JP3731058B2 - 蒸気タービンの制御方法及び装置 - Google Patents

蒸気タービンの制御方法及び装置 Download PDF

Info

Publication number
JP3731058B2
JP3731058B2 JP05554897A JP5554897A JP3731058B2 JP 3731058 B2 JP3731058 B2 JP 3731058B2 JP 05554897 A JP05554897 A JP 05554897A JP 5554897 A JP5554897 A JP 5554897A JP 3731058 B2 JP3731058 B2 JP 3731058B2
Authority
JP
Japan
Prior art keywords
turbine
steam
valve
speed
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05554897A
Other languages
English (en)
Other versions
JPH10238311A (ja
Inventor
和典 山中
憲久 和田
一之 寺門
真太郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05554897A priority Critical patent/JP3731058B2/ja
Publication of JPH10238311A publication Critical patent/JPH10238311A/ja
Application granted granted Critical
Publication of JP3731058B2 publication Critical patent/JP3731058B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービンの制御方法及び装置、特に、高中圧一体型の蒸気タービンの制御方法及び装置に関する。
【0002】
【従来の技術】
従来、蒸気タービンを暖機するに当たっては、特開昭62−67206号公報に記載のように、中圧タービンと低圧タービンの連絡管に仕切り弁を設け、蒸気タービンの起動時にこの仕切り弁により中圧タービンと低圧タービン間の流路を遮断し、中圧タービンの暖機を行う方法がある。しかし、この方法は、中圧タービンと低圧タービンは連絡管によって連なっているため、タービン同志の熱伝導による暖機が不可能であり、暖機効率が劣る。
一方、高圧タービンおよび低圧タービンから蒸気発生器の蒸気をバイパスさせる高中圧一体型の蒸気タービンは、高中圧タービンが一体構造であるため、タービン同志の熱伝導が可能であり、また、高中圧一体型の蒸気タービンを暖機するに当たっては、タービン起動過程における暖機運転中に、主蒸気加減弁を一定開度に固定し、高圧タービンに主蒸気を流入し、インターセプト弁のみでタービン速度制御を行いながら、再熱蒸気を中圧タービンに流入して蒸気タービンを暖機する方法が行われている。
【0003】
【発明が解決しようとする課題】
しかし、高中圧一体型の蒸気タービンの暖機方法は、タービン起動過程におけるタービン速度定値制御中に、蒸気圧力、温度また各機器の熱変形によりタービン流入蒸気量が変化したとき、主蒸気加減弁の開度が一定であっても、高圧タービンの出力が変化し、タービン速度が上昇することがあり、このタービン速度の上昇を抑制するため、インターセプト弁を閉制御する。この場合、中圧タービンに流入する蒸気量が減少し、そのため中圧タービン車室の暖機効果が下がり、長時間の暖機運転時間が必要となると共に、中圧タービンに流入する蒸気がなくなるため、タービンの風損による発生熱がタービン内に蓄積され、タービンの排気温度が上昇し、タービンを傷める問題がある。
また、タービンの暖機運転を行う場合において、特に、中圧タービンにおける再熱蒸気の流入箇所が限定された蒸気タービンにあっては、蒸気量の少ない暖機運転時に中圧タービンの初段付近の全周が均等に暖機されず、車室上部メタル温度が車室下部メタル温度よりも低く、上下車室の伸び差により車室の変形が生じ、タービンの摺損、ラビング振動の原因となる。この車室の変形を少なく抑えるには、車室の上部と下部とを徐々に昇温させる方法が有効であるが、これには長時間の暖機時間を必要とする問題がある。
【0004】
本発明の課題は、暖機運転時のタービン速度定値制御中に発生するタービン速度の上昇を抑制すると共に、タービン車室の変形により生じるタービンの摺損、ラビング振動を抑制し、かつ、暖機時間を短縮するに好適な蒸気タービンの制御方法及び装置を提供することにある。
【0005】
【課題を解決するための手段】
上記課題を解決するために、高中圧一体型の蒸気タービンの暖機運転時に、暖機運転時に主蒸気加減弁の開度を保持し、かつ、インターセプト弁の開度を保持してタービン速度を定値制御しているときに、蒸気圧力、温度また各機器の熱変形によりタービン流入蒸気量が変化し、タービン速度が上昇した場合、インターセプト弁を中圧タービンの暖機に必要な一定開度を確保した許容一定開度に閉制御すると共に、主蒸気加減弁の開度をタービン速度の上昇分に対して閉制御してタービン速度を一定に保持する。
ここで、主蒸気加減弁の開度の補正は、主蒸気温度が上昇して発生したプラントの蒸気条件の変化分、あるいは、高圧タービンの暖機中の主蒸気加減弁自体の熱伸び差およびタービン効率の変化に伴って上昇した高圧タービン車室内の温度を抑制する量とする。
また、高中圧一体型の蒸気タービンの暖機運転時に、主蒸気加減弁の開度を保持し、かつ、インターセプト弁の開度を保持してタービン速度を定値制御しているときに、主機の異常等によりタービン速度が異常上昇した場合、異常上昇したタービン速度に基づいて主蒸気加減弁開度の保持およびインターセプト弁開度の保持を解き、主蒸気加減弁およびインターセプト弁を全閉し、タービン速度の加速を防止する。
また、高中圧一体型の蒸気タービンの暖機運転中は、復水器の真空度を定格値よりも低く保持し、高圧タービンに流入する主蒸気の流量を増加させ、高圧タービン車室から中圧タービン車室への熱伝導を高める。
【0006】
【発明の実施の形態】
以下、本発明の実施形態を図面を用いて説明する。
図1は、本発明の実施形態を適用するタービンバイパス系統を有する高中圧一体型の蒸気タービンの系統図を示す。ここで、タービンバイパスとは、ボイラの加熱器で発生した蒸気を蒸気タービンを通さずに、ボイラの再熱器と復水器を循環させてボイラの起動時間の短縮および所内単独負荷運転の継続等を目的とするものである。
図1において、蒸気発生器1で発生した蒸気は、主蒸気管2と主蒸気止め弁13、主蒸気加減弁14を通り、高圧タービン3に流入し、高圧タービン3を駆動する。この高圧タービン3で仕事をした蒸気は、逆止弁11を通って再熱器5に流れ、再熱する。再熱した再熱蒸気は、再熱蒸気止め弁61、インターセプト弁62(両者を組合せて、再熱弁6ともいう。)を通り、中圧タービン7に流入し、中圧タービン7を駆動した後、低圧タービン8を駆動し、復水器9に流れる。また、蒸気発生器1で発生した蒸気は、バイパスライン41と高圧タービンバイパス弁4を通り、高圧タービン3をバイパスして再熱器5に流れる。再熱器5からの再熱蒸気は、低圧タービンバイパス弁10を通り、中圧タービン7、低圧タービン8をバイパスして復水器9に流れる。また、蒸気タービンの起動時には、ベンチレーター弁12を通して高圧タービン3の排出蒸気が復水器9に流れ、定常時にはベンチレーター弁12を全閉する。復水器9の真空度は調整弁15によって調整される。制御装置400(詳細は後述する。)は各弁を制御する。
【0007】
図2は、従来のタービン暖機時におけるタービン回転数、負荷と各弁開度の関係を示す。図2において、横軸に時間、縦軸に(a)タービン回転数、負荷、(b)主蒸気加減弁CV開度、再熱蒸気加減弁(インターセプト弁)ICV開度、(c)ベンチレーター弁VV開度、(d)高圧タービンバイパス弁HPTBV開度、(e)低圧タービンバイパス弁LPTBV開度を表す。
タービンの昇速過程では、予め設定する目標速度(途中保持速度)を目標にタービン速度を上昇させる。目標速度にタービン速度が到着後、速度定値制御に移行し、タービン本体の暖機を行う。
時間t0〜t2において目標速度(途中保持速度)が設定されると、主蒸気加減弁CV14が少々開き、一方高圧タービンバイパス弁HPTBV4が全開から少々閉じ、主蒸気が高圧タービン3に流入する。これによりタービンが起動する。t1においてインターセプト弁ICV62が開き、一方低圧タービンバイパス弁LPTBV10が全開から閉じ始め、再熱蒸気が高圧タービン3に流入する。この再熱蒸気の流入によって、タービン回転数を上昇させる。t2〜t3間はインターセプト弁ICV62の開度を一定に保持し、タービン回転数を目標速度に保持する。t3〜t4間はインターセプト弁ICV62の開度が更に開き、タービン回転数が定格回転数に達する。t5〜t6間において主蒸気加減弁CV14が全閉し、高圧タービンバイパス弁HPTBV4が再び全開する。ベンチレーター弁VV12は全開の状態にある。t1〜t5間がヒートソーク(暖機運転期間)であり、タービン本体の暖機を行う。
暖機運転後、タービンの回転数が定速回転数に達したt7において負荷がかけられ、負荷運転を行い、インターセプト弁ICV62が全開となった後に主蒸気加減弁CV14を再び開くことにより、負荷上昇を行い、t14に定格負荷に達する。t9〜t11はトランスファリージョン(インターセプト弁ICV62から主蒸気加減弁CV14に移る移行期)であり、t10においてインターセプト弁ICV62が全開し、主蒸気加減弁CV14が負荷に応じて開度を大きくする。同時にベンチレーター弁VV12は全閉の状態に移る。また、高圧タービンバイパス弁HPTBV4、低圧タービンバイパス弁LPTBV10はそれぞれ主蒸気加減弁CV14、インターセプト弁ICV62に応じて開度を小さくし、t13で全閉する。t14において主蒸気加減弁CV14が全開し、定格負荷に入る。
中圧起動の蒸気タービンは、図2に示すようにヒートソーク(暖機運転期間)において、インターセプト弁ICV62を開いて中圧タービン7に再熱蒸気を流入し、中圧タービン車室をインターセプト弁ICV62の弁開度の増加と共に徐々に暖機する。また、主蒸気加減弁CV14は、ヒートソーク(暖機運転期間)において、主蒸気による高圧車室の暖機運転を行う。
ここで、タービンの速度制御をインターセプト弁ICV62を用いて行っているため、目標速度(一定回転数)(t2〜t3間の途中保持速度)によるタービンの暖機運転中に、タービン速度が上昇すると、インターセプト弁ICV62を閉め、速度上昇を防ぐことが必要になる。これは、中圧タービン7を暖機する観点からすると、インターセプト弁ICV62の開度が減るため、中圧タービン7に流入する蒸気が減少し、暖機効率が落ちることになる。
【0008】
以下、本実施形態による蒸気タービンの制御方法を説明する。
図3は、本実施形態による制御装置400の詳細を示す。制御装置400は、目標速度設定101、目標速度定格速度102、目標加速度設定105、演算部106、積分器109、保持回路110、比較器111、加減弁開き始めバイアス112、加算器113、115、116、205、減算器114、116、関数発生器118、119、スイッチ120、インターセプト弁規定バイアス200、高値優先回路201、低値優先回路202、203、タービン速度300からなる。
【0009】
制御装置400の動作を説明する。
目標速度(途中保持速度)101を設定し、スイッチ103を閉じ、目標加速度105を設定すると、演算部106においてタービン速度指令が演算され、このタービン速度指令とタービン速度300の偏差を演算し、積分器109から制御信号130が出力される。制御信号130は切替スイッチ120(スイッチ0−1)、加算器205を通し、加算器205から主蒸気加減弁開度指令197が出力され、加算器113によって加減弁開き始めバイアス112を加算し、関数発生器119を経て主蒸気加減弁CV14に出力される。これにより、主蒸気加減弁CV14が開き、タービンを起動させる。タービン速度が上昇し、タービン速度300が所定値(例えば、400rpm)となると、比較器111が動作し、切替スイッチ120(スイッチ0−2)をONし、その時のタービン速度に相当する主蒸気加減弁CV14の開度を保持する保持回路110から主蒸気加減弁制御信号140を出力し、主蒸気加減弁CV14を一定開度に固定保持する。
その後、さらにタービン速度を上昇させるにつれて、積分器109の出力である制御信号130が大きくなる。一方、制御信号130は主蒸気加減弁制御信号140(スイッチ0−2側、保持回路110の出力信号)と減算器114により減算され、減算器114からインターセプト弁制御信号150を出力し、高値優先回路201を通してインターセプト弁開度指令170を関数発生器118に入力し、インターセプト弁ICV62を制御する。制御信号130が大きくなるにつれてインターセプト弁制御値150が増加し、インターセプト弁ICV62を開制御し、タービンを昇速制御する。
タービン速度が目標速度(途中保持速度)101まで昇速すると、タービン速度300を目標速度101に一定制御し、高圧タービン3および中圧タービン7の暖機を行う。
この時、主蒸気温度が上昇してプラントの蒸気条件が変化(タービン効率向上方向に変化)した場合、あるいは、高圧タービン暖機中の主蒸気加減弁自体の熱伸び差およびタービン効率の変化により、主蒸気加減弁CV14の開度が一定であっても高圧タービン3の出力が増加し、タービン速度が上昇する。このタービン速度の上昇を抑えるため、制御信号130が徐々に閉方向となり、インターセプト弁制御値150が低減し、インターセプト弁規定バイアス200より低下したとき、高値優先回路201からインターセプト弁規定バイアス200が出力され、インターセプト弁開度指令170を一定に制限し、中圧タービン7の暖機に必要な開度を確保する。
なお、この時点では、主蒸気加減弁開度指令197は0%以上のため、低値優先回路203の出力は0%のままである。しかし、前記した高値優先回路201からインターセプト弁規定バイアス200が出力され、インターセプト弁開度指令170を一定に制限する状態となった時点で、インターセプト弁ICV62は一定開度に保持されるようになるため、タービン速度が上昇した場合、インターセプト弁制御信号150は規定バイアス200で制限されたインターセプト弁開度指令170を減算器116によって減算され、その減算信号180が低値優先回路202に入力される。この場合減算信号180はバイアス220の0%より小さな値すなわち負の信号であり、低値優先回路202は負の減算信号180を選択し、信号190を加算器205に出力し、主蒸気加減弁制御信号140に加算する。主蒸気加減弁開度指令197は漸減し、主蒸気加減弁CV14を漸次閉じ、タービン速度の上昇を抑えながら、タービンの暖機を行う。同時に低値優先回路202の出力信号190は保持回路110に入力する。
次に、図3に示す目標速度定格速度102が選択された場合は、スイッチ104が閉じ、演算部106および積分器109により昇速演算が行われ、制御信号130が再び増加し、減算器114のインターセプト弁制御信号150が増加し、高値優先回路201が信号150を選択し、インターセプト弁開度指令170が増加し、インターセプト弁が開制御となってインターセプト弁62によりタービンの昇速が行われる。この時、主蒸気加減弁CV14は、インターセプト弁制御信号150とインターセプト弁開度指令170が同値となるため、減算器116の出力が0%となり、低値優先回路202の出力信号190も0%となるため、保持回路110の補正された保持値により開度一定となり、高圧タービンの暖機が継続される。
【0010】
以上説明した動作を図4に示す。図4において、横軸に時間(t0〜t3は図2の時間に相当する。)、縦軸に弁開度、タービン速度、高圧タービン車室温度を示す。また、実線は主蒸気加減弁CVの開度、2点鎖線はインターセプト弁ICVの開度、1点鎖線はタービン速度、点線は高圧タービン車室温度を表す。
図4の時間t0においてタービン速度指令が発せられると、主蒸気加減弁CV14が開き、タービンを起動させる。t1においてタービン速度が所定値に達すると、主蒸気加減弁CV14の開度が一定に固定保持され、一方インターセプト弁ICV62が開き、タービン速度をインターセプト弁ICV62によって制御する。タービンが昇速し、t2においてタービン速度が目標速度(途中保持速度)に達すると、インターセプト弁ICV62は開度一定に制御される。この状態において、t23のとき、主蒸気温度が上昇してプラントの蒸気条件が変化(タービン効率向上方向に変化)した場合、主蒸気加減弁CV14の開度が一定であっても高圧タービン3の出力が増加し、タービン速度が上昇する。このタービン速度の上昇を抑えるため、主蒸気温度の上昇に応じて主蒸気加減弁CV14の開度を漸減する。一方、インターセプト弁ICV62の開度は、中圧タービン7の暖機効率を維持するため、暖機に必要な一定の開度を確保する。
次に、t3において目標速度定格速度102が選択されると、インターセプト弁62の開度が増加し、タービン速度が上昇する。一方、主蒸気加減弁CV14の開度は、補正された一定の保持値に固定される。
【0011】
このようにして、本実施形態では、タービン速度一定のタービン暖機運転中に、タービンが速度上昇した場合、中圧タービン7を暖機するために、インターセプト弁ICV62の開度を暖機のための最適開度以下にならないように開度保持すると共に、タービン速度の上昇分については主蒸気加減弁CV14を閉じることにより、タービン速度の上昇を抑え、タービン速度を一定に保持することができる。
【0012】
次に、図3において、主機等に異常が発生し、タービン速度300が異常に上昇すると、制御信号130は負偏差となり、インターセプト弁開度指令170がインターセプト弁規定バイアス200となるため、減算器116の減算信号180は負の信号となり、低値優先回路を経て保持回路110に出力される。保持回路110の保持値は主蒸気加減弁CV14が閉する方向に補正され、加算器205の主蒸気加減弁開度指令197が0%以下となり、主蒸気加減弁CV14が全閉する。同時に、主蒸気加減弁開度指令197が0%以下となると、低値優先回路203は主蒸気加減弁開度指令197(この時、負の値)を選択し、低値優先回路203の出力信号196をインターセプト弁規定バイアス200から減算器115により減算する。インターセプト弁開度指令170はインターセプト弁規定バイアス200から低値優先回路203の出力信号196を減算した信号となり、インターセプト弁62を閉制御する。これによりタービンの異常な速度上昇を抑える。これにより、主機等に異常が発生したときの異常な速度上昇に対するタービンの保護的速度制御を行うこと、つまり、タービン速度制御機能を損なうことなく、タービン速度の加速を防止することができる。
【0013】
次に、図5は、本実施形態におけるタービン暖機回転数と復水器の真空度の関係を示す。本実施形態は、図5に示すように、タービンを起動し、一定の暖機回転数で運転しているときは、復水器9の真空度を真空調整弁15を用いて定格よりも低く保持する。そして、タービンが定格回転数になったとき、復水器9の真空度を定格真空度に戻す。
【0014】
ここで、タービン車室内の蒸気の流れと車室メタル温度について、図6、図7および図8を用いて説明する。
図6は、高圧タービン車室の断面図を示す。高温の主蒸気は、高圧タービンの車室上下部に設けたそれぞれの主蒸気加減弁から高圧タービン車室に流入し、高圧タービンを加熱する。そのため、その高圧車室メタル温度が上昇する。高圧タービン3への流入蒸気量が増加すると、この暖機効果が向上し、高圧車室の上下部メタル温度の上昇量も増加する。図6に示す高圧タービンは、主蒸気が高圧タービン車室の全周より均等に高圧タービンに流入するので、高圧タービン車室のメタル温度も全周で均等に上昇し、車室の不均一な変形の発生を抑制し、タービンの摺損、ラビング振動の発生を抑制することができる。
図7は、中圧タービン車室の断面図を示す。再熱蒸気は、中圧タービンの車室下部から中圧タービン車室に流入し、中圧タービンを加熱する。そのため、再熱蒸気が中圧タービン車室の全周で均等に流入せず、従って、中圧タービン車室の下部のメタル温度は車室上部のメタル温度よりも早く上昇する傾向にある。
図8は、高圧タービンと中圧タービンを一体化した高中圧一体型の車室の断面図であり、中圧タービンのハッチングで示す車室上部のメタル温度の上昇量は車室下部に比して小さいため、中圧タービン車室の上下の温度差が大きく、中圧タービン車室の変形が生じる。
【0015】
そこで、本実施形態は、高中圧一体型の車室では高圧タービン車室から中圧タービン車室への熱伝導により中圧タービン側の車室が暖機されることに着目し、タービン暖機時の復水器9の真空度を真空調整弁15を用いて定格よりも低く保持し、高圧タービン3に流入する主蒸気の流量を増加させる。因に、タービン暖機時の復水器9の真空度を定格真空度としたときの高圧タービン3に流入する主蒸気の流量は、定格よりも低くした真空度の場合に比して少ない。このため、高圧タービン車室の温度は、復水器9の真空度が低い方が定格真空度に比べて高くなり、中圧タービン車室に熱伝導し、中圧タービン側の車室の暖機効果が大きくなる。これにより、図8に示すハッチングのような再熱蒸気では暖機しにくい中圧タービン車室の上部のメタル温度の上昇が得られ、中圧タービン車室の上下温度差の量の割合つまり上下部のメタル温度差が小さくなり、中圧タービン車室の変形をより小さく抑えることになる。
【0016】
このように、本実施形態によれば、タービン暖機時に復水器の真空度を定格よりも低く保持することにより、タービン車室のメタル温度の不均一を抑制することができ、タービン車室の変形を抑制し、また、タービンの摺損、ラビング振動を抑制することが可能になる。また、タービン暖機時に高圧タービンに流入する主蒸気の流量を増加させることにより、高圧タービンと中圧タービンの暖機効果が高まり、タービンの起動時間を短縮することができる。
【0017】
【発明の効果】
以上説明したように、本発明によれば、タービン暖機中にプラントの状態変化が生じてもタービンの暖機を確実に行うことができ、また、主機等の異常によるタービン速度の異常上昇に対し、タービン速度の加速を防止することができ、安全な暖機制御が可能となると共に、暖機運転時間の短縮が図れる。
また、復水器の真空度を定格よりも低く保持し、タービン暖機中の主蒸気の増量を図ることにより、タービン暖機中の中圧タービンの車室の変形を防ぎ、タービンの摺損、ラビング振動を防ぎ、また、高圧タービンと中圧タービンの暖機効果を高め、タービンの起動時間を短縮することができる。
【図面の簡単な説明】
【図1】本発明の実施形態を適用する高中圧一体型の蒸気タービンの系統図
【図2】従来のタービン暖機時におけるタービン回転数、負荷と各弁開度の関係を示す図
【図3】本発明の実施形態による制御装置
【図4】本発明の実施形態による制御装置の動作を説明する図
【図5】本発明の実施形態におけるタービン暖機回転数と復水器の真空度の関係を示す図
【図6】高圧タービン車室の断面図
【図7】中圧タービン車室の断面図
【図8】高中圧一体型の車室の断面図
【符号の説明】
1…蒸気発生器(ボイラー) 2…主蒸気管
3…高圧タービン 4…高圧タービンバイパス弁
41…バイパスライン 5…再熱器
6…組合せ再熱弁 61…再熱蒸気止め弁
62…インターセプト弁 7…中圧タービン
8…低圧タービン 9…復水器
10…低圧タービンバイパス弁 11…逆止弁
12…ベンチレーター弁 13…主蒸気止め弁
14…主蒸気加減弁 15…真空調整弁
101…目標速度設定 102…目標速度定格速度
105…目標加速度設定 106…演算部
109…積分器 110…保持回路
111…比較器 112…加減弁開き始めバイアス
113、115、116、205…加算器
114、116…減算器 118、119…関数発生器
120…スイッチ 201…高値優先回路
202、203…低値優先回路 300…タービン速度
400…制御装置

Claims (5)

  1. 蒸気発生器と、この蒸気発生器で発生した蒸気により駆動される高圧タービンと、この高圧タービンで仕事をした蒸気を再熱した再熱蒸気により駆動される中圧タービンと、前記蒸気発生器からの蒸気を各タービンからバイパスさせるバイパス弁を有する高中圧一体型の蒸気タービンであって、
    暖機運転時に主蒸気加減弁の開度を保持し、かつ、インターセプト弁の開度を保持してタービン速度を定値制御しているときに、蒸気圧力、温度また各機器の熱変形によりタービン流入蒸気量が変化し、前記タービン速度が上昇した場合、 前記インターセプト弁を前記中圧タービンの暖機に必要な一定開度を確保した許容一定開度に閉制御すると共に、前記主蒸気加減弁の開度を前記タービン速度の上昇分に対して閉制御して前記タービン速度を一定に保持することを特徴とする蒸気タービンの制御方法。
  2. 請求項1において、前記主蒸気加減弁の開度の補正は、主蒸気温度が上昇して発生したプラントの蒸気条件の変化分、あるいは、前記高圧タービンの暖機中の前記主蒸気加減弁自体の熱伸び差およびタービン効率の変化に伴って上昇した前記高圧タービン車室内の温度を抑制する量とすることを特徴とする蒸気タービンの制御方法。
  3. 蒸気発生器と、この蒸気発生器で発生した蒸気により駆動される高圧タービンと、この高圧タービンで仕事をした蒸気を再熱した再熱蒸気により駆動される中圧タービンと、前記蒸気発生器からの蒸気を各タービンからバイパスさせるバイパス弁を有する高中圧一体型の蒸気タービンであって、
    暖機運転時に主蒸気加減弁の開度を保持し、かつ、インターセプト弁の開度を保持してタービン速度を定値制御しているときに、主機の異常等により前記タービン速度が異常上昇した場合、前記異常上昇した前記タービン速度に基づいて前記主蒸気加減弁開度の保持および前記インターセプト弁開度の保持を解き、前記主蒸気加減弁および前記インターセプト弁を全閉し、前記タービン速度の加速を防止することを特徴とする蒸気タービンの制御方法。
  4. 蒸気発生器と、この蒸気発生器で発生した蒸気により駆動される高圧タービンと、この高圧タービンで仕事をした蒸気を再熱した再熱蒸気により駆動される中圧タービンと、前記蒸気発生器からの蒸気を各タービンからバイパスさせるバイパス弁を有する高中圧一体型の蒸気タービンであって、
    暖機運転中は、復水器の真空度を定格値よりも低く保持し、前記高圧タービンに流入する主蒸気の流量を増加させ、前記高圧タービン車室から前記中圧タービン車室への熱伝導を高めることを特徴とする蒸気タービンの制御方法。
  5. 蒸気発生器と、この蒸気発生器で発生した蒸気により駆動される高圧タービンと、この高圧タービンで仕事をした蒸気を再熱した再熱蒸気により駆動される中圧タービンと、前記蒸気発生器からの蒸気を各タービンからバイパスさせるバイパス弁を有する高中圧一体型の蒸気タービンの制御装置であって、
    暖機運転時に主蒸気加減弁の開度を保持し、かつ、インターセプト弁の開度を保持してタービン速度を定値制御しているときに、蒸気圧力、温度また各機器の熱変形によりタービン流入蒸気量が変化し、前記タービン速度が上昇した場合、 前記インターセプト弁を前記中圧タービンの暖機に必要な一定開度を確保した許容一定開度に閉制御すると共に、前記主蒸気加減弁の開度を前記タービン速度の上昇分に対して閉制御して前記タービン速度を一定に保持することを特徴とする蒸気タービンの制御装置。
JP05554897A 1997-02-24 1997-02-24 蒸気タービンの制御方法及び装置 Expired - Lifetime JP3731058B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05554897A JP3731058B2 (ja) 1997-02-24 1997-02-24 蒸気タービンの制御方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05554897A JP3731058B2 (ja) 1997-02-24 1997-02-24 蒸気タービンの制御方法及び装置

Publications (2)

Publication Number Publication Date
JPH10238311A JPH10238311A (ja) 1998-09-08
JP3731058B2 true JP3731058B2 (ja) 2006-01-05

Family

ID=13001771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05554897A Expired - Lifetime JP3731058B2 (ja) 1997-02-24 1997-02-24 蒸気タービンの制御方法及び装置

Country Status (1)

Country Link
JP (1) JP3731058B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925680B1 (ko) * 2015-09-30 2018-12-05 미츠비시 쥬고교 가부시키가이샤 터빈 제어 장치, 터빈, 및 터빈 축의 진동값 저감 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4657057B2 (ja) * 2005-08-12 2011-03-23 株式会社日立製作所 再熱型蒸気タービンプラント
JP5411087B2 (ja) * 2010-08-12 2014-02-12 株式会社日立製作所 蒸気タービンの弁装置及びその操作方法
US8857184B2 (en) * 2010-12-16 2014-10-14 General Electric Company Method for starting a turbomachine
US9903231B2 (en) 2011-12-14 2018-02-27 General Electric Company System and method for warming up a steam turbine
CN105587349B (zh) * 2015-10-20 2017-03-29 国网新疆电力公司电力科学研究院 汽机压控方式下的一次调频实现方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925680B1 (ko) * 2015-09-30 2018-12-05 미츠비시 쥬고교 가부시키가이샤 터빈 제어 장치, 터빈, 및 터빈 축의 진동값 저감 방법

Also Published As

Publication number Publication date
JPH10238311A (ja) 1998-09-08

Similar Documents

Publication Publication Date Title
US5042246A (en) Control system for single shaft combined cycle gas and steam turbine unit
US4744723A (en) Method for starting thermal power plant
JP5734792B2 (ja) 蒸気タービンプラントおよびその運転方法
JP2593578B2 (ja) コンバインドサイクル発電プラント
JPS61237802A (ja) 蒸気タ−ビンの暖機方法
KR102103324B1 (ko) 플랜트 제어 장치, 플랜트 제어 방법, 및 발전 플랜트
EP0908603A1 (en) Single shaft combined cycle plant and method for operating the same
JP3731058B2 (ja) 蒸気タービンの制御方法及び装置
JP4657057B2 (ja) 再熱型蒸気タービンプラント
JPS6336004A (ja) 高圧タービン起動による蒸気タービンプラントの起動方法
JPH04148002A (ja) 蒸気タービンのプレウォーミング方法
JP3165619B2 (ja) 一軸コンバインドサイクルに於ける蒸気タービンの熱応力低減運転方法
JP3559573B2 (ja) 一軸型コンバインドサイクル発電設備の起動方法
JP4395275B2 (ja) コンバインドプラントの運転方法
JP2674263B2 (ja) 再熱式蒸気タービンの制御方法
JP3144512B2 (ja) 再熱式蒸気タービンの運転制御方法
JPS5926765B2 (ja) タ−ビンバイパスラインを有するタ−ビンプラントの制御方法およびその装置
JP2517763B2 (ja) タ―ビン制御方法
JPS60159311A (ja) 蒸気タ−ビンの起動方法
JP2677598B2 (ja) 二段再熱式蒸気タービンプラントの起動方法。
JP4168485B2 (ja) ボイラ設備の高低圧タービンバイパス弁制御方法
JPH0232442B2 (ja) Jokitaabinnokidohoho
JPH0336123B2 (ja)
JPS60252109A (ja) 複合発電プラント
JP2664050B2 (ja) 水中航走体の速度制御方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term