개 이상의 배터리시스템이 구비된 전기 자동차에서 외기를 이용해 각 배터리시스템을 효율적으로 냉각시킬 수 있도록 된 전기 자동차용 고전압 배터리시스템의 냉각제어방법에 관한 기술이다.
The present invention relates to a cooling control method of a high voltage battery system for an electric vehicle, which is capable of efficiently cooling each battery system using outside air in an electric vehicle having two or more battery systems.

일반적으로, 전기 자동차는 고전압 배터리에서 발생되는 전기에너지를 이용해서 구동하는 차량으로, 전기 자동차는 친환경이라는 장점이 있지만 주행거리가 짧은 단점이 있다.In general, an electric vehicle is a vehicle driven by using electric energy generated from a high voltage battery. However, an electric vehicle has an advantage of being environmentally friendly, but has a short driving distance.

이를 보완하기 위하여 보다 많은 고전압 배터리를 탑재시키기 위한 노력이 진행되고 있으며, 일례로 도 1에 도시된 바와 같이 차량의 터널부와 2열 시트의 하부에 장착된 제1배터리시스템(10) 및 트렁크룸에 장착된 제2배터리시스템(20)이 있다.In order to compensate for this, efforts are being made to mount more high voltage batteries. For example, as shown in FIG. 1, the first battery system 10 and the trunk room mounted at the lower part of the tunnel part and the second row seat of the vehicle There is a second battery system 20 mounted on it.

상기 제1배터리시스템(10)과 제2배터리시스템(20)은 도 2와 같이 1개의 배터리 관리 시스템(30; Battery Management System, 이하 BMS라 한다)에 의해 제어를 받는 구성이고, 또한 상기 제1배터리시스템(10)과 제2배터리시스템(20)은 각각 제1배터리(11)와 제1냉각팬(12) 및 제2배터리(21)와 제2냉각팬(22)을 구비한 구성으로 되어 있다.The first battery system 10 and the second battery system 20 are configured to be controlled by one battery management system 30 (hereinafter referred to as BMS) as shown in FIG. The battery system 10 and the second battery system 20 are configured to include a first battery 11, a first cooling fan 12, a second battery 21, and a second cooling fan 22, respectively. have.

상기 제1,2냉각팬(12,22)은 BMS(30)의 제어에 의해 제1,2배터리(11,21)를 냉각시키기 위해 구동하는 것으로, 상기 BMS(30)는 제1,2배터리(11,21)의 온도를 각각 측정하고 측정된 온도에 해당하는 단수별로 제1,2냉각팬(12,22)을 구동해서 상기 제1,2배터리(11,21)를 냉각시키게 된다.The first and second cooling fans 12 and 22 are driven to cool the first and second batteries 11 and 21 by the control of the BMS 30, and the BMS 30 is the first and second batteries. The first and second batteries 11 and 21 are cooled by measuring the temperatures of 11 and 21, respectively, and driving the first and second cooling fans 12 and 22 for each stage corresponding to the measured temperature.

그런데, 상기와 같이 배터리의 온도를 측정해서 냉각팬의 풍량을 결정하는 종래의 방식은 냉각팬의 구동단수가 배터리의 온도범위에 따라 결정(일예로 배터리의 온도가 A℃∼B℃의 범위내에 포함되면 냉각팬이 1단으로 구동되는 구성)되는 방식으로 배터리시스템이 2개 이상일 경우 정확한 풍량을 판단하기가 어려운 단점이 있고, 또한 배터리가 적정온도에 있을 때에도 냉각팬은 항상 낮은 단수로 가동하기 때문에 낭비되는 에너지가 많아서 에너지 효율이 좋지 않은 단점이 있었다.However, the conventional method of determining the air flow rate of the cooling fan by measuring the temperature of the battery as described above, the number of driving stages of the cooling fan is determined according to the temperature range of the battery (for example, the temperature of the battery within the range of A ℃ ~ B ℃ It is difficult to determine the correct air volume when there are two or more battery systems in such a way that the cooling fan is driven in one stage if included. There was a disadvantage that the energy efficiency is not good because a lot of wasted energy.

상기의 배경기술로서 설명된 사항들은 본 발명의 배경에 대한 이해 증진을 위한 것일 뿐, 이 기술분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술에 해당함을 인정하는 것으로 받아들여져서는 안 될 것이다.
It should be understood that the foregoing description of the background art is merely for the purpose of promoting an understanding of the background of the present invention and is not to be construed as an admission that the prior art is known to those skilled in the art.

본 발명은, 2개 이상 배터리시스템이 구비된 상황에서 각 배터리시스템의 발열량을 추정하고, 추정된 발열량을 이용해서 각 배터리시스템의 냉각팬 가동률을 결정하고, 결정된 각 냉각팬의 가동률에 근거해서 각 배터리시스템의 냉각팬을 구동시켜서 배터리시스템을 냉각시킬 수 있도록 된 전기 자동차용 고전압 배터리시스템의 냉각제어방법을 제공함에 그 목적이 있다.The present invention estimates the calorific value of each battery system in a situation where two or more battery systems are provided, determines the cooling fan operation rate of each battery system using the estimated calorific value, and based on the determined operation rate of each cooling fan. It is an object of the present invention to provide a cooling control method of a high voltage battery system for an electric vehicle that is capable of cooling the battery system by driving a cooling fan of the battery system.

또한, 본 발명은 2개 이상 배터리시스템이 구비된 상황에서 각 배터리시스템간 온도편차가 혀용범위 이상일 경우, 상대적으로 온도가 높은 배터리시스템의 냉각팬 가동률을 추가로 증가시킬 수 있도록 된 전기 자동차용 고전압 배터리시스템의 냉각제어방법을 제공함에 다른 목적이 있다.
In addition, the present invention is a high voltage for an electric vehicle that can further increase the cooling fan operating rate of the battery system with a relatively high temperature when the temperature deviation between each battery system is greater than the tongue range in the situation where two or more battery systems are provided. Another object is to provide a cooling control method of a battery system.

상기와 같은 목적을 달성하기 위한 본 발명은, 배터리와 냉각팬으로 이루어진 배터리시스템이 2개 이상 구비되고, 각각의 냉각팬은 BMS의 제어에 의해 구동되면서 각각의 배터리를 공랭식으로 냉각시키도록 된 전기 자동차용 고전압 배터리시스템의 냉각제어방법에 있어서, 상기 각각의 배터리의 발열량(W1,W2...Wn)을 계산하는 단계; 상기 계산된 발열량을 이용해서 각각의 냉각팬의 풍량(Q1,Q2...Qn)을 결정하는 단계; 상기 결정된 냉각팬의 풍량에 근거해서 각각의 냉각팬의 가동률(D1,D2...Dn)을 결정하는 단계; 및 상기 결정된 냉각팬의 가동률에 따라 상기 각각의 배터리시스템에 구비된 상기 각각의 냉각팬을 구동하는 단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention is provided with two or more battery systems consisting of a battery and a cooling fan, each cooling fan is driven by the control of the BMS electricity to cool each battery in an air-cooled manner A cooling control method for a high voltage battery system for an automobile, comprising: calculating heat values (W 1 , W 2 ... W n ) of the respective batteries; Determining the air flow rate (Q 1 , Q 2 ... Q n ) of each cooling fan by using the calculated calorific value; Determining an operation rate (D 1 , D 2 ... D n ) of each cooling fan based on the determined air volume of the cooling fan; And driving each of the cooling fans provided in the respective battery system according to the determined operation rate of the cooling fan.

또한, 본 발명은 상기 각각의 냉각팬의 풍량(Q1,Q2...Qn)이 결정되고 나면 배터리시스템간 온도편차(ΔT)가 적정 범위내에 존재하는지를 판단하는 단계; 및 상기 배터리시스템간 온도편차가 적정 범위내에 존재하지 않으면 상대적으로 온도가 높은 배터리시스템의 냉각팬 가동률을 추가로 증가시키는 단계;를 더 포함하는 것을 특징으로 한다.In addition, the present invention comprises the steps of determining whether the temperature deviation (ΔT) between the battery system is within an appropriate range after the air flow rate (Q 1 , Q 2 ... Q n ) of each cooling fan is determined; And further increasing the cooling fan operation rate of the battery system having a relatively high temperature if the temperature deviation between the battery systems does not exist within an appropriate range.

상기 각 배터리시스템마다 구비된 냉각팬은 서로 동일한 사양인 것이 바람직하다.Preferably, the cooling fans provided for each battery system have the same specifications.

상기 냉각팬의 가동률(D1,D2...Dn)은 각 배터리시스템의 내부구조에 따라 달라지는데, 상기 냉각팬의 가동률(D1,D2...Dn)은 상기 배터리시스템의 내부구조가 복잡해질수록 증가하는 것을 특징으로 한다.The operating rate (D 1 , D 2 ... D n ) of the cooling fan depends on the internal structure of each battery system, and the operating rate (D 1 , D 2 ... D n ) of the cooling fan is It is characterized by increasing as the internal structure becomes complicated.

상기 각각의 배터리의 발열량(W1,W2...Wn)은 아래의 식에 의해 구해지는 것을 특징으로 하는 바,The calorific value of each battery (W 1 , W 2 ... W n ) is characterized by the following formula bar,

Wtotal = W1+W2...Wn W total = W 1 + W 2 ... W n

Ntotal = N1+N2...Nn N total = N 1 + N 2 ... N n

W1 = Wtotal×(N1/Ntotal) = I2×R×(N1/Ntotal)W 1 = W total × (N 1 / N total ) = I 2 × R × (N 1 / N total )

W2 = Wtotal×(N2/Ntotal) = I2×R×(N2/Ntotal)..W 2 = W total × (N 2 / N total ) = I 2 × R × (N 2 / N total ).

Wn = Wtotal×(Nn/Ntotal) = I2×R×(Nn/Ntotal)W n = W total × (N n / N total ) = I 2 × R × (N n / N total )

여기서, W는 발열량, N은 배터리 셀의 개수, I는 단위시간당 사용된 전류값이고, R은 전체 배터리시스템의 저항값으로, Wtotal은 전체 배터리시스템의 토탈 발열량, W1은 제1배터리시스템의 발열량, W2는 제2배터리시스템의 발열량이고, Ntotal은 전체 배터리시스템에 구비된 배터리 셀의 총 개수, N1은 제1배터리시스템에 구비된 제1배터리 셀의 개수, N2는 제2배터리시스템에 구비된 제2배터리 셀의 개수이다.Where W is the amount of heat generated, N is the number of battery cells, I is the current value used per unit time, R is the resistance value of the entire battery system, W total is the total calorific value of the entire battery system, and W 1 is the first battery system. The calorific value of W 2 is the calorific value of the second battery system, N total is the total number of battery cells provided in the entire battery system, N 1 is the number of first battery cells provided in the first battery system, and N 2 is 2 The number of second battery cells included in the battery system.

본 발명에 의한 전기 자동차용 고전압 배터리시스템의 냉각제어방법은, 2개 이상 배터리시스템을 구비한 전기 자동차에서 각 배터리에서 발생하는 발열량을 이용해 각 배터리시스템에 구비된 각각의 냉각팬의 가동률을 결정하고, 결정된 가동률에 근거해서 각 냉각팬을 구동함으로써, 에너지의 낭비 없이 전기 자동차에 구비된 각 배터리를 효율적으로 냉각시킬 수 있게 되고, 더 나아가 상대적으로 온도가 높은 배터리시스템에 구비된 배터리만을 추가로 더 냉각시킬 수 있게 됨으로써 보다 효율적으로 배터리를 냉각시킬 수 있는 효과가 있다.
In the cooling control method of the high-voltage battery system for an electric vehicle according to the present invention, in the electric vehicle having two or more battery systems, the operation rate of each cooling fan provided in each battery system is determined using the amount of heat generated from each battery. By driving each cooling fan based on the determined operation rate, it is possible to efficiently cool each battery installed in the electric vehicle without wasting energy, and furthermore, only the battery provided in the relatively high temperature battery system is further added. Being able to cool has the effect of cooling the battery more efficiently.

도 1은 2개의 배터리시스템이 구비된 차량의 도면,
도 2는 2개 배터리시스템의 공랭식 냉각시스템 구성도,
도 3은 본 발명에 따른 전기 자동차용 고전압 배터리시스템의 냉각제어방법을 설명하기 위한 순서도,
도 4는 배터리 사용량과 발열량과의 관계를 도시한 그래프,
도 5는 주행시 배터리 사용량에 대한 그래프,
도 6은 발열량과 필요 냉각 풍량과의 관계를 보여주기 위한 그래프,
도 7은 풍량과 압력 및 냉각팬 가동률과의 관계를 보여주기 위한 그래프이다.
1 is a view of a vehicle equipped with two battery systems,
2 is a configuration diagram of an air-cooled cooling system of two battery systems;
3 is a flowchart illustrating a cooling control method of an electric vehicle high voltage battery system according to the present invention;
4 is a graph showing the relationship between battery usage and heat generation;
5 is a graph of battery usage while driving;
6 is a graph showing the relationship between the calorific value and the required cooling air flow rate;
7 is a graph for showing the relationship between the air volume, pressure and cooling fan operation rate.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예에 따른 전기 자동차용 고전압 배터리시스템의 냉각제어방법에 대해 살펴본다.Hereinafter, a cooling control method of a high voltage battery system for an electric vehicle according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings.

전기 자동차는 고전압 배터리에서 발생되는 전기에너지를 이용해서 구동하는 차량으로, 고용량 및 고사양 만족과 충분한 주행거리 확보 등을 위해 2개 이상의 배터리시스템이 장착된 차량이 증가하고 있다.Electric vehicles are driven using electric energy generated from high voltage batteries, and more and more vehicles equipped with two or more battery systems are being installed to satisfy high capacity, high specification, and sufficient mileage.

배터리시스템은 고온의 열을 발산하기 때문에 이를 적절히 냉각시켜 주어야 하는 바, 배터리시스템의 냉각은 주로 비용적인 측면과 공간 확보 등을 고려해서 수냉식보다는 공랭식이 널리 사용되고 있다.Since the battery system emits high temperature heat, it must be properly cooled. The cooling of the battery system is mainly used for air cooling rather than water cooling in consideration of cost and space.

본 발명은 2개 이상 배터리시스템이 구비된 전기 자동차를 대상으로, 각 배터리시스템의 발열량을 추정하고, 추정된 발열량을 이용해서 각 배터리시스템의 냉각팬 가동률을 결정하고, 결정된 각 냉각팬의 가동률에 근거해서 각 배터리시스템의 냉각팬을 구동시켜서 배터리시스템을 냉각시키는 방법이다.The present invention targets an electric vehicle equipped with two or more battery systems, estimates the heat generation amount of each battery system, uses the estimated heat generation to determine the cooling fan operation rate of each battery system, and determines the operation rate of each cooling fan determined. On the basis of this, the cooling system of each battery system is driven to cool the battery system.

즉, 본 발명에 따른 자동차용 고전압 배터리시스템의 냉각제어방법은 도 2 내지 도 3에 도시된 바와 같이 배터리(11,21..)와 냉각팬(21,22..)으로 이루어진 배터리시스템(10,20..)이 2개 이상 구비되고, 각각의 냉각팬(12,22..)은 BMS(30)의 제어에 의해 구동되면서 각각의 배터리(11,21..)를 공랭식으로 냉각시키도록 된 전기 자동차용 고전압 배터리시스템의 냉각제어방법에 있어서, 상기 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)을 계산하는 단계와(S15), 상기 계산된 발열량을 이용해서 각각의 냉각팬(12,22..)의 풍량(Q1,Q2...Qn)을 결정하는 단계(S16)와, 상기 결정된 냉각팬(12,22..)의 풍량에 근거해서 각각의 냉각팬(12,22..)의 가동률(D1,D2...Dn)을 결정하는 단계(S18)와, 상기 결정된 냉각팬(12,22..)의 가동률에 따라 상기 각각의 배터리시스템(10,20..)에 구비된 상기 각각의 냉각팬(12,22..)을 구동하는 단계(S20)를 포함하여 구성된 것을 특징으로 한다.That is, the cooling control method of the high-voltage battery system for automobiles according to the present invention is a battery system 10 consisting of a battery (11, 21 ..) and a cooling fan (21, 22 ..) as shown in Figs. , 20 ..) is provided with two or more, and each cooling fan 12, 22 .. is driven by the control of the BMS 30 to cool each battery (11, 21 ..) by air cooling In the cooling control method of the high-voltage battery system for an electric vehicle, the step of calculating the calorific value (W 1 , W 2 ... W n ) of each of the batteries (11, 21 ..) (S15), the calculation Determining the amount of air (Q 1 , Q 2 ... Q n ) of each cooling fan (12, 22 ..) by using the generated heat amount (S16), and the determined cooling fan (12, 22 ..) Determining the operating ratio (D 1 , D 2 ... D n ) of each cooling fan (12, 22 ..) based on the air volume of the (S18) and the determined cooling fan (12, 22 ..) Each of which is provided in each of the battery systems 10, 20.. It characterized in that it comprises a step (S20) for driving each cooling fan (12,22 ..).

또한, 본 발명은 상기 각각의 냉각팬(12,22..)의 풍량(Q1,Q2...Qn)이 결정되고 나면 배터리시스템(10,20..)간 온도편차(ΔT)가 적정 범위내에 존재하는지를 판단하는 단계(S17)와, 상기 배터리시스템(10,20..)간 온도편차가 적정 범위내에 존재하지 않으면 상대적으로 온도가 높은 배터리시스템의 냉각팬 가동률을 추가로 증가시키는 단계(S19)를 더 포함하는 것을 특징으로 한다.In addition, the present invention is the temperature deviation (ΔT) between the battery system (10, 20 ..) once the air volume (Q 1 , Q 2 ... Q n ) of each of the cooling fans (12, 22 ...) is determined (S17) and if the temperature deviation between the battery system (10,20 ..) does not exist within the appropriate range to further increase the cooling fan operating rate of the battery system with a relatively high temperature It further comprises a step (S19).

여기서, 상기 각 배터리시스템(10,20..)마다 구비된 냉각팬(12,22..)은 서로 동일한 사양의 것을 사용하는 것을 전제조건으로 한다.Here, it is assumed that the cooling fans 12 and 22... Provided for each of the battery systems 10 and 20.

그리고, 상기 냉각팬(12,22..)의 가동률(D1,D2...Dn)은 각 배터리시스템(10,20..)의 내부구조에 따라 달라지는 바, 특히 상기 냉각팬(12,22..)의 가동률(D1,D2...Dn)은 상기 배터리시스템(10,20..)의 내부구조가 복잡해질수록 증가하는 것을 특징으로 한다.In addition, the operation ratios D 1 , D 2 ... D n of the cooling fans 12, 22 .. vary depending on the internal structure of each battery system 10, 20 .. In particular, the cooling fans ( 12, 22 ..) of the operation rate (D 1 , D 2 ... D n ) is characterized in that increases as the internal structure of the battery system (10, 20 ..) becomes more complex.

한편, 상기 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)은 아래의 식에 의해 구해지게 된다.On the other hand, the calorific value (W 1 , W 2 ... W n ) of each of the battery (11, 21 ..) is obtained by the following equation.

Wtotal = W1+W2...Wn W total = W 1 + W 2 ... W n

Ntotal = N1+N2...Nn N total = N 1 + N 2 ... N n

W1 = Wtotal×(N1/Ntotal) = I2×R×(N1/Ntotal)W 1 = W total × (N 1 / N total ) = I 2 × R × (N 1 / N total )

W2 = Wtotal×(N2/Ntotal) = I2×R×(N2/Ntotal)..W 2 = W total × (N 2 / N total ) = I 2 × R × (N 2 / N total ).

Wn = Wtotal×(Nn/Ntotal) = I2×R×(Nn/Ntotal)W n = W total × (N n / N total ) = I 2 × R × (N n / N total )

여기서, W는 발열량, N은 배터리(11,21..) 셀의 개수, I는 단위시간당 사용된 전류값, R은 전체 배터리시스템(10,20..)의 저항값이고, Wtotal은 전체 배터리시스템(10,20..)의 토탈 발열량, W1은 제1배터리시스템(10)의 발열량, W2는 제2배터리시스템(20)의 발열량이며, Ntotal은 전체 배터리시스템(10,20..)에 구비된 배터리(11,21..) 셀의 총 개수, N1은 제1배터리시스템(10)에 구비된 제1배터리(11) 셀의 개수, N2는 제2배터리시스템(20)에 구비된 제2배터리(21) 셀의 개수이다.Here, W is the amount of heat generated, N is the number of cells (11, 21 ..) cells, I is the current value used per unit time, R is the resistance value of the entire battery system (10, 20 ..), W total is the total Total calorific value of the battery system 10, 20 .., W 1 is the calorific value of the first battery system 10, W 2 is the calorific value of the second battery system 20, and N total is the total battery system 10, 20. ..), the total number of cells (11,21 ..) cells provided in the battery, N 1 is the number of cells of the first battery 11 provided in the first battery system 10, N 2 is the second battery system ( The number of cells of the second battery 21 provided in 20).

이하, 본 발명의 작용에 대해 도 2 내지 도 7을 참조로 설명한다.Hereinafter, the operation of the present invention will be described with reference to FIGS.

이그니션스위치가 온(ON) 되면(단계 S11), BMS(30)는 각 배터리시스템(10,20..)에 구비된 각각의 배터리(11,21..) 온도를 측정하게 되고(단계 S12), 측정된 배터리(11,21..)의 최대 온도가 적정온도 범위내에 있는가를 판단하게 된다.(단계 S13)When the ignition switch is turned ON (step S11), the BMS 30 measures the temperature of each battery 11, 21 .. provided in each battery system 10, 20 .. (step S12). Then, it is determined whether the measured maximum temperatures of the batteries 11 and 21 are within an appropriate temperature range (step S13).

여기서, 측정된 배터리(11,21..)의 최대 온도가 적정온도 범위내에 있는 것으로 판단되면 상기 단계 S12로 피드백되고, 적정온도 범위내에 있지 않으면 다음 단계에서 배터리(11,21..) 사용에 따른 전류(I)값 센싱 및 배터리(11,21..)의 저항(R) 값을 체크한 다음, 단위시간 경과후 전류(I)와 저항(R) 값을 실효값(Root-Mean-Square; 이하 RMS로 표기한다)으로 계산하게 된다.(단계 S14)Here, if it is determined that the measured maximum temperature of the battery (11, 21 ..) is within the proper temperature range, it is fed back to the step S12, and if it is not within the proper temperature range to use the battery (11, 21 ..) in the next step. The current (I) value sensing and the resistance (R) values of the batteries (11, 21 ..) and then the current (I) and resistance (R) values after the unit time elapsed (Root-Mean-Square) (Hereinafter referred to as RMS). (Step S14).

그 다음에는, 계산된 전류(I) 및 저항(R) 값을 이용해서 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)을 계산하게 된다.(단계 S15)Then, using the calculated values of current I and resistance R, the calorific values W 1 , W 2 ... W n of the respective batteries 11, 21 .. are calculated. S15)

여기서, 상기 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)은 아래의 식에 의해 구해지게 된다.Here, the calorific values W 1 , W 2 ... W n of the respective batteries 11, 21 .. are obtained by the following equation.

(식1)(Equation 1)

Wtotal = W1+W2...Wn W total = W 1 + W 2 ... W n

Ntotal = N1+N2...Nn N total = N 1 + N 2 ... N n

W1 = Wtotal×(N1/Ntotal) = I2×R×(N1/Ntotal)W 1 = W total × (N 1 / N total ) = I 2 × R × (N 1 / N total )

W2 = Wtotal×(N2/Ntotal) = I2×R×(N2/Ntotal)..W 2 = W total × (N 2 / N total ) = I 2 × R × (N 2 / N total ).

Wn = Wtotal×(Nn/Ntotal) = I2×R×(Nn/Ntotal)W n = W total × (N n / N total ) = I 2 × R × (N n / N total )

여기서, W는 발열량, N은 배터리(11,21..) 셀의 개수, I는 단위시간당 사용된 전류값, R은 전체 배터리시스템(10,20..)의 저항값이고, Wtotal은 전체 배터리시스템(10,20..)의 토탈 발열량, W1은 제1배터리시스템(10)의 발열량, W2는 제2배터리시스템(20)의 발열량이며, Ntotal은 전체 배터리시스템(10,20..)에 구비된 배터리(11,21..) 셀의 총 개수, N1은 제1배터리시스템(10)에 구비된 제1배터리(11) 셀의 개수, N2는 제2배터리시스템(20)에 구비된 제2배터리(21) 셀의 개수이다.Here, W is the amount of heat generated, N is the number of cells (11, 21 ..) cells, I is the current value used per unit time, R is the resistance value of the entire battery system (10, 20 ..), W total is the total Total calorific value of the battery system 10, 20 .., W 1 is the calorific value of the first battery system 10, W 2 is the calorific value of the second battery system 20, and N total is the total battery system 10, 20. ..), the total number of cells (11,21 ..) cells provided in the battery, N 1 is the number of cells of the first battery 11 provided in the first battery system 10, N 2 is the second battery system ( The number of cells of the second battery 21 provided in 20).

즉, 배터리(11,21..)는 많이 사용할수록 발열이 많이되므로 배터리(11,21..)의 발열량(W)은 도 4와 같이 전류(I)의 제곱으로 상승하게 되고, 일반적으로 발열량 W = I2ㅧR과 같은 식으로 표현된다.That is, the more the battery (11, 21 ..) is used, the more heat is generated, so the heat generation amount (W) of the battery (11, 21 ..) is raised to the square of the current (I), as shown in FIG. It is expressed by the formula W = I 2 ㅧ R.

전류(I)는 주행시간에 따라서 다양한 프로파일로 존재할 수 있으며, 배터리(11,21..)의 사용량에 따른 발열량을 추정할 수 있어야 배터리(11,21..)의 냉각에 필요한 풍량을 결정할 수 있는데, 상기 전류(I)는 매순간 바뀌는 특성이 있기에 도 5의 그래프와 같이 단위시간을 정하여 RMS값으로 그 구간을 대표하는 값으로 결정한다.The current I may exist in various profiles according to the driving time, and the amount of air required for cooling the batteries 11 and 21 .. may be determined only if the heat generation amount according to the usage of the batteries 11 and 21. However, since the current I has a characteristic that changes every moment, the unit I determines a unit time as an RMS value by determining a unit time as shown in the graph of FIG. 5.

그리고, 저항(R)은 BMS(30)에서 배터리시스템(10,20..)의 전체 저항을 측정할 있으므로 발열량을 추정할 수 있다.In addition, since the resistance R measures the total resistance of the battery systems 10 and 20 in the BMS 30, the heat generation amount may be estimated.

또한, 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)은 배터리(11,21..)에 포함된 배터리 셀의 개수(N)에 따라 달라지게 된다.In addition, the calorific value W 1 , W 2 ... W n of each battery 11, 21 .. may vary depending on the number N of battery cells included in the batteries 11, 21 ... .

따라서, 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)은 상기에서 전술한 RMS값으로 계산된 전류(I)와 저항(R) 및 배터리 셀의 개수(N)를 이용해서, 상기 (식1)의 계산을 통해 구해진다.Accordingly, the calorific value W 1 , W 2 ... W n of each battery 11, 21 .. is the number of currents I, resistances R, and battery cells calculated from the RMS values described above. It is calculated | required through calculation of said Formula (1) using (N).

상기와 같이 배터리(11,21..)의 발열량(W1,W2...Wn)이 계산되고 나면 도 6에 도시된 풍량 그래프나 테이블을 이용해서 시험 또는 해석을 통해 각각의 냉각팬(12,22..)의 풍량(Q1,Q2...Qn)을 결정하게 된다.(단계 S16)After the calorific value (W 1 , W 2 ... W n ) of the batteries 11, 21 .. is calculated as described above, each cooling fan is tested or analyzed using the airflow graph or table shown in FIG. 6. The air flow volume Q 1 , Q 2 ... Q n of (12, 22 ...) is determined (step S16).

그리고, 각 배터리시스템(10,20..)마다 구비된 냉각팬(12,22..)의 사양이 모두 동일한 것이라면, 각 배터리시스템(10,20..)의 압력과 계산된 풍량(Q1,Q2...Qn)을 근거로 도 7에 도시된 P-S선도를 이용해 각각의 냉각팬(12,22..)의 가동률(D1,D2...Dn)을 결정하게 된다.(단계 S18)And, if the specifications of the cooling fans 12, 22 .. provided for each battery system (10, 20 ..) are all the same, the pressure and calculated air volume (Q 1 ) of each battery system (10, 20 ..) Based on, Q 2 ... Q n ), the PS diagram shown in FIG. 7 is used to determine the operating ratios D 1 , D 2 ... D n of the respective cooling fans 12, 22. (Step S18)

여기서, 도 7에 도시된 DUTY는 가동률을 나타낸다.Here, DUTY shown in FIG. 7 represents an operation rate.

상기 냉각팬(12,22..)의 가동률(D1,D2...Dn)은 각 배터리시스템(10,20..)의 내부구조에 따라 달라지는 바, 즉 배터리시스템(10,20..)의 내부구조가 복잡하면 압력(통기저항)이 커지므로 냉각팬(12,22..)의 가동률(D1,D2...Dn)은 증가하게 된다.The operating ratios D 1 , D 2 ... D n of the cooling fans 12, 22 .. are different depending on the internal structure of each battery system 10, 20 .. That is, the battery systems 10, 20. If the internal structure of ..) is complicated, the pressure (ventilation resistance) increases, and thus the operating ratios (D 1 , D 2 ... D n ) of the cooling fans 12, 22 .. are increased.

한편, 본 발명은 냉각팬(12,22..)의 풍량(Q1,Q2...Qn) 후 가동률(D1,D2...Dn)을 결정하기 전에 각 배터리시스템(10,20..)간 온도편차(ΔT)가 적정 범위내에 존재하는지를 판단하게 되는 바(단계 S17), 이때 배터리시스템(10,20..)간 온도편차가 적정 범위내에 존재하는 것으로 판단되면 상기 S18 단계로 진행되고, 만약 배터리시스템(10,20..)간 온도편차가 적정 범위내에 존재하지 않으면 상대적으로 온도가 높은 배터리시스템의 냉각팬 가동률을 추가로 증가시키게 된다.(단계 S19)On the other hand, the present invention, before determining the operating rate (D 1 , D 2 ... D n ) after the air volume (Q 1 , Q 2 ... Q n ) of the cooling fan (12, 22 ..) It is determined whether the temperature deviation ΔT between 10,20 .. is within the appropriate range (step S17), and if it is determined that the temperature deviation between the battery systems 10, 20 .. is within the appropriate range, In step S18, if the temperature deviation between the battery systems 10 and 20 is not within an appropriate range, the cooling fan operation rate of the battery system having a relatively high temperature is further increased (step S19).

즉, 온도가 높은 배터리시스템의 냉각팬 가동률을 증가시킴으로써 온도를 낮추도록 하는 것이다.That is, the temperature is lowered by increasing the operating rate of the cooling fan of the high temperature battery system.

상기와 같이 냉각팬(12,22..)의 가동률(D1,D2...Dn)이 최종적으로 결정되고 나면 각각의 배터리시스템(10,20..)에 구비된 각각의 냉각팬(12,22..)은 결정된 냉각팬(12,22..)의 가동률에 따라 각각 구동하게 되며, 이를 통해 2개 이상 배터리시스템(10,20..)을 구비한 전기 자동차에서 각 배터리(11,21..)를 효율적으로 냉각시킬 수 있게 된다.As described above, once the operation ratios D 1 , D 2 ... D n of the cooling fans 12, 22 .. are finally determined, the respective cooling fans provided in the respective battery systems 10, 20 .. (12,22 ..) is driven according to the operation rate of the determined cooling fan (12, 22 ..), respectively, through which each battery (in an electric vehicle having two or more battery systems (10, 20 ..) 11, 21.) can be cooled efficiently.

이상 설명한 바와 같이 본 발명에 따른 실시예는, 2개 이상 배터리시스템(10,20..)을 구비한 전기 자동차에서 각 배터리(11,21..)에서 발생하는 발열량(W1,W2...Wn)을 이용해 각 배터리시스템(10,20..)에 구비된 각각의 냉각팬(12,22..)의 가동률(D1,D2...Dn)을 결정하고, 결정된 가동률에 근거해서 각 냉각팬(12,22..)을 구동함으로써, 에너지의 낭비없이 전기 자동차에 구비된 각 배터리(11,21..)를 효율적으로 냉각시킬 수 있게 된다.Embodiment according to the present invention As described above, in the electric vehicle having a battery of two or more systems (10, 20 ...) heating value generated from each battery (11,21 ..) (W 1, W 2. ... W n ) is used to determine the operating ratios D 1 , D 2 ... D n of the respective cooling fans 12, 22 .. provided in each battery system 10, 20. By driving each of the cooling fans 12 and 22 based on the operation rate, it is possible to efficiently cool each battery 11 and 21 provided in the electric vehicle without wasting energy.

또한, 본 발명은 상대적으로 온도가 높은 배터리시스템에 구비된 배터리만을 추가로 더 냉각시킬 수 있게 됨으로써, 보다 효율적으로 배터리를 냉각시킬 수 있는 장점도 있다.In addition, the present invention can further cool only the battery provided in the battery system having a relatively high temperature, thereby further cooling the battery more efficiently.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
While the present invention has been particularly shown and described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the following claims It will be apparent to those of ordinary skill in the art.

10,20 - 배터리시스템 11,21.. - 배터리
12,22 - 냉각팬 30 - BMS
D1,D2...Dn - 냉각팬의 가동률 Q1,Q2...Qn - 냉각팬의 풍량
W1,W2...Wn - 냉각팬의 발열량
10,20-Battery System 11,21 ..-Batteries
12,22-Cooling Fan 30-BMS
D 1 , D 2 ... D n -Cooling fan operating rate Q 1 , Q 2 ... Q n -Cooling fan flow rate
W 1 , W 2 ... W n -Calorific value of cooling fan

Claims (6)

배터리와 냉각팬으로 이루어진 배터리시스템이 2개 이상 구비되고, 각각의 냉각팬은 BMS의 제어에 의해 구동되면서 각각의 배터리를 공랭식으로 냉각시키도록 된 전기 자동차용 고전압 배터리시스템의 냉각제어방법에 있어서,
상기 각각의 배터리(11,21..)의 발열량(W1,W2...Wn)을 계산하는 단계(S15);
상기 계산된 발열량을 이용해서 각각의 냉각팬(12,22..)의 풍량(Q1,Q2...Qn)을 결정하는 단계(S16);
상기 결정된 냉각팬(12,22..)의 풍량에 근거해서 각각의 냉각팬(12,22..)의 가동률(D1,D2...Dn)을 결정하는 단계(S18); 및
상기 결정된 냉각팬(12,22..)의 가동률에 따라 상기 각각의 배터리시스템(10,20..)에 구비된 상기 각각의 냉각팬(12,22..)을 구동하는 단계(S20);를 포함하는 것을 특징으로 하는 전기 자동차용 고전압 배터리시스템의 냉각제어방법.
In the cooling control method of the high-voltage battery system for an electric vehicle is provided with at least two battery system consisting of a battery and a cooling fan, each cooling fan is driven by the control of the BMS to cool each battery in an air-cooled manner,
Calculating a calorific value (W 1 , W 2 ... W n ) of each of the batteries (11, 21 ..) (S15);
Determining the amount of air (Q 1 , Q 2 ... Q n ) of each cooling fan (12, 22...) By using the calculated calorific value (S16);
Determining an operation rate (D 1 , D 2 ... D n ) of each cooling fan (12, 22...) Based on the determined air flow rates of the cooling fans (12, 22...); And
Driving each cooling fan (12,22 ..) provided in the respective battery system (10, 20 ..) according to the determined operation rate of the cooling fan (12, 22 ..) (S20); Cooling control method of a high voltage battery system for an electric vehicle comprising a.
청구항 1에 있어서,
상기 각각의 냉각팬(12,22..)의 풍량(Q1,Q2...Qn)이 결정되고 나면 배터리시스템(10,20..)간 온도편차(ΔT)가 적정 범위내에 존재하는지를 판단하는 단계(S17); 및
상기 배터리시스템(10,20..)간 온도편차가 적정 범위내에 존재하지 않으면 상대적으로 온도가 높은 배터리시스템의 냉각팬 가동률을 추가로 증가시키는 단계(S19);를 더 포함하는 것을 특징으로 하는 전기 자동차용 고전압 배터리시스템의 냉각제어방법.
The method according to claim 1,
After the air volume Q 1 , Q 2 ... Q n of each of the cooling fans 12, 22 .. is determined, the temperature deviation ΔT between the battery systems 10, 20 .. is within an appropriate range. Determining whether it is (S17); And
If the temperature difference between the battery system (10, 20 ..) does not exist within a suitable range, further increasing the cooling fan operating rate of the relatively high temperature battery system (S19); Cooling control method of high voltage battery system for automobile.
청구항 1에 있어서,
상기 각 배터리시스템(10,20..)마다 구비된 냉각팬(12,22..)은 서로 동일한 사양인 것을 특징으로 하는 전기 자동차용 고전압 배터리시스템의 냉각제어방법.
The method according to claim 1,
Cooling fan (12, 22 ..) provided for each of the battery system (10, 20 ..) has the same specification as the cooling control method of a high voltage battery system for an electric vehicle.
청구항 1에 있어서,
상기 냉각팬(12,22..)의 가동률(D1,D2...Dn)은 각 배터리시스템(10,20..)의 내부구조에 따라 달라지는 것을 특징으로 하는 전기 자동차용 고전압 배터리시스템의 냉각제어방법.
The method according to claim 1,
The operating ratios D 1 , D 2 ... D n of the cooling fans 12, 22 .. are varied according to the internal structure of each battery system 10, 20 ... Cooling control method of system.
청구항 4에 있어서,
상기 냉각팬(12,22..)의 가동률(D1,D2...Dn)은 상기 배터리시스템(10,20..)의 내부구조가 복잡해질수록 증가하는 것을 특징으로 하는 전기 자동차용 고전압 배터리시스템의 냉각제어방법.
The method of claim 4,
The operating rate (D 1 , D 2 ... D n ) of the cooling fan (12, 22 ..) is increased as the internal structure of the battery system (10, 20 ..) becomes complicated Cooling control method for high voltage battery system.
청구항 1에 있어서,
상기 각각의 배터리(11,21)의 발열량(W1,W2...Wn)은 아래의 식에 의해 구해지는 것을 특징으로 하는 전기 자동차용 고전압 배터리시스템의 냉각제어방법.
Wtotal = W1+W2...Wn
Ntotal = N1+N2...Nn
W1 = Wtotal×(N1/Ntotal) = I2×R×(N1/Ntotal)
W2 = Wtotal×(N2/Ntotal) = I2×R×(N2/Ntotal)..
Wn = Wtotal×(Nn/Ntotal) = I2×R×(Nn/Ntotal)
여기서, W는 발열량, N은 배터리(11,21..) 셀의 개수, I는 단위시간당 사용된 전류값, R은 전체 배터리시스템(10,20..)의 저항값이고, Wtotal은 전체 배터리시스템(10,20..)의 토탈 발열량, W1은 제1배터리시스템(10)의 발열량, W2는 제2배터리시스템(20)의 발열량이며, Ntotal은 전체 배터리시스템(10,20..)에 구비된 배터리(11,21..) 셀의 총 개수, N1은 제1배터리시스템(10)에 구비된 제1배터리(11) 셀의 개수, N2는 제2배터리시스템(20)에 구비된 제2배터리(21) 셀의 개수이다.
The method according to claim 1,
The heating value (W 1 , W 2 ... W n ) of each of the batteries (11, 21) is calculated by the following equation Cooling control method of a high voltage battery system for an electric vehicle.
W total = W 1 + W 2 ... W n
N total = N 1 + N 2 ... N n
W 1 = W total × (N 1 / N total ) = I 2 × R × (N 1 / N total )
W 2 = W total × (N 2 / N total ) = I 2 × R × (N 2 / N total ).
W n = W total × (N n / N total ) = I 2 × R × (N n / N total )
Here, W is the amount of heat generated, N is the number of cells (11, 21 ..) cells, I is the current value used per unit time, R is the resistance value of the entire battery system (10, 20 ..), W total is the total Total calorific value of the battery system 10, 20 .., W 1 is the calorific value of the first battery system 10, W 2 is the calorific value of the second battery system 20, and N total is the total battery system 10, 20. ..), the total number of cells (11,21 ..) cells provided in the battery, N 1 is the number of cells of the first battery 11 provided in the first battery system 10, N 2 is the second battery system ( The number of cells of the second battery 21 provided in 20).
KR1020110079632A 2011-08-10 2011-08-10 Cooling control method of high voltage battery system in electric vehicle KR101252210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110079632A KR101252210B1 (en) 2011-08-10 2011-08-10 Cooling control method of high voltage battery system in electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110079632A KR101252210B1 (en) 2011-08-10 2011-08-10 Cooling control method of high voltage battery system in electric vehicle

Publications (2)

Publication Number Publication Date
KR20130017286A KR20130017286A (en) 2013-02-20
KR101252210B1 true KR101252210B1 (en) 2013-04-05

Family

ID=47896472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110079632A KR101252210B1 (en) 2011-08-10 2011-08-10 Cooling control method of high voltage battery system in electric vehicle

Country Status (1)

Country Link
KR (1) KR101252210B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575480B1 (en) * 2014-05-28 2015-12-07 현대자동차주식회사 Control method for cooling fan in a low temperature state

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102391119B1 (en) 2015-01-30 2022-04-27 삼성에스디아이 주식회사 Battery cooling system and method for controlling the same
KR20180068391A (en) 2016-12-13 2018-06-22 현대자동차주식회사 Cooling control method of battery management system in electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148190A (en) * 1994-11-25 1996-06-07 Nissan Motor Co Ltd Battery cooling device
JP2000036327A (en) 1998-07-17 2000-02-02 Toyota Motor Corp Control device for battery cooling fan
JP2000100481A (en) 1998-09-18 2000-04-07 Fuji Heavy Ind Ltd Battery box for electric vehicle
JP2008086086A (en) 2006-09-26 2008-04-10 Toyota Motor Corp Cooling fan controller and vehicle equipped with the cooling fan controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148190A (en) * 1994-11-25 1996-06-07 Nissan Motor Co Ltd Battery cooling device
JP2000036327A (en) 1998-07-17 2000-02-02 Toyota Motor Corp Control device for battery cooling fan
JP2000100481A (en) 1998-09-18 2000-04-07 Fuji Heavy Ind Ltd Battery box for electric vehicle
JP2008086086A (en) 2006-09-26 2008-04-10 Toyota Motor Corp Cooling fan controller and vehicle equipped with the cooling fan controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101575480B1 (en) * 2014-05-28 2015-12-07 현대자동차주식회사 Control method for cooling fan in a low temperature state

Also Published As

Publication number Publication date
KR20130017286A (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US8042993B2 (en) Air-cooled power electronics service algorithm
JP2012009407A (en) High-voltage battery and temperature rising control method for the same
US7793746B2 (en) Noise-comfort function for cooling systems with proportional variable speed fans
JP5699880B2 (en) Battery cooling system
KR101755480B1 (en) Cooling fan control method for vehicle
US20150291054A1 (en) Traction Battery Air Thermal Management Control System
JP2012044813A (en) Vehicle power supply
US20160297424A1 (en) System and method for reducing exhaust gas of hybrid electric vehicle
US8531159B2 (en) Battery management control system
KR101252210B1 (en) Cooling control method of high voltage battery system in electric vehicle
CN108461860B (en) Cooling control method for battery management system in electric vehicle
KR20150004035A (en) Method and system for balancing battery cell
US9718453B2 (en) Hybrid vehicle
US20130268151A1 (en) Cooling fan control device
EP3463965B1 (en) A method and system for thermal conditioning of a battery pack
US20120247751A1 (en) System and method for controlling heat transfer timing
KR20150071194A (en) System for balance controlling of battery module temperature
WO2013105570A1 (en) Battery temperature estimation device
KR101713744B1 (en) Calculating method for battery charging time of vehicle
JP2014049402A (en) Cooling method of secondary battery
JP6212251B2 (en) Secondary battery cooling method
CN201373522Y (en) Solar energy semiconductor automobile air conditioner
KR102444851B1 (en) Method for Controlling Cooling of Battery
KR20100035772A (en) Method for cooling battery of hybrid vehicle
JP2014120457A (en) Power supply device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180329

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 7