JPH1175327A - Charging of battery unit and device therefor - Google Patents

Charging of battery unit and device therefor

Info

Publication number
JPH1175327A
JPH1175327A JP23346797A JP23346797A JPH1175327A JP H1175327 A JPH1175327 A JP H1175327A JP 23346797 A JP23346797 A JP 23346797A JP 23346797 A JP23346797 A JP 23346797A JP H1175327 A JPH1175327 A JP H1175327A
Authority
JP
Japan
Prior art keywords
battery
charging
cooling
temperature
battery temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23346797A
Other languages
Japanese (ja)
Other versions
JP3573927B2 (en
Inventor
Koichi Sato
広一 佐藤
Mitsuzo Nogami
光造 野上
Reizo Maeda
礼造 前田
Yoshinori Matsuura
義典 松浦
Katsuhiko Niiyama
克彦 新山
Ikuro Yonezu
育郎 米津
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23346797A priority Critical patent/JP3573927B2/en
Publication of JPH1175327A publication Critical patent/JPH1175327A/en
Application granted granted Critical
Publication of JP3573927B2 publication Critical patent/JP3573927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a charger for battery unit which can conduct efficient charging up to a full charging condition with battery temperature restrained lower than a prescribed limit. SOLUTION: This charger is provided with a plurality of blower fans 4 for cooling a battery unit 1 constituted of a plurality of secondary batteries 2, and a control circuit 11 for adjusting the air volume of the blower fans 4. The control circuit 11 leads out fan air volume at which battery temperature will not exceed its prescribed limit by estimating the battery temperature at charging completion with the fan air volume used as a parameter, and outputs its results as the optimum output of the blower fan 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル−水素電
池等の二次電池を充電するための充電方法及び装置に関
し、特に充電中の二次電池を最適な冷却力で強制冷却す
ることにより、充電末期の電池温度が所定の限界値を超
えることを確実に防止した充電方法及び装置を提供する
ことである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charging method and apparatus for charging a secondary battery such as a nickel-metal hydride battery, and more particularly to a method for forcibly cooling a secondary battery during charging with an optimum cooling power. It is an object of the present invention to provide a charging method and an apparatus that reliably prevent the battery temperature at the end of charging from exceeding a predetermined limit value.

【0002】[0002]

【従来の技術】近年、電気自動車等の電動車両やAV機
器の直流電源として、ニッケル−水素電池等の二次電池
を複数個、直列或いは並列に組み合わせてなる組電池が
用いられており、組電池を充電するときは、専用の充電
装置が用いられる。例えばニッケル−水素電池の充電に
おいては、一定の充電電流を所定時間だけ供給すること
によって、満充電状態まで充電が行なわれる。
2. Description of the Related Art In recent years, as a DC power supply for electric vehicles such as electric vehicles and AV equipment, battery packs in which a plurality of secondary batteries such as nickel-metal hydride batteries are combined in series or in parallel have been used. When charging the battery, a dedicated charging device is used. For example, in charging a nickel-metal hydride battery, charging is performed until a fully charged state by supplying a constant charging current for a predetermined time.

【0003】一般に二次電池は充放電に伴って発熱し、
特にニッケル−水素電池においては充電中の温度上昇が
著しく、電池温度が限界値を超えると、充電反応が殆ど
進まなくなるため、充電中に組電池を送風ファンによっ
て強制的に冷却することが行なわれている。この際、送
風ファンの消費電力を出来るだけ小さく抑えるため、二
次電池に温度センサーを取り付けて、充電中の電池温度
を監視し、電池温度が上昇するにつれて、送風ファンの
風量を段階的に増加させる制御方法が採られている。
Generally, a secondary battery generates heat as it is charged and discharged.
Particularly in nickel-hydrogen batteries, the temperature rise during charging is remarkable, and if the battery temperature exceeds the limit value, the charging reaction hardly progresses. Therefore, the assembled battery is forcibly cooled by a blower fan during charging. ing. At this time, in order to keep the power consumption of the blower fan as low as possible, a temperature sensor is attached to the secondary battery to monitor the battery temperature during charging, and the airflow of the blower fan increases stepwise as the battery temperature rises A control method is adopted for causing the control to be performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
充電制御方式においては、特に大電流による急速充電時
に、そのときの電池温度に応じたファン風量を設定した
としても、送風による冷却効果には時間的な遅れが伴う
ため、電池温度が急激に上昇して、限界値を超える虞れ
があった。電池温度が限界値を超えると、充電が強制的
に停止されるため、満充電状態まで充電を行なうことが
出来ない。本発明の目的は、電池温度を所定の限界値よ
りも低く抑えた状態で、満充電状態まで効率的に充電を
施すことが出来る電池ユニットの充電方法及び装置を提
供することである。
However, in the conventional charge control system, even when a fan flow rate is set in accordance with the battery temperature at the time of rapid charging with a large current, in particular, the cooling effect by the air blowing takes time. There is a risk that the battery temperature will rise sharply and exceed the limit value due to a considerable delay. When the battery temperature exceeds the limit value, the charging is forcibly stopped, so that the charging cannot be performed until the battery is fully charged. It is an object of the present invention to provide a method and an apparatus for charging a battery unit that can efficiently charge a battery to a fully charged state while keeping the battery temperature below a predetermined limit value.

【0005】[0005]

【課題を解決する為の手段】本発明に係る電池ユニット
の充電方法は、電池ユニットに対する冷却の度合いをパ
ラメータとして充電完了時点における電池温度を推定
し、該電池温度が所定の限界値を越えることのない冷却
の度合いを導出し、これによって得られた冷却の度合い
を基準として電池ユニットを冷却しつつ、電池ユニット
を充電することを特徴とする。
According to a method of charging a battery unit according to the present invention, a battery temperature at the time of completion of charging is estimated by using a degree of cooling of the battery unit as a parameter, and the battery temperature exceeds a predetermined limit value. It is characterized in that the battery unit is charged while the battery unit is cooled based on the cooling degree obtained by deriving the cooling degree without the failure.

【0006】充電による各二次電池の温度上昇率は、電
池の単位時間当たりの発熱量、強制冷却の度合い(単位
時間当たりの冷却量)、電池の熱伝達率、電池の熱容
量、及び電池の表面積によって決定される。ここで、電
池の単位時間当たりの発熱量、電池の熱伝達率、電池の
熱容量、及び電池の表面積は、電池の仕様や充電の条件
によって決まる既知の値であるから、電池温度の時間的
な変化(電池温度特性)は、強制冷却の度合いをパラメー
タとして、計算で求めることが可能である。又、充電の
条件から、充電に必要な時間も計算で求めることが可能
である。従って、冷却の度合いを特定すれば、充電が完
了する時点(充電末期)の電池温度を推定することが出来
る。この結果から、充電末期温度が所定の限界値を越え
ることのない、最適(最小)値としての冷却の度合いを求
めることが出来る。尚、組電池の場合、その熱伝達率
は、例えば各電池の熱伝達率の平均値として決定するこ
とが出来る。
[0006] The rate of temperature rise of each secondary battery due to charging includes the amount of heat generated per unit time of the battery, the degree of forced cooling (cooling amount per unit time), the heat transfer coefficient of the battery, the heat capacity of the battery, and the Determined by surface area. Here, the calorific value per unit time of the battery, the heat transfer coefficient of the battery, the heat capacity of the battery, and the surface area of the battery are known values determined by the specifications and charging conditions of the battery. The change (battery temperature characteristic) can be obtained by calculation using the degree of forced cooling as a parameter. Also, the time required for charging can be calculated from the charging conditions. Therefore, if the degree of cooling is specified, the battery temperature at the time when charging is completed (end of charging) can be estimated. From this result, it is possible to determine the degree of cooling as an optimal (minimum) value at which the end-of-charge temperature does not exceed a predetermined limit value. In the case of a battery pack, its heat transfer coefficient can be determined, for example, as an average value of the heat transfer coefficient of each battery.

【0007】上記本発明の充電方法では、先ず、充電末
期温度が所定の限界値を越えることのない冷却の度合い
を求めた後、その冷却の度合いを電池ユニットに対する
冷却力に設定して、電池ユニットを冷却しつつ、充電を
施す。この結果、充電中の電池温度は電池温度特性に沿
って上昇し、電池の充電末期温度が所定の限界値を超え
る虞れはない。然も、冷却のための消費電力は最小限に
抑えられる。
In the charging method of the present invention, first, the degree of cooling at which the end-of-charge temperature does not exceed a predetermined limit value is determined, and then the degree of cooling is set as the cooling power for the battery unit. Charge while cooling the unit. As a result, the temperature of the battery during charging rises in accordance with the battery temperature characteristics, and there is no possibility that the terminal charging temperature of the battery exceeds a predetermined limit value. Of course, power consumption for cooling is minimized.

【0008】本発明に係る充電装置は、電池ユニットを
外部から強制冷却する冷却手段と、冷却手段の出力を調
整する冷却調整手段とを具え、冷却調整手段は、冷却手
段の出力をパラメータとして充電完了時点における電池
温度を推定することによって、該電池温度が所定の限界
値を越えることのない冷却手段の出力を導出し、その結
果を冷却手段に最適出力として設定する。
[0008] A charging device according to the present invention includes cooling means for forcibly cooling the battery unit from the outside, and cooling adjusting means for adjusting the output of the cooling means. The cooling adjusting means charges the output of the cooling means as a parameter. By estimating the battery temperature at the time of completion, the output of the cooling means in which the battery temperature does not exceed a predetermined limit value is derived, and the result is set as the optimum output for the cooling means.

【0009】上記本発明の充電装置においては、冷却調
整手段によって冷却手段に最適出力が設定されることに
よって、冷却手段はこの最適出力で運転され、電池ユニ
ットが強制冷却されつつ、充電が施される。
In the above-described charging apparatus of the present invention, by setting the optimum output to the cooling means by the cooling adjusting means, the cooling means is operated at the optimum output, and the battery unit is charged while being forcibly cooled. You.

【0010】具体的構成において、冷却調整手段は、電
池ユニットが設置された環境の温度を測定する環境温度
測定手段と、電池ユニットの温度を測定する電池温度測
定手段と、測定された環境温度及び電池温度に基づき、
冷却手段の出力をパラメータ、充電時間を変数として充
電中の電池温度の変化を表わす電池温度特性を導出する
第1演算処理手段と、導出された電池温度特性に基づい
て、充電が完了する時点における電池温度が所定の限界
値を越えることのない冷却手段の出力を導出し、その結
果を冷却手段に最適出力として設定する第2演算処理手
段とを具えている。
In a specific configuration, the cooling adjustment means includes: an environmental temperature measuring means for measuring a temperature of an environment in which the battery unit is installed; a battery temperature measuring means for measuring a temperature of the battery unit; Based on battery temperature,
First operation processing means for deriving a battery temperature characteristic representing a change in the battery temperature during charging using the output of the cooling means as a parameter and the charging time as a variable, and, based on the derived battery temperature characteristic, A second arithmetic processing means for deriving an output of the cooling means such that the battery temperature does not exceed a predetermined limit value and setting the result as an optimum output to the cooling means.

【0011】該具体的構成においては、充電開始時にお
ける環境温度と電池温度の測定値が第1演算処理手段に
よる電池温度特性の導出に供されて、電池温度の時間変
化が、冷却手段の出力をパラメータとして算出される。
その結果に基づいて、第2演算処理手段は、電池の充電
末期温度を推定し、該推定温度が所定の限界値を超える
ことのない冷却手段の出力を導出する。
In this specific configuration, the measured values of the environmental temperature and the battery temperature at the start of charging are used for deriving the battery temperature characteristic by the first arithmetic processing means, and the time change of the battery temperature is determined by the output of the cooling means. Is calculated as a parameter.
Based on the result, the second arithmetic processing unit estimates the end-of-charge temperature of the battery, and derives an output of the cooling unit such that the estimated temperature does not exceed a predetermined limit value.

【0012】又、具体的構成において、冷却手段は、電
池ユニットへ向けて設置された送風ファンである。第1
演算処理手段は、予め設定されているファン風量と電池
ユニットの熱伝達率との関係に基づき、特定のファン風
量における熱伝達率を導出し、その結果に基づいて電池
温度特性を導出する。第2演算処理手段は、第1演算処
理手段が電池温度特性を導出する際に特定されるべきフ
ァン風量を一定量ずつ変化させつつ、充電完了時点にお
ける電池温度が所定の限界値を越えることのない冷却手
段の出力を検索する。
In a specific configuration, the cooling means is a blower fan installed toward the battery unit. First
The arithmetic processing unit derives a heat transfer coefficient at a specific fan air flow based on a relationship between a preset fan air flow and a heat transfer coefficient of the battery unit, and derives a battery temperature characteristic based on the result. The second arithmetic processing means determines that the battery temperature at the time of completion of charging exceeds a predetermined limit value while changing the fan air volume to be specified when the first arithmetic processing means derives the battery temperature characteristic by a fixed amount. Search for the output of no cooling means.

【0013】該具体的構成においては、送風ファンから
電池ユニットへ冷風が供給されて、電池ユニットが冷却
される。ここで、ファン風量と電池ユニットの熱伝達率
との関係は予め実験的に求められている。そこで、第1
演算処理手段は、該関係に基づいて、特定のファン風量
における熱伝達率を導出する。その後、第2演算処理手
段は、第1演算処理手段による電池温度特性の導出に必
要なファン風量を一定量ずつ変化させつつ、第1演算処
理手段によって導出された電池温度特性に基づいて充電
完了時点における電池温度を推定し、該電池温度が所定
の限界値を越えることのない最少のファン風量を決定す
る。
In this specific configuration, cool air is supplied from the blower fan to the battery unit to cool the battery unit. Here, the relationship between the fan air volume and the heat transfer coefficient of the battery unit has been experimentally obtained in advance. Therefore, the first
The arithmetic processing means derives a heat transfer coefficient at a specific fan airflow based on the relationship. Thereafter, the second arithmetic processing means changes the fan airflow required for deriving the battery temperature characteristics by the first arithmetic processing means by a fixed amount at a time, and completes the charging based on the battery temperature characteristics derived by the first arithmetic processing means. The battery temperature at the time is estimated, and the minimum fan airflow at which the battery temperature does not exceed a predetermined limit value is determined.

【0014】更に具体的構成において、冷却調整手段
は、第1演算処理手段によって導出された電池温度特性
に対する電池温度の偏差に応じて、冷却手段の出力を微
調整する微調整手段を具えている。
In a more specific configuration, the cooling adjusting means includes fine adjusting means for finely adjusting the output of the cooling means in accordance with the deviation of the battery temperature from the battery temperature characteristic derived by the first arithmetic processing means. .

【0015】該具体的構成においては、電池温度測定手
段によって充電中の電池温度が測定され、該測定値の電
池温度特性に対する偏差が零となる様に、冷却手段の出
力が微調整され、この結果、電池温度は、電池温度特性
に沿って精度良く変化して、電池末期温度が正確に調整
される。
In this specific configuration, the battery temperature during charging is measured by the battery temperature measuring means, and the output of the cooling means is finely adjusted so that the deviation of the measured value from the battery temperature characteristics becomes zero. As a result, the battery temperature changes with high accuracy according to the battery temperature characteristics, and the final battery temperature is accurately adjusted.

【0016】[0016]

【発明の効果】本発明に係る充電方法及び装置によれ
ば、電池の充電末期温度が限界値を越えることのない最
適な冷却力によって、効率的に充電を施すことが出来
る。
According to the charging method and apparatus according to the present invention, the battery can be efficiently charged with an optimum cooling power so that the terminal charging temperature of the battery does not exceed the limit value.

【0017】[0017]

【発明の実施の形態】以下、本発明をニッケル−水素電
池の組電池に実施した形態につき、図面に沿って具体的
に説明する。図2は、本発明を実施すべき電池ユニット
(1)の外観を表わしており、複数のニッケル−水素二次
電池(2)が相互間に所定の隙間をあけた状態で並べら
れ、この状態でフレーム(3)により一体に保持されると
共に、夫々のプラス端子及びマイナス端子が互いに直列
に接続されている。又、フレーム(3)には、これら複数
の二次電池(2)を強制冷却するための複数の送風ファン
(4)が取り付けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention applied to a nickel-hydrogen battery assembled battery will be specifically described with reference to the drawings. FIG. 2 shows a battery unit in which the present invention is to be implemented.
The appearance of (1) is shown, in which a plurality of nickel-hydrogen rechargeable batteries (2) are arranged with a predetermined gap therebetween, and are held together by a frame (3) in this state. , Each plus terminal and minus terminal are connected in series with each other. The frame (3) has a plurality of blower fans for forcibly cooling the plurality of secondary batteries (2).
(4) is attached.

【0018】電池ユニット(1)のプラス端子(14)及びマ
イナス端子(15)には、図1に示す本発明の充電装置が接
続される。該充電装置は、交流電源(13)から供給される
AC100Vの交流電力を直流電力に変換して出力する
充電回路(12)を具え、該充電回路(12)からの直流電力
が、電池ユニット(1)へ充電用電力として供給されると
共に、マイクロコンピュータからなる制御回路(11)とD
C/DCコンバータ(10)へ動作電源として供給される。
DC/DCコンバータ(10)のプラス及びマイナスの出力
端は、前記の各送風ファン(4)を駆動すべきモータ(41)
へ接続されている。
The charging device of the present invention shown in FIG. 1 is connected to the plus terminal (14) and the minus terminal (15) of the battery unit (1). The charging device includes a charging circuit (12) that converts AC 100V AC power supplied from an AC power supply (13) into DC power and outputs the DC power, and the DC power from the charging circuit (12) is supplied to a battery unit ( 1) is supplied as power for charging, and a control circuit (11) comprising a microcomputer and D
Power is supplied to the C / DC converter (10) as operating power.
The positive and negative output terminals of the DC / DC converter (10) are connected to a motor (41) to drive each of the blower fans (4).
Connected to

【0019】電池ユニット(1)には、複数の二次電池
(2)の代表点の温度を測定するための電池温度センサー
(5)が貼り付けられている。又、電池ユニット(1)の近
傍には、電池ユニット(1)が設置された環境の温度(外
気温度)を測定するための環境温度センサー(6)が配置
されている。温度センサー(5)(6)としては、熱電対や
サーミスタを採用することが出来る。両温度センサー
(5)(6)は増幅器(7)(8)を介して温度検出回路(9)と
接続され、これによって電池温度及び環境温度が検出さ
れる。温度検出回路(9)の出力端は制御回路(11)へ接続
され、電池温度及び環境温度の検出データが制御回路(1
1)へ供給される。
The battery unit (1) includes a plurality of secondary batteries.
Battery temperature sensor for measuring the temperature at the representative point of (2)
(5) is pasted. In addition, an environmental temperature sensor (6) for measuring the temperature (outside air temperature) of the environment in which the battery unit (1) is installed is arranged near the battery unit (1). As the temperature sensors (5) and (6), a thermocouple or a thermistor can be adopted. Both temperature sensors
(5) and (6) are connected to a temperature detection circuit (9) via amplifiers (7) and (8), whereby the battery temperature and the environmental temperature are detected. The output terminal of the temperature detection circuit (9) is connected to the control circuit (11), and the detection data of the battery temperature and the ambient temperature is transmitted to the control circuit (1).
Supplied to 1).

【0020】上記電池ユニット(1)の充電装置において
は、後述する制御回路(11)の演算処理によって送風ファ
ン(4)の最適ファン風量が決定され、該最適ファン風量
によって各二次電池(2)が冷却されつつ、充電回路(12)
から電池ユニット(1)へ一定の充電電流が所定時間に亘
って供給され、各二次電池(2)に充電が施される。
In the charging device for the battery unit (1), the optimum fan airflow of the blower fan (4) is determined by the arithmetic processing of the control circuit (11) to be described later, and each secondary battery (2) is determined based on the optimum fan airflow. ) Is cooled while the charging circuit (12)
A constant charging current is supplied to the battery unit (1) for a predetermined time, and each secondary battery (2) is charged.

【0021】図3乃至図5は、制御回路(11)の演算処理
手続きを表わしている。先ず図3のステップS1では、
予め1或いは複数種類の充電速度に応じて設定されてい
る充電電流値から、選択された充電速度に応じた充電電
流値を取り込む。次にステップS2では、取り込まれた
充電電流値に基づいて、満充電に必要な充電時間te
算出すると共に、二次電池の単位時間当たりの発熱量Q
を算出する。
FIGS. 3 to 5 show the operation processing procedure of the control circuit (11). First, in step S1 of FIG.
A charging current value corresponding to the selected charging speed is taken in from charging current values set in advance according to one or a plurality of types of charging speeds. Next, in step S2, a charging time t e required for full charging is calculated based on the taken charging current value, and a heat generation amount Q per unit time of the secondary battery is calculated.
Is calculated.

【0022】続いてステップS3にて、環境温度センサ
ー(6)及び電池温度センサー(5)から環境温度To及び
電池温度(初期温度)Tを取り込んだ後、ステップS4に
て、最適ファン風量を決定する。
Subsequently, in step S3, the environmental temperature To and the battery temperature (initial temperature) T are taken in from the environmental temperature sensor (6) and the battery temperature sensor (5), and in step S4, the optimum fan air volume is determined. I do.

【0023】図4は、最適ファン風量を決定するための
手続きを表わしており、ステップS41では、先ずファ
ン風量を0に設定した上で、ステップS42にて、各電
池の熱伝達率を導出する。熱伝達率の導出においては、
図6に示す如く、電池ユニットを構成する各電池の熱伝
達率とファン風量との関係が予め実験的に求められ、関
数化されており、電池毎に特定のファン風量Wにおける
熱伝達率Uiを導出することが出来る。尚、ここで熱伝
達率とは、対流熱伝達の他、熱輻射による熱伝達等も含
めた総括伝熱係数或いは熱貫流率を意味しているが、実
質的には、強制対流熱伝達率と考えることが出来る。
FIG. 4 shows a procedure for determining the optimum fan air flow. In step S41, the fan air flow is first set to 0, and in step S42, the heat transfer coefficient of each battery is derived. . In deriving the heat transfer coefficient,
As shown in FIG. 6, the relationship between the heat transfer coefficient of each battery constituting the battery unit and the fan airflow rate is experimentally obtained in advance and functioned, and the heat transfer coefficient Ui at a specific fan airflow W for each battery. Can be derived. Here, the heat transfer coefficient means a total heat transfer coefficient or a heat transmission coefficient including heat transfer by heat radiation in addition to convection heat transfer. Can be considered.

【0024】次に、図4のステップS43では、下記数
1に基づいて電池温度曲線を推定する。ここで、Cは電
池1個の熱容量、Tは電池温度、tは充電時間、Qは電
池1個の単位時間当たりの発熱量、Uは電池の熱伝達
率、Aは電池1個の表面積、Toは環境温度である。
Next, in step S43 of FIG. 4, a battery temperature curve is estimated based on the following equation (1). Here, C is the heat capacity of one battery, T is the battery temperature, t is the charging time, Q is the amount of heat generated per unit time of one battery, U is the heat transfer coefficient of the battery, A is the surface area of one battery, To is the ambient temperature.

【0025】[0025]

【数1】C×dT/dt=Q−UA(T−To)## EQU1 ## C × dT / dt = Q-UA (T-To)

【0026】数1は、電池1個当たりについて、単位時
間当たりに電池に蓄えられる熱量(左辺)が、電池の発熱
量(右辺第1項)と冷却量の差に等しいこと(熱力学第1
法則)を表わしている。尚、本実施例では、数1の熱伝
達率Uとして、ステップS42にて得られた各電池の熱
伝達率Uiの平均値を採用する。
Equation 1 indicates that the amount of heat stored in the battery per unit time per unit time (left side) is equal to the difference between the amount of heat generated by the battery (first term on the right side) and the amount of cooling (first thermodynamics).
Law). In the present embodiment, the average value of the heat transfer coefficients Ui of the respective batteries obtained in step S42 is adopted as the heat transfer coefficient U of Equation 1.

【0027】数1において、電池の熱容量C、発熱量
Q、熱伝達率U、電池の表面積Aは既知の値であり、環
境温度To及び電池の初期温度は測定データとして得ら
れるので、数1の微分方程式を解くことが可能であり、
これによって、図7の如くファン風量をパラメータ
(W0、W1、W2、W3…)として、電池池温度Tの時間変
化(電池温度曲線)を算出することが出来る。
In equation (1), the heat capacity C of the battery, the calorific value Q, the heat transfer coefficient U, and the surface area A of the battery are known values, and the environmental temperature To and the initial temperature of the battery are obtained as measurement data. It is possible to solve the differential equation of
As a result, the fan air volume can be set as a parameter as shown in FIG.
(W 0 , W 1 , W 2 , W 3 ...) Can be used to calculate the change over time (battery temperature curve) of the battery pond temperature T.

【0028】図4のステップS44では、電池温度曲線
から充電末期温度Teを導出する。ここで、充電末期温
度とは、満充電に必要な充電時間teが経過したときの
電池温度である。そして、ステップS45にて、充電末
期温度Teが所定の限界値Tmax(例えば45℃)以下であ
るか否かを判断し、ノーの場合は、ステップS46に移
行して、ファン風量を所定の微小値ΔWだけ増大させ
て、ステップS42に戻り、同様に充電末期温度Teを
導出して、所定の限界値Tmaxとの比較を繰り返す。
In step S44 of FIG. 4, the terminal charging temperature Te is derived from the battery temperature curve. Here, the charging end temperature, a battery temperature at the charging time t e has passed required full charge. Then, in a step S45, it is determined whether or not the end-of-charging temperature Te is equal to or lower than a predetermined limit value Tmax (for example, 45 ° C.). After increasing by the value ΔW, the process returns to step S42, and similarly, the end-of-charge temperature Te is derived, and the comparison with the predetermined limit value Tmax is repeated.

【0029】風量の増大によって、充電末期温度Teが
所定の限界値Tmax以下となって、ステップS45にて
イエスと判断されたときは、ステップS47に移行し
て、そのときのファン風量Wを出力する。
When the end-of-charging temperature Te falls below the predetermined limit value Tmax due to the increase in the air volume, and the determination in step S45 is YES, the process proceeds to step S47 to output the fan air volume W at that time. I do.

【0030】この結果、該ファン風量Wに応じた駆動制
御信号が図1のDC/DCコンバータ(10)へ供給され、
モータ(41)の駆動電流が生成される。これによって、送
風ファン(4)が回転駆動され、ファン風量Wが得られ
る。その後、図3のステップS5にて、電池ユニット
(1)に対する充電を開始した後、ステップS6にてファ
ン風量の微調整を行なう。
As a result, a drive control signal corresponding to the fan airflow W is supplied to the DC / DC converter (10) in FIG.
A drive current for the motor (41) is generated. Thus, the blower fan (4) is driven to rotate, and a fan airflow W is obtained. Then, in step S5 of FIG.
After the charging for (1) is started, fine adjustment of the fan air volume is performed in step S6.

【0031】図5は、ファン風量の微調整を行なうため
の手続きを表わしており、ステップS71にて、環境温
度To及び電池温度Tを取り込んだ後、ステップS72
にて、そのときのファン風量における電池温度曲線に基
づいて、該電池温度曲線からの電池温度TのずれΔTを
算出する。続いてステップS73にて、温度のずれΔT
の絶対値が所定の限界値ΔTlimitを超えているか否か
を判断し、ノーであればステップS77に移行して、そ
のときのファン風量を維持する。
FIG. 5 shows a procedure for finely adjusting the fan air flow. After the environmental temperature To and the battery temperature T are fetched in step S71, the process proceeds to step S72.
Then, a deviation ΔT of the battery temperature T from the battery temperature curve is calculated based on the battery temperature curve at the fan air volume at that time. Subsequently, in step S73, the temperature deviation ΔT
Is determined to be greater than or equal to the predetermined limit value ΔTlimit, and if no, the process proceeds to step S77 to maintain the fan airflow at that time.

【0032】ステップS73にてイエスと判断されたと
きは、ステップS74に移行して、温度のずれΔTが正
の値であるか否かを判断し、正の値であるときはステッ
プS75にて風量Wを所定の微小量ΔW′だけ増大させ
る一方、負の値であるときはステップS76にて風量W
を所定の微小量ΔW′だけ減小させた後、ステップS7
7にて、ファン風量Wを出力する。これによって、ファ
ン風量が増減され、温度のずれΔTに応じたファン風量
の微調整が行なわれる。
If the answer is YES in step S73, the process proceeds to step S74 to determine whether or not the temperature deviation ΔT is a positive value. If the temperature difference ΔT is a positive value, the process proceeds to step S75. While the air volume W is increased by a predetermined minute amount ΔW ′, if the air volume W is a negative value, the air volume W is increased in step S76.
Is reduced by a predetermined minute amount ΔW ′, and then the step S7 is performed.
At 7, the fan airflow W is output. As a result, the fan airflow is increased or decreased, and the fan airflow is finely adjusted according to the temperature deviation ΔT.

【0033】次に、図3のステップS7にて、電池温度
Tが所定の限界値Tmaxを超え、或いは所定の充電時間
が経過した否かを判断し、ノーのときは、ステップS6
に戻って、ファン風量の微調整を返す。その後、ステッ
プS7にてイエスと判断されたとき、ステップS8にて
充電を終了するのである。
Next, in step S7 of FIG. 3, it is determined whether the battery temperature T exceeds a predetermined limit value Tmax or a predetermined charging time has elapsed.
Return to the fine adjustment of the fan air volume. Thereafter, when the determination is yes in step S7, the charging is terminated in step S8.

【0034】図8は、上記本発明の充電装置によって充
電を行なったときの電池温度の変化(本発明電池)を、従
来の温度制御方式による温度変化(比較用電池)と比較し
たものである。本発明電池及び比較用電池ともに、電池
ユニットとしては、10個のニッケル−水素電池からな
る組電池を構成した。電池ユニットの電圧は12V、定
格容量は100Ahであって、充電率を20A(0.2
C)に設定した。尚、満充電に必要な充電時間として
は、定格容量までの充電時間である5時間よりも30分
長く設定した。
FIG. 8 is a graph comparing the change in battery temperature (battery of the present invention) when charging is performed by the above-described charging device of the present invention with the change in temperature (battery for comparison) by a conventional temperature control method. . For both the battery of the present invention and the battery for comparison, a battery unit composed of ten nickel-metal hydride batteries was configured as a battery unit. The voltage of the battery unit is 12 V, the rated capacity is 100 Ah, and the charging rate is 20 A (0.2
C). The charging time required for full charging was set to be 30 minutes longer than the charging time up to the rated capacity of 5 hours.

【0035】本発明電池の充電においては、図5のファ
ン風量の微調整は停止した状態で、図3及び図4の手続
きを採用し、電池温度が45℃を超えたとき、充電を停
止した。一方、比較用電池の充電においては、電池温度
が35℃を超えたときにファン風量を増大させ、電池温
度が45℃を超えたとき、充電を停止した。
In charging the battery of the present invention, the procedure shown in FIGS. 3 and 4 was employed with the fine adjustment of the fan air volume shown in FIG. 5 stopped, and the charging was stopped when the battery temperature exceeded 45 ° C. . On the other hand, in charging the comparative battery, the fan airflow was increased when the battery temperature exceeded 35 ° C, and the charging was stopped when the battery temperature exceeded 45 ° C.

【0036】図8から明らかな様に、比較用電池におい
ては、5時間が経過する以前に電池温度が45℃を超
え、電池は定格容量に達することなく、充電が強制停止
されている。これに対し、本発明電池においては、5時
間30分の充電によって電池温度は45℃を超えること
はなく、定格容量を超える110Ahまで充電された
後、所定時間の経過によって充電が強制停止されてい
る。
As is clear from FIG. 8, in the comparative battery, the battery temperature exceeds 45 ° C. before the elapse of 5 hours, and the battery is forcibly stopped charging without reaching the rated capacity. On the other hand, in the battery of the present invention, the battery temperature does not exceed 45 ° C. by charging for 5 hours and 30 minutes, and after being charged to 110 Ah exceeding the rated capacity, the charging is forcibly stopped after a predetermined time has elapsed. I have.

【0037】又、図9は、上記本発明の充電装置による
充電方法において、図5のファン風量微調整を実行した
ときの電池温度の変化(本発明電池)を、ファン風量の微
調整を停止したときの電池温度の変化(比較例電池;図
8における本発明電池)と比較したものである。図9か
ら明らかな様に、比較例電池では、充電時間が5時間〜
5時間30分の期間に、電池温度が所定の限界値(45
℃)の近傍まで上昇しているが、本発明電池では、充電
時間が5時間〜5時間30分の期間においても、電池温
度は40℃以下に抑制されている。
FIG. 9 shows a change in battery temperature (battery of the present invention) when the fan air volume fine adjustment shown in FIG. 5 is executed in the charging method using the charging device of the present invention. This is a comparison with the change in the battery temperature (comparative battery; the battery of the present invention in FIG. 8). As is clear from FIG. 9, in the comparative example battery, the charging time was 5 hours to
During a period of 5 hours and 30 minutes, the battery temperature reaches a predetermined limit value (45
(° C.), but in the battery of the present invention, the battery temperature is suppressed to 40 ° C. or less even when the charging time is 5 hours to 5 hours and 30 minutes.

【0038】上述の如く、本発明に係る充電装置によれ
ば、最適なファン風量の設定によって、充電末期温度を
所定の限界値よりも低く抑えつつ、電池ユニットを満充
電状態まで効率的に充電することが出来る。
As described above, according to the charging device of the present invention, the battery unit is efficiently charged to the fully charged state by setting the optimal fan airflow while keeping the end-of-charge temperature lower than the predetermined limit value. You can do it.

【0039】尚、本発明の各部構成は上記実施の形態に
限らず、特許請求の範囲に記載の技術的範囲内で種々の
変形が可能である。例えば、電池ユニットが単一の二次
電池から構成される場合は勿論のこと、複数の二次電池
によって電池ユニットが構成される場合において、各二
次電池に個別の送風ファンを設けた構成においても、本
発明の充電制御方式を採用して、各送風ファンの風量を
個別に調整することが可能である。又、複数の二次電池
毎に1台の送風ファンを設置して、各送風ファンの風量
を個別に調整することも可能である。
The configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims. For example, in the case where the battery unit is composed of a single secondary battery, as well as in the case where the battery unit is composed of a plurality of secondary batteries, in a configuration in which an individual blower fan is provided for each secondary battery, Also, it is possible to individually adjust the air volume of each blower fan by employing the charge control method of the present invention. In addition, it is also possible to install one blower fan for each of a plurality of secondary batteries, and to individually adjust the air volume of each blower fan.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る充電装置の構成を表わすブロック
図である。
FIG. 1 is a block diagram illustrating a configuration of a charging device according to the present invention.

【図2】電池ユニットの一部破断斜視図である。FIG. 2 is a partially cutaway perspective view of a battery unit.

【図3】本発明に係る充電制御手続きを表わすフローチ
ャートである。
FIG. 3 is a flowchart showing a charge control procedure according to the present invention.

【図4】最適ファン風量を決定するための手続きを表わ
すフローチャートである。
FIG. 4 is a flowchart illustrating a procedure for determining an optimal fan air volume.

【図5】ファン風量の微調整手続きを表わすフローチャ
ートである。
FIG. 5 is a flowchart showing a procedure for finely adjusting a fan air volume.

【図6】熱伝達率とファン風量の関係を表わすグラフで
ある。
FIG. 6 is a graph showing a relationship between a heat transfer coefficient and a fan air volume;

【図7】ファン風量をパラメータとして電池温度と充電
時間の関係を表わすグラフである。
FIG. 7 is a graph showing a relationship between battery temperature and charging time using a fan airflow as a parameter.

【図8】ファン風量の微調整を行なわない場合の温度変
化を従来例と比較したグラフである。
FIG. 8 is a graph comparing a temperature change when a fine adjustment of a fan air volume is not performed with a conventional example.

【図9】ファン風量の微調整を行なった場合の温度変化
をファン風量の微調整を行なわない場合と比較したグラ
フである。
FIG. 9 is a graph comparing the temperature change when the fan airflow is finely adjusted with the case where the fan airflow is not finely adjusted.

【符号の説明】[Explanation of symbols]

(1) 電池ユニット (2) 二次電池 (4) 送風ファン (41) モータ (11) 制御回路 (12) 充電装置 (13) 交流電源 (14) プラス端子 (15) マイナス端子 (5) 電池温度センサー (6) 環境温度センサー (9) 温度検出回路 (1) Battery unit (2) Secondary battery (4) Blower fan (41) Motor (11) Control circuit (12) Charging device (13) AC power supply (14) Positive terminal (15) Negative terminal (5) Battery temperature Sensor (6) Environmental temperature sensor (9) Temperature detection circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松浦 義典 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 新山 克彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 米津 育郎 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Yoshinori Matsuura 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Katsuhiko Niiyama 2-5-2 Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Ikuro Yonezu 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Pref. Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2 5-5, Sanyo Electric Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 1以上の二次電池の集合体からなる電池
ユニットを外部から強制冷却しつつ、電池ユニットを充
電するための充電方法であって、 電池ユニットに対する冷却の度合いをパラメータとして
充電完了時点における電池温度を推定し、該電池温度が
所定の限界値を越えることのない冷却の度合いを導出
し、これによって得られた冷却の度合いを基準として電
池ユニットを冷却しつつ、電池ユニットを充電すること
を特徴とする電池ユニットの充電方法。
1. A charging method for charging a battery unit while externally forcibly cooling a battery unit composed of an aggregate of one or more secondary batteries, wherein charging is completed using a degree of cooling of the battery unit as a parameter. Estimate the battery temperature at the time, derive the degree of cooling such that the battery temperature does not exceed a predetermined limit value, and charge the battery unit while cooling the battery unit based on the degree of cooling obtained thereby. A method for charging a battery unit.
【請求項2】 1以上の二次電池の集合体からなる電池
ユニットを充電するための充電装置であって、電池ユニ
ットを外部から強制冷却する冷却手段と、冷却手段の出
力を調整する冷却調整手段とを具え、冷却調整手段は、
冷却手段の出力をパラメータとして充電完了時点におけ
る電池温度を推定することによって、該電池温度が所定
の限界値を越えることのない冷却手段の出力を導出し、
その結果を冷却手段に最適出力として設定することを特
徴とする電池ユニットの充電装置。
2. A charging device for charging a battery unit comprising an assembly of one or more secondary batteries, comprising: cooling means for forcibly cooling the battery unit from the outside; and cooling adjustment for adjusting the output of the cooling means. Means, and the cooling adjustment means comprises:
By estimating the battery temperature at the time of completion of charging by using the output of the cooling means as a parameter, the output of the cooling means such that the battery temperature does not exceed a predetermined limit value is derived,
A battery unit charging device, wherein the result is set as an optimum output to a cooling means.
【請求項3】 冷却調整手段は、 電池ユニットが設置された環境の温度を測定する環境温
度測定手段と、 電池ユニットの温度を測定する電池温度測定手段と、 測定された環境温度及び電池温度に基づき、冷却手段の
出力をパラメータ、充電時間を変数として充電中の電池
温度の変化を表わす電池温度特性を導出する第1演算処
理手段と、 導出された電池温度特性に基づいて、充電が完了する時
点における電池温度が所定の限界値を越えることのない
冷却手段の出力を導出し、その結果を冷却手段に最適出
力として設定する第2演算処理手段とを具えている請求
項2に記載の充電装置。
3. The cooling adjusting means includes: an environmental temperature measuring means for measuring a temperature of an environment in which the battery unit is installed; a battery temperature measuring means for measuring a temperature of the battery unit; First operation processing means for deriving a battery temperature characteristic representing a change in battery temperature during charging using the output of the cooling means as a parameter and the charging time as a variable, based on the derived battery temperature characteristic, and completing the charging. 3. The charging device according to claim 2, further comprising a second arithmetic processing unit that derives an output of the cooling unit such that the battery temperature at the time does not exceed a predetermined limit value, and sets the result as an optimum output to the cooling unit. apparatus.
【請求項4】 冷却手段は、電池ユニットへ向けて設置
された送風ファンであって、第1演算処理手段は、予め
設定されているファン風量と電池ユニットの熱伝達率と
の関係に基づき、特定のファン風量における熱伝達率を
導出し、その結果に基づいて電池温度特性を導出し、第
2演算処理手段は、第1演算処理手段が電池温度特性を
導出する際に特定されるべきファン風量を一定量ずつ変
化させつつ、充電完了時点における電池温度が所定の限
界値を越えることのない冷却手段の出力を検索する請求
項3に記載の充電装置。
4. The cooling unit is a blower fan installed toward the battery unit, and the first arithmetic processing unit is configured to perform a process based on a relationship between a preset fan air volume and a heat transfer coefficient of the battery unit. A heat transfer coefficient at a specific fan airflow is derived, and a battery temperature characteristic is derived based on the result. The second arithmetic processing means includes a fan to be specified when the first arithmetic processing means derives the battery temperature characteristic. 4. The charging apparatus according to claim 3, wherein the output of the cooling means is searched for such that the battery temperature at the time of completion of charging does not exceed a predetermined limit value while changing the air volume at a constant rate.
【請求項5】 冷却調整手段は更に、第1演算処理手段
によって導出された電池温度特性に対する電池温度の偏
差に応じて、冷却手段の出力を微調整する微調整手段を
具えている請求項2乃至請求項4の何れかに記載の充電
装置。
5. The cooling adjustment means further comprises fine adjustment means for finely adjusting the output of the cooling means in accordance with a deviation of the battery temperature from the battery temperature characteristic derived by the first arithmetic processing means. The charging device according to claim 4.
JP23346797A 1997-08-29 1997-08-29 Battery unit charging method and device Expired - Fee Related JP3573927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23346797A JP3573927B2 (en) 1997-08-29 1997-08-29 Battery unit charging method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23346797A JP3573927B2 (en) 1997-08-29 1997-08-29 Battery unit charging method and device

Publications (2)

Publication Number Publication Date
JPH1175327A true JPH1175327A (en) 1999-03-16
JP3573927B2 JP3573927B2 (en) 2004-10-06

Family

ID=16955493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23346797A Expired - Fee Related JP3573927B2 (en) 1997-08-29 1997-08-29 Battery unit charging method and device

Country Status (1)

Country Link
JP (1) JP3573927B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283939A (en) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd Control device for battery temperature equalization
JP2003142167A (en) * 2001-11-06 2003-05-16 Panasonic Ev Energy Co Ltd Method and device for controlling cooling and sensing failure of battery pack system
JP2005353307A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Cooling device of secondary battery
JP2008027888A (en) * 2006-06-22 2008-02-07 Panasonic Ev Energy Co Ltd Battery cooling device, cooling air volume control device, and program
WO2009119037A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Battery device and battery unit
JP2009254097A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Charging system and charging control method
JP2009259785A (en) * 2008-03-24 2009-11-05 Sanyo Electric Co Ltd Battery device
JP2010239788A (en) * 2009-03-31 2010-10-21 Hitachi Koki Co Ltd Charging apparatus
JP2010262308A (en) * 2003-08-08 2010-11-18 Ricoh Co Ltd Image forming apparatus
WO2012042642A1 (en) * 2010-09-30 2012-04-05 株式会社 日立製作所 Electricity storage device
WO2013008882A1 (en) * 2011-07-12 2013-01-17 株式会社 豊田自動織機 Temperature detection device
JP2015159115A (en) * 2013-02-19 2015-09-03 パナソニックIpマネジメント株式会社 Power storage system
EP2952920A4 (en) * 2013-01-30 2016-09-21 Mitsubishi Electric Corp Battery monitoring device, power storage system, and control system
CN110688730A (en) * 2019-08-26 2020-01-14 山东爱普电气设备有限公司 Ventilation quantity calculation method and system of electric vehicle charger

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283939A (en) * 2000-04-03 2001-10-12 Sanyo Electric Co Ltd Control device for battery temperature equalization
JP2003142167A (en) * 2001-11-06 2003-05-16 Panasonic Ev Energy Co Ltd Method and device for controlling cooling and sensing failure of battery pack system
EP1309029A3 (en) * 2001-11-06 2004-03-03 Panasonic EV Energy Co., Ltd. Method and apparatus for controlling cooling and detecting abnormality in battery pack system
US6903534B2 (en) 2001-11-06 2005-06-07 Panasonic Ev Energy Co., Ltd. Method and apparatus for controlling cooling and detecting abnormality in battery pack system
JP4673529B2 (en) * 2001-11-06 2011-04-20 プライムアースEvエナジー株式会社 Method and apparatus for controlling assembled battery system
JP2010262308A (en) * 2003-08-08 2010-11-18 Ricoh Co Ltd Image forming apparatus
JP2005353307A (en) * 2004-06-08 2005-12-22 Nissan Motor Co Ltd Cooling device of secondary battery
JP2008027888A (en) * 2006-06-22 2008-02-07 Panasonic Ev Energy Co Ltd Battery cooling device, cooling air volume control device, and program
WO2009119037A1 (en) * 2008-03-24 2009-10-01 三洋電機株式会社 Battery device and battery unit
JP2009259785A (en) * 2008-03-24 2009-11-05 Sanyo Electric Co Ltd Battery device
JP2009254097A (en) * 2008-04-04 2009-10-29 Toyota Motor Corp Charging system and charging control method
JP2010239788A (en) * 2009-03-31 2010-10-21 Hitachi Koki Co Ltd Charging apparatus
US9325040B2 (en) 2010-09-30 2016-04-26 Hitachi, Ltd. Electric storage apparatus including battery modules, first cooling passage, and second cooling passage used to cool battery module after replacement
WO2012042642A1 (en) * 2010-09-30 2012-04-05 株式会社 日立製作所 Electricity storage device
WO2013008882A1 (en) * 2011-07-12 2013-01-17 株式会社 豊田自動織機 Temperature detection device
EP2952920A4 (en) * 2013-01-30 2016-09-21 Mitsubishi Electric Corp Battery monitoring device, power storage system, and control system
RU2618773C2 (en) * 2013-01-30 2017-05-11 Мицубиси Электрик Корпорейшн Battery control device, electric energy battery system and control system
US9910099B2 (en) 2013-01-30 2018-03-06 Mitsubishi Electric Corporation Battery monitoring device, power storage system, and control system
JP5975314B2 (en) * 2013-02-19 2016-08-23 パナソニックIpマネジメント株式会社 Power storage system
JP2015159115A (en) * 2013-02-19 2015-09-03 パナソニックIpマネジメント株式会社 Power storage system
CN110688730A (en) * 2019-08-26 2020-01-14 山东爱普电气设备有限公司 Ventilation quantity calculation method and system of electric vehicle charger

Also Published As

Publication number Publication date
JP3573927B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP3157686B2 (en) Battery charging control device
JP3573927B2 (en) Battery unit charging method and device
JPH11252814A (en) Charging apparatus and method
JP4135297B2 (en) Battery pack charging device, charging method, and electric vehicle
JP3733629B2 (en) Secondary battery temperature control device
JP4129109B2 (en) Charge control apparatus and method
JP3733602B2 (en) Battery cooling system
JP3638483B2 (en) Charging device and charging method
JPH0984277A (en) Method and apparatus for controlling charging of battery
JP3518198B2 (en) Battery charging control system
JP2004281077A (en) Cooling control device of battery pack
JPH11136876A (en) Charging of lead-acid battery
JPH0773907A (en) Temperature control method for nickel-hydrogen battery
JPH0974610A (en) Overcharge preventing device of battery for electric vehicle
CN115946576A (en) PWM heating control method for charging lithium battery of electric two-wheeled vehicle
JP3951297B2 (en) Charger
JP2005310596A (en) Battery pack, control method for cooling battery pack and recording medium readable by computer with program to have computer execute cooling control for battery pack
JP2004171796A (en) Charging device
JP4345290B2 (en) Charger
JP2906862B2 (en) Battery charging method
JP3883395B2 (en) Charger
JP3444977B2 (en) Charger and control method thereof
JPH11317245A (en) Charging control device for detachable battery pack
JPH09182309A (en) Charging controller for secondary battery
JPH11150882A (en) Method for charging battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees