JP5381303B2 - Battery pack capacity adjustment device - Google Patents

Battery pack capacity adjustment device Download PDF

Info

Publication number
JP5381303B2
JP5381303B2 JP2009113126A JP2009113126A JP5381303B2 JP 5381303 B2 JP5381303 B2 JP 5381303B2 JP 2009113126 A JP2009113126 A JP 2009113126A JP 2009113126 A JP2009113126 A JP 2009113126A JP 5381303 B2 JP5381303 B2 JP 5381303B2
Authority
JP
Japan
Prior art keywords
block
capacity
variation
voltage
equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009113126A
Other languages
Japanese (ja)
Other versions
JP2010263703A (en
Inventor
佳之 河合
圭介 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009113126A priority Critical patent/JP5381303B2/en
Publication of JP2010263703A publication Critical patent/JP2010263703A/en
Application granted granted Critical
Publication of JP5381303B2 publication Critical patent/JP5381303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、1又は隣接する複数個の電池セルである単位電池の直列接続体としての組電池について、該組電池を構成する単位電池同士の容量を均等化する組電池の容量調整装置に関する。   The present invention relates to a battery pack capacity adjustment device for equalizing the capacities of unit batteries constituting the battery pack, as a battery pack as a series connection of unit batteries that are one or a plurality of adjacent battery cells.

この種の容量調整装置としては、例えば下記特許文献1に見られるように、組電池の部分部分での温度ばらつきが大きい場合に、容量調整(均等化処理)を行うものも提案されている。ここでは、電池の温度が電池の自己放電率と相関を有することに鑑み、温度ばらつきが小さい場合には均等化対象となる電池同士の自己放電のばらつきも小さいと判断する。そして、自己放電のばらつきが小さいなら、均等化処理を行わないとしている。   As this type of capacity adjusting device, as shown in, for example, Patent Document 1 below, an apparatus that performs capacity adjustment (equalization processing) when temperature variation in a portion of the assembled battery is large has been proposed. Here, in view of the fact that the temperature of the battery has a correlation with the self-discharge rate of the battery, when the temperature variation is small, it is determined that the variation in self-discharge between the batteries to be equalized is also small. If the self-discharge variation is small, the equalization process is not performed.

特開2007−325458号公報JP 2007-325458 A

ところで、均等化対象(単位電池)同士の実際の容量のばらつきは、組電池の使用状況に応じて相違する。このため、組電池の現在の温度分布に基づき均等化処理の実行の有無を判断したのでは、単位電池の容量のばらつき度合いに応じて均等化処理の実行の有無を適切に判断することができないおそれがある。   By the way, the actual capacity variation between the equalization targets (unit batteries) differs depending on the usage state of the assembled battery. For this reason, if it is determined whether or not the equalization process is performed based on the current temperature distribution of the assembled battery, it is not possible to appropriately determine whether or not the equalization process is performed according to the degree of variation in the unit battery capacity. There is a fear.

本発明は、上記課題を解決するためになされたものであり、その目的は、1又は隣接する複数個の電池セルである単位電池の直列接続体としての組電池について、該組電池を構成する単位電池同士の容量の均等化処理をより適切に行うことのできる組電池の容量調整装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to configure the assembled battery as an assembled battery as a serially connected unit battery that is one or a plurality of adjacent battery cells. An object of the present invention is to provide an assembled battery capacity adjusting device capable of more appropriately performing capacity equalization processing between unit batteries.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明は、1又は隣接する複数個の電池セルである単位電池の直列接続体としての組電池について、該組電池を構成する単位電池同士の容量を均等化する組電池の容量調整装置において、前記組電池の都度の充放電電流の監視に基づく前記組電池の充放電の履歴に応じて前記単位電池同士の容量のばらつきを推定する推定手段と、前記推定される容量のばらつきに基づき、前記容量の均等化処理の実行態様を可変設定する可変手段とを備えることを特徴とする。   The invention according to claim 1 is the capacity of the assembled battery that equalizes the capacity of the unit batteries constituting the assembled battery with respect to the assembled battery as a series connection body of unit batteries that are one or a plurality of adjacent battery cells. In the adjustment device, an estimation means for estimating a variation in capacity between the unit batteries according to a charge / discharge history of the assembled battery based on a monitoring of a charging / discharging current of the assembled battery, and a variation in the estimated capacity And a variable means for variably setting an execution mode of the capacity equalization process.

単位電池に充電電流が流れる際の単位電池の容量の増加量は、充電電流によっては一義的に定まらず、内部抵抗における発熱によって失われる量に依存する。また、単位電池に放電電流が流れる際の単位電池の容量の減少量も、充電電流によっては一義的に定まらず、内部抵抗における発熱によって失われる量に依存する。このため、充放電の履歴に応じて単位電池同士の容量のばらつきが定まると考えられる。上記発明では、この点に鑑み、単位電池同士の容量のばらつきを推定することで、容量のばらつき度合いに応じた適切な態様にて均等化処理を行うことができる。   The amount of increase in the capacity of the unit battery when the charging current flows through the unit battery is not uniquely determined depending on the charging current, but depends on the amount lost due to heat generation in the internal resistance. Also, the amount of decrease in the capacity of the unit battery when the discharge current flows through the unit battery is not uniquely determined depending on the charging current, and depends on the amount lost by the heat generation in the internal resistance. For this reason, it is thought that the dispersion | variation in the capacity | capacitance between unit cells is decided according to the charge / discharge history. In the above invention, in view of this point, it is possible to perform the equalization process in an appropriate manner according to the degree of capacity variation by estimating the capacity variation between unit cells.

なお、前記可変手段は、前記推定手段によって推定される容量のばらつきに基づき、前記容量の均等化処理を実行するハードウェア手段に前記容量の均等化処理に関する指令を出す手段であることを特徴としてもよい。この際、前記可変手段は、前記単位電池の電圧値を取得する手段を備えない構成であってもよい。   The variable means is means for issuing a command relating to the capacity equalization processing to hardware means for executing the capacity equalization processing based on the variation in capacity estimated by the estimation means. Also good. In this case, the variable means may be configured not to include means for acquiring the voltage value of the unit battery.

請求項1記載の発明では、さらに、前記推定手段は、前記充放電電流の検出値に応じて算出されるばらつきパラメータの積算値によって前記容量のばらつきを定量化することを特徴とする。 The invention according to claim 1 is characterized in that the estimating means quantifies the variation in the capacity based on an integrated value of a variation parameter calculated according to the detected value of the charge / discharge current.

上記発明では、充放電の履歴を上記検出値に応じたばらつきパラメータの都度の値と見なすことで、上記積算値によって容量のばらつきを簡易に定量化することができる。   In the above invention, the variation in capacity can be easily quantified by the integrated value by regarding the charge / discharge history as the value of the variation parameter corresponding to the detected value.

なお、上記ばらつきパラメータは、充放電電流の検出値の2乗に比例するものであることが望ましい。   The variation parameter is desirably proportional to the square of the detected value of the charge / discharge current.

請求項1記載の発明では、さらに、前記ばらつきパラメータは、前記充放電電流の検出値と、前記単位電池の内部抵抗に関するパラメータとに基づき算出されることを特徴とする。 The invention according to claim 1 is characterized in that the variation parameter is calculated based on a detected value of the charge / discharge current and a parameter relating to an internal resistance of the unit battery.

上述したように、充放電電流による単位電池の容量変化は、内部抵抗における発熱によって失われる量に依存する。このため、内部抵抗に依存することとなる。上記発明では、この点に鑑み、ばらつきパラメータを、内部抵抗に関するパラメータに基づき算出する。   As described above, the capacity change of the unit battery due to the charge / discharge current depends on the amount lost due to heat generation in the internal resistance. For this reason, it depends on the internal resistance. In the above invention, in view of this point, the variation parameter is calculated based on the parameter relating to the internal resistance.

なお、ばらつきパラメータは、内部抵抗に関するパラメータが内部抵抗が大きいことに対応するものであるほど、ばらつきが大きいことを示す値とされることが望ましい。また、ばらつきパラメータは、充放電電流の検出値の2乗に比例するものであることが望ましい。   It is desirable that the variation parameter be a value indicating that the variation is larger as the parameter relating to the internal resistance corresponds to the larger internal resistance. Moreover, it is desirable that the variation parameter is proportional to the square of the detected value of the charge / discharge current.

請求項記載の発明は、請求項記載の発明において、前記内部抵抗に関するパラメータが温度の検出値であることを特徴とする。 The invention according to claim 2 is the invention according to claim 1 , characterized in that the parameter relating to the internal resistance is a detected value of temperature.

単位電池の温度と、単位電池の内部抵抗との間には、相関関係がある。このため、単位電池や組電池の温度は、内部抵抗に関するパラメータとなる。   There is a correlation between the temperature of the unit cell and the internal resistance of the unit cell. For this reason, the temperature of a unit battery or an assembled battery becomes a parameter regarding internal resistance.

請求項記載の発明は、請求項1又は2に記載の発明において、前記可変手段は、前記推定される容量のばらつきに基づき、前記容量の均等化処理の実行の有無を判断する判断手段を備えることを特徴とする。 According to a third aspect of the present invention, in the invention according to the first or second aspect , the variable means includes a judging means for judging whether or not the capacity equalization process is executed based on the estimated capacity variation. It is characterized by providing.

上記発明では、判断手段を備えることで、単位電池の電圧値や容量値を取得可能か否かにかかわらず、均等化処理の実行の有無を適切に判断することができる。   In the above-described invention, by including the determination unit, it is possible to appropriately determine whether or not the equalization process is performed regardless of whether the voltage value or capacity value of the unit battery can be acquired.

請求項記載の発明は、請求項1〜のいずれか1項に記載の発明において、前記可変手段は、前記推定される容量のばらつきに基づき、前記容量の均等化処理時間を設定する処理時間設定手段を備えることを特徴とする。 According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the variable means sets the capacity equalization processing time based on the estimated capacity variation. A time setting means is provided.

上記発明では、推定される容量のばらつきを用いることで、処理時間を適切に設定することができる。   In the said invention, processing time can be set appropriately by using the dispersion | variation in the estimated capacity | capacitance.

第1の構成では、前記推定手段は、前記均等化処理がなされる場合、均等化処理時間に応じて前記容量のばらつきを推定することを特徴とする。 In the first configuration, when the equalization process is performed, the estimation unit estimates the capacity variation according to the equalization process time.

均等化処理がなされる場合、均等化処理時間に応じて容量のばらつきは低減すると考えられる。上記発明では、この点に鑑み、容量のばらつきの推定に際して、均等化処理時間を加味する。   When the equalization process is performed, it is considered that the variation in capacity is reduced according to the equalization process time. In view of this point, the above invention takes the equalization processing time into account when estimating the variation in capacity.

請求項記載の発明は、請求項1〜のいずれか1項に記載の発明において、前記均等化処理を行うための手段は、隣接する所定個数の単位電池に並列接続された前記所定個数の抵抗体の直列接続体と、前記抵抗体同士の各接続点の電位と対応する前記単位電池同士の各接続点の電位とを比較する手段と、前記比較結果に基づき前記所定個数の単位電池のうち電圧が高いと想定されるものを放電させる放電手段とを備えることを特徴とする。 The invention according to claim 5 is the invention according to any one of claims 1 to 4 , wherein the means for performing the equalization processing is the predetermined number connected in parallel to a predetermined number of adjacent unit cells. A series connection body of resistors, means for comparing the potential at each connection point between the resistors and the potential at each connection point between the unit cells, and the predetermined number of unit cells based on the comparison result And a discharging means for discharging a battery whose voltage is assumed to be high.

上記発明では、所定個数の単位電池の電圧を直接検出することなくこれらの容量を均等化する手段を備えるため、均等化時間や均等化の実行の有無を高精度に判断することが特に望まれる。このため、上記発明は、推定手段や可変手段を備えるメリットが特に大きい。   In the above invention, since means for equalizing these capacities without directly detecting the voltages of a predetermined number of unit cells is provided, it is particularly desirable to accurately determine the equalization time and whether or not equalization is performed. . For this reason, the above-described invention is particularly advantageous in that it includes an estimation unit and a variable unit.

なお、所定個数は、組電池を構成する全単位電池数よりも少ない値(例えば組電池を構成する全単位電池数を2以上の整数で除算した値)でもよいが、全単位電池数であってもよい。   The predetermined number may be a value smaller than the total number of unit batteries constituting the assembled battery (for example, a value obtained by dividing the total number of unit batteries constituting the assembled battery by an integer of 2 or more), but is the total number of unit batteries. May be.

請求項記載の発明は、請求項記載の発明において、前記隣接する所定個数の単位電池は、前記組電池をグループ化したブロックを構成するものであり、これら各ブロックの電圧を検出するブロック電圧検出手段と、前記ブロック電圧検出手段の検出結果に基づき、電圧の高いブロックの電圧を放電させるブロック間均等化手段とを更に備え、前記可変手段は、前記推定されるばらつきに基づき、前記ブロック間均等化手段による放電処理を行うか否かを定めるものであることを特徴とする。 According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the predetermined number of adjacent unit batteries constitute a block in which the assembled battery is grouped, and a block for detecting a voltage of each of these blocks A voltage detecting unit; and an inter-block equalizing unit that discharges a voltage of a high-voltage block based on a detection result of the block voltage detecting unit, wherein the variable unit is configured to block the block based on the estimated variation. It is characterized in that it determines whether or not to perform the discharge process by the interval equalizing means.

上記発明では、ブロック内の単位電池の容量の均等化処理によってブロック同士の容量が変化する。このため、ブロック内の容量の均等化処理が完了するまでは、ブロック間の均等化処理を実行すべきか否かを高精度に判断することが困難となる。この点、上記発明では、推定手段を備えることで、ブロック内の容量の均等化処理の完了の有無にかかわらず、ブロック間の均等化処理を実行するか否かを判断することができる。   In the said invention, the capacity | capacitances between blocks change by the equalization process of the capacity | capacitance of the unit battery in a block. For this reason, it is difficult to determine with high accuracy whether or not the equalization process between blocks should be executed until the capacity equalization process in the block is completed. In this regard, in the above-described invention, it is possible to determine whether or not to perform the equalization process between blocks regardless of whether or not the capacity equalization process in the block is completed by providing the estimation unit.

請求項記載の発明は、請求項5又は6記載の発明において、前記隣接する所定個数の単位電池は、前記組電池をグループ化したブロックを構成するものであり、これら各ブロックの電圧を検出するブロック電圧検出手段と、前記ブロック電圧検出手段の検出結果に基づき、電圧の高いブロックの電圧を放電させるブロック間均等化手段とを更に備え、前記可変手段は、前記推定されるばらつきに基づき、前記放電手段による放電処理が完了したと想定される時点以降において、ブロック間均等化手段による放電処理を行うことを特徴とする。 According to a seventh aspect of the invention, in the fifth or sixth aspect of the invention, the predetermined number of adjacent unit cells constitute a block in which the assembled battery is grouped, and the voltage of each block is detected. Block voltage detecting means, and an inter-block equalizing means for discharging the voltage of the high voltage block based on the detection result of the block voltage detecting means, and the variable means is based on the estimated variation, The discharge process by the inter-block equalizing means is performed after the time point when the discharge process by the discharge means is assumed to be completed.

上記発明では、ブロック内の単位電池の容量の均等化処理によってブロック同士の容量が変化する。このため、ブロック内の容量の均等化処理が完了するまでは、ブロック間の均等化処理を適切に実行することが困難となる。この点、上記発明では、推定手段を備えることで、ブロック内の容量の均等化処理の完了後にブロック間の均等化処理を実行することができる。   In the said invention, the capacity | capacitances between blocks change by the equalization process of the capacity | capacitance of the unit battery in a block. For this reason, it is difficult to appropriately execute the equalization process between blocks until the capacity equalization process in the block is completed. In this regard, in the above invention, by providing the estimation means, the equalization process between blocks can be executed after the capacity equalization process in the block is completed.

請求項記載の発明は、請求項1〜のいずれか1項に記載の発明において、前記組電池は、車載主機としての回転機に電力変換回路を介して接続されるものであり、前記均等化処理は、前記電力変換回路が停止されていることを条件に、前記均等化処理を行うことを特徴とする。 The invention according to claim 8 is the invention according to any one of claims 1 to 7 , wherein the assembled battery is connected to a rotating machine as an in-vehicle main machine via a power conversion circuit, The equalization process is characterized in that the equalization process is performed on condition that the power conversion circuit is stopped.

組電池の充放電電流量が少ない場合には、単位電池の電圧と容量とが略1対1の関係を有するものとなるため、均等化処理を高精度に行い易い。上記発明では、この点に鑑み、組電池の充放電電流量が少なくなる状況である電力変換回路が停止されている状況にあることを、均等化処理の条件とする。   When the charge / discharge current amount of the assembled battery is small, the voltage and capacity of the unit battery have a substantially one-to-one relationship, so that the equalization process can be easily performed with high accuracy. In the said invention, in view of this point, it is set as the conditions of the equalization process that the power conversion circuit, which is a situation where the charge / discharge current amount of the assembled battery is reduced, is stopped.

一実施形態にかかるシステム構成図。The system block diagram concerning one Embodiment. 同実施形態にかかる均等化ユニットの回路構成を示す回路図。The circuit diagram which shows the circuit structure of the equalization unit concerning the embodiment. 電池セルの温度と内部抵抗との関係を示す図。The figure which shows the relationship between the temperature of a battery cell, and internal resistance. 上記実施形態において電池セル間の容量ばらつきの推定に用いるパラメータを示す図。The figure which shows the parameter used for the estimation of the dispersion | variation in capacity between battery cells in the said embodiment. 同実施形態にかかる均等化放電処理の手順を示す流れ図。The flowchart which shows the procedure of the equalization discharge process concerning the embodiment. 同実施形態にかかる均等化放電処理態様を示すタイムチャート。The time chart which shows the equalization discharge process aspect concerning the embodiment.

以下、本発明にかかる組電池の容量調整装置を車載ハイブリッド車に適用した第1の実施形態について、図面を参照しつつ説明する。   Hereinafter, a first embodiment in which an assembled battery capacity adjustment device according to the present invention is applied to an in-vehicle hybrid vehicle will be described with reference to the drawings.

図1に、本実施形態にかかるシステムの全体構成を示す。   FIG. 1 shows an overall configuration of a system according to the present embodiment.

図示される組電池10は、2次電池である電池セルCij(i=1〜n、j=1〜4)の直列接続体である。これら電池セルCijは、リチウムイオン2次電池である。これら電池セルCijは、隣接する4つずつでグループ化され、ブロックを構成している。   The illustrated assembled battery 10 is a series connection body of battery cells Cij (i = 1 to n, j = 1 to 4) which are secondary batteries. These battery cells Cij are lithium ion secondary batteries. These battery cells Cij are grouped by four adjacent to each other to form a block.

上記各電池セルCi1〜Ci4にて構成されるブロックの両端は、マルチプレクサMPXを構成するスイッチング素子Si,S(i+1)に接続されている。スイッチング素子Si,S(i+1)は、ブロックの両端とフライングキャパシタ11との電気的な開閉を行う開閉器である。フライングキャパシタ11の両端は、スイッチング素子Sa,Sbを介して電圧検出回路12に接続されている。スイッチング素子Sa,Sbは、フライングキャパシタ11の両端と電圧検出回路12の一対の入力端子との電気的な開閉を行う開閉器である。   Both ends of the block constituted by the battery cells Ci1 to Ci4 are connected to switching elements Si and S (i + 1) constituting the multiplexer MPX. The switching elements Si, S (i + 1) are switches that electrically open and close the both ends of the block and the flying capacitor 11. Both ends of the flying capacitor 11 are connected to the voltage detection circuit 12 through switching elements Sa and Sb. The switching elements Sa and Sb are switches that perform electrical switching between both ends of the flying capacitor 11 and a pair of input terminals of the voltage detection circuit 12.

上記各ブロックには、均等化ユニットUiが設けられている。均等化ユニットUiは、ブロックを構成する電池セルCi1〜Ci4同士の容量のばらつきを低減する処理(均等化処理)を行うための専用のハードウェア手段であり、集積回路にて構成されている。なお、均等化ユニットUiは、対応するブロックを電源とするものであり、均等化ユニットUi内の論理回路の給電端子とブロックとは、スイッチScを介して開閉される。このスイッチScは、外部からの指令に応じてブロック及び均等化ユニットUi間を開閉する開閉器である。特にスイッチScは、パルス状の閉指令信号が入力されることで開指令信号が新たに入力されるまで閉状態を維持する機能を有する。   Each block is provided with an equalization unit Ui. The equalization unit Ui is a dedicated hardware means for performing processing (equalization processing) for reducing variation in capacity between the battery cells Ci1 to Ci4 constituting the block, and is configured by an integrated circuit. Note that the equalization unit Ui uses a corresponding block as a power source, and the power supply terminal and the block of the logic circuit in the equalization unit Ui are opened and closed via the switch Sc. The switch Sc is a switch that opens and closes between the block and the equalizing unit Ui in accordance with an external command. In particular, the switch Sc has a function of maintaining a closed state until a new open command signal is input when a pulsed close command signal is input.

一方、マイクロコンピュータ(マイコン14)は、温度センサ15による組電池10の温度の検出値や電流センサ17による組電池10の充放電電流の検出値I、電圧検出回路12による電圧検出結果を取得したり、均等化ユニットUiに均等化処理を行うよう指令を出したりする装置である。ここで、マイコン14は、車載低圧システムを構成するものであり、この車載低圧システムは、組電池10を備えて構成される車載高圧システムから絶縁されている。このため、マイコン14は、均等化ユニットUiとの通信を、フォトカプラ等の絶縁手段を備えて構成されるインターフェース16を介して行う。   On the other hand, the microcomputer (microcomputer 14) acquires the temperature detection value of the assembled battery 10 by the temperature sensor 15, the detection value I of the charge / discharge current of the assembled battery 10 by the current sensor 17, and the voltage detection result by the voltage detection circuit 12. Or an instruction to perform equalization processing to the equalization unit Ui. Here, the microcomputer 14 constitutes a vehicle-mounted low-voltage system, and this vehicle-mounted low-voltage system is insulated from the vehicle-mounted high-voltage system including the assembled battery 10. For this reason, the microcomputer 14 performs communication with the equalization unit Ui via the interface 16 configured to include an insulating means such as a photocoupler.

なお、上記組電池10は、メインリレー18,20を介して車載電力変換回路に接続される。ここで、車載電力変換回路とは、車載主機としてのモータジェネレータに接続されるインバータや、組電池10の電圧を降圧して車載補機類の電源(低圧バッテリ)に印加する降圧コンバータ等のことである。   The assembled battery 10 is connected to the in-vehicle power conversion circuit via the main relays 18 and 20. Here, the in-vehicle power conversion circuit refers to an inverter connected to a motor generator as an in-vehicle main machine, a step-down converter that steps down the voltage of the assembled battery 10 and applies it to the power source (low voltage battery) of the in-vehicle auxiliary equipment. It is.

図2(a)に、上記均等化ユニットUiの回路構成を示す。この回路は、電池セルCi1〜Ci4のうちの隣接するもの同士の接続点の電位と、電池セルCi1〜Ci4の両端の電圧を電池セル数で均等分圧した各電位との大小比較に基づき、電池セルCi1〜Ci4のうちの電圧の高いものを放電させる回路である。   FIG. 2A shows a circuit configuration of the equalization unit Ui. This circuit is based on the magnitude comparison between the potential of the connection point between adjacent ones of the battery cells Ci1 to Ci4 and the potentials obtained by equally dividing the voltages at both ends of the battery cells Ci1 to Ci4 by the number of battery cells. This is a circuit that discharges the battery cells Ci1 to Ci4 having a high voltage.

詳しくは、各電池セルCi1〜Ci4のそれぞれには、抵抗体R1〜R4及びNPN型バイポーラトランジスタ(放電スイッチSW1〜SW4)の直列接続体が並列接続されている。そして、放電スイッチSW1〜SW4の導通制御端子(ベース)には、論理和回路OR1〜OR4の出力が印加されている。これにより、論理和回路OR1〜OR4が論理「H」の信号を出力することで、放電スイッチSW1〜SW4がオン状態となり、抵抗体R1〜R4及び放電スイッチSW1〜SW4を備える放電回路を介して電池セルCi1〜Ci4が放電される。   Specifically, a series connection body of resistors R1 to R4 and NPN type bipolar transistors (discharge switches SW1 to SW4) is connected in parallel to each of the battery cells Ci1 to Ci4. And the output of OR circuit OR1-OR4 is applied to the conduction control terminal (base) of discharge switch SW1-SW4. As a result, the logical sum circuits OR1 to OR4 output a logic “H” signal, so that the discharge switches SW1 to SW4 are turned on, via the discharge circuit including the resistors R1 to R4 and the discharge switches SW1 to SW4. Battery cells Ci1-Ci4 are discharged.

上記論理和回路OR1〜OR4は、いずれも2入力の回路であり、その一方の端子には、ブロック内の電池セルCi1〜Ci4の電圧のばらつきを低減すべく、ブロック内の電池セルCi1〜Ci4のうち電圧の高い電池セルを放電するための信号が入力される。これは、以下に説明する回路によって実現される。   Each of the OR circuits OR1 to OR4 is a two-input circuit, and one terminal thereof has battery cells Ci1 to Ci4 in the block in order to reduce variations in voltage of the battery cells Ci1 to Ci4 in the block. A signal for discharging a battery cell having a high voltage is input. This is realized by a circuit described below.

ブロックの両端(電池セルCi1〜Ci4の直列接続体の両端)には、ブロックを構成する電池セル数に等しい数の抵抗体31〜34の直列接続体が並列接続されている。これら抵抗体31〜34は、互いにその抵抗値が等しく設定されている。このため、抵抗体31〜34の接続点の電位は、ブロック内の電池セルCi1〜Ci4の電圧が等しい場合に想定されるブロック内の電池セル同士の接続点電位(電池セルCi2,Ci3,Ci4の正極電位)となる。   At both ends of the block (both ends of the series connection body of battery cells Ci1 to Ci4), a series connection body of resistors 31 to 34 equal in number to the number of battery cells constituting the block is connected in parallel. These resistors 31 to 34 are set to have the same resistance value. For this reason, the potential of the connection point of the resistors 31 to 34 is the connection point potential between the battery cells in the block (battery cells Ci2, Ci3, Ci4) that is assumed when the voltages of the battery cells Ci1 to Ci4 in the block are equal. Positive electrode potential).

ブロック内の電池セル同士の接続点電位(電池セルCi2,Ci3,Ci4の正極電位)と、対応する抵抗体31〜34の接続点の電位とは、それぞれ比較回路CMPのセル端子C及び分圧端子Rに入力される。比較回路CMPは、出力端子として高電圧端子Hと低電圧端子Lとを備えている。そして、図2(b)に示すように、セル端子Cの電位の方が分圧端子Rの電位よりも所定値Δ以上高い場合に、高電圧端子Hが論理「H」となり、セル端子Cの電位の方が分圧端子Rの電位よりも所定値Δ以上低い場合に、低電圧端子Lが論理「H」となる。   The connection point potential between the battery cells in the block (the positive potential of the battery cells Ci2, Ci3, Ci4) and the potential at the connection point of the corresponding resistors 31-34 are respectively the cell terminal C of the comparison circuit CMP and the divided voltage. Input to terminal R. The comparison circuit CMP includes a high voltage terminal H and a low voltage terminal L as output terminals. Then, as shown in FIG. 2B, when the potential of the cell terminal C is higher than the potential of the voltage dividing terminal R by a predetermined value Δ or more, the high voltage terminal H becomes logic “H”, and the cell terminal C Is lower than the potential of the voltage dividing terminal R by a predetermined value Δ or more, the low voltage terminal L becomes logic “H”.

上記比較回路CMPのうち最高電位のものの低電圧端子Lの出力電圧が、最高電位の論理和回路OR1に印加され、また、最低電位のものの高電圧端子Hの出力電圧が、最低電位の論理和回路OR4に印加される。また、中間の論理和回路OR2,OR3には、論理回路LCの出力電圧が印加される。   The output voltage of the low voltage terminal L having the highest potential in the comparison circuit CMP is applied to the OR circuit OR1 having the highest potential, and the output voltage of the high voltage terminal H having the lowest potential is the logical sum of the lowest potential. Applied to circuit OR4. Further, the output voltage of the logic circuit LC is applied to the intermediate OR circuits OR2 and OR3.

上記論理回路LCは、隣接する一対の比較回路CMPの各信号を入力とし、出力信号を生成するものである。図2(c)に、論理回路LCの回路構成を示す。図示されるように、論理回路LCは、高電位側の比較回路CMPの低電圧端子Lの出力信号を論理反転させる論理反転回路40と、低電位側の比較回路CMPの低電圧端子Lの出力信号と論理反転回路40の出力電圧との論理積信号を生成する論理積回路42とを備える。また、低電位側の比較回路CMPの高電圧端子Hの出力信号を論理反転させる論理反転回路44と、高電位側の比較回路CMPの高電圧端子Hの出力信号と論理反転回路44の出力電圧との論理積信号を生成する論理積回路46とを備える。更に、これら論理積回路42,46の出力信号の論理和信号を生成する論理和回路48を備える。   The logic circuit LC receives the signals of a pair of adjacent comparison circuits CMP as inputs and generates an output signal. FIG. 2C shows a circuit configuration of the logic circuit LC. As illustrated, the logic circuit LC includes a logic inverting circuit 40 that logically inverts an output signal of the low voltage terminal L of the high potential side comparison circuit CMP, and an output of the low voltage terminal L of the low potential side comparison circuit CMP. A logical product circuit for generating a logical product signal of the signal and the output voltage of the logical inversion circuit. Further, the logic inversion circuit 44 that logically inverts the output signal of the high voltage terminal H of the comparison circuit CMP on the low potential side, the output signal of the high voltage terminal H of the comparison circuit CMP on the high potential side, and the output voltage of the logic inversion circuit 44. And a logical product circuit 46 for generating a logical product signal. Further, an OR circuit 48 for generating an OR signal of the output signals of these AND circuits 42 and 46 is provided.

こうした構成によれば、論理回路LCは、高電位側の比較回路CMPのセル端子Cの電位が分圧端子Rの電位よりも所定値Δ以上高く且つ低電位側の比較回路CMPのセル端子Cの電位が分圧端子Rの電位よりも所定値Δ以上高くない場合に論理「H」となる。また、論理回路LCは、高電位側の比較回路CMPのセル端子Cの電位が分圧端子Rの電位よりも所定値Δ以上低くなくて且つ低電位側の比較回路CMPのセル端子Cの電位が分圧端子Rの電位よりも所定値Δ以上低い場合に論理「H」となる。   According to such a configuration, the logic circuit LC has the cell terminal C of the high-potential side comparison circuit CMP higher than the potential of the voltage dividing terminal R by a predetermined value Δ and the cell terminal C of the low-potential side comparison circuit CMP. Becomes “H” when the potential is not higher than the potential of the voltage dividing terminal R by a predetermined value Δ or more. In addition, the logic circuit LC is configured such that the potential of the cell terminal C of the high potential side comparison circuit CMP is not lower than the potential of the voltage dividing terminal R by a predetermined value Δ and the potential of the cell terminal C of the low potential side comparison circuit CMP. Is “H” when the voltage is lower than the potential of the voltage dividing terminal R by a predetermined value Δ or more.

こうした構成を有する均等化ユニットUiによれば、ブロック内の電池セルCi1〜Ci4の電圧の絶対値を検出することなく、抵抗体31〜34による分圧値と対応する正極電位との比較に基づき、電圧の高いセルを選択的に放電することができる。   According to the equalization unit Ui having such a configuration, based on the comparison between the divided voltage value by the resistors 31 to 34 and the corresponding positive electrode potential without detecting the absolute value of the voltage of the battery cells Ci1 to Ci4 in the block. A cell having a high voltage can be selectively discharged.

一方、上記論理和回路OR1〜OR4の他方の入力端子には、マイコン14からの指令信号を取り込む端子T1が接続されている。これにより、端子T1を介してマイコン14から論理「H」の信号が入力されることで、全放電スイッチSW1〜SW4がオンとなり、ブロック内の全電池セルCi1〜Ci4が放電される。これは、ブロック同士の電圧ばらつきを低減する処理を行う際に用いられるものである。すなわち、マイコン14では、フライングキャパシタ11を用いて各ブロックの電圧を検出すると、その検出結果に基づき、電圧の高いブロックに対応する均等化ユニットUiの端子Tiに放電指令信号を出力する。これにより、ブロック間の電圧ばらつきを低減することもできる。このように、本実施形態では、上記均等化ユニットUiを用いることで、ブロック内の電池セルCi1〜Ci4の電圧ばらつきを低減する処理(ブロック内均等化処理)のみならず、ブロック間の電圧のばらつきを低減する処理(ブロック間均等化処理)を行うことも可能となっている。   On the other hand, a terminal T1 for receiving a command signal from the microcomputer 14 is connected to the other input terminals of the OR circuits OR1 to OR4. As a result, when a logic “H” signal is input from the microcomputer 14 via the terminal T1, all the discharge switches SW1 to SW4 are turned on, and all the battery cells Ci1 to Ci4 in the block are discharged. This is used when processing for reducing voltage variation between blocks is performed. That is, when the microcomputer 14 detects the voltage of each block using the flying capacitor 11, the microcomputer 14 outputs a discharge command signal to the terminal Ti of the equalization unit Ui corresponding to the high voltage block based on the detection result. Thereby, the voltage variation between blocks can also be reduced. As described above, in the present embodiment, by using the equalization unit Ui, not only the process of reducing the voltage variation of the battery cells Ci1 to Ci4 in the block (intra-block equalization process) but also the voltage between the blocks. It is also possible to perform processing for reducing variation (inter-block equalization processing).

上記均等化処理を、本実施形態では、車両の起動スイッチがオフされるときに行う。これは、電池セルCijの電圧と残存容量(SOC)との間に一義的な関係が成立するのが、電池セルCijの充放電電流がゼロであるときであることに鑑みたものである。すなわち、電池セルCijに充放電電流が流れる場合、電池セルCijの電圧は、SOCのみならず、内部抵抗における電圧降下量に依存することとなる。このため、電池セルCij間に内部抵抗のばらつきがある場合、電池セルCijやブロックの電圧のばらつきからSOCのばらつきを高精度に把握することができないおそれがある。このため、上記内部抵抗による影響を極力排除すべく充放電電流量が小さくなる状況、すなわち起動スイッチがオフとなる状況において、均等化放電処理を行う。なお、起動スイッチとは、車両の制御システムを起動させるためのスイッチで、ユーザにより操作可能なものである。ここで、ユーザによる操作とは、必ずしもユーザが手動で操作することを意味せず、例えば所定の無線信号を出力する携帯型の無線送信機をユーザが車両に近接させることを含むものとする。   In the present embodiment, the equalization process is performed when the start switch of the vehicle is turned off. This is in view of the fact that a unique relationship is established between the voltage of the battery cell Cij and the remaining capacity (SOC) when the charge / discharge current of the battery cell Cij is zero. That is, when a charge / discharge current flows through the battery cell Cij, the voltage of the battery cell Cij depends not only on the SOC but also on the voltage drop amount in the internal resistance. For this reason, when there is a variation in internal resistance between the battery cells Cij, there is a possibility that the variation in the SOC cannot be accurately grasped from the variation in the voltage of the battery cell Cij or the block. For this reason, the equalizing discharge process is performed in a situation where the amount of charge / discharge current is reduced to eliminate the influence of the internal resistance as much as possible, that is, in a situation where the start switch is turned off. The activation switch is a switch for activating the vehicle control system and can be operated by the user. Here, the operation by the user does not necessarily mean that the user manually operates, but includes that the user brings a portable wireless transmitter that outputs a predetermined wireless signal close to the vehicle, for example.

本実施形態では、ブロック内の容量ばらつきを低減する処理を行った後に、ブロック同士の容量のばらつきを低減する処理を行う。ここで、ブロック内均等化処理については、マイコン14によりスイッチScが閉操作されることで、均等化ユニットUiにブロックの電力が供給される状態とした後、マイコン14を停止することで行う。これにより、均等化ユニットUiによる処理がなされる間中、マイコン14を稼動状態とする場合と比較して消費電力を低減することができる。   In the present embodiment, after performing the process of reducing the capacity variation within the block, the process of reducing the capacity variation between the blocks is performed. Here, the block equalization process is performed by stopping the microcomputer 14 after the switch Sc is closed by the microcomputer 14 so that the power of the block is supplied to the equalization unit Ui. Thereby, power consumption can be reduced compared with the case where the microcomputer 14 is made into an operation state during the process by the equalization unit Ui.

ただし、均等化処理に要する時間は、均等化処理の開始時における容量のばらつき度合いに依存する。ここで、本実施形態では、マイコン14がブロック内の電池セルCi1〜Ci4のそれぞれの電圧の検出値を取得する手段をもたないため、均等化処理の開始時における容量のばらつき度合いを電池セルCi1〜Ci4の電圧値に基づき把握することはできない。ここで、ブロックの電圧の変化がなくなることでブロック内均等化処理が完了したと判断する場合には、マイコン14を何回も起動する必要が生じ、ひいては、マイコン14の消費電力の増大を招く。また、ブロック内均等化処理を、予め定められた時間に渡って行うようにする場合には、この時間を冗長な設定とする必要が生じることなどから、ブロック内の電池セルCi1〜Ci4の電圧ばらつきが低減された後には、均等化ユニットUiによる無駄な電力消費が生じるおそれがある。   However, the time required for the equalization process depends on the degree of capacity variation at the start of the equalization process. Here, in this embodiment, since the microcomputer 14 does not have a means for acquiring the detected value of each voltage of the battery cells Ci1 to Ci4 in the block, the capacity variation degree at the start of the equalization process is determined by the battery cell. It cannot be grasped based on the voltage values of Ci1 to Ci4. Here, when it is determined that the block equalization process has been completed by eliminating the change in the block voltage, it is necessary to start the microcomputer 14 many times, which leads to an increase in power consumption of the microcomputer 14. . In addition, in the case where the intra-block equalization process is performed over a predetermined time, it is necessary to make this time redundant, and therefore the voltage of the battery cells Ci1 to Ci4 in the block. After the variation is reduced, useless power consumption by the equalization unit Ui may occur.

そこで本実施形態では、組電池10の都度の充放電電流の監視に基づく組電池10の充放電の履歴に応じて電池セルCij同士の容量のばらつき度合いを推定する。そして、この推定結果に基づき、ブロック内均等化処理時間のみならず、均等化処理を行うか否かの判断をも行う。以下、容量のばらつき度合いの推定処理について詳述する。   Therefore, in the present embodiment, the degree of capacity variation between the battery cells Cij is estimated according to the charge / discharge history of the assembled battery 10 based on the monitoring of the charge / discharge current of the assembled battery 10 each time. Based on the estimation result, not only the intra-block equalization processing time but also whether or not the equalization processing is performed is determined. Hereinafter, the process for estimating the degree of variation in capacity will be described in detail.

電池セルCijの充放電による電池セルCijのSOCの変化量は、電池セルCijの内部抵抗での発熱量に依存すると考えられる。ここで、内部抵抗R,充放電電流の検出値Iを用いて、発熱量は、「RII」と表現できる。この発熱量が電池セルCij間でばらつく場合、これが、電池セルCijの容量のばらつきの原因となると考えられる。発熱量のばらつきは、内部抵抗のばらつきに起因して生じ得る。このため、内部抵抗のばらつきΔRが固定の場合、充放電電流の検出値Iが大きいほど、発熱量のばらつき「ΔRII」が大きくなる。   The amount of change in the SOC of the battery cell Cij due to charging / discharging of the battery cell Cij is considered to depend on the amount of heat generated by the internal resistance of the battery cell Cij. Here, the heat generation amount can be expressed as “RII” using the internal resistance R and the detected value I of the charge / discharge current. When this calorific value varies between battery cells Cij, it is considered that this causes a variation in capacity of battery cells Cij. Variations in the amount of heat generated can occur due to variations in internal resistance. For this reason, when the variation ΔR of the internal resistance is fixed, the larger the detected value I of the charge / discharge current, the larger the variation “ΔRII” of the heat generation amount.

ただし、実際には、内部抵抗のばらつきは、温度に応じて変化すると考えられる。これは、電池セルCijの温度と内部抵抗値との間に図3に示す関係があるからである。すなわち、図示されるように、電池セルCijの温度が高いほどその内部抵抗が小さくなる。ここで、電池セルCijの個体差による内部抵抗の値の差は、内部抵抗の絶対値が大きいほど大きくなると考えられる。このため、内部抵抗のばらつきは、温度が低いほど大きくなると考えられる。   However, in practice, the variation in internal resistance is considered to change according to temperature. This is because there is a relationship shown in FIG. 3 between the temperature of the battery cell Cij and the internal resistance value. That is, as shown in the figure, the internal resistance decreases as the temperature of the battery cell Cij increases. Here, it is considered that the difference in the value of the internal resistance due to the individual difference between the battery cells Cij increases as the absolute value of the internal resistance increases. For this reason, it is considered that the variation in internal resistance increases as the temperature decreases.

以上から、本実施形態では、都度の充放電電流量が大きいほど、また、都度の温度が低いほど、ばらつき度合いが大きくなると推定する。こうした態様にて推定されるばらつき度合いを定量化するためには、温度が低いほど大きくなるパラメータβと、充放電電流の検出値Iの2乗との積「βII」を都度積算することが有効と考えられる。そこで本実施形態では、図4(a)に示すように、充放電電流の検出値Iの絶対値に比例し、温度が低いほど大きくなる係数αを定義し、この係数αに検出値Iの絶対値を乗算することで、図4(b)に示す上記積算対象とする量(積算用電流値)を算出する。この積算用電流値を都度積算することで、積算値によってばらつき度合いを定量化することができる。   From the above, in this embodiment, it is estimated that the degree of variation increases as the charge / discharge current amount increases and the temperature decreases. In order to quantify the degree of variation estimated in this manner, it is effective to integrate each time the product “βII” of the parameter β that increases as the temperature decreases and the square of the charge / discharge current detection value I. it is conceivable that. Therefore, in the present embodiment, as shown in FIG. 4A, a coefficient α that is proportional to the absolute value of the detected value I of the charge / discharge current and increases as the temperature decreases is defined. By multiplying the absolute values, the amount to be integrated (current value for integration) shown in FIG. 4B is calculated. By integrating the current value for integration every time, the degree of variation can be quantified by the integrated value.

図5に、上記推定処理及び均等化処理の手順を示す。この処理は、マイコン14等によって、例えば所定周期で繰り返し実行される。   FIG. 5 shows the procedure of the estimation process and the equalization process. This process is repeatedly executed by the microcomputer 14 or the like, for example, at a predetermined cycle.

この一連の処理では、まずステップS10において、ブロック内均等化フラグFが「1」であるか否かを判断する。この処理は、ブロック内均等化処理中であるか否かを判断するためのものである。そして、ステップS10において否定判断される場合、ステップS12において、起動スイッチがオフ操作された直後であるか否かを判断する。この処理は、均等化処理の実行条件の1つが成立したか否かを判断するためのものである。そして、ステップS12において否定判断される場合、ステップS14において、起動スイッチがオン状態であるか否かを判断する。この処理は、ばらつき度合いの推定値(積算値)を更新するか否かを判断するためのものである。そして、起動スイッチがオン状態である場合、積算値を更新すべく、ステップS16〜S20の処理を行う。   In this series of processing, first, in step S10, it is determined whether or not the intra-block equalization flag F is “1”. This process is for determining whether or not the block equalization process is being performed. If a negative determination is made in step S10, it is determined in step S12 whether or not it is immediately after the start switch is turned off. This process is for determining whether one of the equalization process execution conditions is satisfied. If a negative determination is made in step S12, it is determined in step S14 whether or not the start switch is on. This process is for determining whether or not to update the estimated value (integrated value) of the degree of variation. And when a starting switch is an ON state, processing of Steps S16-S20 is performed in order to update an integrated value.

ここではまずステップS16において、充放電電流量の検出値Iと、組電池10の温度の検出値Temとを取得する。続くステップS18においては、充放電電流の検出値Iと温度の検出値Temとを入力とし、上記係数αをマップ演算する。そして、ステップS20において、充放電電流の検出値Iに係数αを乗算した値を新たに積算することで、積算値Inを更新する。これにより、今回の温度の検出値Temと充放電電流の検出値Iとによって、ばらつき度合いの推定値が更新されたこととなる。   Here, first, in step S16, a detection value I of the charge / discharge current amount and a detection value Tem of the temperature of the assembled battery 10 are acquired. In subsequent step S18, the charge / discharge current detection value I and the temperature detection value Tem are input, and the coefficient α is subjected to a map calculation. In step S20, the integrated value In is updated by newly integrating a value obtained by multiplying the detection value I of the charge / discharge current by the coefficient α. As a result, the estimated value of the degree of variation is updated by the detected value Tem of the current temperature and the detected value I of the charge / discharge current.

一方、上記ステップS12において肯定判断される場合、ステップS22に移行する。ステップS22においては、積算値Inが閾値InL以上であるか否かを判断する。この処理は、均等化処理の実行条件の別の1つが成立したか否かを判断するためのものである。ここで、積算値Inは、電池セルCijのばらつき度合いと正の相関を有するパラメータとして定量化されているため(電池セルCijのばらつき度合いが大きいほど大きい値となるパラメータであるため)、上記閾値InLとの比較に基づき、ばらつき度合いが均等化処理を必要とする大きさとなったか否かを判断することができる。そして、ステップS22において肯定判断される場合、ブロック内均等化処理の実行条件が成立したとして、ステップS24において、ブロック内均等化フラグFを「1」とする。   On the other hand, when a positive determination is made in step S12, the process proceeds to step S22. In step S22, it is determined whether or not the integrated value In is greater than or equal to a threshold value InL. This process is for determining whether another execution condition of the equalization process is satisfied. Here, the integrated value In is quantified as a parameter having a positive correlation with the variation degree of the battery cell Cij (since it is a parameter that increases as the variation degree of the battery cell Cij increases), the threshold value described above. Based on the comparison with InL, it can be determined whether or not the degree of variation has reached a level that requires equalization processing. If an affirmative determination is made in step S22, the intra-block equalization flag F is set to “1” in step S24, assuming that the execution condition for the intra-block equalization process is satisfied.

上記ステップS24の処理が完了する場合や、ステップS10において肯定判断される場合、ステップS26において、ブロック内均等化処理を行う。すなわち、マイコン14により、スイッチScを閉状態とする操作をした後、マイコン14を停止させる。続くステップS28においては、起動スイッチがオンとされたか否かを判断する。この処理は、ブロック内均等化処理の実行条件が不成立となったか否かを判断するためのものである。   When the process of step S24 is completed or when an affirmative determination is made in step S10, an intra-block equalization process is performed in step S26. That is, the microcomputer 14 is stopped after the microcomputer 14 is operated to close the switch Sc. In a succeeding step S28, it is determined whether or not the start switch is turned on. This process is for determining whether or not the execution condition of the intra-block equalization process is not satisfied.

ステップS28において否定判断される場合、ステップS30において、ブロック内均等化処理の継続時間が規定時間Tdisとなったか否かを判断する。ここで、規定時間Tdisは、積算値Inに基づき、容量ばらつきの度合いが大きいと推定されているほど長い時間に設定されるものである。なお、この処理は、例えば、マイコン14に対して外付けされたタイマの計時時間が規定時間Tdisとなった場合にマイコン14を起動させる処理とすればよい。また例えば、マイコン14内に、その主電源の状態にかかわらず、給電状態が維持されるタイマを備え、その計時時間が規定時間Tdisとなった場合にマイコン14の主電源をオンとする処理としてもよい。   If a negative determination is made in step S28, it is determined in step S30 whether or not the duration of the intra-block equalization process has reached the specified time Tdis. Here, the prescribed time Tdis is set to a longer time as it is estimated that the degree of capacity variation is larger based on the integrated value In. For example, this process may be a process of starting the microcomputer 14 when the time measured by a timer externally attached to the microcomputer 14 reaches a specified time Tdis. Further, for example, a process for turning on the main power supply of the microcomputer 14 when the microcomputer 14 includes a timer that maintains the power supply state regardless of the state of the main power supply and when the measured time reaches a predetermined time Tdis. Also good.

ステップS30において肯定判断される場合、ステップS32において、積算値Inをゼロとし、ブロック内均等化フラグを「0」として且つ、ブロック間の均等化処理を開始する。   When an affirmative determination is made in step S30, in step S32, the integrated value In is set to zero, the intra-block equalization flag is set to “0”, and equalization processing between blocks is started.

一方、ステップS28において肯定判断される場合、ステップS34において、積算値Inをブロック内均等化処理時間に応じて補正するとともに、ブロック内均等化フラグFを「0」とする。なお、上記ステップS28における肯定判断は、マイコン14が停止されている場合に行われるものではなく、起動スイッチがオンされることでマイコン14が起動される場合に行われる処理である。   On the other hand, when an affirmative determination is made in step S28, in step S34, the integrated value In is corrected according to the intra-block equalization processing time, and the intra-block equalization flag F is set to “0”. The affirmative determination in step S28 is not performed when the microcomputer 14 is stopped, but is a process performed when the microcomputer 14 is activated by turning on the activation switch.

上記ステップS14、S22において否定判断される場合や、ステップS20、S32,S34の処理が完了する場合には、この一連の処理を一旦終了する。   When a negative determination is made in steps S14 and S22 described above, or when the processes of steps S20, S32, and S34 are completed, the series of processes is temporarily terminated.

図6に、上記処理による均等化処理態様を例示する。図6(a1)、図6(b1)、及び図6(c1)と、図6(a2)、図6(b2)、及び図6(c2)と、図6(a3)、図6(b3)、及び図6(c3)とはそれぞれ、均等化処理の第1の例、第2の例、及び第3の例である。ここで、図6(a1)、図6(a2)及び図6(a3)は、起動スイッチの推移を示し、図6(b1)、図6(b2)及び図6(b3)は、積算値Inの推移を示し、図6(c1)、図6(c2)及び図6(c3)は、均等化処理の実行の有無の推移を示す。ここで、図6(a1)、図6(b1)、及び図6(c1)に示す第1の例は、図6(a2)、図6(b2)、及び図6(c2)に示す第2の例よりも起動スイッチがオフとされた際の積算値Inが大きいために、均等化処理時間も長くなることを示している。   FIG. 6 illustrates an equalization processing mode by the above processing. 6 (a1), 6 (b1), 6 (c1), 6 (a2), 6 (b2), 6 (c2), 6 (a3), 6 (b3) ) And FIG. 6C3 are a first example, a second example, and a third example of equalization processing, respectively. Here, FIGS. 6 (a1), 6 (a2) and 6 (a3) show the transition of the start switch, and FIGS. 6 (b1), 6 (b2) and 6 (b3) show the integrated values. FIG. 6 (c1), FIG. 6 (c2), and FIG. 6 (c3) show the transition of whether or not the equalization process is executed. Here, the first example shown in FIGS. 6 (a1), 6 (b1), and 6 (c1) is the same as the first example shown in FIGS. 6 (a2), 6 (b2), and 6 (c2). Since the integrated value In when the start switch is turned off is larger than in the example of 2, the equalization processing time is also increased.

また、図6(a3)、図6(b3)、及び図6(c3)では、積算値Inから定まる規定時間Tdisが経過する前に、起動スイッチが再度オン操作される場合を例示している。この場合、均等化処理のなされた時間に応じて積算値Inが補正される。   6A3, FIG. 6B3, and FIG. 6C3 illustrate a case where the start switch is turned on again before the specified time Tdis determined from the integrated value In elapses. . In this case, the integrated value In is corrected according to the time during which the equalization process is performed.

ちなみに、図6では、起動スイッチがオフされてから一定時間待機した後均等化処理を実施する例が記載されているが、これは、起動スイッチのオフ直後には、分極の影響によって電圧に基づきSOCを高精度に把握することが困難であることに鑑みたものである。   Incidentally, FIG. 6 shows an example in which the equalization process is performed after waiting for a certain time after the start switch is turned off. This is based on the voltage due to the influence of polarization immediately after the start switch is turned off. This is because it is difficult to grasp the SOC with high accuracy.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)組電池10の充放電の履歴に応じて電池セルCij同士の容量のばらつきを推定し、推定される容量のばらつきに基づき、均等化処理の実行態様を可変設定した。これにより、容量のばらつき度合いに応じた適切な態様にて均等化処理を行うことができる。   (1) The capacity variation between the battery cells Cij was estimated according to the charge / discharge history of the battery pack 10, and the execution mode of the equalization process was variably set based on the estimated capacity variation. Thereby, equalization processing can be performed in an appropriate manner according to the degree of variation in capacity.

(2)充放電電流の検出値Iに応じて算出されるばらつきパラメータ(積算用電流値)の積算値Inによって容量のばらつきを定量化した。これにより、積算値Inによって容量のばらつきを簡易に定量化することができる。   (2) The variation in capacity was quantified by the integrated value In of the dispersion parameter (current value for integration) calculated according to the detected value I of the charge / discharge current. Thereby, the dispersion | variation in a capacity | capacitance can be easily quantified with integrated value In.

(3)ばらつきパラメータ(積算用電流値)を、組電池10の温度の検出値Temに基づき算出した。これにより、電池セルCijの内部抵抗のばらつき度合い(内部抵抗値同士の差)の温度依存性に基づき、積算用電流値を算出することができる。   (3) The variation parameter (accumulation current value) was calculated based on the detected value Tem of the temperature of the assembled battery 10. Thereby, the current value for integration can be calculated based on the temperature dependency of the variation degree of the internal resistance of the battery cell Cij (difference between the internal resistance values).

(4)推定される容量のばらつき(積算値In)に基づき、均等化処理の実行の有無を判断した。これにより、起動スイッチのオフ後、マイコン14により、均等化処理の要否を迅速に判断することができる。   (4) Based on the estimated variation in capacity (integrated value In), it was determined whether or not the equalization process was performed. Thereby, after the start switch is turned off, the microcomputer 14 can quickly determine whether the equalization process is necessary.

(5)推定される容量のばらつき(積算値In)に基づき、均等化処理時間(規定時間Tdis)を可変設定した。これにより、均等化処理時間を適切に設定することができる。   (5) The equalization processing time (specified time Tdis) is variably set based on the estimated capacity variation (integrated value In). Thereby, the equalization processing time can be set appropriately.

(6)均等化処理時間に応じて容量のばらつき(積算値In)を補正した。これにより、容量のばらつきを高精度に推定することができる。   (6) The variation in capacity (integrated value In) was corrected according to the equalization processing time. Thereby, the dispersion | variation in a capacity | capacitance can be estimated with high precision.

(7)均等化のためのハードウェア手段として、抵抗体31〜34同士の各接続点の電位と対応する電池セルCij同士の各接続点の電位との比較に基づき、電池セルCi1〜Ci4のうち電圧が高いと想定されるものを放電させる均等化ユニットUiを備えた。そして、均等化処理を指令する手段(マイコン14)に電池セルCijの電圧検出値を取得する手段を備えないこととすることで、マイコン14が、電圧情報に基づくことなく、均等化に要する時間や均等化の実行の有無を高精度に判断することが特に望まれる。このため、積算値Inを利用した上記均等化処理を行うメリットが特に大きい。   (7) As hardware means for equalization, based on a comparison between the potentials of the connection points of the resistors 31 to 34 and the potentials of the connection points of the corresponding battery cells Cij, the battery cells Ci1 to Ci4 Among these, an equalizing unit Ui for discharging what is assumed to be high in voltage was provided. The time required for equalization by the microcomputer 14 is not based on the voltage information by not providing the means (microcomputer 14) for instructing the equalization process with means for acquiring the voltage detection value of the battery cell Cij. It is particularly desirable to determine whether or not equalization is performed with high accuracy. For this reason, the merit which performs the said equalization process using integrated value In is especially big.

(8)均等化処理の実行条件に、電力変換回路が停止されていることを含めた。これにより、単位電池の電圧と容量とが略1対1の関係を有する場合に均等化処理を行うことができるため、電圧値に基づく容量の均等化処理を高精度に行うことができる。   (8) The execution condition of the equalization process includes that the power conversion circuit is stopped. Thereby, since the equalization process can be performed when the voltage and the capacity of the unit battery have a substantially one-to-one relationship, the capacity equalization process based on the voltage value can be performed with high accuracy.

(その他の実施形態)
なお、上記実施形態は、以下のように変更して実施してもよい。
(Other embodiments)
The above embodiment may be modified as follows.

・上記実施形態では、充放電電流の検出値Iと温度の検出値Temとに基づき係数αを算出し、係数αに検出値Iの絶対値を乗算することで、ばらつきパラメータ(積算用電流値)を算出したがこれに限らない。検出値I,Temと積算対象となるパラメータとの関係を定めたマップを用いてもよい。   In the above embodiment, the coefficient α is calculated based on the detected value I of the charge / discharge current and the detected value Tem of the temperature, and the coefficient α is multiplied by the absolute value of the detected value I, thereby obtaining the variation parameter (accumulation current value). ) Is calculated, but is not limited thereto. A map that defines the relationship between the detection values I and Tem and the parameter to be integrated may be used.

・電池セルCijの内部抵抗に関するパラメータとしては、温度のように内部抵抗と負の相関を有するものに限らない。例えば、上記フライングキャパシタ11及び電圧検出回路12を用いて検出されるブロック(電池セルCi1〜Ci4)の電圧と、そのときのブロックの充放電電流との複数の組に基づき推定算出されるブロックの内部抵抗であってもよい。ここでは、ブロックの内部抵抗が大きいほど、ブロック内の電池セルCi1〜Ci4の内部抵抗のばらつき度合いも大きくなると推定すればよい。   The parameter relating to the internal resistance of the battery cell Cij is not limited to a parameter having a negative correlation with the internal resistance, such as temperature. For example, the block estimated and calculated based on a plurality of sets of the voltage of the block (battery cells Ci1 to Ci4) detected using the flying capacitor 11 and the voltage detection circuit 12 and the charge / discharge current of the block at that time. It may be an internal resistance. Here, what is necessary is just to estimate that the dispersion | variation degree of internal resistance of the battery cells Ci1-Ci4 in a block becomes large, so that the internal resistance of a block is large.

・積算値Inとしては、内部抵抗に関するパラメータを入力として算出されるばらつきパラメータを積算するものにも限らない。例えば充放電電流の検出値Iの2乗をばらつきパラメータとし、これを積算するものであってもよい。電池セルCijの内部抵抗に個体差があることに鑑みれば、こうして算出される積算値も容量のばらつきを定量化したパラメータとなると考えられる。   The integrated value In is not limited to integrating the variation parameter calculated using the internal resistance parameter as an input. For example, the square of the detected value I of the charge / discharge current may be used as a variation parameter and integrated. Considering that there is an individual difference in the internal resistance of the battery cell Cij, the integrated value calculated in this way is considered to be a parameter quantifying the variation in capacity.

・上記実施形態では、積算値Inに基づき、均等化処理を行うか否かと、ブロック内の均等化処理時間(規定時間Tdis)との双方を設定したがこれに限らない。例えば、先の図2の論理和回路OR1〜OR4の論理和信号をマイコン14が取得可能な構成とし、ブロック内の均等化処理が所定時間行われる毎に、マイコン14を起動して論理和信号が論理「L」となったか否かを判断するようにしてもよい。ここで、論理和信号が論理「L」であるということは、ブロック内の均等化が完了したということを意味するため、これを条件にブロック内の均等化処理を終了させてもよい。   In the above embodiment, based on the integrated value In, both whether to perform equalization processing and the equalization processing time (specified time Tdis) in the block are set, but this is not limitative. For example, the microcomputer 14 can obtain the logical sum signals of the OR circuits OR1 to OR4 shown in FIG. 2, and the microcomputer 14 is activated every time the equalization processing in the block is performed for a predetermined time. It may be determined whether or not becomes “L”. Here, when the logical sum signal is logical “L” means that the equalization within the block has been completed, the equalization processing within the block may be terminated on this condition.

また例えば、起動スイッチがオフとされる期間にわたって、上記スイッチScがオン状態とされるようにしてもよい。この場合であっても、積算値Inに基づきブロック内均等化の完了時間を予測することができるため、ブロック間均等化のためにマイコン14が起動する回数を低減することができる。また、ブロック間の均等化処理を実行すべきか否かを判断することもできる。これに対し、積算値Inに基づくブロック内均等化処理時間を予測する手段を備えない場合には、マイコン14が所定時間毎に起動し、ブロック間の電圧を検出し、ブロック間の均等化処理を行うか否かを判断する必要が生じる。このため、マイコン14の起動に伴う消費電力が増大する。また、ブロック内均等化が完了する以前にブロック間の均等化処理がなされるおそれもある。なお、この場合、上記スイッチScとしては、単にノーマリークローズタイプのものを用いればよい。   Further, for example, the switch Sc may be turned on over a period in which the start switch is turned off. Even in this case, since the completion time of equalization within a block can be predicted based on the integrated value In, the number of times the microcomputer 14 is activated for equalization between blocks can be reduced. It can also be determined whether or not the equalization process between blocks should be executed. On the other hand, in the case where no means for predicting the equalization processing time within the block based on the integrated value In is provided, the microcomputer 14 is activated every predetermined time, detects the voltage between the blocks, and performs the equalization processing between the blocks. It becomes necessary to determine whether or not to perform. For this reason, the power consumption accompanying the starting of the microcomputer 14 increases. In addition, there is a possibility that the equalization process between the blocks is performed before the intra-block equalization is completed. In this case, the normally closed type switch may be used as the switch Sc.

・上記実施形態では、ブロック内の均等化とブロック間の均等化との2段階で均等化処理を行ったがこれに限らない。例えば、均等化ユニットUiのような機能を有する専用のハードウェア手段を、組電池10の全電池セルC11〜Cn4のうちの電圧の高いものを放電させるように設計してこれを用いてもよい。この場合であっても、このハードウェア手段から各電池セルCijの容量の値(電圧値)を取得することはできないため、上記実施形態の要領で容量のばらつきを推定することは有効である。   In the above embodiment, the equalization processing is performed in two stages, that is, equalization within a block and equalization between blocks. However, the present invention is not limited to this. For example, a dedicated hardware unit having a function like the equalization unit Ui may be designed and used so as to discharge a high voltage of all the battery cells C11 to Cn4 of the assembled battery 10. . Even in this case, since the capacity value (voltage value) of each battery cell Cij cannot be obtained from this hardware means, it is effective to estimate the capacity variation in the manner of the above embodiment.

更にこの際、組電池10を代表する温度が低いほど電池セルCij同士の容量ばらつきが大きいとして、ばらつきパラメータを大きい値とする処理を行うものに限らない。例えば、組電池10の複数の箇所に温度センサを備え、これらの温度ばらつきを更に加味してもよい。これは例えば、複数の温度センサの検出値の平均値を用いて算出されるばらつきパラメータを、検出値のばらつき度合いが大きいほど増加補正することで行えばよい。   Further, at this time, the lower the temperature representative of the assembled battery 10, the larger the variation in capacity among the battery cells Cij, and the process is not limited to the process of increasing the variation parameter. For example, temperature sensors may be provided at a plurality of locations of the assembled battery 10 to further consider these temperature variations. For example, the variation parameter calculated using the average value of the detection values of the plurality of temperature sensors may be corrected by increasing the degree of variation of the detection value.

・上記実施形態では、起動スイッチがONとなる際に、均等化放電処理のなされた時間に応じて積算値Inを変更したがこれに限らない。例えば均等化放電処理中に処理時間に応じて積算値Inを漸減させてもよい。   In the above embodiment, when the start switch is turned on, the integrated value In is changed according to the time during which the equalizing discharge process is performed, but the present invention is not limited to this. For example, the integrated value In may be gradually decreased according to the processing time during the equalizing discharge process.

・車載電力変換回路が停止されているか否かの判断手法としては、起動スイッチがオフであるかオンであるかに限らない。例えば、メインリレー18,20がオフであるかオンであるかであってもよい。   The method for determining whether or not the in-vehicle power conversion circuit is stopped is not limited to whether the start switch is off or on. For example, the main relays 18 and 20 may be off or on.

・均等化処理としては、車載電力変換回路が停止していることを条件に行うものに限らない。例えば、車載電力変換回路が動作しているときに行う場合には、充放電電流の影響でブロック電圧の検出値に基づきブロック同士の容量ばらつきを精度良く判断することが困難となる。このため、上記積算値Inに基づき均等化処理の実行の有無を判断することは有効である。また、ブロック電圧の検出値同士のばらつき度合いと、積算値Inとの双方に基づき、均等化処理の実行の有無を判断してもよい。すなわち、ブロックの充放電電流に起因して電圧の検出値によっては容量のばらつきを高精度に判断することができない状況下、積算値Inを加味することで、容量のばらつきを高精度に判断することが可能となる。   -The equalization process is not limited to that performed on condition that the in-vehicle power conversion circuit is stopped. For example, when it is performed while the in-vehicle power conversion circuit is operating, it is difficult to accurately determine the capacity variation between the blocks based on the detected value of the block voltage due to the influence of the charge / discharge current. For this reason, it is effective to determine whether or not the equalization process is performed based on the integrated value In. Further, whether or not the equalization process is performed may be determined based on both the degree of variation between the detected values of the block voltage and the integrated value In. That is, in a situation where the variation in capacity cannot be determined with high accuracy depending on the detected voltage value due to the charge / discharge current of the block, the variation in capacity is determined with high accuracy by adding the integrated value In. It becomes possible.

・更に、上記実施形態のように、均等化対象の電圧を検出する手段を備えることなく均等化処理を行うハードウェア手段を備えるものにも限らない。例えば、各電池セルCijの電圧を検出する手段を備える場合であっても、上述したように、電池セルの充放電がなされている状況下に均等化を行う場合には、電池セル同士の電圧のばらつきに加えて、積算値Inを加味することで、均等化の実施の有無を高精度に判断することが可能となると考えられる。また例えば、車載電力変換回路が停止していることを条件に均等化処理を行うものである場合、電力変換回路の停止後、積算値Inに基づき均等化処理の有無を判断することで、全電池セルの電圧を一旦検出しこれに基づき均等化処理の有無を判断する場合と比較して、均等化処理の実行の有無の判断を迅速に行うことができる。   -Furthermore, it is not restricted to what is provided with the hardware means which performs an equalization process, without providing the means to detect the voltage of the equalization object like the said embodiment. For example, even when a means for detecting the voltage of each battery cell Cij is provided, as described above, when equalization is performed under the situation where the battery cells are charged and discharged, the voltage between the battery cells is In addition to the variation, it is considered that the presence or absence of equalization can be determined with high accuracy by adding the integrated value In. Further, for example, in the case where the equalization process is performed on the condition that the on-vehicle power conversion circuit is stopped, after the power conversion circuit is stopped, by determining the presence or absence of the equalization process based on the integrated value In, Compared with the case where the voltage of the battery cell is detected once and the presence / absence of the equalization process is determined based on this, it is possible to quickly determine whether or not the equalization process is performed.

・組電池10の都度の充放電電流量の監視に基づく組電池の充放電の履歴に応じて電池セル同士の容量のばらつきを推定する手段としては、組電池10の充放電電流の検出値Iを入力とする手段に限らない。例えば、車両の走行状態や、車載電力変換回路の操作状態を入力とする手段であってもよい。すなわち、車両の走行状態や車載電力変換回路の操作状態は、組電池の充放電電流と相関を有するパラメータであるため、これら走行状態や操作状態を都度監視することでも、組電池10の充放電電流を推定することができ、ひいては充放電の履歴に応じた電池セル同士の容量のばらつきを推定することが可能となる。これは例えば、起動スイッチのオン時間に応じて容量のばらつき度合いを漸増させて且つ、この間に登坂路を走行する状況が生じた場合には、ばらつき度合いの漸増速度を増加させる等して行うことができる。   As a means for estimating the variation in capacity between battery cells in accordance with the charging / discharging history of the assembled battery based on the monitoring of the charging / discharging current amount of the assembled battery 10 each time, the detected value I of the charging / discharging current of the assembled battery 10 It is not restricted to the means which inputs. For example, it may be a means for inputting the running state of the vehicle or the operation state of the in-vehicle power conversion circuit. That is, the running state of the vehicle and the operation state of the in-vehicle power conversion circuit are parameters having a correlation with the charging / discharging current of the assembled battery. The current can be estimated, and as a result, it is possible to estimate the variation in capacity between the battery cells according to the charge / discharge history. For example, this is done by gradually increasing the degree of variation in capacity according to the ON time of the start switch and increasing the increasing speed of the degree of variation when there is a situation where the vehicle travels on an uphill road during this time. Can do.

・電池セルCijとしては、リチウムイオン2次電池等のリチウム系2次電池に限らず、例えばニッケル水素2次電池等のアルカリ2次電池であってもよい。   The battery cell Cij is not limited to a lithium secondary battery such as a lithium ion secondary battery, but may be an alkaline secondary battery such as a nickel metal hydride secondary battery.

・上記実施形態では、ハイブリッド車に本発明を適用したがこれに限らず、例えば電気自動車に本発明を適用してもよい。   In the above embodiment, the present invention is applied to a hybrid vehicle. However, the present invention is not limited to this. For example, the present invention may be applied to an electric vehicle.

10…組電池、14…マイコン(推定手段、可変手段の一実施形態)、Cij…電池セル、Ui…均等化ユニット。   DESCRIPTION OF SYMBOLS 10 ... Battery pack, 14 ... Microcomputer (one embodiment of an estimation means and a variable means), Cij ... Battery cell, Ui ... Equalization unit.

Claims (8)

1又は隣接する複数個の電池セルである単位電池の直列接続体としての組電池について、該組電池を構成する単位電池同士の容量を均等化する組電池の容量調整装置において、
前記組電池の都度の充放電電流の監視に基づく前記組電池の充放電の履歴に応じて前記単位電池同士の容量のばらつきを推定する推定手段と、
前記推定される容量のばらつきに基づき、前記容量の均等化処理の実行態様を可変設定する可変手段とを備え
前記推定手段は、前記充放電電流の検出値に応じて算出されるばらつきパラメータの積算値によって前記容量のばらつきを定量化し、
前記ばらつきパラメータは、前記充放電電流の検出値と、前記単位電池の内部抵抗に関するパラメータとに基づき算出されることを特徴とする組電池の容量調整装置。
About the assembled battery as a series connection body of unit batteries which are one or a plurality of adjacent battery cells, in the capacity adjustment device of the assembled battery for equalizing the capacity of the unit batteries constituting the assembled battery,
Estimating means for estimating the variation in capacity between the unit batteries according to the charge / discharge history of the assembled battery based on the monitoring of the charging / discharging current for each assembled battery;
Variable means for variably setting an execution mode of the capacity equalization processing based on the estimated capacity variation ;
The estimation means quantifies the variation in capacity by an integrated value of variation parameters calculated according to the detected value of the charge / discharge current,
The assembled battery capacity adjustment device , wherein the variation parameter is calculated based on a detected value of the charge / discharge current and a parameter relating to an internal resistance of the unit battery .
前記内部抵抗に関するパラメータが温度の検出値であることを特徴とする請求項記載の組電池の容量調整装置。 Battery pack capacity adjustment apparatus according to claim 1, wherein the parameters relating to the internal resistance is detected values of the temperature. 前記可変手段は、前記推定される容量のばらつきに基づき、前記容量の均等化処理の実行の有無を判断する判断手段を備えることを特徴とする請求項1又2に記載の組電池の容量調整装置。 3. The capacity adjustment of the assembled battery according to claim 1, wherein the variable unit includes a determination unit that determines whether or not the capacity equalization process is performed based on the estimated variation in capacity. apparatus. 前記可変手段は、前記推定される容量のばらつきに基づき、前記容量の均等化処理時間を設定する処理時間設定手段を備えることを特徴とする請求項1〜のいずれか1項に記載の組電池の容量調整装置。 It said varying means, based on said variation of estimated capacity, the set according to any one of claims 1 to 3, characterized in that it comprises a processing time setting means for setting the equalization processing time period of the capacitor Battery capacity adjustment device. 前記均等化処理を行うための手段は、隣接する所定個数の単位電池に並列接続された前記所定個数の抵抗体の直列接続体と、前記抵抗体同士の各接続点の電位と対応する前記単位電池同士の各接続点の電位とを比較する手段と、前記比較結果に基づき前記所定個数の単位電池のうち電圧が高いと想定されるものを放電させる放電手段とを備えることを特徴とする請求項1〜のいずれか1項に記載の組電池の容量調整装置。 The means for performing the equalization process includes a series connection body of the predetermined number of resistors connected in parallel to a predetermined number of adjacent unit cells, and the unit corresponding to a potential at each connection point of the resistors. A means for comparing the potentials of the connection points between the batteries, and a discharge means for discharging a battery whose voltage is assumed to be high among the predetermined number of unit batteries based on the comparison result. Item 5. The capacity adjustment device for an assembled battery according to any one of Items 1 to 4 . 前記隣接する所定個数の単位電池は、前記組電池をグループ化したブロックを構成するものであり、
これら各ブロックの電圧を検出するブロック電圧検出手段と、
前記ブロック電圧検出手段の検出結果に基づき、電圧の高いブロックの電圧を放電させるブロック間均等化手段とを更に備え、
前記可変手段は、前記推定されるばらつきに基づき、前記ブロック間均等化手段による放電処理を行うか否かを定めるものであることを特徴とする請求項記載の組電池の容量調整装置。
The adjacent predetermined number of unit cells constitute a block in which the assembled batteries are grouped,
Block voltage detection means for detecting the voltage of each block;
Based on the detection result of the block voltage detecting means, further comprising an inter-block equalizing means for discharging the voltage of the high voltage block,
6. The assembled battery capacity adjustment apparatus according to claim 5 , wherein the variable means determines whether or not to perform a discharge process by the inter-block equalization means based on the estimated variation.
前記隣接する所定個数の単位電池は、前記組電池をグループ化したブロックを構成するものであり、
これら各ブロックの電圧を検出するブロック電圧検出手段と、
前記ブロック電圧検出手段の検出結果に基づき、電圧の高いブロックの電圧を放電させるブロック間均等化手段とを更に備え、
前記可変手段は、前記推定されるばらつきに基づき、前記放電手段による放電処理が完了したと想定される時点以降において、ブロック間均等化手段による放電処理を行うことを特徴とする請求項5又は6記載の組電池の容量調整装置。
The adjacent predetermined number of unit cells constitute a block in which the assembled batteries are grouped,
Block voltage detection means for detecting the voltage of each block;
Based on the detection result of the block voltage detecting means, further comprising an inter-block equalizing means for discharging the voltage of the high voltage block,
Said varying means, based on the variation to be the estimated that in the following the time when the discharge process by the discharging means is assumed to be complete, or claim 5, characterized in that performing a discharging process by the equalizing means between blocks 6 The capacity adjustment apparatus of the assembled battery as described.
前記組電池は、車載主機としての回転機に電力変換回路を介して接続されるものであり、
前記均等化処理は、前記電力変換回路が停止されていることを条件に、前記均等化処理を行うことを特徴とする請求項1〜のいずれか1項に記載の組電池の容量調整装置。
The assembled battery is connected to a rotating machine as an in-vehicle main machine via a power conversion circuit,
The equalization process, the on condition that the power conversion circuit is stopped, the battery pack capacity adjustment apparatus according to any one of claims 1 to 7, wherein: performing the equalization processing .
JP2009113126A 2009-05-08 2009-05-08 Battery pack capacity adjustment device Expired - Fee Related JP5381303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113126A JP5381303B2 (en) 2009-05-08 2009-05-08 Battery pack capacity adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113126A JP5381303B2 (en) 2009-05-08 2009-05-08 Battery pack capacity adjustment device

Publications (2)

Publication Number Publication Date
JP2010263703A JP2010263703A (en) 2010-11-18
JP5381303B2 true JP5381303B2 (en) 2014-01-08

Family

ID=43361327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113126A Expired - Fee Related JP5381303B2 (en) 2009-05-08 2009-05-08 Battery pack capacity adjustment device

Country Status (1)

Country Link
JP (1) JP5381303B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247690A (en) * 2012-05-23 2013-12-09 Toyota Industries Corp Voltage equalization device
US20150244189A1 (en) * 2012-10-24 2015-08-27 Sharp Kabushiki Kaisha Balancer circuit and battery unit using same
JP2014087214A (en) * 2012-10-25 2014-05-12 Nippon Soken Inc Power conversion device
JP5910889B2 (en) * 2013-10-01 2016-04-27 トヨタ自動車株式会社 Power storage system
KR101491460B1 (en) 2013-11-27 2015-02-11 연세대학교 산학협력단 Active cell balancing method of battery and system thereof
JP6628517B2 (en) * 2015-07-30 2020-01-08 ラピスセミコンダクタ株式会社 Semiconductor device and cell voltage equalization method for battery cell
KR102516355B1 (en) * 2015-12-21 2023-03-31 삼성전자주식회사 Method and apparatus of controlling battery, and battery pack enabling the method
KR20200143019A (en) * 2019-06-14 2020-12-23 현대자동차주식회사 Apparatus for diagnosing battery for vehicle and method for diagnosing battery thereof and vehicle including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4016516B2 (en) * 1999-01-12 2007-12-05 トヨタ自動車株式会社 Charge / discharge control device for battery pack
JP3997707B2 (en) * 2000-11-30 2007-10-24 新神戸電機株式会社 Monitoring device, control device and battery module
JP3972789B2 (en) * 2002-10-10 2007-09-05 日産自動車株式会社 Charge amount adjustment device for battery pack
JP4116589B2 (en) * 2004-05-14 2008-07-09 パナソニックEvエナジー株式会社 Capacity equalization device
JP5114885B2 (en) * 2006-07-14 2013-01-09 日産自動車株式会社 Capacity adjustment device
JP2008054416A (en) * 2006-08-24 2008-03-06 Toyota Motor Corp Battery pack equalizer and vehicle mounted with the battery pack

Also Published As

Publication number Publication date
JP2010263703A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
JP5381303B2 (en) Battery pack capacity adjustment device
KR101925196B1 (en) Battery system
JP6217996B2 (en) Charge / discharge system for storage element
EP3352289B1 (en) Storage battery control device
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
JP6179407B2 (en) Battery pack equalization apparatus and method
US20160049821A1 (en) Electrical storage system, and full charge capacity estimation method for electrical storage device
WO2014083856A1 (en) Battery management device, power supply, and soc estimation method
JP2013070599A (en) State management device, equalization method for storage elements
CN103493332A (en) Power supply apparatus and power supply method
US20180358819A1 (en) A method and system for balancing a battery pack
JP2012178953A (en) Method of detecting state of assembled battery and controller
JP2011177011A (en) Device for adjusting state of charge, battery system with the same, electric vehicle, moving body, power storage device, power supply device, and program for processing state of charge adjustment
US10161980B2 (en) Deterioration detecting apparatus and deterioration detecting method
WO2019176395A1 (en) Management device, power storage system
CN115038611A (en) Battery power limit estimation based on RC model
JP2012138979A (en) Output equalization system of battery pack
JP2016151513A (en) Battery system monitoring device
JPWO2014080595A1 (en) Battery management device and power supply device
JP6135898B2 (en) Charge control device for power storage element, power storage device, and charge control method
JP5999409B2 (en) State estimation device and state estimation method
JP2019074501A (en) Battery state estimation method and battery state estimating device
JP2013078261A (en) Management device of battery pack
JP7174327B2 (en) Method for determining state of secondary battery
US20200217899A1 (en) Method and system for noise-tolerant rc response prediction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees