JP3972789B2 - Charge amount adjustment device for battery pack - Google Patents

Charge amount adjustment device for battery pack Download PDF

Info

Publication number
JP3972789B2
JP3972789B2 JP2002297187A JP2002297187A JP3972789B2 JP 3972789 B2 JP3972789 B2 JP 3972789B2 JP 2002297187 A JP2002297187 A JP 2002297187A JP 2002297187 A JP2002297187 A JP 2002297187A JP 3972789 B2 JP3972789 B2 JP 3972789B2
Authority
JP
Japan
Prior art keywords
charge amount
cell
charge
variation
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002297187A
Other languages
Japanese (ja)
Other versions
JP2004135424A (en
Inventor
孝昭 安部
修 嶋村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002297187A priority Critical patent/JP3972789B2/en
Publication of JP2004135424A publication Critical patent/JP2004135424A/en
Application granted granted Critical
Publication of JP3972789B2 publication Critical patent/JP3972789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、組電池の単電池(セル)間の充電量を調整する装置に関する。
【0002】
【従来の技術】
複数のセルが直列に接続された組電池では、セルの充電量にバラツキがあると出力電圧や放電容量が低下する。そこで、スイッチと抵抗とが直列に接続されたバイパス回路を各セルに並列に接続するとともに、各セルの両端電圧を検出し、検出したセル電圧に基づいて各セルの充電量のバラツキを算出し、各セルのバイパス回路を選択的に作動させて各セルの充電量が均一になるように調整する組電池の充電量調整装置が知られている(例えば特許文献1参照)。
【0003】
この出願の発明に関連する先行技術文献としては次のものがある。
【特許文献1】
特開2002−101565号公報(第5−9頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の組電池の充電量調整装置では、各セルの電圧を検出し、各セルの検出電圧に基づいて各セルの充電量のバラツキを算出しているので、各セルの電圧を検出する電圧検出回路と、各セルごとの検出結果をコントローラーへ送信する信号回路とが必要となり、装置のコストがかかるという問題がある。
【0005】
本発明の目的は、組電池の充電量調整装置のコストを低減することにある。
【0006】
【課題を解決するための手段】
本発明は、単電池(セル)を複数個直列に接続した組電池、または複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池の充電量を調整する装置において、セルの温度を検出し、セル温度検出値に基づいてセルまたはセル並列回路の充電量のバラツキを推定し、充電量バラツキの推定結果が所定値を超えたら、組電池の目標充電量をツェナーダイオードのツェナー電圧に相当する充電量よりもわずかに高い値に設定し、組電池の充電量が目標充電量となるように組電池の充電制御を行う
【0007】
【発明の効果】
本発明によれば、装置のコストを低減できる。
【0008】
【発明の実施の形態】
本発明をパラレルハイブリッド車両に適用した一実施の形態を説明する。なお、本発明はパラレルハイブリッド車両に好適であるが、パラレルハイブリッド車両に限定されず、例えばシリーズハイブリッド車両や電気自動車などの組電池を用いたあらゆる装置に適用することができる。
【0009】
図1は一実施の形態の全体構成を示す。一実施の形態のパラレルハイブリッド車両はエンジン1の出力軸に交流モーター2の回転軸が直結されており、エンジン1と交流モーター2のいずれか一方または両方の制駆動力により走行する。エンジン1および/またはモーター2の制駆動力は変速機3および減速機4を介して駆動輪5a、5bへ伝達される。バッテリー6はインバーター7を介してモーター2へ駆動電力を供給するとともに、インバーター7を介してモーター2から回生電力を受け入れる。車両コントローラー8は、エンジン1、バッテリー6およびインバーター7を制御する。
【0010】
図2は、一実施の形態のパラレルハイブリッド車両のバッテリーと車両コントローラーの詳細を示す。一実施の形態のバッテリー6は、2個のセル(単電池)を並列に接続した並列回路をn組直列に接続した組電池である。図2に示すように、セルC11とC12の並列回路からセルCn1とCn2の並列回路までn組のセル並列回路を直列に接続して構成する。
【0011】
バッテリー6のセル並列回路にはそれぞれ、抵抗器RとツェナーダイオードZの直列回路を並列に接続する。例えばセルC11とC12の並列回路には、抵抗器R1とツェナーダイオードZ1の直列回路を並列に接続する。他のセル並列回路にも同様に、抵抗器RとツェナーダイオードZの直列回路を並列に接続する。
【0012】
これらの抵抗器RとツェナーダイオードZの直列回路は、各セル並列回路のセルの充電量を調整し、すべてのセル並列回路の充電量を均一にする回路である。例えばセルC11とC12の並列回路の充電量の増加にともなってこのセル並列回路の端子電圧が上昇し、ツェナーダイオードZ1のツェナー電圧Vzを超えると、充電電流は並列回路のセルC11、C12を流れず、抵抗器R1とツェナーダイオードZ1の直列回路を流れるようになる。したがって、セル並列回路の端子電圧はツェナー電圧Vz以上には上昇しない。
【0013】
通常の使用状態において、セル並列回路の端子電圧はセルC11とC12の充電量にほぼ比例しており、セル並列回路の端子電圧をツェナー電圧Vzで制限すれば、セル並列回路の充電量をツェナー電圧Vzに応じた充電量に制限することができる。したがって、すべてのツェナーダイオードZのツェナー電圧Vzをほぼ同一の値に揃えておけば、バッテリー6の各セル並列回路の充電量を均一に調整することができる。この抵抗器RとツェナーダイオードZの直列回路を充電電流バイパス回路と呼ぶ。
【0014】
バイパス回路のツェナーダイオードZの代わりにトランジスターやFETなどのスイッチ素子を用いるとともに、セル並列回路ごとに両端電圧を検出する電圧センサーを設け、セル並列回路の両端電圧が所定電圧に達したらバイパス回路のスイッチ素子を閉路して充電電流をバイパスし、セル並列回路の充電量を調整する方法がある。このような充電量調整装置では、セル並列回路ごとに電圧センサーを設置し、検出電圧に基づいてコントローラーによりバイパス回路のスイッチ素子を開閉制御しなければならないため、制御が複雑になる上に装置のコストがかかる欠点がある。この一実施の形態のバイパス回路では、各バイパス回路のツェナーダイオードZのツェナー電圧Vzを揃えるだけで、各セル並列回路の充電量を均一に調整することができ、制御を簡略化できる上に、各セル並列回路に電圧センサーを設ける必要がなく、装置のコストを低減することができる。
【0015】
バッテリー6の両端には電圧センサーV1を接続し、バッテリー6の端子電圧(以下、総電圧という)VBを検出する。車両コントローラー8は、バッテリー6の総電圧VBに基づいてバッテリー6の充電状態SOC[%]を求める。
【0016】
車両コントローラー8はCPU8a、ROM8b、RAM8c、A/Dコンバーター8dなどの備え、バッテリー6の各セル並列回路の充電量を調整する。この車両コントローラー8には、温度センサーT11〜T14、T21〜T24と、メインスイッチ9を接続する。温度センサーT11〜T14、T21〜T24は、バッテリー6のセル温度を検出するためのセンサーである。これらの温度センサーにはサーミスタなどの感温素子を用いることができる。また、メインスイッチ9は従来のエンジン車両のイグニッションスイッチに相当するものである。
【0017】
図3はバッテリー内部の構造を示す。一実施の形態のバッテリー6は、セル並列回路を6列、4段に積層した例を示す。各段の間には間隙を設け、これらの間隙に送風機(不図示)により冷却空気を送ってバッテリーセルを冷却する。冷却風が図3に示すようにバッテリー6の左側から右側へ流れる場合には、温度センサーT11〜T14を冷却風上流端のセル近傍に配置するとともに、温度センサーT21〜T24を冷却風下流端のセル近傍に配置する。つまり、温度センサーT11〜T14により冷却風上流端の最も温度の低いセルの温度th11〜th14を検出し、温度センサーT21〜T24により冷却風下流端の最も温度の高いセルの温度th21〜th24を検出する。
【0018】
なお、バッテリーの内部構造はこの一実施の形態の構造に限定されるものではないが、どのような構造のバッテリーに対しても冷却風上流端のセル温度と冷却風下流端のセル温度を検出するのが望ましい。これにより、すべてのセルに温度センサーを設置して最高と最低のセル温度を選ぶのに比べ、使用する温度センサーの数が少なくなって装置のコストを低減することができる。
【0019】
この一実施の形態では抵抗器RとツェナーダイオードZを直列に接続したバイパス回路を用い、セル並列回路の充電量を調整する。セル並列回路に流れていた充電電流がバイパス回路に流れ始めるセル並列回路の電圧は、ツェナーダイオードZのツェナー電圧Vzであり、ツェナー電圧Vzを変えることによってセル並列回路の電圧、すなわち充電量を変えることができる。つまり、ツェナー電圧Vzの低いツェナーダイオードZを用いれば、セル並列回路の電圧が低い状態、すなわち充電量が少ない状態ですべてのセル並列回路の充電量均一化を実施することができる。逆に、ツェナー電圧Vzの高いツェナーダイオードZを用いれば、セル並列回路の電圧が高い状態、すなわち充電量が多い状態ですべてのセル並列回路の充電量均一化を実施することができる。
【0020】
ところが、ツェナー電圧Vzの低いツェナーダイオードZを用い、充電量が少ないときにバイパス回路へ充電電流を流して充電量の調整を行うと、充電電流がバイパス回路へ流れる頻度が多くなって電力を無駄に捨てることになる。逆に、ツェナー電圧Vzの高いツェナーダイオードZを用い、充電量が多いときにバイパス回路へ充電電流を流して充電量の調整を行うと、充電電流がバイパス回路へ流れる頻度が少なくなって電力を無駄に捨てることはなくなるが、充電量を調整する機会が少なくなり、すべてのセル並列回路の充電量を均一にすることが困難になる。
【0021】
特に、パラレルハイブリッド車両では、通常、バッテリーの充電状態SOCが30〜70%の目標範囲内になるようにバッテリーの充放電制御が行われるので、バッテリーがSOC70%を超える充電量になる機会が少ない。
【0022】
そこで、バッテリーが満充電に近い状態にあるときに充電量の調整が実施されるツェナー電圧Vzを選択するとともに、定期的にバッテリーの目標充電状態SOCを100%にして満充電状態まで充電を行う必要がある。しかし、定期的に満充電状態までの充電を行う方法では、セルまたはセル並列回路の充電量のバラツキが少なくても満充電が実施されることになり、やはり無駄な電力を消費することになる。
【0023】
この一実施の形態では、無駄な電力消費を防止して充電量のバラツキを調整するために、バッテリーが満充電またはそれに近い状態にあるときに充電量の調整が実施されるツェナー電圧Vzを選択するとともに、バッテリー6のセル並列回路の充電量のバラツキを推定し、充電量バラツキの推定値が所定値以上になったらバッテリー6の満充電を実施する。
【0024】
上述したように、セル並列回路ごとに電圧センサーを設置し、各セル並列回路の端子電圧を計測してセル並列回路の充電量のバラツキを検出する従来の方法では、制御が複雑になる上に装置のコストがかかる欠点がある。この一実施の形態では、各セル並列回路に電圧センサーを設けずに、後述する方法によりセル並列回路の充電量のバラツキを推定する。
【0025】
図4は、単電池の温度と充電状態SOCに対する自己放電速度の関係を示す。一般に、組電池のセル(単電池)は温度に応じて自己放電速度が異なるため、温度が異なる環境下に長時間置かれるとセルごとの充電量にバラツキが発生する。図4は、マンガン系リチウムイオン電池の温度と充電状態SOCに対する自己放電速度dSOC/dtの特性を表す。この特性図から明らかなように、セル温度が高いほど自己放電速度が速く、またセルの充電状態SOCが高いほど自己放電速度が速い。
【0026】
そこで、充電量の調整を行う組電池のセル温度と充電状態SOCに対する自己放電速度の特性を計測し、自己放電速度データマップとして記憶しておく。そして、使用中の組電池のセル温度を計測し、最高のセル温度と最低のセル温度を求めるとともに、組電池の総電圧を計測して組電池の充電状態SOCを検出する。次に、上述した自己放電速度データマップを参照し、最低セル温度に対応する自己放電速度SV1と最高セル温度に対応する自己放電速度SV2を表引き演算し、次式により組電池の現在の充電量バラツキSBを演算により推定する。
【数1】
SB=SBold+(SV2−SV1)・Δt
数式1において、SBoldは前回の演算時の充電量バラツキ、Δtは充電量バラツキの演算実行時間間隔である。
【0027】
組電池の推定充電量バラツキSBが所定値以上になったら、組電池の目標充電状態SOCを少なくともツェナー電圧Vzに相当する充電状態SOCよりもわずかに高いSOCに設定し、組電池の充電制御を行って充電量のバラツキを調整する。
【0028】
ここで、ツェナーダイオード電圧Vzに相当する充電状態SOCよりもはるかに高いSOC、例えばSOC100%を設定すると、充電量のバラツキがなくなっているのにバラツキ調整が続けられることになり、無駄な電力を消費することになるから、少なくともツェナー電圧Vzに相当する充電状態SOCよりもわずかに高い目標SOCを設定する。
【0029】
図5は、一実施の形態の充電量調整プログラムを示すフローチャートである。車両コントローラー8のCPU8aは、メインスイッチ9がオン状態にある間、この充電量調整プログラムを繰り返し実行する。
【0030】
ステップ1において、バッテリー6の充電状態SOCが目標範囲30〜70%内に収まるように充放電を制御する、通常の充電量制御を行う。続くステップ2で、図6に示すサブルーチンを実行して充電量バラツキSBを演算する。
【0031】
図6のステップ21において、電圧センサーV1によりバッテリー総電圧VBを計測する。ステップ22では、バッテリー総電圧VBに基づいてバッテリー6の充電状態SOCを演算する。具体的には、予めバッテリー6の総電圧VBに対する充電状態SOCを計測し、SOCデータマップとして記憶しておき、計測したバッテリー総電圧VBに対応する充電状態SOCを表引き演算により求める。
【0032】
次に、ステップ23で、冷却風上流端のセル近傍に設置した温度センサーT11〜T14によりセル温度th11〜th14を計測するとともに、冷却風下流端のセル近傍に設置した温度センサーT21〜T24によりセル温度th21〜th24を計測する。図3に示すように、バッテリー6のセルの中で冷却風上流端のセルの温度が最も低く、冷却風下流端のセルの温度が最も高いから、温度センサーT11〜T14により最低のセル温度th11〜th14を計測し、温度センサーT21〜T24により最高のセル温度th21〜th24を計測することになる。
【0033】
ステップ24において、冷却風上流端のセル温度th11〜th14の平均値を求め、予め記憶しておいた図4に示す自己放電速度データマップから、セル温度th11〜th14の平均値とステップ22で求めたバッテリー充電量SOCとに対応する自己放電速度SV1を表引き演算する。続くステップ25でも同様に、冷却風下流端のセル温度th21〜th24の平均値を求め、上記自己放電速度データマップからセル温度th21〜th24の平均値とバッテリー充電量SOCに対応する自己放電速度SV2を表引き演算する。
【0034】
ステップ26では、前回の充電量バラツキ演算時の充電量バラツキSBoldと、冷却風上流端セルの自己放電速度SV1と、冷却風下流端セルの自己放電速度SV2と、充電量バラツキ演算時間間隔Δtとに基づいて、上記数式1により今回の充電量バラツキSBを演算により推定する。演算後、今回の充電量バラツキSBにより前回の充電量バラツキSBoldを更新し、図5のステップ3へリターンする。
【0035】
リターン後の図5のステップ3において、推定充電量バラツキSBが所定値K以上か否かを判定し、所定値K未満の場合はステップ1へ戻って通常充電量制御を継続する。一方、推定充電量バラツキSBが所定値K以上の場合はステップ4へ進み、高充電量制御を行う。具体的には、バッテリー6の目標充電状態SOCを、少なくともツェナー電圧Vzに相当する充電状態SOCよりもわずかに高いSOCに設定し、バッテリー6の充放電を制御して充電量のバラツキを調整する。
【0036】
ステップ5では充電量のバラツキ調整が終了したか否かを判定する。バッテリー6のセルの内、冷却風下流端に配置されたセルは最も温度が高く、最も自己放電速度が速い。したがって、冷却風下流端のセルは最も充電量が少ない。そこで、バッテリー6の充放電電流を積算して冷却風下流端のセルの充電量を求め、冷却風下流端のセルの充電量が目標充電量SOCに達したかどうかを判定する。冷却風下流端の最も温度の高いセルの充電量が目標充電量SOCに達したら、充電量のバラツキ調整が終了したとする。
【0037】
セル並列回路の充電量のバラツキ調整が終了していない場合はステップ4へ戻り、高充電量制御を継続して充電量のバラツキを調整する。一方、充電量のバラツキが終了した場合はステップ6へ進み、今回の充電量バラツキSBと前回演算時の充電量バラツキSBoldを0にリセットし、ステップ1へ戻って上述した通常の充電量制御を実行する。
【0038】
このように、一実施の形態では、複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池の充電量を調整する装置において、セルの温度を検出し、セル温度検出値に基づいてセル並列回路の充電量のバラツキを推定し、この推定結果により充電量調整を実施するようにした。セル並列回路を複数組直列に接続した組電池において、従来の充電量調整装置のようにセル並列回路ごとに電圧センサーを設けると、組電池側の高圧回路と電圧センサー側の低圧回路とを絶縁する必要があるため、信号回路が複雑になり、コストがかかる。この一実施の形態によれば、各セル並列回路に電圧センサーを設ける必要がなく、また、温度センサーは組電池側高圧回路との絶縁が容易に取れるので、装置のコストを低減することができる。
【0039】
また、この一実施の形態では、抵抗器とツェナーダイオードとを直列に接続した回路であって、セル並列回路に流れる充電電流をバイパスする回路をセル並列回路ごとに設け、充電量バラツキの推定結果が所定値を超えたら、バイパス回路が作動するように組電池の充電制御を行うようにした。これにより、トランジスターやFETなどのスイッチ素子と抵抗器とを直列に接続した従来のバイパス回路のようにスイッチ素子を制御する必要がなく、制御を簡略化できる上に、無駄な電力を消費することなくセル並列回路の充電量を均一にすることができる。
【0040】
さらに、この一実施の形態では、組電池の冷却風上流端に配置されたセルと冷却風下流端に配置されたセルの温度を検出し、冷却風上流端のセル温度検出値と冷却風下流端のセル温度検出値とに基づいてセル並列回路の充電量のバラツキを推定するようにしたので、すべてのセルに温度センサーを設置して最高と最低のセル温度を選ぶのに比べ、使用する温度センサーの数が少なくなって装置のコストをさらに低減することができる。
【0041】
この一実施の形態ではまた、組電池の充電状態SOCを検出し、セル温度検出値とSOC検出値とに基づいてセル並列回路の充電量のバラツキを推定するようにした。パラレルハイブリッド車両では、通常、組電池のSOCが30〜70%の目標範囲に収まるように充放電制御が行われるため、セル温度検出値のみに基づいてセル並列回路の充電量のバラツキを推定しても十分な推定結果を得ることができる。しかし、セル温度検出値とSOC検出値とに基づいてセル並列回路の充電量のバラツキを推定することによって、さらに正確な推定結果を得ることができる。
【0042】
特許請求の範囲の構成要素と一実施の形態の構成要素との対応関係は次の通りである。すなわち、温度センサーT11〜T14、T21〜T24がセル温度検出手段を、車両コントローラー8が充電量バラツキ推定手段および制御手段をそれぞれ構成する。なお、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。
【0043】
なお、上述した一実施の形態では、2個のセルを並列に接続したセル並列回路をn組直列に接続した組電池を例に上げて説明したが、本願発明はこの一実施の形態の組電池に限定されるものではない。単一のセルを複数個直列に接続した組電池、あるいは3個以上のセルを並列に接続した並列回路を複数組直列に接続した組電池に対して本願発明を適用することができる。単一のセルを複数個直列に接続した組電池に対して本願発明を適用する場合には、上述した一実施の形態のセル並列回路を単一のセルと置き換えて考えればよい。
【0044】
また、本願発明は、セル(単電池)の種類についても特に限定されるものではなく、例えばマンガン系、コバルト系、ニッケル系のリチウムイオン電池や、各種のニッケル水素電池など、あらゆる種類のセルに対して本願発明を適用することができる。
【図面の簡単な説明】
【図1】 一実施の形態の全体構成を示す図である。
【図2】 一実施の形態のパラレルハイブリッド車両のバッテリーと車両コントローラーの詳細を示す図である。
【図3】 バッテリー内部の構造を示す図である。
【図4】 単電池の温度と充電状態SOCに対する自己放電速度の関係を示す図である。
【図5】 一実施の形態の充電量調整プログラムを示すフローチャートである。
【図6】 一実施の形態の充電量バラツキ演算サブルーチンを示すフローチャートである。
【符号の説明】
1 エンジン
2 モーター
3 変速機
4 減速機
5a、5b 駆動輪
6 バッテリー
7 インバーター
8 車両コントローラー
8a CPU
8b ROM
8c RAM
8c A/Dコンバーター
9 メインスイッチ
C11、C12、C21、C22、C31、C32、Cn1、Cn2 セル(単電池)
R1、R2、R3、Rn 抵抗器
Z1、Z2、Z3、Zn ツェナーダイオード
V1 電圧センサー
T11〜T13、T21〜T24 温度センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for adjusting the amount of charge between single cells (cells) of an assembled battery.
[0002]
[Prior art]
In an assembled battery in which a plurality of cells are connected in series, the output voltage and the discharge capacity are reduced when there is a variation in the charge amount of the cells. Therefore, a bypass circuit in which a switch and a resistor are connected in series is connected in parallel to each cell, the voltage across each cell is detected, and the variation in the charge amount of each cell is calculated based on the detected cell voltage. A battery pack charge amount adjusting device is known that selectively operates a bypass circuit of each cell to adjust the charge amount of each cell to be uniform (see, for example, Patent Document 1).
[0003]
Prior art documents related to the invention of this application include the following.
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-101565 (page 5-9, FIG. 1)
[0004]
[Problems to be solved by the invention]
However, the above-described conventional battery pack charge amount adjustment device detects the voltage of each cell and calculates the variation in the charge amount of each cell based on the detected voltage of each cell. A voltage detection circuit for detection and a signal circuit for transmitting a detection result for each cell to the controller are required, which causes a problem that the cost of the apparatus is increased.
[0005]
The objective of this invention is reducing the cost of the charge amount adjustment apparatus of an assembled battery.
[0006]
[Means for Solving the Problems]
The present invention relates to an apparatus for adjusting the charge amount of an assembled battery in which a plurality of single cells (cells) are connected in series, or an assembled battery in which a plurality of cell parallel circuits in which a plurality of cells are connected in parallel are connected in series. , And the variation in the charge amount of the cell or the cell parallel circuit is estimated based on the detected cell temperature value.If the estimation result of the variation in the charge amount exceeds a predetermined value, the target charge amount of the assembled battery is set to the value of the Zener diode. The battery pack is controlled to be charged to a value slightly higher than the charge amount corresponding to the Zener voltage so that the charge amount of the battery pack becomes the target charge amount .
[0007]
【The invention's effect】
According to the present invention, the cost of the apparatus can be reduced.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment in which the present invention is applied to a parallel hybrid vehicle will be described. The present invention is suitable for a parallel hybrid vehicle, but is not limited to a parallel hybrid vehicle, and can be applied to any device using a battery pack such as a series hybrid vehicle or an electric vehicle.
[0009]
FIG. 1 shows the overall configuration of an embodiment. In the parallel hybrid vehicle according to the embodiment, the rotating shaft of the AC motor 2 is directly connected to the output shaft of the engine 1, and the vehicle travels by the braking / driving force of one or both of the engine 1 and the AC motor 2. The braking / driving force of the engine 1 and / or the motor 2 is transmitted to the drive wheels 5a and 5b via the transmission 3 and the speed reducer 4. The battery 6 supplies driving power to the motor 2 via the inverter 7 and receives regenerative power from the motor 2 via the inverter 7. The vehicle controller 8 controls the engine 1, the battery 6 and the inverter 7.
[0010]
FIG. 2 shows details of the battery and the vehicle controller of the parallel hybrid vehicle according to the embodiment. The battery 6 according to one embodiment is an assembled battery in which n sets of parallel circuits in which two cells (unit cells) are connected in parallel are connected in series. As shown in FIG. 2, n sets of cell parallel circuits are connected in series from a parallel circuit of cells C11 and C12 to a parallel circuit of cells Cn1 and Cn2.
[0011]
A series circuit of a resistor R and a Zener diode Z is connected in parallel to each cell parallel circuit of the battery 6. For example, a series circuit of a resistor R1 and a Zener diode Z1 is connected in parallel to the parallel circuit of the cells C11 and C12. Similarly, the series circuit of the resistor R and the Zener diode Z is connected in parallel to other cell parallel circuits.
[0012]
The series circuit of the resistor R and the Zener diode Z is a circuit that adjusts the charge amount of the cells of each cell parallel circuit and makes the charge amounts of all the cell parallel circuits uniform. For example, when the charge amount of the parallel circuit of the cells C11 and C12 increases and the terminal voltage of the cell parallel circuit rises and exceeds the Zener voltage Vz of the Zener diode Z1, the charging current flows through the cells C11 and C12 of the parallel circuit. Instead, the current flows through a series circuit of the resistor R1 and the Zener diode Z1. Therefore, the terminal voltage of the cell parallel circuit does not rise above the Zener voltage Vz.
[0013]
In a normal use state, the terminal voltage of the cell parallel circuit is substantially proportional to the charge amount of the cells C11 and C12. If the terminal voltage of the cell parallel circuit is limited by the Zener voltage Vz, the charge amount of the cell parallel circuit is reduced. The amount of charge according to the voltage Vz can be limited. Therefore, if the Zener voltages Vz of all Zener diodes Z are set to substantially the same value, the charge amount of each cell parallel circuit of the battery 6 can be adjusted uniformly. A series circuit of the resistor R and the Zener diode Z is called a charging current bypass circuit.
[0014]
A switch element such as a transistor or FET is used in place of the zener diode Z of the bypass circuit, and a voltage sensor for detecting the voltage across each cell parallel circuit is provided. When the voltage across the cell parallel circuit reaches a predetermined voltage, the bypass circuit There is a method of adjusting the charge amount of the cell parallel circuit by closing the switch element to bypass the charging current. In such a charge amount adjustment device, a voltage sensor must be installed for each cell parallel circuit, and the switch element of the bypass circuit must be controlled to open and close by the controller based on the detected voltage. There is a drawback that costs. In the bypass circuit of this embodiment, the charge amount of each cell parallel circuit can be adjusted uniformly by simply aligning the Zener voltage Vz of the Zener diode Z of each bypass circuit, and the control can be simplified. It is not necessary to provide a voltage sensor in each cell parallel circuit, and the cost of the apparatus can be reduced.
[0015]
A voltage sensor V1 is connected to both ends of the battery 6, and a terminal voltage (hereinafter referred to as a total voltage) VB of the battery 6 is detected. The vehicle controller 8 obtains the state of charge SOC [%] of the battery 6 based on the total voltage VB of the battery 6.
[0016]
The vehicle controller 8 includes a CPU 8a, a ROM 8b, a RAM 8c, an A / D converter 8d, and the like, and adjusts the charge amount of each cell parallel circuit of the battery 6. Temperature sensors T11 to T14, T21 to T24, and a main switch 9 are connected to the vehicle controller 8. The temperature sensors T11 to T14 and T21 to T24 are sensors for detecting the cell temperature of the battery 6. A temperature sensitive element such as a thermistor can be used for these temperature sensors. The main switch 9 corresponds to an ignition switch for a conventional engine vehicle.
[0017]
FIG. 3 shows the internal structure of the battery. The battery 6 of one embodiment shows an example in which cell parallel circuits are stacked in six rows and four stages. Gaps are provided between the stages, and cooling air is sent to these gaps by a blower (not shown) to cool the battery cells. When the cooling air flows from the left side to the right side of the battery 6 as shown in FIG. 3, the temperature sensors T11 to T14 are arranged near the cell at the upstream end of the cooling air, and the temperature sensors T21 to T24 are arranged at the downstream end of the cooling air. Place near the cell. That is, the temperature th11 to th14 of the cell having the lowest temperature at the upstream end of the cooling air is detected by the temperature sensors T11 to T14, and the temperature th21 to th24 of the cell having the highest temperature at the downstream end of the cooling air is detected by the temperature sensors T21 to T24. To do.
[0018]
The internal structure of the battery is not limited to the structure of this embodiment, but the cell temperature at the upstream end of the cooling air and the cell temperature at the downstream end of the cooling air are detected for any battery structure. It is desirable to do. As a result, the number of temperature sensors to be used can be reduced and the cost of the apparatus can be reduced as compared with installing temperature sensors in all cells and selecting the highest and lowest cell temperatures.
[0019]
In this embodiment, a bypass circuit in which a resistor R and a Zener diode Z are connected in series is used to adjust the charge amount of the cell parallel circuit. The voltage of the cell parallel circuit where the charging current flowing in the cell parallel circuit starts to flow into the bypass circuit is the Zener voltage Vz of the Zener diode Z, and the voltage of the cell parallel circuit, that is, the charge amount is changed by changing the Zener voltage Vz. be able to. That is, if the Zener diode Z having a low Zener voltage Vz is used, the charge amounts of all the cell parallel circuits can be equalized in a state where the voltage of the cell parallel circuit is low, that is, in a state where the charge amount is small. On the contrary, if the Zener diode Z having a high Zener voltage Vz is used, the charge amounts of all the cell parallel circuits can be equalized in a state where the voltage of the cell parallel circuit is high, that is, in a state where the charge amount is large.
[0020]
However, if a Zener diode Z with a low Zener voltage Vz is used and the charge amount is adjusted by flowing the charge current to the bypass circuit when the charge amount is small, the charge current is frequently flowed to the bypass circuit and power is wasted. Will be thrown away. Conversely, if a Zener diode Z with a high Zener voltage Vz is used and the charge amount is adjusted by flowing a charge current to the bypass circuit when the charge amount is large, the frequency of the charge current flowing to the bypass circuit is reduced and power is reduced. Although it is not thrown away unnecessarily, there are fewer opportunities to adjust the charge amount, and it becomes difficult to make the charge amounts of all the cell parallel circuits uniform.
[0021]
In particular, in a parallel hybrid vehicle, the battery charge / discharge control is normally performed so that the state of charge SOC of the battery is within a target range of 30 to 70%, and therefore, there is little opportunity for the battery to have a charge amount exceeding SOC 70%. .
[0022]
Therefore, the Zener voltage Vz is selected so that the amount of charge is adjusted when the battery is nearly fully charged, and the battery is periodically charged to the fully charged state by setting the target charge state SOC of the battery to 100%. There is a need. However, in the method of periodically charging to a fully charged state, even if there is little variation in the amount of charge of the cell or the cell parallel circuit, full charging is performed, and wasteful power is still consumed. .
[0023]
In this embodiment, in order to prevent wasteful power consumption and adjust the variation in the charge amount, the Zener voltage Vz at which the charge amount is adjusted when the battery is fully charged or close to it is selected. At the same time, the variation in the charge amount of the cell parallel circuit of the battery 6 is estimated, and the battery 6 is fully charged when the estimated value of the charge amount variation exceeds a predetermined value.
[0024]
As described above, the conventional method of installing a voltage sensor for each cell parallel circuit and measuring the terminal voltage of each cell parallel circuit to detect the variation in the charge amount of the cell parallel circuit makes the control complicated. There is a disadvantage that the cost of the apparatus is high. In this embodiment, the variation in the charge amount of the cell parallel circuit is estimated by a method described later without providing a voltage sensor in each cell parallel circuit.
[0025]
FIG. 4 shows the relationship between the cell temperature and the self-discharge rate with respect to the state of charge SOC. In general, a battery (unit cell) of an assembled battery has a self-discharge rate that varies depending on the temperature. Therefore, when the cell is placed in an environment having a different temperature for a long time, the amount of charge for each cell varies. FIG. 4 shows the characteristics of the self-discharge rate dSOC / dt with respect to the temperature of the manganese-based lithium ion battery and the state of charge SOC. As is apparent from this characteristic diagram, the higher the cell temperature, the faster the self-discharge rate, and the higher the state of charge SOC of the cell, the faster the self-discharge rate.
[0026]
Therefore, the characteristics of the self-discharge rate with respect to the cell temperature and the state of charge SOC of the assembled battery whose charge is adjusted are measured and stored as a self-discharge rate data map. Then, the cell temperature of the assembled battery in use is measured to obtain the highest cell temperature and the lowest cell temperature, and the total voltage of the assembled battery is measured to detect the state of charge SOC of the assembled battery. Next, the self-discharge rate SV1 corresponding to the lowest cell temperature and the self-discharge rate SV2 corresponding to the highest cell temperature are calculated by referring to the above-described self-discharge rate data map, and the current charge of the assembled battery is calculated by the following equation: The amount variation SB is estimated by calculation.
[Expression 1]
SB = SBold + (SV2−SV1) · Δt
In Formula 1, SBold is a charge amount variation at the time of the previous calculation, and Δt is a calculation execution time interval of the charge amount variation.
[0027]
When the estimated charge amount variation SB of the assembled battery exceeds a predetermined value, the target charge state SOC of the assembled battery is set to an SOC that is slightly higher than the charged state SOC corresponding to at least the Zener voltage Vz, and the charge control of the assembled battery is performed. Go to adjust the variation in charge.
[0028]
Here, if a SOC much higher than the state of charge SOC corresponding to the Zener diode voltage Vz is set, for example, SOC 100%, the variation adjustment is continued even though the variation in the charge amount is eliminated, and wasteful power is consumed. Since it will be consumed, a target SOC slightly higher than the state of charge SOC corresponding to at least the Zener voltage Vz is set.
[0029]
FIG. 5 is a flowchart illustrating a charge amount adjustment program according to an embodiment. The CPU 8a of the vehicle controller 8 repeatedly executes this charge amount adjustment program while the main switch 9 is on.
[0030]
In step 1, normal charge amount control is performed to control charging / discharging so that the state of charge SOC of the battery 6 falls within the target range of 30 to 70%. In the subsequent step 2, the subroutine shown in FIG. 6 is executed to calculate the charge amount variation SB.
[0031]
In step 21 of FIG. 6, the battery total voltage VB is measured by the voltage sensor V1. In step 22, the state of charge SOC of the battery 6 is calculated based on the total battery voltage VB. Specifically, the state of charge SOC for the total voltage VB of the battery 6 is measured in advance and stored as an SOC data map, and the state of charge SOC corresponding to the measured battery total voltage VB is obtained by a table calculation.
[0032]
Next, at step 23, the cell temperatures th11 to th14 are measured by the temperature sensors T11 to T14 installed near the cells at the upstream end of the cooling air, and the cells are measured by the temperature sensors T21 to T24 installed near the cells at the downstream end of the cooling air. Temperatures th21 to th24 are measured. As shown in FIG. 3, since the temperature of the cell at the upstream end of the cooling air is the lowest among the cells of the battery 6 and the temperature of the cell at the downstream end of the cooling air is the highest, the lowest cell temperature th11 is detected by the temperature sensors T11 to T14. ~ Th14 is measured, and the highest cell temperatures th21 to th24 are measured by the temperature sensors T21 to T24.
[0033]
In step 24, the average value of the cell temperatures th11 to th14 at the upstream end of the cooling air is obtained, and the average value of the cell temperatures th11 to th14 is obtained in step 22 from the self-discharge rate data map shown in FIG. The self-discharge speed SV1 corresponding to the battery charge amount SOC is calculated. In the subsequent step 25 as well, the average value of the cell temperatures th21 to th24 at the downstream end of the cooling air is obtained, and the self discharge rate SV2 corresponding to the average value of the cell temperatures th21 to th24 and the battery charge SOC from the self discharge rate data map. Is calculated.
[0034]
In step 26, the charge amount variation SBold at the time of the previous charge amount variation calculation, the self-discharge rate SV1 of the cooling wind upstream end cell, the self-discharge rate SV2 of the cooling wind downstream end cell, and the charge amount variation calculation time interval Δt Based on the above, the current charge amount variation SB is estimated by calculation according to the above formula 1. After the calculation, the previous charge amount variation SBold is updated by the current charge amount variation SB, and the process returns to step 3 in FIG.
[0035]
In step 3 of FIG. 5 after the return, it is determined whether or not the estimated charge amount variation SB is equal to or greater than a predetermined value K. If the estimated charge amount variation SB is less than the predetermined value K, the process returns to step 1 to continue the normal charge amount control. On the other hand, when the estimated charge amount variation SB is equal to or greater than the predetermined value K, the process proceeds to step 4 and high charge amount control is performed. Specifically, the target charge state SOC of the battery 6 is set to an SOC slightly higher than the charge state SOC corresponding to at least the Zener voltage Vz, and the charge / discharge of the battery 6 is controlled to adjust the variation in the charge amount. .
[0036]
In step 5, it is determined whether or not the variation adjustment of the charge amount is completed. Among the cells of the battery 6, the cell disposed at the downstream end of the cooling air has the highest temperature and the highest self-discharge rate. Therefore, the cell at the downstream end of the cooling air has the least amount of charge. Therefore, the charge / discharge current of the battery 6 is integrated to determine the charge amount of the cell at the downstream end of the cooling air, and it is determined whether the charge amount of the cell at the downstream end of the cooling air has reached the target charge amount SOC. When the charge amount of the cell having the highest temperature at the downstream end of the cooling air reaches the target charge amount SOC, the charge amount variation adjustment is finished.
[0037]
If the variation adjustment of the charge amount of the cell parallel circuit is not completed, the process returns to step 4 and the high charge amount control is continued to adjust the variation of the charge amount. On the other hand, when the variation in the charge amount is completed, the process proceeds to step 6 to reset the current charge amount variation SB and the charge amount variation SBold at the previous calculation to 0, and return to step 1 to perform the above-described normal charge amount control. Execute.
[0038]
Thus, in one embodiment, in an apparatus for adjusting the charge amount of an assembled battery in which a plurality of cell parallel circuits in which a plurality of cells are connected in parallel are connected in series, the temperature of the cell is detected, and the cell temperature detection value Based on the above, the variation in the charge amount of the cell parallel circuit is estimated, and the charge amount adjustment is performed based on the estimation result. In a battery pack in which multiple sets of cell parallel circuits are connected in series, if a voltage sensor is provided for each cell parallel circuit as in the conventional charge adjustment device, the high voltage circuit on the battery pack side is insulated from the low voltage circuit on the voltage sensor side. Therefore, the signal circuit becomes complicated and expensive. According to this embodiment, it is not necessary to provide a voltage sensor in each cell parallel circuit, and the temperature sensor can be easily insulated from the assembled battery side high voltage circuit, so that the cost of the apparatus can be reduced. .
[0039]
Further, in this embodiment, a circuit in which a resistor and a Zener diode are connected in series, and a circuit that bypasses the charging current flowing in the cell parallel circuit is provided for each cell parallel circuit, and the estimation result of the charge amount variation When the battery voltage exceeds a predetermined value, the charging control of the assembled battery is performed so that the bypass circuit operates. This eliminates the need to control the switch element as in a conventional bypass circuit in which a switch element such as a transistor or FET and a resistor are connected in series, simplifying the control, and consuming unnecessary power. Therefore, the charge amount of the cell parallel circuit can be made uniform.
[0040]
Furthermore, in this embodiment, the temperature of the cell disposed at the upstream end of the cooling air and the cell disposed at the downstream end of the cooling air are detected, and the detected cell temperature at the upstream end of the cooling air and the downstream of the cooling air are detected. Since the variation in the charge amount of the cell parallel circuit is estimated based on the detected cell temperature at the end, it is used compared to installing temperature sensors in all cells and selecting the highest and lowest cell temperature The number of temperature sensors can be reduced and the cost of the apparatus can be further reduced.
[0041]
In this embodiment, the state of charge SOC of the assembled battery is detected, and the variation in the charge amount of the cell parallel circuit is estimated based on the cell temperature detection value and the SOC detection value. In a parallel hybrid vehicle, charge / discharge control is normally performed so that the SOC of the assembled battery is within a target range of 30 to 70%. Therefore, the variation in the charge amount of the cell parallel circuit is estimated based only on the detected cell temperature. However, a sufficient estimation result can be obtained. However, a more accurate estimation result can be obtained by estimating the variation in the charge amount of the cell parallel circuit based on the detected cell temperature value and the detected SOC value.
[0042]
The correspondence between the constituent elements of the claims and the constituent elements of the embodiment is as follows. That is, the temperature sensors T11 to T14, T21 to T24 constitute cell temperature detection means, and the vehicle controller 8 constitutes charge amount variation estimation means and control means. In addition, each component is not limited to the said structure, unless the characteristic function of this invention is impaired.
[0043]
In the above-described embodiment, an example of an assembled battery in which n sets of cell parallel circuits in which two cells are connected in parallel is connected in series has been described. However, the present invention is a set of this embodiment. It is not limited to batteries. The present invention can be applied to a battery pack in which a plurality of single cells are connected in series, or a battery pack in which a plurality of parallel circuits in which three or more cells are connected in parallel are connected in series. When the present invention is applied to an assembled battery in which a plurality of single cells are connected in series, the above-described cell parallel circuit of the embodiment may be replaced with a single cell.
[0044]
The invention of the present application is not particularly limited with respect to the type of cell (single cell). For example, the present invention can be applied to all types of cells such as manganese-based, cobalt-based, nickel-based lithium ion batteries, and various nickel-hydrogen batteries. The present invention can be applied to the present invention.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of an embodiment.
FIG. 2 is a diagram showing details of a battery and a vehicle controller of the parallel hybrid vehicle according to the embodiment.
FIG. 3 is a diagram showing an internal structure of a battery.
FIG. 4 is a diagram showing the relationship between the temperature of the unit cell and the self-discharge rate with respect to the state of charge SOC.
FIG. 5 is a flowchart illustrating a charge amount adjustment program according to an embodiment.
FIG. 6 is a flowchart illustrating a charge amount variation calculation subroutine according to an embodiment;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Engine 2 Motor 3 Transmission 4 Reducer 5a, 5b Drive wheel 6 Battery 7 Inverter 8 Vehicle controller 8a CPU
8b ROM
8c RAM
8c A / D converter 9 Main switch C11, C12, C21, C22, C31, C32, Cn1, Cn2 cell (single cell)
R1, R2, R3, Rn Resistors Z1, Z2, Z3, Zn Zener diode V1 Voltage sensors T11-T13, T21-T24 Temperature sensors

Claims (6)

単電池(以下、セルと呼ぶ)を複数個直列に接続した組電池の充電量を調整する装置において、
抵抗器とツェナーダイオードとを直列に接続した回路であって、前記セルに流れる充電電流をバイパスする回路を前記セルごとに設け、
前記セルの温度を検出するセル温度検出手段と、
前記セル温度検出値に基づいて前記セルの充電量のバラツキを推定する充電量バラツキ推定手段と、
前記充電量バラツキの推定結果により充電量調整を実施する制御手段とを備え
前記制御手段は、前記充電量バラツキの推定結果が所定値を超えたら、前記組電池の目標充電量を前記ツェナーダイオードのツェナー電圧に相当する充電量よりもわずかに高い値に設定し、前記組電池の充電量が前記目標充電量となるように前記組電池の充電制御を行うことを特徴とする充電量調整装置。
In an apparatus for adjusting the amount of charge of an assembled battery in which a plurality of single cells (hereinafter referred to as cells) are connected in series,
A circuit in which a resistor and a Zener diode are connected in series, and a circuit for bypassing a charging current flowing through the cell is provided for each cell.
Cell temperature detecting means for detecting the temperature of the cell;
A charge amount variation estimating means for estimating a variation in the charge amount of the cell based on the detected cell temperature;
Control means for performing charge amount adjustment according to the estimation result of the charge amount variation ,
When the estimation result of the charge amount variation exceeds a predetermined value, the control means sets the target charge amount of the assembled battery to a value slightly higher than the charge amount corresponding to the Zener voltage of the Zener diode, and A charge amount adjusting device that performs charge control of the assembled battery so that a charge amount of the battery becomes the target charge amount .
請求項1に記載の組電池の充電量調整装置において、
前記セル温度検出手段は、組電池の冷却風上流端に配置されたセルと冷却風下流端に配置されたセルの温度を検出し、
前記充電量バラツキ推定手段は、前記冷却風上流端のセル温度検出値と前記冷却風下流端のセル温度検出値とに基づいて前記セルの充電量のバラツキを推定することを特徴とする組電池の充電量調整装置。
In the assembled battery charge amount adjusting device according to claim 1,
The cell temperature detection means detects the temperature of the cell disposed at the cooling wind upstream end of the assembled battery and the cell disposed at the cooling wind downstream end,
The charge amount variation estimating means estimates a variation in the charge amount of the cell based on a detected cell temperature value at the upstream end of the cooling air and a detected cell temperature value at the downstream end of the cooling air. Charge amount adjustment device.
請求項1または請求項2に記載の組電池の充電量調整装置において、
組電池の充電状態SOC( State Of Charge )を検出するSOC検出手段を備え、
前記充電量バラツキ推定手段は、前記セル温度検出値と前記SOC検出値とに基づいて前記セルの充電量のバラツキを推定することを特徴とする組電池の充電量調整装置。
In the assembled battery charge amount adjusting device according to claim 1 or 2,
Comprising a SOC detection means for detecting the assembled battery state of charge SOC (State Of Charge),
The charge amount adjustment device for an assembled battery, wherein the charge amount variation estimation unit estimates variation in the charge amount of the cell based on the cell temperature detection value and the SOC detection value .
複数のセルを並列に接続したセル並列回路を複数組直列に接続した組電池の充電量を調整する装置において、
抵抗器とツェナーダイオードとを直列に接続した回路であって、前記セル並列回路に流れる充電電流をバイパスする回路を前記セル並列回路ごとに設け、
セルの温度を検出するセル温度検出手段と、
前記セル温度検出値に基づいて前記セル並列回路の充電量のバラツキを推定する充電量バラツキ推定手段と、
前記充電量バラツキの推定結果により充電量調整を実施する制御手段とを備え、
前記制御手段は、前記充電量バラツキの推定結果が所定値を超えたら、前記組電池の目標充電量を前記ツェナーダイオードのツェナー電圧に相当する充電量よりもわずかに高い値に設定し、前記組電池の充電量が前記目標充電量となるように前記組電池の充電制御を行うことを特徴とする充電量調整装置。
In an apparatus for adjusting the amount of charge of an assembled battery in which a plurality of cell parallel circuits in which a plurality of cells are connected in parallel are connected in series,
A circuit in which a resistor and a Zener diode are connected in series, and a circuit that bypasses a charging current flowing through the cell parallel circuit is provided for each cell parallel circuit,
Cell temperature detecting means for detecting the temperature of the cell;
Charge amount variation estimation means for estimating variation in the charge amount of the cell parallel circuit based on the detected cell temperature;
Control means for performing charge amount adjustment according to the estimation result of the charge amount variation,
When the estimation result of the charge amount variation exceeds a predetermined value, the control means sets the target charge amount of the assembled battery to a value slightly higher than a charge amount corresponding to a Zener voltage of the Zener diode, and A charge amount adjusting apparatus that performs charge control of the assembled battery so that a charge amount of the battery becomes the target charge amount .
請求項4に記載の充電量調整装置において、
前記セル温度検出手段は、組電池の冷却風上流端に配置されたセルと冷却風下流端に配置されたセルの温度を検出し、
前記充電量バラツキ推定手段は、前記冷却風上流端のセル温度検出値と前記冷却風下流端のセル温度検出値とに基づいて前記セル並列回路の充電量のバラツキを推定することを特徴とする組電池の充電量調整装置。
In the charge amount adjustment apparatus according to claim 4,
The cell temperature detection means detects the temperature of the cell disposed at the cooling wind upstream end of the assembled battery and the cell disposed at the cooling wind downstream end,
The charge amount variation estimating means estimates a variation in the charge amount of the cell parallel circuit based on a cell temperature detection value at the cooling air upstream end and a cell temperature detection value at the cooling air downstream end. Charge amount adjustment device for battery pack.
請求項4または請求項5に記載の組電池の充電量調整装置において、
組電池の充電状態SOC( State Of Charge )を検出するSOC検出手段を備え、
前記充電量バラツキ推定手段は、前記セル温度検出値と前記SOC検出値とに基づいて前記セル並列回路の充電量のバラツキを推定することを特徴とする組電池の充電量調整装置。
In the assembled battery charge amount adjustment device according to claim 4 or 5,
Comprising a SOC detection means for detecting the assembled battery state of charge SOC (State Of Charge),
The charge amount adjustment device for an assembled battery, wherein the charge amount variation estimation means estimates a variation in a charge amount of the cell parallel circuit based on the cell temperature detection value and the SOC detection value .
JP2002297187A 2002-10-10 2002-10-10 Charge amount adjustment device for battery pack Expired - Fee Related JP3972789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297187A JP3972789B2 (en) 2002-10-10 2002-10-10 Charge amount adjustment device for battery pack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297187A JP3972789B2 (en) 2002-10-10 2002-10-10 Charge amount adjustment device for battery pack

Publications (2)

Publication Number Publication Date
JP2004135424A JP2004135424A (en) 2004-04-30
JP3972789B2 true JP3972789B2 (en) 2007-09-05

Family

ID=32286952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297187A Expired - Fee Related JP3972789B2 (en) 2002-10-10 2002-10-10 Charge amount adjustment device for battery pack

Country Status (1)

Country Link
JP (1) JP3972789B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548289B2 (en) * 2005-09-26 2010-09-22 日産自動車株式会社 Battery pack capacity adjustment device
JP4871180B2 (en) * 2007-03-20 2012-02-08 富士重工業株式会社 Storage device control device
JP5517477B2 (en) * 2009-03-30 2014-06-11 株式会社日本総合研究所 Battery control device, vehicle, and battery control method
JP5525743B2 (en) * 2009-03-30 2014-06-18 株式会社日本総合研究所 Battery control device, battery control method, and vehicle
JP5381303B2 (en) * 2009-05-08 2014-01-08 株式会社デンソー Battery pack capacity adjustment device
JP5465119B2 (en) * 2010-07-23 2014-04-09 本田技研工業株式会社 Battery remaining capacity calculation device
WO2019065190A1 (en) * 2017-09-26 2019-04-04 日本碍子株式会社 Lithium-ion assembled battery
JP7353910B2 (en) * 2019-10-16 2023-10-02 マクセル株式会社 Tool battery pack charger, charging method and program
CN114447491B (en) * 2022-01-29 2024-07-23 维沃移动通信有限公司 Electronic device and control method
JP2023141021A (en) 2022-03-23 2023-10-05 いすゞ自動車株式会社 Control device and control method

Also Published As

Publication number Publication date
JP2004135424A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
US7514904B2 (en) System and method for determining battery temperature
US9071072B2 (en) Available charging/discharging current calculation method and power supply device
US7492129B2 (en) Temperature abnormality detecting apparatus and method for secondary battery
JP4984527B2 (en) Secondary battery charge state estimation device and charge state estimation method
US8965722B2 (en) Apparatus for calculating residual capacity of secondary battery
US7928736B2 (en) Method of estimating state of charge for battery and battery management system using the same
US10403942B2 (en) Cooling system for vehicle-mounted secondary battery
US8039137B2 (en) Battery cooling device, air flow control device, and computer readable medium
US10451684B2 (en) Battery pack
CN104049216B (en) The method of vehicle, the method for controlling vehicle and estimation power brick state-of-charge
US20080224709A1 (en) Battery management system and driving method thereof
JP3972789B2 (en) Charge amount adjustment device for battery pack
EP3929606B1 (en) Battery management system, battery pack, electric vehicle, and battery management method
JP4129109B2 (en) Charge control apparatus and method
US20030232237A1 (en) Voltage control apparatus for battery pack
JP3932675B2 (en) Battery maximum input / output power estimation device
JP2003035755A (en) Method for detecting stored power in battery
JP2005037230A (en) Battery degradation detection device and method
JP2020508629A (en) Apparatus and method for estimating battery capacity, and apparatus and method for managing battery including the same
US6008626A (en) Apparatus for preventing deterioration of lithium secondary battery
JP2023509873A (en) Parallel multipack module output control device and method
JPH08148190A (en) Battery cooling device
JP2004271342A (en) Charging and discharging control system
JP2004227995A (en) Charge/discharge control device for hybrid vehicle
JP2001147260A (en) Remaining capacity detecting device for accumulator battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130622

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees