JP6163879B2 - Battery temperature estimation device and battery temperature estimation method - Google Patents

Battery temperature estimation device and battery temperature estimation method Download PDF

Info

Publication number
JP6163879B2
JP6163879B2 JP2013113111A JP2013113111A JP6163879B2 JP 6163879 B2 JP6163879 B2 JP 6163879B2 JP 2013113111 A JP2013113111 A JP 2013113111A JP 2013113111 A JP2013113111 A JP 2013113111A JP 6163879 B2 JP6163879 B2 JP 6163879B2
Authority
JP
Japan
Prior art keywords
value
battery
battery temperature
internal resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013113111A
Other languages
Japanese (ja)
Other versions
JP2014232649A (en
Inventor
池内 亮
亮 池内
木下 拓哉
拓哉 木下
勇生 高根澤
勇生 高根澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013113111A priority Critical patent/JP6163879B2/en
Publication of JP2014232649A publication Critical patent/JP2014232649A/en
Application granted granted Critical
Publication of JP6163879B2 publication Critical patent/JP6163879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、電池の温度を推定する装置及び方法に関する。   The present invention relates to an apparatus and method for estimating the temperature of a battery.

例えばリチウムイオン電池のような二次電池を車両に搭載する場合には、電池セルの満充電容量、現在の残容量、内部抵抗値等といった多くのパラメータを算出する電池用の制御装置が必要となる。上記のパラメータを算出するに際し、特に諸特性の温度依存性が高いリチウムイオン電池の場合には、電池の正確な温度を取得する必要がある。   For example, when a secondary battery such as a lithium ion battery is mounted on a vehicle, a battery control device that calculates many parameters such as the full charge capacity of the battery cell, the current remaining capacity, and the internal resistance value is required. Become. When calculating the above parameters, it is necessary to obtain the accurate temperature of the battery, particularly in the case of a lithium ion battery in which various properties are highly temperature dependent.

すなわち、電池温度を正確に算出することが、各パラメータを正確に算出することにつながり、ひいては電池の制御精度の向上につながる。   That is, accurately calculating the battery temperature leads to accurate calculation of each parameter, which leads to an improvement in battery control accuracy.

この点、特許文献1には、内部抵抗値の推定値と電流値を用いて内部抵抗に電流が流れることによる発熱量を算出し、これと電池セル温度の初期値とを用いて電池温度を推定することが記載されている。   In this regard, Patent Document 1 calculates the amount of heat generated by the current flowing through the internal resistance using the estimated internal resistance value and the current value, and uses this and the initial value of the battery cell temperature to calculate the battery temperature. The estimation is described.

特開2006−101674JP 2006-101694 A

しかしながら、上記文献のように電池温度を推定すると、内部抵抗値の推定値に誤差が含まれていた場合には発熱量の算出結果にも誤差が含まれることとなり、この誤差を含んだまま電池温度推定のための演算を繰り返すことになる。すなわち、電池温度を精度良く推定することが困難である。また、上記文献においてはバッテリの温度を検出する温度センサを備え、所定のタイミングで温度センサの検出値に基づいて内部抵抗を補正しているが、温度センサの検出値に定常的に誤差が生じている場合には、やはり内部抵抗値の推定値(補正値)に誤差が発生する。したがって、温度センサの検出値に基づいて内部抵抗値を補正しても、温度センサの検出誤差に起因した内部抵抗の推定値(補正値)に誤差が発生し、電池温度を精度良く推定することが困難である。そこで、電池温度を精度良く推定することを目的とする。   However, when the battery temperature is estimated as in the above document, if the estimated value of the internal resistance value includes an error, the calculation result of the calorific value also includes an error. The calculation for temperature estimation is repeated. That is, it is difficult to accurately estimate the battery temperature. In addition, in the above document, a temperature sensor for detecting the temperature of the battery is provided, and the internal resistance is corrected based on the detected value of the temperature sensor at a predetermined timing. However, a constant error occurs in the detected value of the temperature sensor. In this case, an error also occurs in the estimated value (correction value) of the internal resistance value. Therefore, even if the internal resistance value is corrected based on the detection value of the temperature sensor, an error occurs in the estimated value (correction value) of the internal resistance due to the detection error of the temperature sensor, and the battery temperature is accurately estimated. Is difficult. Therefore, an object is to accurately estimate the battery temperature.

本発明のある態様によれば、電池温度の推定演算を周期的に繰り返す電池温度推定装置が提供される。この電池温度推定装置は、電流値を検出する電流検出手段と、電池の内部抵抗値を算出する内部抵抗値算出手段と、内部抵抗値及び電流値を用いて演算周期中の電池の発熱量を算出する発熱量算出手段と、発熱量に基づいて電池の温度変化量を推定する温度変化量推定手段を備える。さらに、電池の温度変化量を電池温度推定値の前回値に加算したものを電池温度推定値の今回値とする電池温度推定値更新手段を備える。そして、内部抵抗値算出手段は、電池温度推定値の前回値に基づいて、内部抵抗値を電池温度推定値の前回値が高いほど小さくなるように補正する。 According to an aspect of the present invention, there is provided a battery temperature estimation device that periodically repeats battery temperature estimation calculation. The battery temperature estimation device includes a current detection unit that detects a current value, an internal resistance value calculation unit that calculates an internal resistance value of the battery, and a heating value of the battery during the calculation cycle using the internal resistance value and the current value. A calorific value calculating means for calculating and a temperature change estimating means for estimating the temperature change of the battery based on the calorific value are provided. Furthermore, the battery temperature estimated value update means which makes this time the battery temperature estimated value what added the battery temperature variation | change_quantity to the last value of battery temperature estimated value is provided. Then, the internal resistance value calculating means corrects the internal resistance value based on the previous value of the battery temperature estimated value so as to decrease as the previous value of the battery temperature estimated value increases.

上記態様によれば、内部抵抗値算出手段が電池温度推定値の前回値に基づいて内部抵抗値を算出し、この内部抵抗値に基づいて電池温度推定値の今回値を推定するので、温度推定演算に負帰還がかかり、電池温度を精度良く推定することができる。   According to the above aspect, the internal resistance value calculating means calculates the internal resistance value based on the previous value of the battery temperature estimated value, and estimates the current value of the battery temperature estimated value based on the internal resistance value. Negative feedback is applied to the calculation, and the battery temperature can be accurately estimated.

図1は、第1実施形態を適用する冷却システムの構成図である。FIG. 1 is a configuration diagram of a cooling system to which the first embodiment is applied. 図2は、第1実施形態の温度推定部の概略構成を示すブロック図である。FIG. 2 is a block diagram illustrating a schematic configuration of the temperature estimation unit of the first embodiment. 図3は、内部抵抗補正推定値を算出するのに用いるテーブルの一例である。FIG. 3 is an example of a table used to calculate the internal resistance correction estimated value. 図4は、第2実施形態の温度推定部の概略構成を示すブロック図である。FIG. 4 is a block diagram illustrating a schematic configuration of the temperature estimation unit of the second embodiment.

以下、添付図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

(第1実施形態)
図1は、本発明の第1実施形態を適用するシステムの一例を示す構成図である。本システムは、電動車に搭載されたリチウムイオン電池(以下、単に「電池」という)1を、冷却ファン5を用いて冷却する冷却システムである。例えば、電池1の温度が予め設定した温度まで上昇したら、冷却ファン5をONにする。ON状態での回転数は固定値としてもよいし、電池1の温度に応じて高温になるほど回転数を高めるようにしてもよい。
(First embodiment)
FIG. 1 is a configuration diagram showing an example of a system to which the first embodiment of the present invention is applied. This system is a cooling system that cools a lithium ion battery (hereinafter simply referred to as “battery”) 1 mounted on an electric vehicle using a cooling fan 5. For example, when the temperature of the battery 1 rises to a preset temperature, the cooling fan 5 is turned on. The rotational speed in the ON state may be a fixed value, or the rotational speed may be increased as the temperature increases according to the temperature of the battery 1.

上記のような冷却ファン5の制御は、ファン制御部10によって実行される。そして、ファン制御部10は、温度推定部20が推定した電池温度に基づいて冷却ファン5のON/OFF及び回転数を設定する。   The control of the cooling fan 5 as described above is executed by the fan control unit 10. Then, the fan control unit 10 sets the ON / OFF and the rotation speed of the cooling fan 5 based on the battery temperature estimated by the temperature estimation unit 20.

温度推定部20は、電池1の電圧値Vを検出する電圧センサ2、電池1の電流値Iを検出する電流センサ3、及び電池1の設置場所の環境温度Taを検出する温度センサ4の検出値を読み込み、後述する演算により電池1の温度を推定する。   The temperature estimation unit 20 detects the voltage sensor 2 that detects the voltage value V of the battery 1, the current sensor 3 that detects the current value I of the battery 1, and the temperature sensor 4 that detects the environmental temperature Ta at the installation location of the battery 1. The value is read and the temperature of the battery 1 is estimated by a calculation described later.

また、ファン制御部10は、冷却ファン5のON/OFF及び回転数を設定したら、それらの情報を温度推定部20へ出力する。   In addition, when the fan control unit 10 sets the ON / OFF and the rotation speed of the cooling fan 5, the fan control unit 10 outputs the information to the temperature estimation unit 20.

なお、ファン制御部10は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。ファン制御部10を複数のマイクロコンピュータで構成することも可能である。   The fan control unit 10 is constituted by a microcomputer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the fan control unit 10 with a plurality of microcomputers.

次に、温度推定部20による電池温度の推定演算について説明する。   Next, battery temperature estimation calculation by the temperature estimation unit 20 will be described.

図2は、温度推定部20の概略構成を示すブロック図である。電池温度推定演算は、システム稼働中に所定の周期で繰り返し実行される。所定の周期は、例えば数十ミリ秒から数秒の間で任意に設定する。なお、図2に示す各ブロックは、温度推定部20の機能を仮想的なユニットとして示したものであり、物理的な存在を意味しない。   FIG. 2 is a block diagram illustrating a schematic configuration of the temperature estimation unit 20. The battery temperature estimation calculation is repeatedly executed at a predetermined cycle during system operation. The predetermined period is arbitrarily set between several tens of milliseconds and several seconds, for example. In addition, each block shown in FIG. 2 shows the function of the temperature estimation part 20 as a virtual unit, and does not mean physical existence.

温度推定部20は、温度推定部20とは別の演算部から読み込んだ内部抵抗推定値Reを電池温度に基づいて補正して内部抵抗補正推定値Rを算出する内部抵抗演算部B1と、通電時の内部抵抗による発熱量Qrhを演算する発熱量演算部B2を備える。また、電池1の化学反応による吸熱量と発熱量の収支(以下「熱収支」という)Qcrを演算する熱収支演算部B3と、熱拡散による冷却を含む冷却量Qcを演算する冷却量演算部B4を備える。さらに、発熱量Qrh、熱収支Qcr及び冷却量Qcから電池1の温度変化量△Teを算出する温度変化量演算部B5と、温度変化量△Teを前回演算により推定した電池温度に加算して得られる電池温度推定値Teを今回演算の温度推定値として更新する電池温度推定値更新部B6を備える。以下、各部での演算について詳細に説明する。   The temperature estimation unit 20 corrects the internal resistance estimated value Re read from a calculation unit different from the temperature estimation unit 20 based on the battery temperature, and calculates an internal resistance correction estimated value R. A calorific value calculation unit B2 for calculating a calorific value Qrh due to internal resistance at the time is provided. In addition, a heat balance calculation unit B3 that calculates a balance between heat absorption amount and heat generation amount (hereinafter referred to as “heat balance”) Qcr due to a chemical reaction of the battery 1, and a cooling amount calculation unit that calculates a cooling amount Qc including cooling due to thermal diffusion. B4 is provided. Furthermore, a temperature change amount calculation unit B5 that calculates the temperature change amount ΔTe of the battery 1 from the heat generation amount Qrh, the heat balance Qcr, and the cooling amount Qc, and the temperature change amount ΔTe is added to the battery temperature estimated by the previous calculation. The battery temperature estimated value update part B6 which updates battery temperature estimated value Te obtained as a temperature estimated value of this calculation is provided. Hereafter, the calculation in each part is demonstrated in detail.

(内部抵抗演算部B1)
内部抵抗演算部B1は、内部抵抗推定値Reを読み込む。内部抵抗推定値Reは、図示しない他の制御部にて、例えば数十分から数時間、あるいは数日といった長い周期の電流測定値及び電圧測定値の時間的変化に基づいて、移動平均等を用いて更新演算される。したがって、内部抵抗推定演算に比べて充分演算周期が短い電池温度推定演算においては、内部抵抗推定値Reを固定値と考えても差し支えない。なお、内部抵抗推定値Reは電流変化に対する電圧変化を直線近似したIV直線の傾きに基づいて演算したり、電圧値と電流値とをパラメータとした電池モデル式に代入して演算する等、公知の手法により演算される。
(Internal resistance calculation unit B1)
The internal resistance calculator B1 reads the internal resistance estimated value Re. The internal resistance estimated value Re is obtained by performing a moving average or the like on the basis of a temporal change in the current measurement value and the voltage measurement value in a long cycle such as several tens of minutes to several hours or several days in another control unit (not shown). Is used for update calculation. Therefore, in the battery temperature estimation calculation having a sufficiently short calculation cycle compared to the internal resistance estimation calculation, the internal resistance estimation value Re may be considered as a fixed value. The estimated internal resistance value Re is calculated based on the slope of the IV straight line obtained by linearly approximating the voltage change with respect to the current change, or is calculated by substituting it into the battery model equation using the voltage value and current value as parameters. It is calculated by the method of.

また、内部抵抗演算部B1は、電池温度推定値Teの前回値も読み込む。システム稼働後の初回演算時は、電池温度推定値Teの前回値(すなわち初期値)を次のように設定する。まず、前回の走行が終了してから所定時間以上経過している場合には環境温度Taを電池温度推定値Teの前回値とする。一方、所定時間より短い場合には、前回走行終了時の電池温度推定値Teと、前回走行終了からの経過時間と、環境温度Taを用いて推定した温度を前回推定値とする。ここでいう所定時間は、走行終了から電池温度が環境温度まで低下するのに要する時間であり、例えば2−3時間とする。このようにして初回演算時に用いる電池温度推定値Teの前回値を設定することで、実際の電池温度に近い温度を用いて温度推定演算を開始することができる。   The internal resistance calculation unit B1 also reads the previous value of the estimated battery temperature value Te. At the time of the first calculation after the system is operated, the previous value (that is, the initial value) of the estimated battery temperature value Te is set as follows. First, when a predetermined time or more has elapsed since the end of the previous run, the environmental temperature Ta is set as the previous value of the battery temperature estimated value Te. On the other hand, if it is shorter than the predetermined time, the battery temperature estimated value Te at the end of the previous run, the elapsed time from the end of the previous run, and the temperature estimated using the environmental temperature Ta are set as the previous estimated value. The predetermined time here is the time required for the battery temperature to drop to the environmental temperature after the end of traveling, and is set to 2-3 hours, for example. By setting the previous value of the battery temperature estimated value Te used in the first calculation in this manner, the temperature estimation calculation can be started using a temperature close to the actual battery temperature.

そして、内部抵抗推定値Re、電池温度推定値Teの前回値、及び内部抵抗の電池温度に対する特性に基づいて、内部抵抗補正推定値Rを算出する。   Then, the internal resistance correction estimated value R is calculated based on the internal resistance estimated value Re, the previous value of the battery temperature estimated value Te, and the characteristics of the internal resistance with respect to the battery temperature.

図3は、内部抵抗補正推定値Rを算出するのに用いるテーブルの一例である。縦軸は内部抵抗R、横軸は電池温度Tである。   FIG. 3 is an example of a table used to calculate the internal resistance correction estimated value R. The vertical axis represents the internal resistance R, and the horizontal axis represents the battery temperature T.

内部抵抗演算部B1は、まず、読み込んだ内部抵抗推定値Reと電池温度推定値Teの前回値から図3の点Aを決定する。そして、温度変化に対する内部抵抗の変化の特性R=f(T)を予め実験等により調べておき、点Aを通り、かつ変化の特性がR=f(T)となる曲線を作成する。   The internal resistance calculation unit B1 first determines a point A in FIG. 3 from the read internal resistance estimated value Re and the previous value of the battery temperature estimated value Te. Then, the characteristic R = f (T) of the change in the internal resistance with respect to the temperature change is examined in advance by experiments or the like, and a curve passing through the point A and having the change characteristic R = f (T) is created.

このようにして作成した曲線が電池1の内部抵抗の温度依存特性線であり、次回以降の演算では、この温度依存特性線と後述する電池温度推定値更新部B6で更新した電池温度推定値Teを用いて内部抵抗を推定する。すなわち、内部抵抗補正推定値Rは、内部抵抗推定値Reを電池温度推定値Te及び温度依存特性線を用いて補正したものといえる。なおここで、図3に示す通り、一般的に電池の内部抵抗は温度が高くなるほど小さく、温度が低くなるほど大きくなる。したがって、電池温度推定値Teに基づいて温度依存特性線を参照して内部抵抗推定値Reを補正すると、内部抵抗推定値Reは温度が高くなるほど小さく、温度が低くなるほど大きく補正されて内部抵抗補正推定値Rが算出される。   The curve created in this way is the temperature-dependent characteristic line of the internal resistance of the battery 1, and in the next and subsequent calculations, this temperature-dependent characteristic line and the battery temperature estimated value Te updated by the battery temperature estimated value updating unit B6 described later. Is used to estimate the internal resistance. That is, it can be said that the internal resistance correction estimated value R is obtained by correcting the internal resistance estimated value Re using the battery temperature estimated value Te and the temperature dependence characteristic line. Here, as shown in FIG. 3, the internal resistance of the battery generally decreases as the temperature increases and increases as the temperature decreases. Therefore, when the estimated internal resistance value Re is corrected with reference to the temperature dependence characteristic line based on the estimated battery temperature value Te, the estimated internal resistance value Re is decreased as the temperature increases, and is increased as the temperature decreases, thereby correcting the internal resistance. An estimated value R is calculated.

(発熱量演算部B2)
発熱量演算部B2は、内部抵抗に電流が流れることによる発熱量Qrhを、内部抵抗補正推定値R、電流センサ3の検出値である電流値I、及び係数k1に基づいて、式(1)により算出する。
(Heat generation amount calculation unit B2)
The calorific value calculation unit B2 calculates the calorific value Qrh due to the current flowing through the internal resistance based on the internal resistance correction estimated value R, the current value I detected by the current sensor 3, and the coefficient k1, as shown in Equation (1). Calculated by

Qrh=RI×k1 ・・・(1) Qrh = RI 2 × k1 (1)

(熱収支演算部B3)
熱収支演算部B3は、電池1の内部での化学反応による熱収支Qcrを、電流センサ3の検出値である電流値Iと係数k2に基づいて、式(2)により算出する。係数k2は充電か放電かによって、また、使用する素材によっても異なる。
(Heat balance calculation unit B3)
The heat balance calculation unit B3 calculates a heat balance Qcr due to a chemical reaction inside the battery 1 based on the current value I that is a detection value of the current sensor 3 and the coefficient k2, using Equation (2). The coefficient k2 varies depending on whether it is charging or discharging, and also depending on the material used.

なお、式(2)にかえて、電流値Iに対する吸熱量及び発熱量を予めマップ化しておき、読み込んだ電流値Iでマップ検索するようにしてもよい。   Instead of the equation (2), the heat absorption amount and the heat generation amount with respect to the current value I may be mapped in advance, and a map search may be performed using the read current value I.

Qcr=I×k2 ・・・(2)     Qcr = I × k2 (2)

(冷却量演算部B4)
冷却量演算部B4は、冷却ファン5の稼働状態を示す冷却制御状態Scと環境温度センサ4の検出値である環境温度Taを読み込み、冷却制御状態Sc及び環境温度Taに応じた熱拡散係数を用いて冷却量Qcを算出する。冷却量Qcは、冷却ファン5が稼働していない場合より稼働している場合の方が大きく、稼働している場合は回転数が高い方がより大きくなる。また、冷却量Qcは環境温度が低いほど大きくなる。
(Cooling amount calculation unit B4)
The cooling amount calculation unit B4 reads the cooling control state Sc that indicates the operating state of the cooling fan 5 and the environmental temperature Ta that is a detection value of the environmental temperature sensor 4, and calculates a thermal diffusion coefficient according to the cooling control state Sc and the environmental temperature Ta. The cooling amount Qc is calculated by using this. The cooling amount Qc is larger when the cooling fan 5 is operating than when the cooling fan 5 is not operating. When the cooling fan 5 is operating, the cooling rate Qc is higher when the rotational speed is higher. Further, the cooling amount Qc increases as the environmental temperature decreases.

(温度変化量演算部B5)
温度変化量演算部B5は、発熱量Qrhに熱収支Qcrを加算し、そこから冷却量Qcを減算することで前回演算時から変化した熱量を算出し、さらに、電池1の比熱等を用いて、熱量の変化による電池1の温度変化量△Teを算出する。
(Temperature change amount calculation unit B5)
The temperature change amount calculation unit B5 adds the heat balance Qcr to the heat generation amount Qrh, subtracts the cooling amount Qc therefrom, calculates the amount of heat changed from the previous calculation, and further uses the specific heat of the battery 1 or the like. Then, a temperature change amount ΔTe of the battery 1 due to a change in the amount of heat is calculated.

(電池温度推定値更新部B6)
電池温度推定値更新部B6は、電池温度推定値Teの前回値に温度変化量演算部B5で算出した温度変化量△Teを加算したものを新たな電池温度推定値Teとして更新する。そして、更新された電池温度推定値Teを、ファン制御部10及び内部抵抗演算部B1へ出力する。
(Battery temperature estimated value update unit B6)
The battery temperature estimated value updating unit B6 updates the battery temperature estimated value Te obtained by adding the temperature change amount ΔTe calculated by the temperature change amount calculating unit B5 as a new battery temperature estimated value Te. Then, the updated battery temperature estimated value Te is output to the fan control unit 10 and the internal resistance calculation unit B1.

次に、上記した電池温度推定演算による作用・効果について説明する。   Next, operations and effects of the battery temperature estimation calculation described above will be described.

(1)本実施形態では、電池温度推定値の前回値に基づいて内部抵抗Rを算出し、内部抵抗Rと電流値Iとを用いて発熱量Qrhを算出し、発熱量Qrhに基づいて電池1の温度変化量△Teを算出し、この温度変化量△Teを電池温度推定値Teの前回値に加算して電池温度推定値の今回値とする。これによる効果は以下の通りである。 (1) In the present embodiment, the internal resistance R is calculated based on the previous value of the estimated battery temperature, the heat generation amount Qrh is calculated using the internal resistance R and the current value I, and the battery is calculated based on the heat generation amount Qrh. A temperature change amount ΔTe of 1 is calculated, and this temperature change amount ΔTe is added to the previous value of the battery temperature estimated value Te to obtain the current value of the battery temperature estimated value. The effect of this is as follows.

一般的に、電池1の内部抵抗は温度が高くなるほど小さく、温度が低くなるほど大きくなる。ここで、ある演算サイクルの電池温度推定値Teが真の値より低くなるよう誤差を含んでいた場合を仮定する。この場合、次のサイクルでは内部抵抗Rを真の値より低い電池温度推定値Teを用いて算出するので、真の値より大きな内部抵抗Rが算出される。発熱量Qrhは内部抵抗Rに比例するので、発熱量Qrhも真の値より大きくなり、このサイクルでは真の値より大きな温度変化量△Teが算出される。そして、真の値より低い電池温度推定値Teに、真の値より大きい温度変化量△Teを加算したものが、新たな電池温度推定値Teとなる。   In general, the internal resistance of the battery 1 decreases as the temperature increases, and increases as the temperature decreases. Here, it is assumed that the battery temperature estimation value Te in a certain calculation cycle includes an error so as to be lower than the true value. In this case, in the next cycle, the internal resistance R is calculated using the estimated battery temperature Te that is lower than the true value, so that the internal resistance R greater than the true value is calculated. Since the heat generation amount Qrh is proportional to the internal resistance R, the heat generation amount Qrh is also larger than the true value, and in this cycle, a temperature change amount ΔTe larger than the true value is calculated. Then, a new battery temperature estimated value Te is obtained by adding the temperature change amount ΔTe larger than the true value to the battery temperature estimated value Te lower than the true value.

一方、ある演算サイクルの電池温度推定値Teが真の値より高くなるよう誤差を含んでいた場合は、上記とは逆に、真の値より小さい発熱量Qrhが算出され、温度変化量△Teも真の値より小さくなる。そして、真の値より高い電池温度推定値Teに、真の値より小さい温度変化量△Teを加算したものが、新たな電池温度推定値Teとなる。   On the other hand, if an error is included so that the battery temperature estimated value Te of a certain calculation cycle becomes higher than the true value, a calorific value Qrh smaller than the true value is calculated contrary to the above, and the temperature change amount ΔTe. Is also smaller than the true value. Then, a new battery temperature estimated value Te is obtained by adding the temperature change amount ΔTe smaller than the true value to the battery temperature estimated value Te higher than the true value.

いずれの場合も、今回の演算サイクルで算出する電池温度推定値Teは、前回値に比べて真の値に近づくことになる。このように演算に負帰還がかかることにより、安定した正確な電池温度の推定が可能となる。   In any case, the estimated battery temperature value Te calculated in the current calculation cycle is closer to the true value than the previous value. In this way, negative feedback is applied to the calculation, so that stable and accurate battery temperature estimation can be performed.

また、初回演算に用いる電池温度に誤差が含まれていても、演算を繰り返すことで徐々に真の値に近づき、当該誤差をキャンセルすることが可能となる。   Further, even if an error is included in the battery temperature used for the initial calculation, it is possible to gradually approach the true value by repeating the calculation and cancel the error.

(2)温度変化量演算部B5は、内部抵抗による発熱量Qrhに加えて電池1の冷却量Qcを用いて温度変化量△Teを算出するので、発熱量Qrhのみに基づいて推定するよりも高い精度で電池1の温度を推定することができる。 (2) Since the temperature change amount calculation unit B5 calculates the temperature change amount ΔTe using the cooling amount Qc of the battery 1 in addition to the heat generation amount Qrh due to the internal resistance, rather than estimating based on only the heat generation amount Qrh. The temperature of the battery 1 can be estimated with high accuracy.

(3)温度変化量演算部B5は、発熱量Qrh及び冷却量Qcに加え、さらに化学反応による熱収支Qcrを用いて温度変化量△Teを算出するので、さらに高い精度で電池1の温度を推定することができる。 (3) Since the temperature change amount calculation unit B5 calculates the temperature change amount ΔTe using the heat balance Qcr due to the chemical reaction in addition to the calorific value Qrh and the cooling amount Qc, the temperature change amount ΔTe is calculated with higher accuracy. Can be estimated.

(4)システム稼働後の初回演算時に使用する温度推定値Teの前回値を、前回の走行終了からの経過時間に応じて設定するので、実際の電池温度に近い値を用いて演算を開始することができる。その結果、温度推定演算の初期から、推定誤差をより小さくすることができる。 (4) Since the previous value of the estimated temperature Te used for the first calculation after the system is operated is set according to the elapsed time from the end of the previous run, the calculation is started using a value close to the actual battery temperature. be able to. As a result, the estimation error can be further reduced from the initial stage of the temperature estimation calculation.

(第2実施形態)
本実施形態は、第1実施形態と同様の冷却システムにおける電池1の温度推定に関するものであり、電池温度推定演算の一部が第1実施形態と異なる。
(Second Embodiment)
This embodiment relates to the temperature estimation of the battery 1 in the same cooling system as the first embodiment, and a part of the battery temperature estimation calculation is different from the first embodiment.

図4は、温度推定部20の概略構成を示すブロック図である。発熱量演算部B2、熱収支演算部B3、冷却量演算部B4、温度変化量演算部B5、及び電池温度推定値更新部B6は、図2と同様なので説明を省略する。   FIG. 4 is a block diagram illustrating a schematic configuration of the temperature estimation unit 20. The heat generation amount calculation unit B2, the heat balance calculation unit B3, the cooling amount calculation unit B4, the temperature change amount calculation unit B5, and the battery temperature estimated value update unit B6 are the same as in FIG.

内部抵抗演算部B1’は、電池温度推定値Teの前回値及び内部抵抗推定値Reの他に、電池1の劣化度Dを読み込む。劣化度Dは、内部抵抗推定値Reと同様に他の制御部にて算出される。劣化度Dは公知の手法で算出すればよく、例えば、充電時の電流積算値と電池温度推定値Teの前回値から電池1の空き容量を求め、内部抵抗推定値Reと空き容量から劣化度を算出することができる。 Internal resistance computing unit B1 ', in addition to the previous value and the internal resistance estimated value Re of the battery temperature estimation value Te, read deterioration degree D R of the battery 1. Deterioration degree D R are calculated by another control unit similar to the internal resistance estimated value Re. Deterioration degree D R may be calculated by a known method, for example, determine the available capacity of the battery 1 from the previous value of the current accumulated value and the battery temperature estimation value Te during charging, deterioration of the internal resistance estimated value Re and space The degree can be calculated.

そして、読み込んだ電池温度推定値Teの前回値と内部抵抗推定値Reを用いて、第1実施形態と同様に電池1の内部抵抗の温度依存特性線を作成する。ここで作成されるのは、現在の劣化度Dにおける温度依存特性線である。 Then, using the read previous value of the estimated battery temperature value Te and the estimated internal resistance value Re, a temperature-dependent characteristic line of the internal resistance of the battery 1 is created as in the first embodiment. Here being created is a temperature-dependent characteristic line for the current deterioration degree D R.

次回の演算では、劣化度Dが現在の値から変化していなければ、今回作成した温度依存特性線を用いて第1実施形態と同様に内部抵抗補正推定値Rを算出する。 In the next operation, the deterioration degree D R is unless changed from the current value to calculate the internal resistance correction estimate R as in the first embodiment using the temperature dependent characteristic curve prepared this time.

一方、劣化度Dが変化している場合は、劣化が進むほど内部抵抗が大きくなるという特性に基づき、劣化度Dに応じた温度依存特性線を新たに作成して、内部抵抗補正推定値Rを算出する。新たな温度依存特性線は、例えば、図4に示すように最初に作成した温度依存特性線を同一温度での内部抵抗が大きくなる方向に移動させたものである。移動量は劣化度Dに応じて定まるものであり、劣化度Dの変化量と内部抵抗の変化量の関係に基づいて予め設定しておく。 On the other hand, if the deterioration degree D R is changed, based on the characteristic that the internal resistance increases as deterioration progresses, and create a new temperature-dependent characteristic lines corresponding to the deterioration degree D R, the internal resistance correction estimate The value R is calculated. The new temperature-dependent characteristic line is, for example, the first temperature-dependent characteristic line created as shown in FIG. 4 moved in the direction in which the internal resistance at the same temperature increases. Movement amount are those determined according to the deterioration degree D R, is set in advance based on the relationship between the deterioration degree D variation of R and the internal resistance change amount.

上記のように、内部抵抗補正推定値Rを算出するための変数に劣化度Dを含めて内部抵抗補正推定値Rを算出することで、電池温度の推定精度がより向上する。 As described above, by a variable for calculating the internal resistance correction estimate R including deterioration degree D R to calculate the internal resistance correction estimate R, estimation accuracy of the battery temperature is further improved.

なお、第1実施形態及び第2実施形態では冷却ファンの制御への適用について説明したが、電池1の温度推定は他にも多くの制御演算で必要となる。したがって、電池1の温度推定の精度が向上すれば、多くの演算精度が向上することとなる。以下、電池1の温度推定の精度が向上することで演算精度が向上する例について説明する。   In the first embodiment and the second embodiment, the application to the control of the cooling fan has been described. However, the temperature estimation of the battery 1 is necessary for many other control calculations. Therefore, if the accuracy of the temperature estimation of the battery 1 is improved, a lot of calculation accuracy is improved. Hereinafter, an example in which the calculation accuracy is improved by improving the accuracy of temperature estimation of the battery 1 will be described.

(充電電荷量)
電池1の残容量、SOC(state of charge)といった充電電荷量は、通常は電流センサ3で検出した電流測定値を積算した電流積算値を用いて増加分と減少分を算出し続けている。しかし、電流測定値のオフセット誤差やゲイン誤差等の誤差成分が徐々に蓄積されていく。そのため、定期的に誤差成分を取り除くためのリセット処理を実行する必要がある。一般的には、OCV(開放電圧)とSOCの関係を示すテーブルを用いてSOCをリセットするが、テーブルを電池温度に基づいて補正する必要がある。このため、温度推定の精度が高いことが求められる。
(Charge charge)
The amount of charge such as the remaining capacity of the battery 1 and SOC (state of charge) is normally calculated as an increase and a decrease using a current integrated value obtained by integrating current measurement values detected by the current sensor 3. However, error components such as offset error and gain error of the current measurement value are gradually accumulated. For this reason, it is necessary to periodically perform a reset process for removing the error component. Generally, the SOC is reset using a table indicating the relationship between the OCV (open circuit voltage) and the SOC, but the table needs to be corrected based on the battery temperature. For this reason, the accuracy of temperature estimation is required to be high.

(内部抵抗値)
上述した実施形態でも説明したように、内部抵抗は電流測定値と電圧測定値の時間的変化から算出する。また、内部抵抗値は電池1の温度への依存性が高い。内部抵抗値に基づいて劣化や異常を判定する際には、基準温度(例えば25℃)での内部抵抗値に換算してから判定することで、正確に判定することができるが、この換算のために、温度推定の精度が高いことが求められる。
(Internal resistance value)
As described in the above-described embodiment, the internal resistance is calculated from temporal changes in the current measurement value and the voltage measurement value. Further, the internal resistance value is highly dependent on the temperature of the battery 1. When determining deterioration or abnormality based on the internal resistance value, it can be accurately determined by converting the internal resistance value at the reference temperature (for example, 25 ° C.), but this conversion Therefore, high accuracy of temperature estimation is required.

(出力可能電力値)
電池1の出力可能電力値は、その時点での電池1のSOCや温度に基づいて算出される。また、電池1の出力を制限する出力制限値は電池1の内部抵抗値に大きく依存し、内部抵抗値は電池1の温度に大きく依存するため、出力可能電力値も電池1の温度に大きく依存することとなる。そして、出力可能電力値は車両性能の大きく影響を与える演算値なので、電池性能を十分に引き出すためには誤差が少ないことが求められる。このため、温度推定の精度が高いことが求められる。
(Output power value)
The output possible power value of the battery 1 is calculated based on the SOC and temperature of the battery 1 at that time. Further, the output limit value for limiting the output of the battery 1 greatly depends on the internal resistance value of the battery 1, and the internal resistance value greatly depends on the temperature of the battery 1, so that the output power value also greatly depends on the temperature of the battery 1. Will be. Since the output possible power value is a calculated value that greatly affects the vehicle performance, it is required that the error be small in order to sufficiently bring out the battery performance. For this reason, the accuracy of temperature estimation is required to be high.

(入力可能電力)
電池1の入力可能電力値は、その時点での電池1のSOCや温度に基づいて算出される。また、電池1への入力を制限する入力可能制限値は電池1の内部抵抗に大きく依存し、内部抵抗値は電池1の温度に大きく依存するため、入力可能電力値も電池1の温度に大きく依存することとなる。したがって、出力可能電力値と同様に、温度推定の精度が高いことが求められる。
(Input power)
The inputtable power value of the battery 1 is calculated based on the SOC and temperature of the battery 1 at that time. Further, the input possible limit value for limiting the input to the battery 1 greatly depends on the internal resistance of the battery 1, and the internal resistance value greatly depends on the temperature of the battery 1. Will be dependent. Therefore, the accuracy of temperature estimation is required to be high as with the outputable power value.

(走行可能距離)
電池1を駆動源とする車両の走行可能距離は、その時点での電池1のSOC、平均電流値及び内部抵抗値に基づいて算出される。内部抵抗値は電池1の温度に大きく依存するため、走行可能距離も電池1の温度に大きく依存することとなる。したがって、出力可能電力値と同様に、温度推定の精度が高いことが求められる。
(Driving distance)
The travelable distance of the vehicle using battery 1 as a drive source is calculated based on the SOC, average current value, and internal resistance value of battery 1 at that time. Since the internal resistance value greatly depends on the temperature of the battery 1, the travelable distance also greatly depends on the temperature of the battery 1. Therefore, the accuracy of temperature estimation is required to be high as with the outputable power value.

(充電残時間)
満充電状態になるまでに要する時間である充電残時間は、その時点での電池1のSOC、内部抵抗値に基づいて算出される。そして、内部抵抗値は電池1の温度に大きく依存する。そのため、充電残時間の算出においても、温度推定の精度が高いことが求められる。
(Remaining charge time)
The remaining charge time, which is the time required to reach a fully charged state, is calculated based on the SOC and internal resistance value of the battery 1 at that time. The internal resistance value greatly depends on the temperature of the battery 1. Therefore, high accuracy of temperature estimation is also required in calculating the remaining charge time.

なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims.

1 リチウムイオン電池
2 電圧センサ
3 電流センサ(電流検出手段)
4 温度センサ
5 冷却ファン
10 ファン制御部
20 温度推定部
B1 内部抵抗演算部(内部抵抗算出手段)
B2 発熱量演算部(発熱量算出手段)
B3 熱収支演算部(化学反応熱算出手段)
B4 冷却量演算部(放熱量算出手段)
B5 温度変化量演算部(温度変化量推定部)
B6 電池温度推定値更新部(電池温度推定値更新手段)
DESCRIPTION OF SYMBOLS 1 Lithium ion battery 2 Voltage sensor 3 Current sensor (current detection means)
4 Temperature sensor 5 Cooling fan 10 Fan control unit 20 Temperature estimation unit B1 Internal resistance calculation unit (internal resistance calculation means)
B2 Heat generation amount calculation unit (heat generation amount calculation means)
B3 Heat balance calculator (Chemical reaction heat calculation means)
B4 Cooling amount calculation unit (heat dissipation amount calculation means)
B5 Temperature change amount calculation unit (temperature change amount estimation unit)
B6 battery temperature estimated value update unit (battery temperature estimated value update means)

Claims (6)

電池温度の推定演算を周期的に繰り返す電池温度推定装置において、
電池に流れる電流値を検出する電流検出手段と、
前記電池の内部抵抗値を算出する内部抵抗値算出手段と、
前記内部抵抗値算出手段が算出した内部抵抗値と前記電流検出手段が検出した電流値とを用いて、演算周期中の前記電池の発熱量を算出する発熱量算出手段と、
前記発熱量算出手段が算出した発熱量に基づいて前記電池の温度変化量を推定する温度変化量推定手段と、
前記温度変化量推定手段が推定した前記電池の温度変化量を電池温度推定値の前回値に加算したものを電池温度推定値の今回値とする電池温度推定値更新手段と、
を備え、
前記内部抵抗値算出手段は、電池温度推定値の前回値に基づいて、前記内部抵抗値を前記電池温度推定値の前回値が高いほど小さくなるように補正する電池温度推定装置。
In the battery temperature estimation device that periodically repeats the battery temperature estimation calculation,
Current detection means for detecting a current value flowing through the battery;
An internal resistance value calculating means for calculating an internal resistance value of the battery;
A calorific value calculating means for calculating a calorific value of the battery during a calculation cycle using the internal resistance value calculated by the internal resistance value calculating means and the current value detected by the current detecting means;
A temperature change amount estimation means for estimating a temperature change amount of the battery based on the heat generation amount calculated by the heat generation amount calculation means;
A battery temperature estimated value updating means for adding the battery temperature estimated value estimated by the temperature change amount estimating means to the previous value of the battery temperature estimated value as a current value of the battery temperature estimated value;
With
The internal resistance value calculation means, based on the previous value of the battery temperature estimation value, the battery temperature estimation unit for correcting the internal resistance value so as to decrease the higher the previous value of the battery temperature estimate.
請求項1に記載の電池温度推定装置において、
前記演算周期中の前記電池の放熱量を算出する放熱量算出手段をさらに備え、
前記温度変化量推定手段は、前記放熱量算出手段が算出した放熱量と、前記発熱量算出手段が算出した発熱量と、に基づいて前記温度変化量を推定する電池温度推定装置。
The battery temperature estimation device according to claim 1,
A heat dissipation amount calculating means for calculating a heat dissipation amount of the battery during the calculation cycle;
The temperature change amount estimation unit is a battery temperature estimation device that estimates the temperature change amount based on the heat dissipation amount calculated by the heat dissipation amount calculation unit and the heat generation amount calculated by the heat generation amount calculation unit.
請求項2に記載の電池温度推定装置において、
前記演算周期中の前記電池の化学反応熱を算出する化学反応熱算出手段をさらに備え、
前記温度変化量推定手段は、前記放熱量算出手段が算出した放熱量と、前記発熱量算出手段が算出した発熱量と、前記化学反応熱算出手段が算出した化学反応熱と、に基づいて前記温度変化量を推定する電池温度推定装置。
The battery temperature estimation device according to claim 2,
Chemical reaction heat calculation means for calculating the heat of chemical reaction of the battery during the calculation cycle,
The temperature change amount estimation means is based on the heat dissipation amount calculated by the heat dissipation amount calculation means, the heat generation amount calculated by the heat generation amount calculation means, and the chemical reaction heat calculated by the chemical reaction heat calculation means. A battery temperature estimation device for estimating a temperature change amount.
請求項1から3のいずれかに記載の電池温度推定装置において、
前記内部抵抗値算出手段は、前記電池温度推定値に加え、さらに前記電池の劣化度に基づいて前記電池の内部抵抗値を算出する電池温度推定装置。
In the battery temperature estimation device according to any one of claims 1 to 3,
The internal resistance value calculation means is a battery temperature estimation device that calculates an internal resistance value of the battery based on a degree of deterioration of the battery in addition to the estimated battery temperature value.
請求項1から4のいずれかに記載の電池温度推定装置において、
前記電池温度推定値更新手段は、初回演算時の前記電池温度推定値を、前記電池を含むシステムの前回停止から始動までの経過時間に応じて設定する電池温度推定装置。
In the battery temperature estimation device according to any one of claims 1 to 4,
The battery temperature estimated value updating means is a battery temperature estimating device that sets the battery temperature estimated value at the time of initial calculation according to the elapsed time from the previous stop to the start of the system including the battery.
電池温度の推定演算を周期的に繰り返す電池温度推定方法において、
電池に流れる電流値を検出する電流検出ステップと、
前記電池の内部抵抗値を算出する内部抵抗値算出ステップと、
前記内部抵抗値算出ステップで推定した内部抵抗値と前記電流検出ステップで検出した電流値とを用いて、演算周期中の前記電池の発熱量を算出する発熱量算出ステップと、
前記発熱量算出ステップで算出した発熱量に基づいて前記演算周期中の前記電池の温度変化量を推定する温度変化量推定ステップと、
前記温度変化量推定ステップで推定した前記電池の温度変化量を電池温度推定値の前回値に加算して電池温度推定値を更新する電池温度更新ステップと、
を有し、
前記内部抵抗値算出ステップでは、前記電池温度更新ステップで更新した電池温度推定値に基づいて、前記内部抵抗値を前記電池温度推定値が高いほど小さくなるように補正する電池温度推定方法。
In the battery temperature estimation method that periodically repeats the battery temperature estimation calculation,
A current detection step for detecting a current value flowing through the battery;
An internal resistance value calculating step for calculating an internal resistance value of the battery;
Using the internal resistance value estimated in the internal resistance value calculating step and the current value detected in the current detecting step, a calorific value calculating step for calculating the calorific value of the battery during the calculation cycle;
A temperature change amount estimation step for estimating a temperature change amount of the battery during the calculation period based on the heat generation amount calculated in the heat generation amount calculation step;
A battery temperature update step of updating the battery temperature estimated value by adding the battery temperature estimated amount estimated in the temperature change amount estimating step to the previous value of the battery temperature estimated value;
Have
In the internal resistance value calculating step, a battery temperature estimating method for correcting the internal resistance value so that the higher the battery temperature estimated value is, the lower the internal resistance value is based on the battery temperature estimated value updated in the battery temperature updating step.
JP2013113111A 2013-05-29 2013-05-29 Battery temperature estimation device and battery temperature estimation method Active JP6163879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013113111A JP6163879B2 (en) 2013-05-29 2013-05-29 Battery temperature estimation device and battery temperature estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013113111A JP6163879B2 (en) 2013-05-29 2013-05-29 Battery temperature estimation device and battery temperature estimation method

Publications (2)

Publication Number Publication Date
JP2014232649A JP2014232649A (en) 2014-12-11
JP6163879B2 true JP6163879B2 (en) 2017-07-19

Family

ID=52125912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013113111A Active JP6163879B2 (en) 2013-05-29 2013-05-29 Battery temperature estimation device and battery temperature estimation method

Country Status (1)

Country Link
JP (1) JP6163879B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366481B2 (en) * 2014-11-26 2018-08-01 住友重機械工業株式会社 Power storage device
JP6658407B2 (en) * 2016-09-01 2020-03-04 トヨタ自動車株式会社 Battery temperature estimation method
JP7157766B2 (en) * 2017-12-27 2022-10-20 古河電気工業株式会社 Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JP6969396B2 (en) 2018-01-19 2021-11-24 トヨタ自動車株式会社 Electric vehicle
JP6910979B2 (en) * 2018-03-09 2021-07-28 株式会社日立製作所 Secondary battery temperature control system and temperature control method
JP7021570B2 (en) * 2018-03-09 2022-02-17 マツダ株式会社 Vehicle power control device
JP7280584B2 (en) * 2018-05-31 2023-05-24 学校法人立命館 Storage battery internal parameter estimation device, method, and computer program
CN112964991B (en) * 2019-11-28 2022-07-15 比亚迪股份有限公司 Method for processing temperature information in battery, computer device and storage medium
JP2021117076A (en) * 2020-01-24 2021-08-10 株式会社デンソー Temperature estimation device
CN113525108B (en) * 2021-06-16 2023-03-28 广汽本田汽车有限公司 Charging control method and charging control system for electric vehicle and storage medium
CN115639481B (en) * 2022-12-22 2023-04-25 羿动新能源科技有限公司 Battery data preprocessing system and method based on big data prediction SOC

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3733602B2 (en) * 1994-11-25 2006-01-11 日産自動車株式会社 Battery cooling system
JP4872143B2 (en) * 2000-05-01 2012-02-08 トヨタ自動車株式会社 Cooling device for secondary battery
JP4327692B2 (en) * 2004-09-30 2009-09-09 トヨタ自動車株式会社 Secondary battery charge / discharge controller
JP5008863B2 (en) * 2005-11-30 2012-08-22 プライムアースEvエナジー株式会社 Secondary battery control device, secondary battery deterioration determination method using secondary battery temperature estimation method
JP5715694B2 (en) * 2011-06-10 2015-05-13 日立オートモティブシステムズ株式会社 Battery control device, battery system
JP2013101884A (en) * 2011-11-09 2013-05-23 Toyota Motor Corp Secondary battery temperature estimation method and secondary battery control method
CN104471414B (en) * 2012-05-24 2017-04-05 日立汽车系统株式会社 Battery control device
JP6040684B2 (en) * 2012-09-28 2016-12-07 富士通株式会社 Secondary battery state evaluation device, secondary battery state evaluation method, and secondary battery state evaluation program
RU2618773C2 (en) * 2013-01-30 2017-05-11 Мицубиси Электрик Корпорейшн Battery control device, electric energy battery system and control system
JP2014186007A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Power storage system, control apparatus and malfunction detection method

Also Published As

Publication number Publication date
JP2014232649A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP6163879B2 (en) Battery temperature estimation device and battery temperature estimation method
JP6615011B2 (en) Battery management system, battery system and hybrid vehicle control system
CN111257752B (en) Remaining charge time estimation method, apparatus, system, and storage medium
US10873110B2 (en) Device for determining the internal temperature of an energy storage device
CN107690585B (en) Method and apparatus for determining the state of health and state of charge of a lithium sulfur battery
US9594122B2 (en) Estimating state of charge (SOC) and uncertainty from relaxing voltage measurements in a battery
JP2009103471A (en) Device for estimating state of battery
CN104656029B (en) A kind of system and method for estimating power battery residual capacity
US20160259012A1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
AU2016201173A1 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
JP2010135075A (en) Method and device for estimating temperature of battery pack
US20180246174A1 (en) Deterioration degree estimation device and deterioration degree estimation method
JPWO2016002398A1 (en) Battery degradation level estimation device and battery degradation level estimation method
JP6330605B2 (en) Estimation program, estimation method, and estimation apparatus
WO2019131740A1 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
CN113748438B (en) Electric quantity prediction method and equipment
JP2008157757A (en) Method and device for determining state of battery, and battery power supply system
JP5379820B2 (en) Secondary battery temperature estimation device and secondary battery temperature estimation method
JP2017005849A (en) Storage battery controller
JP6520654B2 (en) Method of detecting the degree of deterioration of lead battery and method of controlling charging of lead battery
CN116908689A (en) Charging remaining time calculation method, device and equipment
JP6283952B2 (en) Battery remaining amount detection device, battery system, battery remaining amount detection method, and program
JP5191014B2 (en) Battery state quantity calculation method
JP2014032021A (en) Current value computing device and cooling device of power storage device
CN111123110A (en) Method and device for calculating residual discharge energy of battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6163879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151