JPH08148190A - Battery cooling device - Google Patents

Battery cooling device

Info

Publication number
JPH08148190A
JPH08148190A JP29176094A JP29176094A JPH08148190A JP H08148190 A JPH08148190 A JP H08148190A JP 29176094 A JP29176094 A JP 29176094A JP 29176094 A JP29176094 A JP 29176094A JP H08148190 A JPH08148190 A JP H08148190A
Authority
JP
Japan
Prior art keywords
battery
cooling
current
temperature
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29176094A
Other languages
Japanese (ja)
Other versions
JP3733602B2 (en
Inventor
Shigeru Sumiki
茂 隅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP29176094A priority Critical patent/JP3733602B2/en
Publication of JPH08148190A publication Critical patent/JPH08148190A/en
Application granted granted Critical
Publication of JP3733602B2 publication Critical patent/JP3733602B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

PURPOSE: To enhance control accuracy for battery temperature and prevent a cooling device from uselessly consuming electric power by pertinently driving the cooling device, depending on battery internal temperature. CONSTITUTION: Discharge current flowing in a feeder for a battery 1 is detected with a current sensor 3. Also, a cooling fan 2 is driven and controlled on the basis of output corresponding to a calculated calorific value outputted from a cooling fan control section 4 laid for calculating the calorific value of the battery 1 on the basis of the detected current value and the preliminarily saved value of battery internal resistance, thereby supplying the cooling air to the battery 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電中のバッテリの
温度を冷却装置を用いて制御するバッテリ冷却装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery cooling device for controlling the temperature of a battery during charging / discharging by using a cooling device.

【0002】[0002]

【従来の技術】従来のバッテリ冷却装置としては、例え
ば特開平4−352207号公報等に開示されたものが
ある。このものは、バッテリの周囲温度を検出し、この
検出温度に基づいて冷却装置を制御してバッテリの温度
を制御することにより、充電電流及び充電時間が多くな
らず、放電電流及び放電終止電圧までの持続時間が少な
くならないようにしている。
2. Description of the Related Art As a conventional battery cooling device, for example, there is one disclosed in Japanese Patent Laid-Open No. 4-352207. This device detects the ambient temperature of the battery and controls the cooling device based on this detected temperature to control the battery temperature, so that the charging current and charging time do not increase, and the discharge current and discharge end voltage are not increased. I try not to reduce the duration of.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来装置では、バッテリの周囲温度を基にして冷却装置を
制御する構成としているために、バッテリの出力が急増
するような場合、温度検出の遅れにより冷却装置による
バッテリの冷却が遅れ、バッテリ本体の温度が許容温度
を越えてしまう惧れがある。
However, in the above-mentioned conventional device, since the cooling device is controlled on the basis of the ambient temperature of the battery, when the output of the battery suddenly increases, the temperature detection may be delayed. The cooling of the battery by the cooling device may be delayed, and the temperature of the battery body may exceed the allowable temperature.

【0004】即ち、バッテリの出力が増大してバッテリ
温度が上昇する場合、バッテリの熱容量によって、バッ
テリ内部の温度上昇による熱がバッテリ本体の表面側に
伝達されるまでに時間がかかる。このため、バッテリ内
部の実際の温度と、バッテリ周囲の検出温度とに差があ
り、特に、出力が急増する場合にその温度差は大きくな
るので、従来のようにバッテリ周囲温度に基づいて冷却
装置を制御する構成では、バッテリの冷却が間に合わ
ず、許容温度を越える惧れがある。
That is, when the output of the battery increases and the battery temperature rises, it takes time for the heat due to the temperature rise inside the battery to be transferred to the surface side of the battery main body due to the heat capacity of the battery. For this reason, there is a difference between the actual temperature inside the battery and the detected temperature around the battery, and in particular, when the output suddenly increases, the temperature difference becomes large. In the configuration that controls the battery, the battery may not be cooled in time and the allowable temperature may be exceeded.

【0005】本発明は、このような従来の問題点に着目
してなされたもので、バッテリの内部温度を的確に把握
して適切なバッテリの冷却ができるバッテリ冷却装置を
提供することを目的とする。
The present invention has been made in view of such conventional problems, and an object thereof is to provide a battery cooling device capable of appropriately grasping the internal temperature of the battery and cooling the battery appropriately. To do.

【0006】[0006]

【課題を解決するための手段】このため、請求項1記載
の第1の発明によるバッテリ冷却装置では、図1の実線
で示すように、バッテリの充放電電流を検出する電流検
出手段と、検出電流値と予め記憶されたバッテリ内部抵
抗値とからバッテリ発熱量を算出する発熱量算出手段
と、バッテリを冷却する冷却手段と、算出した発熱量に
基づいて前記冷却手段の駆動を制御する制御手段とを備
えて構成した。
For this reason, in the battery cooling device according to the first aspect of the present invention, as shown by the solid line in FIG. A heat generation amount calculation means for calculating a battery heat generation amount from a current value and a battery internal resistance value stored in advance, a cooling means for cooling the battery, and a control means for controlling driving of the cooling means based on the calculated heat generation amount. And configured.

【0007】また、請求項2記載の発明では、図1の点
線で示すように、請求項1記載のバッテリ冷却装置に、
バッテリの端子電圧を検出する電圧検出手段と、該電圧
検出手段で検出したバッテリ開放時の開放端子電圧及び
定電流放電時の端子電圧と前記電流検出手段で検出した
定電流放電時の電流値とから実際のバッテリ内部抵抗値
を算出する内部抵抗値算出手段と、算出した実際の内部
抵抗値と予め記憶された内部抵抗値とを比較し、値が異
なる時には算出した内部抵抗値で現在の記憶値を更新す
る内部抵抗値更新手段とを付加する構成した。
According to the second aspect of the invention, as shown by the dotted line in FIG.
Voltage detection means for detecting the terminal voltage of the battery, an open terminal voltage when the battery is opened and the terminal voltage during constant current discharge detected by the voltage detection means, and a current value during constant current discharge detected by the current detection means The internal resistance value calculating means for calculating the actual battery internal resistance value from the above is compared with the calculated actual internal resistance value and the previously stored internal resistance value, and when the values are different, the calculated internal resistance value is used to store the current value. The internal resistance value updating means for updating the value is added.

【0008】また、請求項3記載の第2の発明では、図
2に示すように、バッテリの充放電電流を検出する電流
検出手段と、検出電流値の一定時間当りの積分値を算出
する積分手段と、バッテリを冷却する冷却手段と、算出
した積分値に基づいて前記冷却手段の駆動を制御する制
御手段とを備えて構成した。また、請求項4記載の第3
の発明では、図3に示すように、バッテリの端子電圧を
検出する電圧検出手段と、該電圧検出手段で検出したバ
ッテリ開放時の開放端子電圧に基づいてバッテリの残存
容量を算出する残存容量算出手段と、バッテリの充放電
電流を検出する電流検出手段と、検出電流値に基づいて
バッテリの温度上昇率を算出する温度上昇率算出手段
と、バッテリを冷却する冷却手段と、算出した残存容量
と温度上昇率とに基づいて放電終了時のバッテリ温度を
推定する温度推定手段と、該温度推定手段で推定したバ
ッテリ温度に基づいて前記冷却手段の駆動を制御する制
御手段とを備えて構成した。
According to the second aspect of the present invention, as shown in FIG. 2, current detecting means for detecting the charging / discharging current of the battery, and an integral for calculating an integral value of the detected current value per constant time. And a cooling means for cooling the battery, and a control means for controlling the driving of the cooling means based on the calculated integral value. The third aspect of the present invention
In the invention, as shown in FIG. 3, voltage detecting means for detecting the terminal voltage of the battery, and remaining capacity calculation for calculating the remaining capacity of the battery based on the open terminal voltage when the battery is opened detected by the voltage detecting means. Means, a current detection means for detecting a charging / discharging current of the battery, a temperature rise rate calculating means for calculating a temperature rise rate of the battery based on the detected current value, a cooling means for cooling the battery, and a calculated remaining capacity. The temperature estimation means estimates the battery temperature at the end of discharge based on the temperature rise rate, and the control means controls the drive of the cooling means based on the battery temperature estimated by the temperature estimation means.

【0009】また、請求項5記載の第4の発明では、図
4に示すように、バッテリの充放電電流を検出する電流
検出手段と、検出電流値と予め記憶されたバッテリ内部
抵抗値とからバッテリ発熱量を算出する発熱量算出手段
と、バッテリを冷却する冷却手段と、バッテリの放熱量
を検出する放熱量検出手段と、バッテリの発熱量と放熱
量とに基づいてバッテリの温度上昇率を算出する温度上
昇率算出手段と、温度上昇率に基づいて前記冷却手段の
駆動を制御する制御手段とを備えて構成した。
According to a fourth aspect of the present invention, as shown in FIG. 4, the current detection means for detecting the charging / discharging current of the battery, the detected current value and the battery internal resistance value stored in advance are used. A heat generation amount calculation means for calculating the battery heat generation amount, a cooling means for cooling the battery, a heat radiation amount detection means for detecting the heat radiation amount of the battery, and a temperature rise rate of the battery based on the heat generation amount and the heat radiation amount of the battery. The temperature increasing rate calculating means for calculating and the control means for controlling the driving of the cooling means based on the temperature increasing rate are provided.

【0010】また、請求項6記載のように、前記放熱量
検出手段は、具体的には、バッテリが介装された冷却風
通路内でバッテリの上流側と下流側にそれぞれ配置され
る温度センサと、前記冷却風通路の冷却風流量を検出す
る流量センサと、両温度センサと流量センサからの各検
出値に基づいてバッテリの放熱量を演算する演算手段と
で構成した。
Further, as described in claim 6, the heat radiation amount detecting means is, specifically, a temperature sensor arranged upstream and downstream of the battery in the cooling air passage in which the battery is interposed. And a flow rate sensor that detects the flow rate of the cooling air in the cooling air passage, and a calculation unit that calculates the heat radiation amount of the battery based on the detected values from both the temperature sensor and the flow rate sensor.

【0011】[0011]

【作用】請求項1記載の発明の構成において、バッテリ
に流れた電流値と内部抵抗値とからバッテリの発熱量を
算出し、この発熱量により冷却手段を制御するので、バ
ッテリ内部の実際の温度変化に対応した冷却を行うこと
ができる。また、請求項2記載の発明では、バッテリの
発熱量をより精度良く算出することができ、より一層バ
ッテリの冷却制御精度を高めることができる。
In the structure of the invention described in claim 1, the amount of heat generated by the battery is calculated from the value of the current flowing through the battery and the internal resistance value, and the cooling means is controlled by this amount of heat generated. Cooling corresponding to changes can be performed. According to the second aspect of the present invention, the heat generation amount of the battery can be calculated more accurately, and the cooling control accuracy of the battery can be further improved.

【0012】また、請求項3記載の発明の構成におい
て、バッテリの充放電電流の一定時間の積分値に基づい
てバッテリの冷却を制御するので、バッテリ温度にあま
り影響を与えない瞬時的な大電流が流れるような場合
に、温度上昇がないにも拘らず冷却能力をアップするこ
とを防止できる。また、請求項4記載の発明の構成にお
いて、バッテリの残存容量とその時の温度上昇率とか
ら、放電終了時のバッテリ温度を推定し、この推定値が
許容上限温度を越えた場合に、冷却手段によって冷却を
行う。
In the structure of the third aspect of the invention, the cooling of the battery is controlled on the basis of the integral value of the charging / discharging current of the battery over a certain period of time, so that an instantaneous large current that does not significantly affect the battery temperature. It is possible to prevent the cooling capacity from being increased even though the temperature does not rise even though the temperature does not rise. Further, in the configuration of the present invention according to claim 4, the battery temperature at the end of discharge is estimated from the remaining capacity of the battery and the temperature increase rate at that time, and when the estimated value exceeds the allowable upper limit temperature, the cooling means is provided. Cool down by.

【0013】これにより、残存容量が少なくて放電終了
までの時間が短いような場合に、冷却手段を無駄に駆動
したり、冷却能力を増大させたりすることを防止でき
る。また、請求項5記載の発明の構成において、バッテ
リの発熱量と放熱量とから温度上昇率を算出し、この温
度上昇率に基づいて冷却手段の駆動を制御するので、外
気温度等の影響で放熱量が異なる場合でも、適切に冷却
手段の冷却能力を設定することができる。
This makes it possible to prevent unnecessary driving of the cooling means or increase of the cooling capacity when the remaining capacity is small and the time until the end of discharge is short. Further, in the configuration of the invention according to claim 5, the temperature rise rate is calculated from the heat generation amount and the heat radiation amount of the battery, and the driving of the cooling means is controlled based on this temperature rise rate. Even if the amount of heat radiation is different, the cooling capacity of the cooling means can be set appropriately.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図5は、バッテリ発熱量に基づいてバッテリの冷
却を制御する第1の発明のバッテリ冷却装置の第1実施
例の構成図である。図5において、バッテリ1は、モー
タコントローラ5を介してモータ6に接続する。モータ
6は、例えば電気自動車の動力源として使用される。こ
の場合、走行状態の変化によってモータ6の負荷が変動
してバッテリ1の給電線に流れる電流量が変化する。電
流検出手段としての電流センサ3は、バッテリ1の給電
線に流れる電流値を検出する。冷却ファン制御部4は、
例えばマイクロコンピュータ等を内蔵し、電流センサ3
からの電流値を入力し、この電流値と予め記憶してある
バッテリ1の内部抵抗値とからバッテリの発熱量を算出
し、算出した発熱量に基づいて冷却手段としての冷却フ
ァン2の駆動を制御し、バッテリ1への冷却風量が制御
される。ここで、前記冷却ファン制御部4が、発熱量算
出手段及び制御手段の機能を備える。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 is a configuration diagram of a first embodiment of the battery cooling device of the first invention for controlling the cooling of the battery based on the heat generation amount of the battery. In FIG. 5, the battery 1 is connected to the motor 6 via the motor controller 5. The motor 6 is used as a power source of an electric vehicle, for example. In this case, the load of the motor 6 fluctuates due to the change of the traveling state, and the amount of current flowing through the power supply line of the battery 1 changes. The current sensor 3 as a current detecting means detects the value of the current flowing through the power supply line of the battery 1. The cooling fan control unit 4
For example, a built-in microcomputer etc., the current sensor 3
Is input, the heat generation amount of the battery is calculated from this current value and the internal resistance value of the battery 1 stored in advance, and the cooling fan 2 as the cooling means is driven based on the calculated heat generation amount. The amount of cooling air to be supplied to the battery 1 is controlled. Here, the cooling fan control unit 4 has the functions of a heat generation amount calculation means and a control means.

【0015】次に図6のフローチャートに従って動作を
説明する。ステップ(図中Sで示し、以下同様とする)
1で、モータ6の駆動によりバッテリ1の給電線に流れ
る電流値Iを電流センサ3から読み込む。ステップ2で
は、読み込んだ電流値Iと、予め記憶してあるバッテリ
1の内部抵抗値Rとから下記(1)式によりバッテリ1
の発熱量Qを算出する。
Next, the operation will be described with reference to the flowchart of FIG. Step (indicated by S in the figure, and so on)
At 1, the current value I flowing through the power supply line of the battery 1 by driving the motor 6 is read from the current sensor 3. In step 2, from the read current value I and the internal resistance value R of the battery 1 stored in advance, the battery 1 is calculated by the following equation (1).
The calorific value Q of is calculated.

【0016】Q=I2 ×R ・・・ (1) ステップ3では、前記発熱量Qの値に応じた冷却ファン
2の制御値を出力する。即ち、電流値Iの増大に伴い発
熱量Qが増大すれば冷却風量を増大して冷却能力を高
め、逆に、電流値Iの減少により発熱量Qが減少すれば
冷却風量を低下させる。
Q = I 2 × R (1) In step 3, the control value of the cooling fan 2 corresponding to the value of the heat generation amount Q is output. That is, if the heat generation amount Q increases with the increase of the current value I, the cooling air amount is increased to enhance the cooling capacity, and conversely, if the heat generation amount Q is decreased due to the decrease of the current value I, the cooling air amount is decreased.

【0017】このように、バッテリ1の発熱量に応じて
冷却ファン2の冷却風量を制御すれば、例えばバッテリ
1の電流が急増した場合でも、バッテリ1の内部温度上
昇に対して即座に反応して冷却能力を上げることが可能
となり、従来のバッテリ表面温度に基づいた制御に比べ
て温度検出の遅れによるバッテリ1の過度の温度上昇を
防止することが可能となる。
In this way, by controlling the cooling air volume of the cooling fan 2 according to the heat generation amount of the battery 1, for example, even when the current of the battery 1 suddenly increases, it immediately reacts to the internal temperature rise of the battery 1. As a result, it is possible to increase the cooling capacity, and it is possible to prevent an excessive temperature rise of the battery 1 due to a delay in temperature detection, as compared with the conventional control based on the battery surface temperature.

【0018】尚、バッテリ1に電流が流れている状態か
ら停止するような場合は、バッテリ1の熱容量によって
温度の低下に時間遅れがあるので、このような場合は、
冷却ファン2を即座に停止させず、バッテリ電流が停止
してからある一定の時間経過後に冷却ファン2を停止さ
せるように制御することが望ましい。次に第2実施例を
説明する。
In the case where the battery 1 is stopped from the state in which the current is flowing, there is a delay in the temperature decrease due to the heat capacity of the battery 1. In such a case,
It is desirable to control the cooling fan 2 not to stop immediately but to stop the cooling fan 2 after a certain period of time has passed since the battery current stopped. Next, a second embodiment will be described.

【0019】図7は第2実施例の構成図である。尚、第
1実施例と同一部分には同一符号を付して説明を省略す
る。図7において、本実施例では、図5の構成に加えて
バッテリ1の端子電圧を検出する電圧検出手段としての
電圧センサ7を設ける。この電圧センサ7では、モータ
6が停止してバッテリ1の電流が停止した時のバッテリ
端子電圧(バッテリ開放電圧V0 )と、定速走行時、即
ち、定電流放電時の端子電圧V1 とが測定される。
FIG. 7 is a block diagram of the second embodiment. The same parts as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted. 7, in the present embodiment, in addition to the configuration of FIG. 5, a voltage sensor 7 as a voltage detecting means for detecting the terminal voltage of the battery 1 is provided. The voltage sensor 7 measures the battery terminal voltage (battery open voltage V0) when the motor 6 is stopped and the current of the battery 1 is stopped, and the terminal voltage V1 during constant speed traveling, that is, during constant current discharge. To be done.

【0020】また、冷却ファン制御部4には、電圧セン
サ7で検出したバッテリ開放電圧V0 と、定電流放電時
の端子電圧V1 と、電流センサ3で検出した定電流放電
時の電流値I1 とから現在のバッテリ内部抵抗値R′を
算出する内部抵抗値算出機能と、算出した現在の内部抵
抗値R′と予め記憶された内部抵抗値Rとを比較してR
とR′が異なる値の時に内部抵抗値R′を新たな記憶値
Rとして記憶する内部抵抗値更新機能とが追加される。
In the cooling fan control section 4, the battery open circuit voltage V0 detected by the voltage sensor 7, the terminal voltage V1 during constant current discharge, and the current value I1 during constant current discharge detected by the current sensor 3 are stored. An internal resistance value calculating function for calculating the current battery internal resistance value R'from the calculated current internal resistance value R'and a pre-stored internal resistance value R are compared to R
And R'are different values, an internal resistance value updating function for storing the internal resistance value R'as a new storage value R is added.

【0021】次に第2実施例の動作を図8のフローチャ
ートに基づいて説明する。まず、ステップ11では、電流
センサ3と電圧センサ7とから定電流放電時の電流値I
1 、開放電圧V0 及び定電流放電時の端子電圧V1 を読
み込む。ここで、開放電圧V0 は、車両停車時に読み込
んでおけばよい。ステップ12では、これら読み込んだ値
に基づいて現在のバッテリ1の内部抵抗値R′を算出す
る。
Next, the operation of the second embodiment will be described based on the flowchart of FIG. First, in step 11, the current value I at the time of constant current discharge is calculated from the current sensor 3 and the voltage sensor 7.
1. Read open voltage V0 and terminal voltage V1 at constant current discharge. Here, the open circuit voltage V0 may be read when the vehicle is stopped. In step 12, the current internal resistance value R'of the battery 1 is calculated based on these read values.

【0022】具体的には、下記(2)式により内部抵抗
値R′を算出する。 R′=(V0 −V1 )/I1 ・・・ (2) ステップ13では、算出した内部抵抗値R′と現在記憶さ
れている内部抵抗値Rとを比較し、R′= Rの場合
は、ステップ14を飛び越してステップ15に進み、R′≠
Rの場合はステップ14に進み、算出した内部抵抗値R′
を記憶値Rとして記憶する。
Specifically, the internal resistance value R'is calculated by the following equation (2). R '= (V0-V1) / I1 (2) In step 13, the calculated internal resistance value R'is compared with the currently stored internal resistance value R. If R' = R, Skip step 14 and proceed to step 15, where R '≠
If R, go to step 14 to calculate the calculated internal resistance value R '.
Is stored as a stored value R.

【0023】ステップ15では、第1実施例と同様にし
て、上記(1)式からバッテリ1の発熱量Qを算出す
る。ステップ16では、算出した発熱量Qの値に応じた冷
却ファン2の制御値を出力する。かかる構成によれば、
第1実施例と同様に、バッテリ1の内部温度変化に対し
て即座に反応して冷却能力を適切に制御することができ
るようになり、バッテリ1の過度の温度上昇等を防止す
ることが可能となる。更に加えて、バッテリ1の発熱量
をより正確に算出することができ、より一層バッテリ1
の冷却を精度良く行うことが可能となる。
In step 15, the calorific value Q of the battery 1 is calculated from the above equation (1) as in the first embodiment. In step 16, the control value of the cooling fan 2 according to the calculated value of the heat generation amount Q is output. According to this configuration,
Similar to the first embodiment, the cooling capacity can be appropriately controlled by immediately reacting to the internal temperature change of the battery 1, and the excessive temperature rise of the battery 1 can be prevented. Becomes In addition, the heat generation amount of the battery 1 can be calculated more accurately, and the battery 1 can be further calculated.
It becomes possible to perform the cooling with high accuracy.

【0024】次に、第2の発明の一実施例を説明する。
本実施例のハード構成は、図5に示す実施例と同一であ
り、冷却ファン制御部4の構成が異なる。従って、ここ
では、ハード構成の説明は省略し、冷却ファン制御部4
の構成だけを説明する。本実施例の冷却ファン制御部4
は、電流センサ3からの検出電流値を有る一定時間積分
する積分手段に相当する機能と、算出した積分値に基づ
いて冷却ファン2の駆動を制御する制御手段に相当する
制御機能とを備えて構成される。
Next, an embodiment of the second invention will be described.
The hardware configuration of this embodiment is the same as that of the embodiment shown in FIG. 5, but the configuration of the cooling fan control unit 4 is different. Therefore, the description of the hardware configuration will be omitted here, and the cooling fan control unit 4 will be described.
Only the configuration of will be described. Cooling fan control unit 4 of this embodiment
Has a function corresponding to an integrating means for integrating the detected current value from the current sensor 3 for a certain period of time, and a control function corresponding to a controlling means for controlling the drive of the cooling fan 2 based on the calculated integrated value. Composed.

【0025】次に図9のフローチャートを参照して動作
を説明する。ステップ21では、電流センサ3から電流値
Iを読み込む。ステップ22では、図10に示すように、予
め設定した一定時間dtの間で読み込まれた電流値Iを積
分しその積分値ΣI(図10の斜線部分に相当する)を算
出する。尚、積分値の算出は、一定時間dt毎に連続して
繰り返し行われる。
Next, the operation will be described with reference to the flowchart of FIG. In step 21, the current value I is read from the current sensor 3. In step 22, as shown in FIG. 10, the current value I read during a preset constant time dt is integrated to calculate the integrated value ΣI (corresponding to the shaded area in FIG. 10). It should be noted that the calculation of the integrated value is continuously repeated at regular time intervals dt.

【0026】ステップ23では、算出した積分値ΣIを予
め設定した閾値Aと比較し、ΣI>Aの時にステップ24
に進み、冷却ファン2を作動させる。また、冷却ファン
2が既に作動している時には、その制御値を変更して冷
却風量を増加させる。例えば、電気自動車のように、走
行条件が絶えず変化するものでは、瞬間的に大きなバッ
テリ出力を必要としても、その継続時間が短い場合が少
なくない。そのような場合、瞬間的な電流値に基づいて
冷却ファン2を制御すると、頻繁に冷却ファン2への制
御出力を可変することになり、結果として冷却ファン2
による消費電力の増加を招くことになる。
In step 23, the calculated integrated value ΣI is compared with a preset threshold value A, and when ΣI> A, step 24
Then, the cooling fan 2 is operated. Further, when the cooling fan 2 is already operating, its control value is changed to increase the cooling air volume. For example, in an electric vehicle such as an electric vehicle whose traveling conditions are constantly changing, even if a large battery output is momentarily required, its duration is often short. In such a case, if the cooling fan 2 is controlled based on the instantaneous current value, the control output to the cooling fan 2 will be changed frequently, and as a result, the cooling fan 2 will be changed.
This leads to an increase in power consumption.

【0027】そこで、本実施例のように、一定時間当り
のバッテリ電流値の積分値によって冷却ファン2の駆動
を制御するようにすれば、瞬間的に大電流が流れた場合
(発生熱量は少ない)でも、冷却ファン2の制御状態を
変更しないので、冷却ファン2による消費電力を低減す
ることができるという効果が得られる。次に、第3の発
明の一実施例を説明する。
Therefore, if the drive of the cooling fan 2 is controlled by the integrated value of the battery current value per constant time as in the present embodiment, when a large current instantaneously flows (the amount of heat generated is small). However, since the control state of the cooling fan 2 is not changed, the power consumption of the cooling fan 2 can be reduced. Next, an embodiment of the third invention will be described.

【0028】本実施例のハード構成は、図7に示す実施
例と同一であり、冷却ファン制御部4の構成が異なる。
従って、ここでは、ハード構成の説明は省略し、冷却フ
ァン制御部4の構成だけを説明する。本実施例の冷却フ
ァン制御部4は、電圧センサ7で検出されたバッテリ開
放時の端子電圧V0 に基づいてバッテリの残存容量を算
出する残存容量算出機能と、電流センサ3の検出電流値
に基づいてバッテリの温度上昇率を算出する温度上昇率
算出機能と、算出した残存容量と温度上昇率とに基づい
て放電終了時のバッテリ温度を推定する温度推定機能
と、推定した放電終了時のバッテリ温度に基づいて冷却
ファン2の駆動を制御する制御機能とを備えて構成され
る。
The hardware configuration of this embodiment is the same as that of the embodiment shown in FIG. 7, but the configuration of the cooling fan control unit 4 is different.
Therefore, the description of the hardware configuration is omitted here, and only the configuration of the cooling fan control unit 4 will be described. The cooling fan control unit 4 of the present embodiment calculates the remaining capacity of the battery based on the terminal voltage V0 when the battery is opened detected by the voltage sensor 7, and based on the detected current value of the current sensor 3. Temperature rise rate calculation function that calculates the temperature rise rate of the battery by using the temperature estimation function that estimates the battery temperature at the end of discharge based on the calculated remaining capacity and temperature rise rate, and the estimated battery temperature at the end of discharge And a control function for controlling the drive of the cooling fan 2 based on the above.

【0029】次に図11のフローチャートを参照して動作
を説明する。ステップ31では、電流センサ3及び電圧セ
ンサ7から電流値Iとバッテリ開放時の端子電圧V0 を
読み込む。バッテリ開放時の端子電圧V0 は、車両走行
前、或いは一時停止中に読み込めばよい。ステップ32で
は、残存容量を算出する。具体的には、ステップ31で検
出した開放時の端子電圧V0 に基づいて、予め記憶させ
た端子電圧V0 と放電深度(DOD)との関係を示す図
12に示すマップから放電深度を検索し、検索した放電深
度から残存容量を算出する。
Next, the operation will be described with reference to the flowchart of FIG. In step 31, the current value I and the terminal voltage V0 when the battery is open are read from the current sensor 3 and the voltage sensor 7. The terminal voltage V0 when the battery is open may be read before the vehicle travels or while the vehicle is temporarily stopped. In step 32, the remaining capacity is calculated. Specifically, a diagram showing the relationship between the terminal voltage V0 stored in advance and the depth of discharge (DOD) based on the open terminal voltage V0 detected in step 31.
The depth of discharge is searched from the map shown in 12 and the remaining capacity is calculated from the searched depth of discharge.

【0030】ステップ33では、ステップ31で読み込んだ
放電電流値について一定時間当りの平均放電電流値を算
出する。ステップ34では、ステップ33で算出した平均放
電電流値IAVE と、予め記憶させたバッテリの内部抵抗
値R、及びバッテリの熱容量Cb(J/℃)から下記
(3)式によりバッテリ1の温度上昇率ΔT(℃/sec
)を算出する。
In step 33, the average discharge current value per constant time is calculated for the discharge current value read in step 31. In step 34, from the average discharge current value I AVE calculated in step 33, the internal resistance value R of the battery stored in advance, and the heat capacity Cb (J / ° C) of the battery, the temperature rise of the battery 1 is calculated by the following equation (3). Rate ΔT (℃ / sec
) Is calculated.

【0031】 ΔT=(IAVE 2 ×R/Cb ・・・ (3) ステップ35では、ステップ32で算出した残存容量とステ
ップ34で算出した温度上昇率とから、図13に示すように
バッテリ放電終了時のバッテリ温度TB を推定する。ス
テップ36では、推定したバッテリ温度TB とバッテリ1
の許容上限温度T0を比較し、TB >T0 の時には、ス
テップ37に進み、冷却ファン2を作動させる。また、冷
却ファン2が既に作動している時には、その制御値を変
更して冷却風量を増加させる。
ΔT = (I AVE ) 2 × R / Cb (3) In step 35, from the remaining capacity calculated in step 32 and the temperature increase rate calculated in step 34, as shown in FIG. The battery temperature T B at the end of discharge is estimated. In step 36, the estimated battery temperature T B and battery 1
The allowable upper limit temperature T 0 is compared, and when T B > T 0 , the process proceeds to step 37, and the cooling fan 2 is operated. Further, when the cooling fan 2 is already operating, its control value is changed to increase the cooling air volume.

【0032】かかる構成によれば、残存容量が少ないた
めに、放電終了までの時間が短く発熱量が少ない場合に
は、温度上昇率が高くても冷却ファン2を駆動させなく
て済むので、冷却ファン2による消費電力を低減でき
る。次に、第4の発明の一実施例を説明する。図14に本
実施例のハード構成を示す。尚、上述の各実施例と同一
部分には同一符号を付して説明を省略する。
According to this structure, since the remaining capacity is small, the cooling fan 2 does not have to be driven even when the rate of temperature rise is high when the time until the end of discharge is short and the amount of heat generated is small, so that cooling is possible. The power consumption of the fan 2 can be reduced. Next, an embodiment of the fourth invention will be described. FIG. 14 shows the hardware configuration of this embodiment. The same parts as those in each of the above-described embodiments are designated by the same reference numerals and the description thereof will be omitted.

【0033】図14において、バッテリ1を、一端側に冷
却ファン2を配置した冷却風通路8に介装する。冷却風
通路8内のバッテリ1の上流側には、バッテリ1に供給
する冷却風の温度を検出する第1温度センサ9を設け、
下流側には、バッテリ1を通過した後の冷却風の温度を
検出する第2温度センサ10を設ける。また、バッテリ1
の下流側に、冷却風流量を検出する流量センサ11を配置
する。そして、これら各センサ9〜11の出力信号は、電
流センサ3の出力信号と共に冷却ファン制御部4に入力
される。
In FIG. 14, the battery 1 is interposed in a cooling air passage 8 having a cooling fan 2 arranged on one end side. A first temperature sensor 9 that detects the temperature of the cooling air supplied to the battery 1 is provided on the upstream side of the battery 1 in the cooling air passage 8.
A second temperature sensor 10 for detecting the temperature of the cooling air after passing through the battery 1 is provided on the downstream side. Also, battery 1
A flow rate sensor 11 for detecting the flow rate of the cooling air is arranged on the downstream side of. Then, the output signals of these sensors 9 to 11 are input to the cooling fan control unit 4 together with the output signals of the current sensor 3.

【0034】冷却ファン制御部4は、電流センサ3の検
出値と予め記憶されたバッテリ内部抵抗値とからバッテ
リ発熱量を算出する発熱量算出機能と、第1及び第2温
度センサ9,10及び流量センサ11からの信号に基づいて
バッテリ1の放熱量を検出する放熱量検出機能と、バッ
テリ1の発熱量と放熱量とに基づいてバッテリ1の温度
上昇率を算出する温度上昇率算出機能と、温度上昇率に
基づいて冷却ファン2の駆動を制御する制御機能を備え
て構成される。
The cooling fan control section 4 has a heat generation amount calculation function for calculating the heat generation amount of the battery from the detected value of the current sensor 3 and the internal resistance value of the battery stored in advance, and the first and second temperature sensors 9, 10 and A heat radiation amount detecting function for detecting the heat radiation amount of the battery 1 based on a signal from the flow rate sensor 11, and a temperature rise rate calculating function for calculating the temperature rise rate of the battery 1 based on the heat generation amount and the heat radiation amount of the battery 1. , And a control function for controlling the drive of the cooling fan 2 based on the temperature rise rate.

【0035】次に図15のフローチャートを参照して動作
を説明する。ステップ41では、電流センサ3、両温度セ
ンサ9,10及び流量センサ11からの信号を読み込む。ス
テップ42では、読み込んだ電流値Iと、予め記憶してあ
るバッテリ1の内部抵抗値Rとから前述した(1)式に
よりバッテリ1の発熱量Q1 (=I2 ×R)を算出す
る。
Next, the operation will be described with reference to the flowchart of FIG. In step 41, the signals from the current sensor 3, both temperature sensors 9 and 10 and the flow sensor 11 are read. In step 42, the current value I read to calculate the calorific value Q1 of the battery 1 (= I 2 × R) by previously stored previously described from the internal resistance R of the battery 1 are (1) below.

【0036】ステップ43では、第1温度センサ9で検出
されるバッテリ1上流側の冷却風温度T1 と、第2温度
センサ10で検出されるバッテリ1通過後の冷却風温度T
2 と、流量センサ11で検出される冷却風量m(Kg/
s)とを用いて下記の(4)式により、バッテリ1の放
熱量Q2 を算出する。 Q2 =m×Cp×(T2 −T1 ) ・・・ (4) ここで、Cp(J/Kg/℃)は空気の比熱である。
In step 43, the cooling air temperature T1 on the upstream side of the battery 1 detected by the first temperature sensor 9 and the cooling air temperature T after passing through the battery 1 detected by the second temperature sensor 10 are measured.
2 and the cooling air flow rate m (Kg /
s) is used to calculate the heat radiation amount Q2 of the battery 1 by the following equation (4). Q2 = m * Cp * (T2-T1) (4) where Cp (J / Kg / [deg.] C.) is the specific heat of air.

【0037】ステップ44では、ステップ42,43で求めた
発熱量Q1 と放熱量Q2 と予め記憶したバッテリ1の熱
容量Cbとから下記の(5)式により温度上昇率ΔTを
算出する。 ΔT=(Q1 −Q2 )/Cb ・・・ (5) ステップ45では、ステップ44で算出した温度上昇率ΔT
に応じた制御値を出力して冷却ファン2を駆動制御す
る。
In step 44, the rate of temperature increase ΔT is calculated by the following equation (5) from the heat generation amount Q1 and the heat radiation amount Q2 obtained in steps 42 and 43 and the heat capacity Cb of the battery 1 stored in advance. ΔT = (Q1−Q2) / Cb (5) In step 45, the temperature increase rate ΔT calculated in step 44
The cooling fan 2 is driven and controlled by outputting a control value according to the above.

【0038】かかる構成によれば、バッテリ1の発熱量
が同一でも、外気温度によって放熱量が異なり温度上昇
率が異なるが、この外気温度による温度上昇率の違いを
考慮してバッテリ1の温度上昇を正確に検出することが
できるので、冷却ファン2によるバッテリ1の冷却を適
切に行うことができる。、その結果、冷却ファン2によ
る電力消費を低減することができる。
According to this structure, even if the amount of heat generated by the battery 1 is the same, the amount of heat radiated differs depending on the outside air temperature and the rate of temperature increase differs. Can be accurately detected, so that the cooling fan 2 can appropriately cool the battery 1. As a result, the power consumption by the cooling fan 2 can be reduced.

【0039】[0039]

【発明の効果】以上説明したように請求項1記載の発明
によれば、バッテリの発熱量に応じて冷却ファン2の冷
却風量を制御する構成としたので、バッテリの電流が急
増してバッテリ内部温度が上昇した場合に、即座に冷却
能力を上げることができ、バッテリの過度の温度上昇を
防止することが可能となる。
As described above, according to the first aspect of the invention, since the cooling air amount of the cooling fan 2 is controlled according to the heat generation amount of the battery, the current of the battery rapidly increases and the inside of the battery is increased. When the temperature rises, it is possible to immediately increase the cooling capacity and prevent an excessive temperature rise of the battery.

【0040】また、請求項2記載の発明によれば、バッ
テリの発熱量の算出精度を高めることができるので、よ
り一層バッテリの冷却制御精度を向上できる。また、請
求項3記載の発明によれば、発熱量の少ない瞬間的な電
流急増に対しては冷却ファンの制御状態が変更されない
ので、無駄な冷却ファンの駆動を防止できるため冷却フ
ァンによる消費電力を低減することができる。従って、
走行条件が絶えず変化してバッテリ電流変化が大きい電
気自動車等に好適である。
Further, according to the second aspect of the present invention, the accuracy of calculation of the heat generation amount of the battery can be increased, so that the accuracy of battery cooling control can be further improved. Further, according to the third aspect of the invention, since the control state of the cooling fan is not changed in response to a momentary rapid current increase with a small amount of heat generation, it is possible to prevent unnecessary driving of the cooling fan, so that power consumption by the cooling fan is reduced. Can be reduced. Therefore,
It is suitable for electric vehicles and the like in which running conditions are constantly changing and battery current changes are large.

【0041】また、請求項4記載の発明によれば、残存
容量が少ないために、放電終了までの時間が短く発熱量
が少ない場合等に、無駄な冷却ファンの駆動を防止でき
るので、やはり冷却ファンによる消費電力を低減でき
る。また、請求項5記載の発明によれば、外気温度の影
響を考慮して冷却ファンの駆動を制御できるので、バッ
テリの冷却を適切にでき、その結果、冷却ファンによる
電力消費を低減することができる。
According to the fourth aspect of the present invention, since the remaining capacity is small, it is possible to prevent unnecessary driving of the cooling fan when the time until the end of discharge is short and the amount of heat generation is small. Power consumption by the fan can be reduced. Further, according to the invention of claim 5, since the driving of the cooling fan can be controlled in consideration of the influence of the outside air temperature, the battery can be appropriately cooled, and as a result, the power consumption by the cooling fan can be reduced. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の構成を説明するブロック図FIG. 1 is a block diagram illustrating a configuration of a first invention.

【図2】第2の発明の構成を説明するブロック図FIG. 2 is a block diagram illustrating a configuration of a second invention.

【図3】第3の発明の構成を説明するブロック図FIG. 3 is a block diagram illustrating a configuration of a third invention.

【図4】第4の発明の構成を説明するブロック図FIG. 4 is a block diagram illustrating a configuration of a fourth invention.

【図5】第1の発明の第1実施例の構成図FIG. 5 is a configuration diagram of a first embodiment of the first invention.

【図6】同上実施例の動作を説明するフローチャートFIG. 6 is a flowchart for explaining the operation of the above embodiment.

【図7】第1の発明の第2実施例の構成図FIG. 7 is a configuration diagram of a second embodiment of the first invention.

【図8】同上実施例の動作を説明するフローチャートFIG. 8 is a flowchart for explaining the operation of the above embodiment.

【図9】第2の発明の一実施例の動作を説明するフロー
チャート
FIG. 9 is a flowchart for explaining the operation of the embodiment of the second invention.

【図10】同上実施例の放電電流の積分動作の説明図FIG. 10 is an explanatory diagram of the integral operation of the discharge current according to the embodiment.

【図11】第3の発明の一実施例の動作を説明するフロー
チャート
FIG. 11 is a flowchart for explaining the operation of the embodiment of the third invention.

【図12】同上実施例の開放端子電圧と放電深度との関係
を示す図
FIG. 12 is a diagram showing the relationship between the open terminal voltage and the depth of discharge in the above embodiment.

【図13】同上実施例の残存容量とバッテリ温度の関係を
示す図
FIG. 13 is a diagram showing a relationship between the remaining capacity and the battery temperature in the above embodiment.

【図14】第4の発明の一実施例の構成図FIG. 14 is a configuration diagram of an embodiment of the fourth invention.

【図15】同上実施例の動作を説明するフローチャートFIG. 15 is a flowchart illustrating the operation of the above embodiment.

【符号の説明】[Explanation of symbols]

1 バッテリ 2 冷却ファン 3 電流センサ 4 冷却ファン制御部 7 電圧センサ 8 冷却風通路 9,10 温度センサ 11 流量センサ 1 Battery 2 Cooling Fan 3 Current Sensor 4 Cooling Fan Control Unit 7 Voltage Sensor 8 Cooling Air Passage 9, 10 Temperature Sensor 11 Flow Rate Sensor

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】バッテリの充放電電流を検出する電流検出
手段と、 検出電流値と予め記憶されたバッテリ内部抵抗値とから
バッテリ発熱量を算出する発熱量算出手段と、 バッテリを冷却する冷却手段と、 算出した発熱量に基づいて前記冷却手段の駆動を制御す
る制御手段と、 を備えて構成したことを特徴とするバッテリ冷却装置。
1. A current detecting means for detecting a charging / discharging current of a battery, a heat generation amount calculating means for calculating a battery heat generation amount from a detected current value and a battery internal resistance value stored in advance, and a cooling means for cooling the battery. And a control means for controlling the driving of the cooling means based on the calculated heat generation amount.
【請求項2】バッテリの端子電圧を検出する電圧検出手
段と、 該電圧検出手段で検出したバッテリ開放時の開放端子電
圧及び定電流放電時の端子電圧と前記電流検出手段で検
出した定電流放電時の電流値とから実際のバッテリ内部
抵抗値を算出する内部抵抗値算出手段と、 算出した実際の内部抵抗値と予め記憶された内部抵抗値
とを比較し、値が異なる時には算出した内部抵抗値で現
在の記憶値を更新する内部抵抗値更新手段と、を設けた
請求項1記載のバッテリ冷却装置。
2. A voltage detecting means for detecting a terminal voltage of a battery, an open terminal voltage when the battery is opened and a terminal voltage during constant current discharging detected by the voltage detecting means, and a constant current discharging detected by the current detecting means. The internal resistance value calculation means for calculating the actual battery internal resistance value from the current value at the time and the calculated actual internal resistance value and the pre-stored internal resistance value are compared. The battery cooling device according to claim 1, further comprising an internal resistance value updating unit that updates the current stored value with the value.
【請求項3】バッテリの充放電電流を検出する電流検出
手段と、 検出電流値の一定時間当りの積分値を算出する積分手段
と、 バッテリを冷却する冷却手段と、 算出した積分値に基づいて前記冷却手段の駆動を制御す
る制御手段と、 を備えて構成したことを特徴とするバッテリ冷却装置。
3. A current detecting means for detecting a charging / discharging current of a battery, an integrating means for calculating an integrated value of a detected current value per constant time, a cooling means for cooling a battery, and a based on the calculated integrated value. A battery cooling device, comprising: a control unit that controls driving of the cooling unit.
【請求項4】バッテリの端子電圧を検出する電圧検出手
段と、 該電圧検出手段で検出したバッテリ開放時の開放端子電
圧に基づいてバッテリの残存容量を算出する残存容量算
出手段と、 バッテリの充放電電流を検出する電流検出手段と、 検出電流値に基づいてバッテリの温度上昇率を算出する
温度上昇率算出手段と、 バッテリを冷却する冷却手段と、 算出した残存容量と温度上昇率とに基づいて放電終了時
のバッテリ温度を推定する温度推定手段と、 該温度推定手段で推定したバッテリ温度に基づいて前記
冷却手段の駆動を制御する制御手段と、 を備えたことを特徴とするバッテリ冷却装置。
4. A voltage detecting means for detecting a terminal voltage of a battery, a remaining capacity calculating means for calculating a remaining capacity of the battery based on an open terminal voltage when the battery is opened detected by the voltage detecting means, and a battery charge. Based on the current detection means for detecting the discharge current, the temperature rise rate calculation means for calculating the temperature rise rate of the battery based on the detected current value, the cooling means for cooling the battery, and the calculated remaining capacity and temperature rise rate. Battery cooling device comprising: a temperature estimating means for estimating a battery temperature at the end of discharge by a battery; and a control means for controlling driving of the cooling means based on the battery temperature estimated by the temperature estimating means. .
【請求項5】バッテリの充放電電流を検出する電流検出
手段と、 検出電流値と予め記憶されたバッテリ内部抵抗値とから
バッテリ発熱量を算出する発熱量算出手段と、 バッテリを冷却する冷却手段と、 バッテリの放熱量を検出する放熱量検出手段と、 バッテリの発熱量と放熱量とに基づいてバッテリの温度
上昇率を算出する温度上昇率算出手段と、 温度上昇率に基づいて前記冷却手段の駆動を制御する制
御手段と、 を備えて構成したことを特徴とするバッテリ冷却装置。
5. A current detecting means for detecting a charging / discharging current of the battery, a heat generation amount calculating means for calculating a battery heat generation amount from the detected current value and a battery internal resistance value stored in advance, and a cooling means for cooling the battery. A heat dissipation amount detecting means for detecting a heat dissipation amount of the battery; a temperature increase rate calculating means for calculating a temperature increase rate of the battery based on the heat generation amount and the heat dissipation amount of the battery; and the cooling means based on the temperature increase rate. A battery cooling device comprising: a control unit that controls driving of the battery.
【請求項6】前記放熱量検出手段は、 バッテリが介装された冷却風通路内でバッテリの上流側
と下流側にそれぞれ配置される温度センサと、 前記冷却風通路の冷却風流量を検出する流量センサと、 両温度センサと流量センサからの各検出値に基づいてバ
ッテリの放熱量を演算する演算手段と、 で構成した請求項5記載のバッテリ冷却装置。
6. The heat radiation amount detecting means detects a temperature sensor arranged on each of an upstream side and a downstream side of a battery in a cooling air passage in which a battery is interposed, and a cooling air flow rate in the cooling air passage. The battery cooling device according to claim 5, further comprising: a flow rate sensor; and a computing unit that computes a heat radiation amount of the battery based on the detection values from the temperature sensor and the flow rate sensor.
JP29176094A 1994-11-25 1994-11-25 Battery cooling system Expired - Fee Related JP3733602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29176094A JP3733602B2 (en) 1994-11-25 1994-11-25 Battery cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29176094A JP3733602B2 (en) 1994-11-25 1994-11-25 Battery cooling system

Publications (2)

Publication Number Publication Date
JPH08148190A true JPH08148190A (en) 1996-06-07
JP3733602B2 JP3733602B2 (en) 2006-01-11

Family

ID=17773069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29176094A Expired - Fee Related JP3733602B2 (en) 1994-11-25 1994-11-25 Battery cooling system

Country Status (1)

Country Link
JP (1) JP3733602B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086231A1 (en) * 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Cooling fan control device and method
JP2008027888A (en) * 2006-06-22 2008-02-07 Panasonic Ev Energy Co Ltd Battery cooling device, cooling air volume control device, and program
KR101252210B1 (en) * 2011-08-10 2013-04-05 기아자동차주식회사 Cooling control method of high voltage battery system in electric vehicle
JP2013128354A (en) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp Power transmission/reception device, power transmission/reception system and power transmission/reception method
JP2014507745A (en) * 2010-12-17 2014-03-27 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Temperature control method for in-vehicle electrochemical energy storage device
JP2014232649A (en) * 2013-05-29 2014-12-11 日産自動車株式会社 Battery temperature estimation device and battery temperature estimation method
JP2015528176A (en) * 2012-06-11 2015-09-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Temperature control system for high temperature battery or high temperature electrolytic cell
WO2015153770A1 (en) * 2014-04-01 2015-10-08 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
RU2618773C2 (en) * 2013-01-30 2017-05-11 Мицубиси Электрик Корпорейшн Battery control device, electric energy battery system and control system
JPWO2016136507A1 (en) * 2015-02-23 2017-09-14 日本碍子株式会社 Storage battery control device
JP2018156866A (en) * 2017-03-17 2018-10-04 株式会社東芝 Temperature control device
US10128544B2 (en) * 2015-09-02 2018-11-13 General Electric Company Cooling for battery units in energy storage system
KR20200060753A (en) * 2017-09-30 2020-06-01 비와이디 컴퍼니 리미티드 In-vehicle battery temperature control system
WO2021191987A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Power management device and power storage system
US11271261B2 (en) 2017-09-30 2022-03-08 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle-mounted battery
US11527789B2 (en) 2017-09-30 2022-12-13 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086231A1 (en) * 2006-01-27 2007-08-02 Toyota Jidosha Kabushiki Kaisha Cooling fan control device and method
JP2007200780A (en) * 2006-01-27 2007-08-09 Toyota Motor Corp Controller for cooling fan
US8219248B2 (en) 2006-01-27 2012-07-10 Toyota Jidosha Kabushiki Kaisha Control device and control method for cooling fan
JP2008027888A (en) * 2006-06-22 2008-02-07 Panasonic Ev Energy Co Ltd Battery cooling device, cooling air volume control device, and program
US8039137B2 (en) 2006-06-22 2011-10-18 Panasonic Ev Energy Co., Ltd. Battery cooling device, air flow control device, and computer readable medium
JP2014507745A (en) * 2010-12-17 2014-03-27 バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト Temperature control method for in-vehicle electrochemical energy storage device
KR101252210B1 (en) * 2011-08-10 2013-04-05 기아자동차주식회사 Cooling control method of high voltage battery system in electric vehicle
JP2013128354A (en) * 2011-12-19 2013-06-27 Mitsubishi Electric Corp Power transmission/reception device, power transmission/reception system and power transmission/reception method
US9537189B2 (en) 2012-06-11 2017-01-03 Siemens Aktiengesellschaft Temperature control system for a high-temperature battery or a high-temperature electrolyzer
JP2015528176A (en) * 2012-06-11 2015-09-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Temperature control system for high temperature battery or high temperature electrolytic cell
US9910099B2 (en) 2013-01-30 2018-03-06 Mitsubishi Electric Corporation Battery monitoring device, power storage system, and control system
RU2618773C2 (en) * 2013-01-30 2017-05-11 Мицубиси Электрик Корпорейшн Battery control device, electric energy battery system and control system
JP2014232649A (en) * 2013-05-29 2014-12-11 日産自動車株式会社 Battery temperature estimation device and battery temperature estimation method
CN106463801A (en) * 2014-04-01 2017-02-22 密执安州立大学董事会 Real-time battery thermal management for electric vehicles
KR20160142336A (en) * 2014-04-01 2016-12-12 더 리젠츠 오브 더 유니버시티 오브 미시건 Real-time battery thermal management for electric vehicles
US9893394B2 (en) 2014-04-01 2018-02-13 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
WO2015153770A1 (en) * 2014-04-01 2015-10-08 The Regents Of The University Of Michigan Real-time battery thermal management for electric vehicles
CN106463801B (en) * 2014-04-01 2019-01-25 密执安州立大学董事会 Real-time battery thermal management for electric vehicle
JPWO2016136507A1 (en) * 2015-02-23 2017-09-14 日本碍子株式会社 Storage battery control device
US10128544B2 (en) * 2015-09-02 2018-11-13 General Electric Company Cooling for battery units in energy storage system
JP2018156866A (en) * 2017-03-17 2018-10-04 株式会社東芝 Temperature control device
KR20200060753A (en) * 2017-09-30 2020-06-01 비와이디 컴퍼니 리미티드 In-vehicle battery temperature control system
US11271261B2 (en) 2017-09-30 2022-03-08 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle-mounted battery
US11440373B2 (en) 2017-09-30 2022-09-13 Byd Company Limited Temperature regulating system of in-vehicle battery
US11527789B2 (en) 2017-09-30 2022-12-13 Byd Company Limited Temperature adjustment method and temperature adjustment system for vehicle
WO2021191987A1 (en) * 2020-03-23 2021-09-30 Tdk株式会社 Power management device and power storage system

Also Published As

Publication number Publication date
JP3733602B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JPH08148190A (en) Battery cooling device
US7514904B2 (en) System and method for determining battery temperature
JP4872143B2 (en) Cooling device for secondary battery
JP3687212B2 (en) Battery cooling system
JP4295900B2 (en) Heater control device for exhaust gas sensor
US8741456B2 (en) Battery temperature control apparatus and battery temperature control method
US8686692B2 (en) Charge control system
JP2005011757A (en) Temperature abnormality detector for secondary battery and abnormality detection method therefor
US7071658B2 (en) Protection of a generator without measuring temperature
JP2007048485A (en) Battery cooling apparatus for vehicle
JP2003304604A (en) Method and apparatus for controlling motor
JPH0919074A (en) Charging control system
JP3505826B2 (en) Regenerative braking device for electric vehicles
EP1052757A2 (en) Charge control apparatus for a battery pack
JP3972789B2 (en) Charge amount adjustment device for battery pack
JPH0992347A (en) Battery cooling device
JP4048698B2 (en) Control device and control method for vehicle cooling fan
JP2019152551A (en) Battery degradation determining device
JP2003100356A (en) Degradation decision equipment and degradation decision method for battery
JP2002063946A (en) Dew condensation prevention device of battery system for electric automobile
JP3849546B2 (en) Temperature sensor state detection device and state detection method
JP4259411B2 (en) DC-DC converter
JP4049044B2 (en) Voltage generator for vehicle generator
JP4032436B2 (en) Internal temperature calculation device for secondary battery
JP4992177B2 (en) Battery cooling system abnormality detection system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050811

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees