JP3726434B2 - 内燃機関のプレイグニッション検出装置 - Google Patents

内燃機関のプレイグニッション検出装置 Download PDF

Info

Publication number
JP3726434B2
JP3726434B2 JP20647897A JP20647897A JP3726434B2 JP 3726434 B2 JP3726434 B2 JP 3726434B2 JP 20647897 A JP20647897 A JP 20647897A JP 20647897 A JP20647897 A JP 20647897A JP 3726434 B2 JP3726434 B2 JP 3726434B2
Authority
JP
Japan
Prior art keywords
ignition
detection
current
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20647897A
Other languages
English (en)
Other versions
JPH1150939A (ja
Inventor
宏尚 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20647897A priority Critical patent/JP3726434B2/ja
Publication of JPH1150939A publication Critical patent/JPH1150939A/ja
Application granted granted Critical
Publication of JP3726434B2 publication Critical patent/JP3726434B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼室内での燃焼時に生じたイオンに基づいて流れるイオン電流を検出し、そのイオン電流に基づきプレイグニッション発生を検出する内燃機関のプレイグニッション検出装置に関するものである。
【0002】
【従来の技術】
一般に、車載用エンジン等の内燃機関は、そのシリンダブロック内で往復移動するピストンと、同機関の出力軸であるクランクシャフトと、ピストンの往復移動をクランクシャフトの回転へと変換するコンロッドとを備えている。また、シリンダブロックにはシリンダへッドが取り付けられている。このシリンダヘッドとピストンとの間には、燃焼室が設けられている。シリンダヘッドには、燃焼室に連通する吸気通路及び排気通路と、燃焼室内へ向けて燃料を噴射する燃料噴射弁と、燃焼室内の混合ガスに対し点火を行うための点火プラグとが設けられている。
【0003】
点火プラグは、一次コイル及び二次コイルが設けられたイグニッションコイルを介してバッテリに接続され、そのイグニッションコイル及びイグナイタによって点火タイミングが制御される。イグナイタは、エンジンコントロールコンピュータからの点火指令信号に基づき、イグニッションコイルの一次コイルに流れる一次電流を制御する。イグニッションコイルは、一次コイルに流れる一次電流が遮断されたとき、二次コイルに高電圧が発生するようになる。そして、二次コイルに発生した高電圧が点火プラグの電極間に印加されることで、その電極間に火花が飛んで点火がなされる。従って、点火プラグの点火タイミングは、イグナイタによって制御される一次電流の遮断時期によって決定されることとなる。
【0004】
上記のように構成された内燃機関は、その吸気行程において、吸気通路を介して燃焼室へ空気が吸入されるとともに、燃料噴射弁から燃焼室へ向けて燃料が噴射され、その燃料及び空気からなる混合ガスが燃焼室に充填される。その後、内燃機関の圧縮行程において、燃焼室内の混合ガスがピストンの移動によって圧縮され、同混合ガスに対して点火プラグにより点火がなされる。内燃機関は、点火された混合ガスの燃焼によりピストンが上記と逆方向へ移動することで燃焼行程に移るとともに駆動力を得る。その後、排気行程において、燃焼後の混合ガスがピストンの移動により排気ガスとして排気通路を介して外部へ排出される。
【0005】
こうした内燃機関では、点火プラグによる点火よりも前に燃焼室内の混合ガスが同点火プラグ自身の熱などによって自然着火する、いわゆるプレイグニッション等の異常燃焼を検出するために燃焼状態判定装置が設けられる。こうした燃焼状態判定装置としては、例えば特開昭61−155753号公報に記載されたものが知られている。
【0006】
同公報に記載された装置では、点火プラグの電極間に低電圧が印加されるとともに、その電極間に流れる電流を検出するための電流検出回路が設けられている。そして、燃焼室内で混合ガスが燃焼したときに発生するイオンに基づき点火プラグの電極間に流れるイオン電流を、上記電流検出回路によって検出するようにしている。このような装置において、一回の点火がなされる際のイグナイタが入力する点火指令信号の推移態様と、電流検出回路によって検出される電流の推移態様とを図20のタイムチャートに示す。なお、図20において、波形aはイグナイタがエンジンコントロールコンピュータから入力する点火指令信号の波形を示し、波形bは電流検出回路によって検出される電流の波形を示すものである。
【0007】
同図から明らかなように、イオン電流は、点火指令信号がONからOFFへ立ち下がった後に発生することとなる。これは点火がなされてから混合ガスが燃焼するまでに時間がかかり、その混合ガスの燃焼によるイオン発生にも時間がかかるためである。このように正常な混合ガスの燃焼状態では点火指令信号の立ち下がり後にイオン電流が発生するようになるが、例えば上記プレイグニッションが発生した場合には図20に破線で示すように点火指令信号立ち下がり前にイオン電流が発生することとなる。従って、上記公報に記載の装置では、点火指令信号立ち下がり前のイオン電流の有無に基づいてプレイグニッションを検出することにしている。このようにプレイグニッションを検出することで、プレイグニッション発生時には燃料噴射量を増量するなどの回避制御を行うことができるようになる。
【0008】
また、内燃機関においては、燃焼室内での混合ガスの燃焼によって点火プラグの電極にカーボンが付着する、いわゆるくすぶりが発生する場合がある。こうしたくすぶりが発生すると、点火プラグの電極に付着したカーボンを介して同電極間に漏洩電流が流れるようになる。この漏洩電流は、図20に一点鎖線で示すように点火指令信号がOFFからONへと立ち上がるときに発生することとなる。従って、点火指令信号立ち上がり後の漏洩電流の有無に基づいて、点火プラグのくすぶりを検出するすることができる。このように点火プラグのくすぶりを検出することで、くすぶり発生時には燃料噴射量の増量を停止するなどして、そのくすぶりを抑制することができるようになる。
【0009】
【発明が解決しようとする課題】
ところで、点火指令信号の立ち上がりから立ち下がりまでの一次電流通電時間(以下、通電時間という)tは、エンジン回転数及びバッテリ電圧に基づき決定され、そのエンジン回転数及びバッテリ電圧が高いほど短くなる。そのため、エンジン回転数が高くなったり故障等によってバッテリ電圧が過度に高くなったりすると、通電時間tが短くなって点火指令信号の立ち上がりと立ち下がりとが接近する。こうして点火指令信号の立ち上がりと立ち下がりとが接近すると、プレイグニッション発生時のイオン電流とカーボン付着による漏洩電流との違いを判別できなくなる。従って、通電時間tが過度に短くなるような内燃機関の運転状況のときには、漏洩電流を誤ってイオン電流として検出してしまい、プレイグニッションの発生を誤検出して不要なプレイグニッション回避制御が行われることとなる。
【0010】
また、点火指令信号がOFFからONへと立ち上がるとイグニッションコイルの一次電流は徐々に立ち上がるが、的確な点火を行うためにも一次電流の立ち上がりが速い方が好ましい。そこで従来は、イグニッションコイルにおける一次コイルの巻き線を減らして一次電流の立ち上がりを速くするとともに、その一次電流が過度に大きくならないよう定電流制御を実行している。このような定電流制御が行われるときの点火指令信号、一次電流、及び電流検出回路によって検出された電流の推移態様を図21に示す。
【0011】
同図から明らかなように、図21の波形aで示される点火指令信号がOFFからONへと立ち上がると、図21の波形bで示される一次電流が徐々に立ち上るようになる。そして、一次電流が限界値に到達した後には、その一次電流が限界値を越えないよう定電流制御が行われる。このような定電流制御を行うことにより、点火指令信号がONからOFFに立ち下がるまでに一次電流が過度に大きくなるのを防止することができ、その過電流によってイグナイタが故障するのを防止することができる。その後、点火指令信号がOFFからONへと立ち下がって一次電流が遮断されると、混合ガスに点火がなされて図21に波形cで示される態様でイオン電流が発生するようになる。
【0012】
上記定電流制御は、例えば一次電流が流れ易いイグニッションコイルの冷間時に実行される。これはイグニッションコイルの冷間時には、一次電流が流れ易くなって同電流がすぐに限界値に到達してしまうためである。また、通電時間tが過度に長くなる内燃機関の低回転時にも上記定電流制御が行われることとなる。これは内燃機関の低回転時に通電時間tが過度に長くなると、点火指令信号がONからOFFに立ち下がる前に一次時電流が限界値に到達してしまうためである。
【0013】
このような定電流制御を行うことによって、一次電流が過度に大きくなるのを防止することができるようにはなる。しかし、定電流制御の開始時には、立ち上がり中の一次電流が一定値となるよう制御され、その際に一次電流が変動して電流検出回路によって検出される電流にも変動が生じるようになる。この検出された電流に変動が生じると、当該変動する電流を誤ってイオン電流として検出してしまい、プレイグニッションの発生を誤検出して不要なプレイグニッション回避制御が行われることとなる。
【0014】
本発明はこのような実情に鑑みてなされたものであって、その目的は、プレイグニッションの発生の誤検出を防止することのできる内燃機関のプレイグニッション検出装置を提供することにある。
【0015】
【課題を解決するための手段】
上記目的を達成させるため、請求項1記載の発明では、内燃機関の燃焼室内での燃焼によって生じるイオンに基づいて点火プラグの電極間に流れる電流を検出する電流検出手段を備え、該電流検出手段によって検出される電流に基づき前記燃焼室内でのプレイグニッションの発生を検出する内燃機関のプレイグニッション検出装置において、内燃機関の稼動状況を監視する稼動状況監視手段と、前記稼動状況監視手段によって監視される内燃機関の稼動状況がプレイグニッションの発生を誤検出する状況であるか否かを判断する稼動状況判断手段と、前記稼動状況判断手段によって内燃機関の稼動状況が前記プレイグニッションの発生を誤検出する状況にある旨判断されるとき、前記プレイグニッションの発生の検出を禁止する検出禁止手段とを備え、前記稼動状況判断手段は、イグニッションコイルへの一次電流通電時間が許容時間に満たなくなる稼動状況であるか否かを判断し、前記検出禁止手段は、前記稼動状況判断手段によって前記一次電流通電時間が許容時間に満たなくなる稼動状況である旨の判断がなされるとき、前記プレイグニッションの発生の検出を禁止するものとした。
【0016】
同構成によれば、プレイグニッションの発生を誤検出するような内燃機関の稼動状況のときには、そのプレイグニッションの検出が検出禁止手段によって禁止されるため、プレイグニッションの発生の誤検出が防止されるようになる。
【0018】
一般に、点火プラグの電極に付着したカーボンを介して流れる漏洩電流は一次電流の立ち上り直後に発生し、プレイグニッションによるイオン電流は一次電流の立ち下がり直前に発生する。従って、一次電流通電時間が許容時間に満たなくなるような内燃機関の稼動状況のとき、一次電流の立ち上がりと立ち下がりとが接近して漏洩電流をイオン電流として誤検出し易くなる。このような内燃機関の稼動状況のときには、稼動状況判断手段によって上記一次電流通電時間が許容時間に満たなくなるような稼動状況である旨の判定がなされ、検出禁止手段によってプレイグニッションの発生の検出が禁止される。その結果、一次電流通電時間が許容時間に満たなくなるときに、漏洩電流を誤ってイオン電流として検出してしまうことに基づくプレイグニッションの発生の誤検出を防止することができるようになる。
【0019】
請求項記載の発明では、前記稼動状況監視手段は、前記イグニッションコイルに供されるバッテリ電圧を監視するものであり、前記一次電流通電時間は、少なくとも前記バッテリ電圧に基づいて通電時間が制御されるものとした。
【0020】
同構成によれば、故障等によってバッテリ電圧に異常が生じ、そのバッテリ電圧に基づき算出される一次電流通電時間が許容時間よりも短くなると漏洩電流をイオン電流として誤検出し易くなるが、この場合には検出禁止手段によってプレイグニッションの発生の検出が禁止される。従って、故障等により一次電流通電時間が許容時間に満たなくなるバッテリ電圧となっても、漏洩電流を誤ってイオン電流として検出することに基づくプレイグニッション発生の誤検出を防止することができるようになる。
【0021】
請求項記載の発明では、内燃機関の燃焼室内での燃焼によって生じるイオンに基づいて点火プラグの電極間に流れる電流を検出する電流検出手段を備え、該電流検出手段によって検出される電流に基づき前記燃焼室内でのプレイグニッションの発生を検出する内燃機関のプレイグニッション検出装置において、内燃機関の稼動状況を監視する稼動状況監視手段と、前記稼動状況監視手段によって監視される内燃機関の稼動状況がプレイグニッションの発生を誤検出する状況であるか否かを判断する稼動状況判断手段と、前記稼動状況判断手段によって内燃機関の稼動状況が前記プレイグニッションの発生を誤検出する状況にある旨判断されるとき、前記プレイグニッションの発生の検出を禁止する検出禁止手段とを備え、前記稼動状況判断手段は、イグニッションコイルに流れる一次電流の定電流制御により該一次電流が増減される稼動状況であるか否かを判断し、前記検出禁止手段は、前記稼動状況判断手段によって前記定電流制御により前記一次電流が増減される稼動状況である旨の判断がなされるとき、前記プレイグニッションの発生の検出を禁止するものとした。
【0022】
同構成によれば、イグニッションコイルに流れる一次電流が所定値よりも小さくなるよう定電流制御が行われ、この定電流制御の開始時には立ち上り中の一次電流が一定値となるよう制御される。この定電流制御開始時には、一次電流に増減方向への変動が生じて電流検出手段によって検出される電流にも変動が生じ、当該電流の変動を誤ってイオン電流として検出し易くなる。従って、定電流制御により一次電流が増減されるような内燃機関の稼動状態のときには上記電流変動をイオン電流として誤検出し易くなる。しかしこの場合には、検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、定電流制御時開始時の上記電流変動を誤ってイオン電流として検出することに基づくプレイグニッションの発生の誤検出を防止することができるようになる。
【0023】
請求項記載の発明では、前記稼動状況監視手段は、前記イグニッションコイルのコイル温度と内燃機関の機関回転数との少なくとも一方を監視するものであり、前記稼動状況判断手段は、前記稼動状況監視手段によって監視されるイグニッションコイルのコイル温度及び内燃機関の機関回転数の少なくとも一方に基づき、前記定電流制御により前記一次電流が増減される稼動状況である旨の判断をするものとした。
【0024】
一般に、イグニッションコイルのコイル温度が低い場合には、電流が流れ易くなって一次電流の立ち上りが速くなるため、その一次電流の定電流制御が行われ易くなり、同制御開始時に電流検出手段によって検出される電流変動を誤ってイオン電流として検出し易くなる。また、内燃機関の機関回転数が低い場合には、一次電流通電時間が長くなるために、同一次電流通電が立ち下がる前に所定値以上になり易くなる。従って、機関回転数が低い場合には一次電流通電時間が長くなって同一次電流の定電流制御が行われ易くなり、同制御開始時に電流検出手段によって検出される電流の変動を誤ってイオン電流として検出し易くなる。同構成によれば、上記コイル温度や機関回転数が低いときといった一次電流の定電流制御が行われ易い内燃機関の稼動状況のとき、検出禁止手段によってプレイグニッションの発生の検出が禁止される。そのため、定電流制御開始時の上記電流変動を誤ってイオン電流として検出することに基づくプレイグニッションの発生の誤検出を防止することができるようになる。
【0025】
請求項記載の発明では、請求項1〜のいずれかに記載の内燃機関のプレイグニッション検出装置において、前記検出禁止手段は、前記稼動状況監視手段の異常が検出されるとき、前記プレイグニッションの発生の検出を禁止するものとした。
【0026】
同構成によれば、稼動状況監視手段に異常が生じると、稼動状況判断手段による内燃機関の稼動状況がプレイグニッションの発生を誤検出する状況であるか否かの判断に誤りが生じることとなる。しかし、こうした稼動状況監視手段の異常時には検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、当該稼動状況監視手段の異常に基づくプレイグニッションの発生の誤検出を防止することができるようになる。
【0027】
請求項記載の発明では、請求項1〜のいずれかに記載の内燃機関のプレイグニッション検出装置において、前記検出禁止手段は、前記電流検出手段の故障が検出されるとき、前記プレイグニッションの発生の検出を禁止するものとした。
【0028】
同構成によれば、電流検出手段に故障が生じると、その電流検出手段の検出結果に基づいて検出されるプレイグニッションの発生に誤検出が生じることとなる。しかし、こうした電流検出手段の故障時には検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、当該電流検出手段の故障に基づくプレイグニッション発生の誤検出を防止することができるようになる。
【0029】
請求項記載の発明では、請求項1〜のいずれかに記載の内燃機関のプレイグニッション検出装置において、前記検出禁止手段は、前記燃焼室内の温度がプレイグニッションの発生する温度領域内の値でないとき、前記プレイグニッションの発生の検出を禁止するものとした。
【0030】
一般に、燃焼室内の温度が低い場合にはプレイグニッションが発生することはない。同構成によれば、燃焼室内の温度が、そのようなプレイグニッションが発生しない温度領域内の値であるとき、検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、プレイグニッションの発生の検出にかかる制御負担を軽減することができるようになる。
【0031】
【発明の実施の形態】
以下、本発明を自動車用の直列4気筒ガソリンエンジンに適用した一実施形態を図1〜図19に従って説明する。
【0032】
図1に示すように、エンジン11の1番気筒〜4番気筒(図1には一つの気筒のみ図示)には、それぞれピストン12が設けられている。このピストンは、エンジン11のシリンダブロック11a内にて往復移動可能となっており、コンロッド13を介してエンジン11の出力軸であるクランクシャフト14に連結されている。そして、ピストン12の往復移動は、コンロッド13によってクランクシャフト14の回転へと変換されるようになっている。
【0033】
クランクシャフト14にはシグナルロータ14aが取り付けられている。このシグナルロータ14aの外周部には、複数の突起14bがクランクシャフト14の軸線を中心とする等角度毎に設けられている。また、シグナルロータ14aの側方には、クランクセンサ14cが設けられている。そして、クランクシャフト14が回転して、シグナルロータ14aの各突起14bが順次クランクセンサ14cの側方を通過することにより、同センサ14cからはそれら各突起14bの通過に対応したパルス状の検出信号が出力されるようになる。
【0034】
一方、シリンダブロック11aには、エンジン11における冷却水の水温を検出するための水温センサ11bが設けられている。また、シリンダブロック11aの上端にはシリンダヘッド15が設けられ、シリンダヘッド15とピストン12との間には燃焼室16が設けられている。この燃焼室16には、シリンダヘッド15に設けられた吸気ポート17及び排気ポート18が連通している。更に、それら吸気ポート17及び排気ポート18には、それぞれ吸気バルブ19及び排気バルブ20が設けられている。
【0035】
シリンダヘッド15には、上記吸気バルブ19及び排気バルブ20を開閉駆動するための吸気カムシャフト21及び排気カムシャフト22が回転可能に支持されている。これら吸気及び排気カムシャフト21,22はタイミングベルト23を介してクランクシャフト14に連結され、同ベルト23によりクランクシャフト14の回転が吸気及び排気カムシャフト21,22へ伝達されるようになっている。そして、吸気カムシャフト21が回転すると、吸気バルブ19が開閉駆動されて、吸気ポート17と燃焼室16とが連通・遮断される。また、排気カムシャフト22が回転すると、排気バルブ20が開閉駆動されて、排気ポート18と燃焼室16とが連通・遮断されるようになっている。
【0036】
シリンダヘッド15において、排気カムシャフト22の側方には、同シャフト22の外周面に設けられた突起22aを検出して検出信号を出力するカムセンサ22bが設けられている。そして、排気カムシャフト22が回転すると、同シャフト21の突起22aがカムセンサ22bの側方を通過する。この状態にあっては、カムセンサ22bから上記突起22aの通過に対応した所定間隔毎に検出信号が出力されるようになる。
【0037】
吸気ポート17及び排気ポート18には、それぞれ吸気管30及び排気管31が接続されている。この吸気管30内及び吸気ポート17内は吸気通路32となっている。また、排気管31内及び排気ポート18内は排気通路33となっており、排気通路33の下流側にはエンジン11の排気ガスを浄化するための触媒33aが設けられている。
【0038】
吸気管30の上流端には、エアフローメータ34が設けられている。エアフローメータ34は、吸気通路32を介して燃焼室16へ吸入される空気の量を検出し、その検出された吸入空気量に対応した出力信号を発生する。そのエアフローメータには、吸気通路を通過して燃焼室へ吸入される空気の温度を検出するための吸気温センサ35が設けられている。そして、吸気温センサは、吸入空気の温度を検出し、その検出された吸入空気温度に対応した検出信号を出力する。
【0039】
また、吸気管30の下流端には、燃焼室16内へ向かって燃料を噴射するための燃料噴射弁50が設けられている。この燃料噴射弁50は、吸気通路32内の空気が燃焼室16へ吸入されるとき、燃焼室16へ向けて燃料を噴射し、燃料及び空気からなる混合ガスを形成する。
【0040】
吸気通路32内において、エアフローメータ34よりも下流側には、スロットルバルブ46が設けられている。スロットルバルブ46の開度(スロットル開度)は、自動車の室内に設けられたアクセルペダル47の踏込量(アクセル開度)に基づき調節され、このスロットルバルブ46の開度調節により燃焼室16内へ吸入される空気の量が調節される。そして、スロットルバルブ46の近傍にはスロットルセンサ46aが設けられている。このスロットルセンサ46aは、スロットル開度を検出して同開度に対応した出力信号を発生する。
【0041】
一方、シリンダヘッド15には、燃焼室16内に充填された混合ガスに対して点火を行うための点火プラグ51が設けられている。この点火プラグ51は、エンジン11に設けられたイグナイタモジュール53を介して、自動車のバッテリ54に接続されている。
【0042】
こうしたエンジン11にあっては、その吸気行程において、ピストン12の下降により燃焼室16内に負圧が発生し、その負圧により燃焼室16へ吸気通路32を介して空気が吸入される。また、燃料噴射弁50からは、燃焼室16に吸入される空気の量に対応した量の燃料が同燃焼室16へ向かって噴射され、その結果、燃焼室16には空気と燃料とからなる混合ガスが充填される。
【0043】
その後、エンジン11の圧縮行程において、ピストン12の上昇により、燃焼室16内の混合ガスは圧縮される。燃焼室16内で圧縮された混合ガスは、点火プラグ51により点火されて爆発し、その爆発力によってピストン12が下降してエンジン11は爆発行程に移る。この爆発行程により、エンジン11は駆動力を得ることとなる。こうして燃焼室16内で燃焼した混合ガスは、エンジン11の排気行程において、ピストン12の上昇により排気ガスとして排気通路33へ送り出され、触媒33で浄化された後に外部へ排出される。
【0044】
次に、エンジン11における点火系の詳細な構造を図2及び図3に基づいて説明する。その図2は点火プラグ51における電極部分の拡大断面図であり、図3は主にイグナイタモジュール53の電気的構成を示すブロック図である。
【0045】
図2に示すように、点火プラグ51の先端部には、金属によって円筒状に形成されてシリンダヘッド15に螺着されたネジ部55が設けられている。このネジ部55の先端面には、燃焼室16内へ突出するL字状の電極56aが設けられている。電極56aとシリンダヘッド15との間は、ネジ部55を介しての通電が可能となっている。また、ネジ部55の内側には絶縁体57を貫通する棒状の電極56bが設けられている。この電極56bの先端部は、絶縁体57から突出して燃焼室16内に位置し、上記ネジ部55に設けられた電極56aと対向している。そして、絶縁体57を貫通する電極56bは、その絶縁体57によってネジ部55、電極56a及びシリンダヘッド15と絶縁された状態になっている。
【0046】
一方、図3に示すように、イグナイタモジュール53は、イグニッションコイル53a、イグナイタ53b及びイオン電流検出回路部53cとから構成されている。そのイグナイタ53b及びイオン電流検出回路部53cは、点火時期、燃料噴射時期及び燃料噴射量など、エンジン11の運転状態を制御するための電子制御ユニット(以下「ECU」という)92に接続されている。
【0047】
上記イグニッションコイル53aは、バッテリ54及びイグナイタ53bに接続された一次コイル58と、点火プラグ51及びイオン電流検出回路部53cに接続された二次コイル59とから構成されている。そして、イグニッションコイル53aの一次コイル58に一次電流が通電され、その後に同一次電流が遮断されると、イグニッションコイル53aの二次コイル59に高電圧が発生するようになる。その二次コイル59に発生した高電圧が点火プラグ51の電極56a,56b間に印加されることにより、それら電極56a,56b間に火花が飛んで燃焼室16内に充填された混合ガスに点火がなされる。
【0048】
イグニッションコイル53aの一次コイル58に流れる一次電流の通電制御は、ECU92から出力される点火指令信号に基づきイグナイタ53bによって行われる。また、イグナイタ53bには上記一次電流が過度に大きくなるのを抑制するための定電流制御回路60が設けられている。ここで、点火プラグ51による一回の点火がなされる際のイグナイタ53bが入力する点火指令信号の推移態様と、一次コイル58に流れる一次電流の推移態様とを図5のタイムチャートに示す。
【0049】
同図から明らかなように、図5の波形aで示される点火指令信号がOFFからONへと立ち上がったとき、図5の波形bで示される一次電流が時間経過に伴い徐々に増加し始める。そして、点火指令信号がONからOFFへと立ち下がる前に一次電流が限界値に到達した場合には、一次電流が当該限界値を越えないよう定電流制御回路60によって定電流制御が行われる。このような一次電流の定電流制御開始時には、立ち上り中の一次電流が一定値となるよう制御され、その際に一次電流が増減方向へ変動するようになる。
【0050】
その後、点火指令信号がONからOFFへと立ち下がると、一次電流が遮断されて点火プラグ51の電極56a,56b間に火花が飛び、燃焼室16に充填された混合ガスに点火がなされる。こうして点火された混合ガスが燃焼してイオンが発生すると、同イオンによって点火プラグ51の電極56a,56b間にイオン電流が流れるようになる。このイオン電流は、イグニッションコイル53aの二次コイル59に接続されたイオン電流検出回路部53c(図3)によって検出される。ここで、イオン電流検出回路部53cによって検出される電流の推移態様を図5の波形cで示す。
【0051】
同図から明らかなように、図5の波形aで示される点火指令信号がONからOFFへと立ち下がった後、図5の波形cで示される態様でイオン電流が発生するようになる。このイオン電流が、点火指令信号の立ち下がり後に発生するのは、点火プラグ51による点火がなされてから混合ガスが燃焼するまでに時間がかかり、その混合ガス燃焼によるイオン発生にも時間がかかるためである。また、このようにイオン電流を検出するイオン電流検出回路部53cには、同回路部53cでの断線を検出するための断線検出部61が設けられている。
【0052】
ところで、上記構成のエンジン11においては、燃焼室16内でいわゆるプレイグニッションやくすぶりが発生する場合がある。そして、例えばプレイグニッションが発生した場合には、点火プラグ51による点火前に混合ガスが自然着火して燃焼してしまうため、点火指令信号の立ち下がり前に図5の波形dにおいて破線で示す態様でイオン電流が発生する。また、くすぶりが発生した場合には、例えば図2に一点鎖線で示すように電極56bにカーボンが付着し、そのカーボンを介して電極56a,56b間に漏洩電流が流れるようになる。こうした漏洩電流は、点火指令信号の立ち上り後に図5の波形dにおいて一点鎖線で示す態様で発生する。
【0053】
次に、本実施形態におけるエンジン11の制御装置の電気的構成を図4に基づいて説明する。
この制御装置は、ROM93、CPU94、RAM95及びバックアップRAM96等を備える論理演算回路として構成された上記ECU92を備えている。
【0054】
ここで、ROM93は各種制御プログラムや、その各種制御プログラムを実行する際に参照されるマップ等が記憶されるメモリであり、CPU94はROM93に記憶された各種制御プログラムやマップに基づいて演算処理を実行する。また、RAM95はCPU94での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリであり、バックアップRAM96はエンジン11の停止時に保存すべきデータを記憶する不揮発性のメモリである。そして、ROM93、CPU94、RAM95及びバックアップRAM96は、バス97を介して互いに接続されるとともに、外部入力回路98及び外部出力回路99と接続されている。
【0055】
外部入力回路98には、水温センサ11b、クランクセンサ14c、カムセンサ22b、エアフローメータ34、吸気温センサ35、スロットルセンサ46a、イオン電流検出回路部53c及びバッテリ54が接続されている。一方、外部出力回路99には、燃料噴射弁50及びイグナイタ53bが接続されている。
【0056】
このように構成されたECU92は、クランクセンサ14cからの検出信号及びバッテリ54からの電圧信号を入力し、それら信号に基づきエンジン回転数NE及びバッテリ電圧Bを求める。更に、ECU92は、求められたエンジン回転数NE及びバッテリ電圧Bに基づき、点火指令信号の立ち上りから立ち下がりまでの時間と同じ値となる一次電流の通電時間tを算出する。なお、通電時間tを算出する際には、予め実験によって求められてROM93に記憶された図6に示すマップが参照される。このように算出された通電時間tは、図6から明らかなように、エンジン回転数NEが高くなるとともにバッテリ電圧Bが低くなるほど長くなり、エンジン回転数NEが低くなるとともにバッテリ電圧Bが高くなるほど短くなる。そして、ECU92は、算出された通電時間tに応じてイグナイタ53bへ出力する点火指令信号の立ち上り時期と立ち下がり時期とを決定する。
【0057】
ECU92は、点火指令信号がOFFからONへと立ち上がった直後である図5の波形aに示した第1時点P1において、イオン電流検出回路部53cによって検出された電流が所定のしきい値を越えていることに基づきくすぶりを検出する。このようにしてくすぶりを検出することができるのは、くすぶり発生時に点火プラグ51の電極56bに付着したカーボンを介して流れる漏洩電流が、図5の波形dに一点鎖線で示すように点火指令信号の立ち上り直後(一次電流通電初期)に発生するためである。なお、点火指令信号立ち上りから上記第1時点P1までの時間は、点火指令信号立ち上り時にイオン電流検出回路部53cが検出するノイズ等によってくすぶりが誤検出されることのない値に設定されている。
【0058】
更に、ECU92は、点火指令信号がONからOFFへと立ち下がる直前である図5の波形aに示した第2時点P2において、イオン電流検出回路部53cによって検出された電流が所定のしきい値を越えていることに基づきプレイグニッションを検出する。このようにしてプレイグニッションを検出することができるのは、プレイグニッション発生時に点火プラグ51の電極56a,56b間を介して流れるイオン電流が、図5の波形dに破線で示すように点火指令信号の立ち下がり直前(一次電流通電終期)に発生するためである。そして、点火指令信号立ち上りから同第2の時点P2までの時間は上記のように算出された一次電流の通電時間tに基づき求められ、その求められた時間に基づいてECU92がタイマ制御を行うことによって第2時点P2が決定される。こうして決定された第2時点P2は、上記タイマ制御実行時に誤差が生じた場合でも点火指令信号立ち下がりとの間の時間が「0」になることがないものとされる。
【0059】
一方、ECU92は、上記エンジン回転数NE、エアフローメータ34からの検出信号に基づき求められるエンジン負荷、及びスロットルセンサ46aからの検出信号に基づき求められるスロットル開度など、エンジン11の運転状態に基づき、基本燃料噴射量及び基本点火時期を算出する。なお、これら基本燃料噴射量及び基本点火時期等を算出する際には、予め実験によって求められてROM93に記憶された周知のマップが参照される。ECU92は、こうして求められた基本燃料噴射量及び基本点火時期に基づき、燃料噴射弁50及びイグナイタ53bを駆動制御して燃料噴射量及び点火時期の調整を行う。
【0060】
次に、上記構成のECU92を通じて実行される制御態様の概要を、図7〜図10に基づいて説明する。
ECU92は、エンジン11の稼動状況がプレイグニッション発生を誤検出する状況であるとき、図5の第2時点P2にてなされる点火プラグ51の電極56a,56b間を流れる電流に基づくプレイグニッション検出を禁止する。プレイグニッション発生を誤検出するエンジン11の稼動状況としては、イグニッションコイル53aのコイル温度が低いとき、エンジン回転数NEが低いとき、及びバッテリ電圧Bが高いときなどがあげられる。
【0061】
例えばエンジン11の始動直後など、イグニッションコイル53aのコイル温度が低い場合には、電流が流れ易くなって一次コイル58に流れる一次電流の立ち上りが速くなり、点火指令信号がONからOFFに立ち下がる前に一次電流が限界値に到達して定電流制御が行われる。その結果、図5に波形bで示すように、定電流制御開始時の一次電流に増減方向への変動が生じ、その変動に基づきイオン電流検出回路部53cによって検出される電流にも図5に波形cで示される変動が生じる。また、エンジン回転数NEが低い場合には、点火指令信号立ち上りから立ち下がりまでの時間、即ち一次電流の通電時間tが長くなるため、点火指令信号が立ち下がる前に一次電流が限界値に到達して定電流制御が行われる。その結果、上記と同様に定電流制御開始時の一次電流に変動が生じるとともに、イオン電流検出回路部53cによって検出される電流にも変動が生じる。このような電流変動が第2時点P2にて生じた場合には、当該電流変動をイオン電流検出回路部53cが誤ってイオン電流として検出してしまい、プレイグニッション発生が誤検出されることとなる。
【0062】
一方、故障等によってバッテリ電圧Bが過度に高くなった場合には、一次電流の通電時間tが短くなるとともに、点火指令信号の立ち上りと立ち下がりとが接近する。この状態にあって、くすぶりが発生して点火プラグ51の電極56bに付着したカーボンを介して漏洩電流が流れると、上記通電時間tが短いために漏洩電流が第2時点P2にて発生している状態になる。そしてその結果、イオン電流検出回路53cが上記漏洩電流を誤ってイオン電流として検出してしまい、プレイグニッション発生が誤検出されることとなる。
【0063】
上述したようなプレイグニッション発生を誤検出するエンジン11の稼動状況のときには、イオン電流検出回路部53cによって検出される電流に基づくプレイグニッションの検出が禁止される。そのため、上記プレイグニッション発生の誤検出に基づき、不要なプレイグニッション回避制御等が実行されるのを防止することができるようになる。
【0064】
また、プレイグニッション発生が誤検出されないエンジン11の稼動状況のときには、イオン電流検出回路部53cによって検出される電流に基づくプレイグニッションの検出が行われる。そして、プレイグニッション発生が検出された場合、ECU92は、図7(a)及び(b)に示すように燃料噴射量及び点火時期を制御してプレイグニッション回避を行う。これら図7(a)及び(b)は、プレイグニッション回避が行われる際の時間経過に伴う燃料噴射量増量及び点火時期遅角量(図7(b)の実線)の推移傾向を示すものである。
【0065】
これらの図から明らかなように、プレイグニッション発生が検出されたとき、ECU92は、燃料噴射弁50によって噴射される燃料を増量させた後、その増量値を徐々に減少させるとともに、当該燃料増量の減少に伴い点火プラグ51による点火時期を徐々に遅角させる。ここで、上記プレイグニッション回避のための燃料噴射量制御及び点火時期制御が行われた際、エンジン11の運転状態がどのように推移するかを図9のグラフに示す。
【0066】
このグラフにおいて、横軸及び縦軸は空燃比及び点火時期を示し、実線Xは燃焼室内温度の等温度線を示す。そして、グラフ中実線Xよりも上側の領域は、燃焼室16内で、プレイグニッションが発生する燃焼室内温度領域となる。また、グラフ中の一点鎖線Yは、エンジン11が出力するトルクの等トルク線を示し、グラフ中下側に位置するものほど低トルクとなる。更に、グラフ中の実線Zはエンジン11から排出される排気ガスの等排気温線を示し、グラフ中実線Zよりも右側の領域は触媒33aなどのエンジン11の排気系に故障が発生する排気温度領域となる。
【0067】
今、グラフ中の位置αの状態にエンジン11の運転状態があるとき、プレイグニッション発生の検出に基づき燃料噴射量が増量されると、エンジン11の運転状態は位置αから位置βへと推移する。そして、燃料増量分の気化熱と燃料増量による燃焼速度の緩和とによって燃焼室16内の温度が速やかに低下され、速やかなプレイグニッション回避が行われる。その後、燃料噴射量の増量値が段階的に減少されるとともに、同燃料増量値の減少に伴って点火時期が徐々に遅角され、エンジン11の運転状態は位置βから位置γへと推移する。即ち、燃料噴射量増量によるプレイグニッション回避が、点火時期遅角によるプレイグニッション回避に置き換えられる。
【0068】
こうした燃料噴射量増量及び点火時期遅角によるプレイグニッション回避により、プレイグニッション発生直後には燃料噴射量増量によって速やかに燃焼室16内の温度が低下するようになる。また、その後に燃料噴射量の増量値が徐々に減少され、代わりに点火時期が徐々に遅角されるため、燃料噴射量増量による燃費の悪化や、急激な点火時期遅角によるエンジン11の急激なトルク低下が防止される。従って、速やかなプレイグニッション回避と燃費の悪化防止との両立を図り、しかもエンジン11の運転状態を安定維持してプレイグニッション回避を行うことができるようになる。
【0069】
ところで、エンジン11においては、例えば排気バルブ20に付着した付着物が熱せられ、その付着物の熱により燃焼室16内の混合ガスが自然着火してプレイグニッション発生となることがある。この場合、上記プレイグニッション回避制御を行っても、排気バルブ20に付着した付着物自身の温度を低減させることが困難であるため、プレイグニッションが進行して暴走性プレイグニッションに至ることとなる。プレイグニッションは、暴走性のものへと進行すると、その発生頻度が高くなるとともに発生開始時期が早くなる。従って、プレイグニッション発生に基づき図5の波形dに破線で示す態様で生じたイオン電流は、そのプレイグニッションの進行に伴って発生開始時期が波形aの第1時点P1まで早くなる。
【0070】
また、エンジン11においては、くすぶりによって点火プラグ51の電極56bにカーボンが付着し、そのカーボンを介して電極56a,56b間に漏洩電流が流れることがある。こうしたくすぶりの進行度合いは上記カーボンの付着量によって決定され、同カーボン付着量が多いほどくすぶりが進行して漏洩電流の発生終了時期が遅くなる。従って、くすぶり発生に基づき図5の波形dに一点鎖線で示す態様で生じたイオン電流は、そのくすぶりの進行に伴って発生終了時期が波形aの第2時点P2まで遅くなる。
【0071】
上述したようにプレイグニッションやくすぶりが進行した場合には、第1及び第2時点P1,P2においてイオン電流検出回路部53cによって検出された電流が、漏洩電流なのかイオン電流なのか判別できない。そこで、ECU92は、第1及び第2時点P1,P2において、イオン電流検出回路部53cによって検出される電流がしきい値を越えた回数をそれぞれカウントする。そして、プレイグニッション及びくすぶりの進行特性を考慮して、それらカウント値の比較に基づき、燃焼室16内でプレイグニッションが発生しているのか、或いはくすぶりが発生しているのかを判定する。また、ECU92は、それらカウント値の大小に基づきプレイグニッション及びくすぶりの進行度合いを判定する。このように燃焼室16内の燃焼状態を判定できるのは、くすぶりが進行するほど第1時点P1でのカウント値が大きくなり、プレイグニッションが進行するほど第2時点P2でのカウント値が大きくなるためである。
【0072】
そして、上記燃焼室16の燃焼状態判定において、暴走性のプレイグニッションが発生している旨の判定がなされた場合、ECU92は、燃料噴射弁50を駆動制御して燃料噴射の燃料カットを実行する。この燃料カットが実行することにより、燃焼室16内に混合ガスが充填されなくなって燃焼による発熱が抑制されるとともに、燃焼室16への吸入空気によって室内が冷却される。通常は燃料カットによる燃焼室16内の冷却によって、暴走性プレイグニッションの発生が的確に抑制されるようになる。
【0073】
ここで、燃料カットがなされる際の第2時点P2における上記カウント値の推移態様を図10に波形pで示す。同図から明らかなように、波形pで示される上記カウント値が大きくなると暴走性プレイグニッション発生の旨の判定がなされ、ECU92は、波形qで示される燃料噴射量増量を上限値まで増量した状態で、波形rで示されるように所定期間だけ燃料カットを実行する。更に、ECU92は上記カウント値を所定値だけ減らす。こうした燃料カットによって暴走性プレイグニッションが抑制できない場合には、上記カウント値が再び大きくなって暴走性プレイグニッション発生の旨の判定がなされ、上記と同様の燃料カット及びカウント値の減算が繰り返されるとともに、燃料噴射量増量が上限値に保持される。また、この二回目以後の暴走性プレイグニッション発生の旨の判定は、初回の暴走性プレイグニッション発生の旨の判定よりも小さなカウント値の増分にてなされるため、同プレイグニッション抑制のための燃料カットが早期に実行される。従って、暴走性プレイグニッションによるエンジン11への悪影響を抑えることができるようになる。
【0074】
次に、上記ECU92を通じて実行される制御態様について図12〜図19を参照して説明する。
図12は、本実施形態における各種制御のメインルーチンを示すフローチャートである。同メインルーチンは、ECU92を通じて所定クランク角(本実施形態では上死点後30°CA)毎の角度割り込みにて実行される。
【0075】
このメインルーチンにおいてECU92は、ステップS101の処理として、クランクセンサ14c及びカムセンサ22bからの検出信号に基づき、これから燃焼が行われる気筒を判別する。続いてECU92は、ステップS102の処理として、プレイグニッション回避のために行われる燃料噴射量増量補正の増量ガード値efprmaxを算出する。即ち、燃料噴射量増量の限界値(本実施形態ではエンジン11の運転状態に基づき求められる基本燃料噴射量の60%の値)から、プレイグニッション回避以外の目的でなされる燃料噴射量の増量補正値を減算した値が、上記増量ガード値efprmaxとして算出される。
【0076】
ECU92は、続くステップS103の処理として、周知の故障診断を行って水温センサ11b、クランクセンサ14c、カムセンサ22b、エアフローメータ34、吸気温センサ35及びスロットルセンサ46aなど、各種センサが異常でないか否か判断する。そして、各種センサが異常である旨の判断がなされるとステップS113(図13)に進み、各種センサが異常でない旨の判断がなされるとステップS104に進むことになる。なお、メインルーチンにおいて、ステップS104,S105,S107の処理は、プレイグニッションの発生が誤検出されるエンジン11の稼動状況であるか否か判断するためのものである。
【0077】
ECU92は、ステップS104の処理として、水温センサ11b及び吸気温センサ35からの検出信号に基づき、エンジン11の冷却水温及び吸気温を求める。そして、上記冷却水温及び吸気温から推定されるイグニッションコイル53aのコイル温度が、プレイグニッションの誤検出を生じさせない値か否かを判断する。即ち、例えば、冷却水温が0℃以上で且つ吸気温が−5℃以上(イグニッションコイル53aのコイル温度が0℃以上)か否かを判断する。そのステップS104でNOと判断されるようなエンジン11の稼動状況では、一次コイル58のコイル温度が低すぎて一次電流が流れ易いことに起因する当該電流の定電流制御が行われるようになる。
【0078】
従って、ステップS104でNOと判断された場合には、上記定電流制御の実行に基づきプレイグニッションの誤検出が生じるエンジン11の稼動状況である旨の判定がなされて、ステップS113(図13)に進むこととなる。また、ステップS104でYESと判断された場合には、プレイグニッションの誤検出が生じるエンジン11の稼動状況ではない旨の判定がなされて、続くステップS105に進む。
【0079】
ECU92は、ステップS105の処理として、エンジン回転数NEがプレイグニッションを誤検出させることのない値か否か、即ち例えばエンジン回転数NEが3000rpm以上か否かを判断する。そのステップS105でNOと判断されるようなエンジン11の稼動状況では、ECU92によって算出される一次電流の通電時間tが長すぎることに起因して当該電流の定電流制御が行われるようになる。
【0080】
従って、ステップS105でNOと判断された場合には、上記定電流制御の実行に基づきプレイグニッションの誤検出が生じるエンジン11の稼動状況である旨の判定がなされて、ステップS113(図13)に進むこととなる。また、ステップS105でYESと判断された場合には、プイグニッションの誤検出が生じるエンジン11の稼動状況ではない旨の判定がなされて、続くステップS106に進む。
【0081】
ECU92は、ステップS106の処理として、イオン電流検出回路部53cに設けられた断線検出部61からの検出信号に基づき、そのイオン電流検出回路部53cに断線が発生しているか否かを判断する。そして、断線が発生している場合にはステップS113(図13)に進み、断線が発生していない場合にはステップS107に進む。
【0082】
ECU92は、ステップS107の処理として、バッテリ電圧Bがプレイグニッションの誤検出を生じさせない値か否か、即ち例えばバッテリ電圧Bが15.1Vよりも小さいか否かを判断する。そのステップS107でNOと判断されるようなエンジン11の稼動状況では、ECU92によって算出される一次電流の通電時間tが過度に短くなることに起因して、イオン電流検出回路部53cがくすぶりによる漏洩電流を誤ってプレイグニッションによるイオン電流として検出するようになる。
【0083】
従って、ステップS107でNOと判断された場合には、上記一次電流の通電時間tが過度に短くなることに基づきプレイグニッションの誤検出が生じるエンジン11の稼動状況である旨の判定がなされて、ステップS113(図13)に進むこととなる。また、ステップS107でYESと判断された場合には、プレイグニッションの誤検出が生じるエンジン11の稼動状況ではない旨の判定がなされて、続くステップS108に進む。
【0084】
ECU92は、ステップS108の処理として、エアフローメータ34からの検出信号に基づきエンジン負荷を求め、そのエンジン負荷及びエンジン回転数NEが図11のマップに斜線で示すプレイグニッション検出領域内にあるか否かを判断する。このマップにおけるプレイグニッション検出領域は、プレイグニッションが発生する可能性のある燃焼室16内の温度領域を表す。なお、上記マップは、予め実験により求められてROM93に記憶されており、ステップS108の処理を実行する際に参照される。
【0085】
そして、ステップS108でNOと判断された場合にはステップS113(図13)に進み、YESと判断された場合にはステップS109(図13)に進む。ECU92は、ステップS109の処理として、プレイグニッション及びくすぶりの発生を判定するとともに、プレイグニッションが検出されたときには燃料噴射量の増量補正を実行する。
【0086】
即ち、ECU92は、図5の波形aで示される一次電流通電中の第1時点P1において、イオン電流検出回路部53cにより検出される電流が所定のしきい値を越えたときくすぶりを検出し、後述するくすぶりカウンタCAを「1」だけ加算する。また、ECU92は、上記一次電流通電中の第2時点P2において、イオン電流検出回路部53cにより検出される電流が所定のしきい値を越えたときプレイグニッションを検出し、プレイグニッションカウンタCBを「1」だけ加算する。
【0087】
こうしたイオン電流検出回路部53cによる電流検出に基づきプレイグニッションが検出されたとき、ECU92は、燃料噴射量を増量補正することで速やかなプレイグニッション回避を図り、その後に当該増量補正の際の燃料増量値efprigを徐々に減少させる。また、イオン電流検出回路部53cによる電流検出に基づきくすぶりの発生が検出されたとき、ECU92は、上記プレイグニッション回避のための燃料噴射量増量補正を中止する。そして、燃焼室16内でくすぶりが発生しているのか、或いはプレイグニッションが発生しているのかは、ECU92が上記カウンタCA,CBの大小を比較することに基づき的確に判定されることとなる。
【0088】
一方、上記ステップS103〜ステップS108(図12)でNOと判断されてステップS113に進んだ場合、ECU92は上記カウンタCA,CBを「0」にリセットする。続いてステップS114に進み、ECU92は、前回の燃料増量値efprigから所定値m1を減算したものを「0」より小さくならないように下限ガードし、その下限ガードした値を今回の燃料増量値efprigとして設定する。こうして今回の燃料増量値efprigを設定した後、ステップS112に進む。
【0089】
従って、ステップS104,S105,S107でNOと判断された場合、即ち一次電流の定電流制御が行われたり、一次電流の通電時間tが過度に短くなるなど、プレイグニッションを誤検出するエンジン11の稼動状況のときにはステップS109に進むことがない。そのため、上記プレイグニッションを誤検出するエンジン11の稼動状況のときには、ステップS109でのプレイグニッション判定が禁止され、同プレイグニッションの誤検出が防止されるようになる。
【0090】
また、ステップS103において各種センサの異常によりNOと判断された場合や、ステップS106において断線検出部61によって検出されるイオン電流検出回路部53cでの断線に基づきNOと判断された場合も、ステップS109に進むことがない。従って、各種センサの異常やイオン電流検出回路部53cでの断線が生じた場合も、ステップS109でのプレイグニッション判定が禁止される。そのため、各種センサの異常に基づくステップS104,S105での判断の誤りや、イオン電流検出回路部53cの断線に基づくステップS109でのプレイグニッションの誤検出が防止される。
【0091】
更に、ステップS108において、燃焼室16内の温度がプレイグニッションの発生に繋がる温度領域内にないことに基づいてNOと判断された場合も、ステップS109に進んで同ステップS109でのプレイグニッション判定が行われることがない。そのため、プレイグニッションが発生するはずのない温度領域に燃焼室16内の温度がある場合には、無駄なプレイグニッション判定が行われなくなって、そのプレイグニッション判定にかかるECU92の制御負担が軽減するようになる。
【0092】
さて、ステップS109の処理が実行された後、ECU92は、続くステップS110の処理として、上記くすぶりカウンタCA及びプレイグニッションカウンタCBのカウント値に基づき、くすぶり及びプレイグニッションの進行度合いを判定する。そして、プレイグニッションが進行して暴走性のものとなっている旨の判定がなされた場合、ECU92は、燃料噴射弁50による燃料噴射の燃料カットを所定期間だけ実行し、上記暴走性プレイグニッションを抑制する。
【0093】
続いてステップS111に進み、ECU92は、ガード値egdの算出処理を実行する。このガード値egdは、上記ステップS109の処理において、プレイグニッション回避のために増量補正される燃料噴射量の増量値efprigが徐々に減少する際、その燃料増量値efprigを下限ガードするためのものである。こうしてガード値egdを算出した後、ステップS112に進む。
【0094】
ECU92は、ステップS112の処理として、エンジン11の点火時期遅角補正を実行する。即ち、上記プレイグニッション検出に基づき燃料噴射量が増量補正された後、その燃料増量値efprigが徐々に減少する際、ECU92は、当該燃料増量値efprigの減少に伴ってエンジン11の点火時期を徐々に遅角補正する。このように燃料噴射量の増量補正を行った後、燃料増量値efprigの減少に伴い点火時期を徐々に遅角させることで、プレイグニッションを回避しつつ燃費の悪化を防止し、しかも急激な点火時期遅角に起因したエンジン11の急激なトルク低下をも防止可能となる。
【0095】
次に、メインルーチンにおけるステップS109で実行される処理について、図14及び図15を参照して詳しく説明する。図14及び図15は、燃焼室16内における燃焼状態を判別し、プレイグニッション発生時には燃料噴射量を増量補正するための処理ルーチンを示すフローチャートである。同処理ルーチンは、上記メインルーチンにおいてステップS109に進んだとき、ECU92を通じて実行される。
【0096】
この処理ルーチンにおいてECU92は、ステップS201の処理として、後述するステップS204で行われるプレイグニッション回避のための燃料噴射量増量補正の燃料増量値efprigを設定し直す。即ち、前回の燃料増量値efprigから所定値m2を減算した値を、後に詳述するガード値egdで下限ガードして今回の燃料増量値efprigとして設定し直す。続いてステップS202に進み、ECU92は、図5の波形aの第2時点P2において、イオン電流検出回路53cによって検出される電流が所定のしきい値を越えているか否か基づき、プレイグニッションが検出されたか否かを判断する。そして、上記電流がしきい値を越えている場合にはプレイグニッションが検出されたと判断してステップS203に進み、上記電流がしきい値を越えていない場合にはプレイグニッションが検出されていないと判断してステップS205に進む。
【0097】
ECU92は、ステップS203の処理で、プレイグニッション検出フラグxprigとして「1」をRAM95にセットした後、ステップS204に進む。ECU92は、ステップS204の処理として、プレイグニッション検出フラグxprigが「1」であることに基づき、プレイグニッション検出回数を表すプレイグニッションカウンタCBに「1」を加算するとともに燃料噴射量の増量補正を行う。この燃料噴射量の増量補正は、燃料増量値efprigに所定値m3を加算したものを、新たな燃料増量値efprigとして設定することによって行われる。なお、その所定値m3は、上記ステップS201における所定値m2よりも大きく、例えば所定値m2の20倍の値とされる。また、ECU92は、後述する遅角ディレイカウンタecprdly及び遅角カウンタecprstpを「0」にリセットする。即ち、これら各カウンタecprdly,ecprstpは、プレイグニッションが検出される毎に「0」にリセットされるようになる。
【0098】
このようなステップS204の処理を実行することにより、プレイグニッション検出時には燃料噴射量が増量補正されて速やかなプレイグニッション回避が図られる。そして、燃料噴射量増量補正における燃料増量値efprigは、その後に上記ステップS201の処理によって段階的に減少されることとなる。そのため、図7(c)に示すように、例えばプレイグニッション検出に基づきプレイグニッションカウンタCBがカウントアップされていくと、燃料増量値efprigは同カウンタCBのカウントアップ後に徐々に減少する。
【0099】
ECU92は、続くステップS205の処理として、燃焼室16内が現在くすぶり状態と判定されているか否か、即ち後述するくすぶり状態フラグxprexが「1」であるか否かを判断する。そして、ステップS205において「xprex=1」であると判断された場合にはステップS206に進み、ECU92は、くすぶり復帰準備フラグxksretとして「1」をRAM95にセットする。また、ステップS205において「xprex=1」でないと判断された場合にはステップS207に進み、ECU92は、くすぶり復帰準備フラグxksretを「0」にリセットする。
【0100】
ステップS206又はステップS207の処理を経た後にステップS208(図15)に進み、ECU92は、図5の波形aにおける第1時点P1において、イオン電流検出回路53cによって検出される電流が所定のしきい値を越えているか否か基づき、くすぶりが検出されたか否かを判断する。そして、上記電流がしきい値を越えている場合にはくすぶりが検出されたと判断し、順次ステップS209,S210へと進む。ECU92は、ステップS209の処理で、くすぶり検出フラグxkusとして「1」をRAM95にセットする。また、ECU92は、ステップS210の処理として、「xkus=1」であることに基づきくすぶり検出回数を表すくすぶりカウンタCAに「1」を加算する。
【0101】
一方、上記ステップS208において、イオン電流検出回路53cによって検出される電流が所定のしきい値を越えていない場合にはくすぶりが検出されていないと判断し、ステップS211に進む。このステップS211及び続くステップS212の処理は、くすぶりが解消した直後でのプレイグニッション発生を検し、そのプレイグニッションが検出されたときに的確なプレイグニッション回避を実行するためのものである。また、ステップS213以降の処理は、燃焼室16の燃焼状態、即ちくすぶりが発生しているのか、或いはプレイグニッションが発生しているのかを的確に判定し、その判定に応じた処理を実行するためのものである。
【0102】
ここでは、まずステップS213以降の処理について説明した後、ステップS211及びステップS212の処理について説明することとする。
ECU92は、ステップS213の処理として、くすぶりカウンタCAのカウント値がプレイグニッションカウンタCBのカウント値以上で、且つ、それらカウント値が「0」でない(「CA≠0,CB≠0」)か否かを判断する。そして、ステップS213でYESと判断された場合、即ち「CA≧CB且つCA,CB≠0」である場合には、くすぶりが発生している旨の判定、即ちくすぶりが進行した燃焼状態である旨の判定がなされる。また、ステップS213でNOと判断された場合、即ち「CA<CB」である場合には、プレイグニッションが発生している旨の判定がなされる。このようにプレイグニッション発生及びくすぶり発生の旨の判定を行うことができるのは、
・プレイグニッションでは、その初期段階において一次電流の通電終期にイオン電流が発生し、プレイグニッションが進行するほど当該イオン電流の発生開始時期が一次電流通電初期へと早められる。
【0103】
・くすぶりでは、その初期段階において一次電流の通電初期に漏洩電流が発生し、くすぶりが進行するほど当該漏洩電流の発生終了時期が一次電流通電終期へと遅らされる。
等々の理由によるものである。
【0104】
そして、ステップS213でYESと判断され、くすぶり発生の旨の判定がなされた場合にはステップS214に進む。ECU92は、ステップS214の処理として、前記くすぶり状態フラグxprexとして「1」をRAM95にセットする。また、ステップS213でNOと判断された場合にはステップS215に進む。ECU92は、ステップS215の処理として、くすぶり状態フラグxprexを「0」にリセットする。
【0105】
ところで、上記ステップS213の判断処理においては、「CA,CB≠0」であるならば「CA=CB」であってもYESと判断され、くすぶり発生の旨の判定がなされる。これは一般に、燃焼室16内での混合ガスの燃焼状態によっては、点火プラグ51の電極56bに急激にカーボンが付着することがあり、この場合にくすぶりの進行した状態が突発的に生じて初回のくすぶり発生時にCA,CBが両方ともカウントアップされるようになるためである。即ち、このような状態のときでも、上記ステップS213の判定処理によって、的確にくすぶり発生の旨の判定を行えるようにするためである。
【0106】
さて、続いて上記ステップS210でくすぶりが検出されていないと判断され、ステップS211に進んだ場合について説明する。ECU92は、ステップS211の処理として、プレイグニッション検出フラグxprigが「1」で、且つくすぶり復帰準備フラグxksretが「1」であるか否かを判断する。このステップS211では、くすぶりが解消した直後にプレイグニッションが発生したか否かを判断している。そして、NOと判断された場合にはステップS213に進み、YESと判断された場合にはステップS212に進む。ECU92は、ステップ212の処理として、くすぶり状態フラグxprexを「0」にリセットするとともに、くすぶりカウンタCA及びプレイグニッションカウンタCBを「0」にリセットする。
【0107】
このようにカウンタCA,CBを「0」にリセットするのは、くすぶり解消直後におけるプレイグニッション発生の旨の判定を的確に行うためである。即ち、プレイグニッションはくすぶりが解消した直後にも発生することがある。また、くすぶり発生の旨の判定がなされたとき、くすぶりカウンタCAがプレイグニッションカウンタCBに比べて極めて大きい場合もある。この場合、くすぶり発生の旨の判定直後にプレイグニッションが検出されてカウンタCBがカウントアップされても、すぐに「CA<CB」となることがないためにステップS214に進み、プレイグニッション発生の旨の判定が行われない。しかし、本実施形態では、くすぶり解消直後のプレイグニッションを検出した場合には、上記のようにカウンタCA,CBを「0」リセットするため、そのプレイグニッション発生の旨の判定が遅れるのを防止することができるようになる。
【0108】
以上の各ステップの処理が実行された後、当該処理ルーチンから図12及び図13に示すメインルーチンに戻り、ECU92はメインルーチンにおけるステップS110(図13)の処理を実行することとなる。
【0109】
次に、メインルーチンにおけるステップS110で実行される処理について、図16及び図17を参照して詳しく説明する。図16及び図17は、暴走性プレイグニッションを判定・抑制するための処理ルーチンを示すフローチャートである。同処理ルーチンは、上記メインルーチンにおいてステップS110に進んだとき、ECU92を通じて実行される。
【0110】
この処理ルーチンにおいて、ステップS301〜S305の処理は暴走性プレイグニッションの発生を判定するためのものであって、ステップS306〜S308の処理はくすぶりの進行を判定するためのものである。
【0111】
ECU92は、ステップS301の処理として、プレイグニッションカウンタCBが例えば「10」以上で、且つくすぶりカウンタCAが例えば「9」であるか否かを判断する。更に、ECU92は、プレイグニッションカウンタCBが例えば「10」以上で、且つ後述する暴走判定フラグxpbが「1」であるか否かを判断する。そして、上記二つの判断の内のいずれか一方でYESと判断された場合には、暴走性プレイグニッションが発生している旨の判定がなされてステップS303に進む。
【0112】
また、上記二つの判断の内のいずれか一方でNOと判断された場合にはステップS302に進み、ECU92は、プレイグニッションカウンタCBが例えば「50」以上で、且つくすぶり状態フラグxprexが「0」であるか否かを判断する。そして、ステップS302でYESと判断された場合には、暴走性プレイグニッションが発生している旨の判定がなされてステップS303に進む。
【0113】
このように暴走性プレイグニッションが発生している旨の判定がなされ、ステップS303に進む状況としては、
・プレイグニッションに基づくイオン電流が、一次電流通電中の第1及び第2時点P1,P2(図5)にてそれぞれ所定回数以上検出され、そのイオン電流の発生開始時期が早くなっていることが分かるとき。
【0114】
・プレイグニッションに基づくイオン電流が、一次電流通電中の第2時点P2(図5)にて検出される回数が多くなり、そのイオン電流の発生度合いが高くなっていることが分かるとき。
等々の状況があげられる。
【0115】
こうした状況が生じることによって、ステップS301,S302からステップS303に進むこととなる。そして、ECU92は、ステップS303の処理で、暴走判定フラグxpbとして「1」をRAM95にセットする。また、ECU92は、くすぶりカウンタCA及び後述する燃料カットカウンタCf/cを「0」にリセットするとともに、プレイグニッションカウンタCBを例えば「5」だけ減算する。そのため、二回目以後の暴走性プレイグニッション発生の旨の判定は、初回の初回の暴走性プレイグニッション発生の旨の判定よりも小さなカウント値の増分にてなされるため、初回の暴走性プレイグニッション発生の旨の判定よりも早期に行われることとなる。なお、燃料カットカウンタCf/cは、メインルーチンにおけるステップ112(図13)の点火時期遅角処理にてカウントアップされる。
【0116】
一方、上記ステップ302でNOと判断された場合には、暴走性プレイグニッションが発生していない旨の判定がなされ、ステップS304に進むこととなる。ECU92は、ステップS304の処理として、燃料カットカウンタCf/cが例えば「100」以上か否か判断する。そして、「Cf/c≧100」でない場合にはステップS306に進み、「Cf/c≧100」である場合にはステップS305に進む。ECU92は、ステップS305の処理として、暴走判定フラグxpbを「0」にリセットする。
【0117】
本実施形態では、この暴走判定フラグxpbが「1」であるときには、後述するステップS312の燃料カット処理で、暴走性プレイグニッション抑制のためのエンジン11の燃料カットが実行される。そして、引き続き暴走性プレイグニッション発生の旨の判定がなされる場合において、その暴走性プレイニッションを抑制するための燃料カットは、初回の暴走性プレイグニッションを抑制するためのものに比べ、二回目以後の暴走性プレイグニッションを抑制するためのもののほうが早期に行われる。
【0118】
さて、上記各処理を実行した後にステップS306に進むと、ECU92は、くすぶりカウンタCAが例えば「50」以上で、且つプレイグニッションカウンタCBが例えば「49」であるか否かを判断する。更に、ECU92は、くすぶりカウンタCAが例えば「50」以上で、且つ後述するくすぶり進行フラグxkbが「1」であるか否かを判断する。
【0119】
そして、上記二つの判断の内のいずれか一方でYESと判断された場合には、くすぶりが進行している旨の判定、即ちくすぶりが進行している燃焼状態である旨の判定がなされてステップS307に進む。このようにくすぶりが進行している旨の判定がなされる状況としては、くすぶりに基づく漏洩電流が、一次電流通電中の第1及び第2時点P1,P2(図5)にてそれぞれ所定回数以上検出され、その漏洩電流の発生終了時期が遅くなっていることが分かるときなどがあげられる。こうしてステップS307に進むと、ECU92は、くすぶり進行フラグxkbとして「1」をRAM95にセットする。更に、ECU92は、プレイグニッション回避のための燃料増量補正が行われているならば、燃料増量値efprigを「0」にすることで、上記燃料増量補正を中止してくすぶりの進行を抑制する。
【0120】
一方、上記ステップS306における二つの判断の内のいずれか一方でNOと判断された場合には、くすぶりが進行していない旨の判定、即ちくすぶりが進行していない燃焼状態である旨の判定がなされてステップS308に進む。ECU92は、ステップS308の処理として、くすぶり進行フラグxkbを「0」にリセットする。上記ステップ307,S308の処理を経た後、順次ステップS309〜S311(図17)に進む。
【0121】
これらステップS309〜S311の処理は、後述するステップS312で燃料カットが行われた後、燃料噴射が再開されたときの燃料増量値efprigを決定するためのものである。そして、ECU92は、ステップS309の処理として、暴走判定フラグxpbが「1」であるか否か、即ち暴走性プレイグニッション発生の旨の判定がなされているか否かを判断する。
【0122】
そのステップS309においてNOと判断された場合には、ステップS311に進む。ECU92は、ステップS311の処理として、メインルーチンのステップS102(図12)にて算出された増量ガード値efprmaxで、現在の燃料増量値efprigを上限ガードする。また、ステップS309においてYESと判断された場合には、ステップS310に進む。ECU92は、ステップS310の処理として、上記増量ガード値efprmaxを新たな燃料増量値efprigとして設定し、その燃料増量値efprigを上限値へと大きくする。
【0123】
上記ステップS310,S311を経てステップS312に進むと、ECU92は、燃料カット処理を実行することとなる。この燃料カット処理を実行するECU92は、暴走判定フラグxpbが「1」である場合にはECU92が燃料噴射弁50による燃料噴射の燃料カットを実行し、暴走判定フラグxpb「0」である場合には上記燃料カットを実行しない。
【0124】
従って、図10に波形pで示すように、暴走性プレイグニション発生に基づきプレイグニッションカウンタCBが大きくなると、暴走プレイグニッション発生の旨の判定がなされて暴走判定フラグxpbが「1」にセットされる。そして、「xpb=1」であることに基づき、図10に波形q,rで示すように燃料増量値efprigが上限値に設定された状態で燃料カットが実行され、その燃料カットにより暴走性プレイグニッションが的確に抑制される。なお、このときにはステップS303(図16)の処理により、プレイグニッションカウンタCBのカウント値が「5」だけ減算されて波形pで示すように一旦小さくなる。
【0125】
そして、燃料カットは、ステップS302(図16)における燃料カットカウンタCf/cが「100」以上になるまで実行される。これは燃料カットカウンタCf/cが「100」以上になると暴走判定フラグxpbが「0」にリセットされ、「xpb=0」であることに基づき燃料カットが終了されるためである。こうして燃料カットが終了すると、上限値に設定された燃料増量値efprigに基づき増量補正された状態でエンジン11の燃料噴射が再開される。
【0126】
一般に、燃料カット中には空気のみが燃焼室16に送り込まれるため、吸気ポート17、吸気及び排気バルブ19,20の裏側に付着した燃料等も蒸発してしまう。そのため、燃料カット実行後に燃料噴射が再開されたとき、その燃料噴射量がプレイグニッション回避のための増量補正が行われた状態にあると、その燃料増量分が吸気ポート17や吸気及び排気バルブ19,20の裏側等に付着し、結果的に燃焼室内の燃料量が燃焼に適した値となってノッキングが発生し易くなる。しかし、本実施形態では、燃料カット実行後に燃料噴射を再開したとき、その燃料噴射量が上限値へと増量補正された状態になっているため、上記ノッキングの発生が抑制されることとなる。
【0127】
以上の各ステップの処理が実行された後、当該処理ルーチンから図12及び図13に示すメインルーチンに戻り、ECU92はメインルーチンにおけるステップS111(図13)の処理を実行することとなる。
【0128】
次に、メインルーチンにおけるステップS111で実行される処理について、図18を参照して詳しく説明する。図18は、前記ステップS102(図12)の処理において、減少する燃料増量値efprigを下限ガードする際に用いられるガード値egdを算出するための処理ルーチンを示すフローチャートである。同処理ルーチンは、上記メインルーチンにおいてステップS111に進んだとき、ECU92を通じて実行される。
【0129】
この処理ルーチンにおいてECU92は、ステップS401の処理として、くすぶり状態フラグxprexが「0」であるか否かを判断する。そして、「xprex=0」でない場合、即ちくすぶり中である場合にはガード値egdを「0」に設定する。こうしてガード値egdを「0」に設定することで、燃料増量値efprigが比較的大きい値で下限ガードされることに基づきくすぶりが進行してしまうのを抑制することができるようになる。
【0130】
また、ステップS401において、「xprex=0」である場合、即ちくすぶり中でない場合には、プレイグニッションカウンタCBの最大カウント値に所定値m4を乗算したものと前回のガード値egdとの大きい方を、今回のガード値egdとして設定する。こうして設定されたガード値egdに基づき、プレイグニッション回避のための燃料噴射量増量後に減少する燃料増量値efprigの下限ガードが行われる。
【0131】
従って、燃料噴射量は、図7(a)に示すように、プレイグニッション検出時に一旦増量補正された後、前記燃料増量値efprigがガード値egdで下限ガードされるまで段階的に減少するようになる。そして、プレイグニッションカウンタCBの最大値が大きくなるほどガード値egdが大きい値に設定
されるため、カウンタCBの最大値が大きくなるほど上記下限ガードが行われたときの燃料噴射量の値は大きくなる。
【0132】
そして、メイルーチンにおけるステップS112(図13)の点火時期遅角処理では、上記のように徐々に減少する燃料増量値efprigに応じてエンジン11の点火時期が遅角され、その点火時期遅角量は上記燃料増量値efprigに応じて図7(b)に実線で示すように徐々に大きくなる。一般に、エンジン11においては、燃料噴射量が一定である条件のもとで点火時期が遅角補正されると、その遅角量が大きくなるほど排気温度が高くなる。これは点火時期が遅角補正されると、燃焼室16内での混合ガスの燃焼時期が全体的に遅角側へ移行され、同混合ガスが高温のままで排気ガスとして排出されるためである。
【0133】
従って、上記ステップS402で算出されるガード値egdが小さいほど、e燃料増量値fprigの下限ガード時における燃料噴射量が小さくなるため、その燃料噴射量に応じて決定される点火時期遅角量が大きくなって、結果的にエンジン11の排気温度が高くなる。本実施形態では、プレイグニッション回避のための燃料噴射量増量補正及び点火時期遅角補正が行われたとき、エンジン11の排気温度が図9のグラフにおいて実線Zで示される等排気温線よりも右側に位置することのない、ほぼ実線Z上の値となるように、上記ステップS402での所定値m4が設定されている。
【0134】
以上の各ステップの処理が実行された後、当該処理ルーチンから図12及び図13に示すメインルーチンに戻り、ECU92はメインルーチンにおけるステップS112(図13)の処理を実行することとなる。
【0135】
次に、メインルーチンにおけるステップS112で実行される処理について、図19を参照して詳しく説明する。図19は、プレイグニッション検出時に点火時期遅角処理を行うための処理ルーチンを示すフローチャートである。同処理ルーチンは、上記メインルーチンにおいてステップS112に進んだとき、ECU92を通じて実行される。
【0136】
この処理ルーチンにおいてECU92は、ステップS501の処理として、図8に示すマップを参照して燃料増量値efprigに基づき点火時期の目標遅角量t−aprgを算出する。そのマップは予め実験によって求められてROM93に記憶されている。そして、燃料増量値efprigが大きいほど、算出される目標量t−aprgも大きい値となる。従って、プレイグニッション検出時に燃料噴射量が増量された後に燃料増量値efprigが徐々に小さくなるとき、目標遅角量t−aprgは図7(b)に二点鎖線で示す態様で推移する。
【0137】
ECU92は、続くステップS502の処理として、プレイグニッションカウンタCBが「0」であるか否か、即ちプレイグニッションが検出されているか否かを判断する。そして、プレイグニッションが検出されておらず「CB=0」である場合にはステップS510に進み、プレイグニッションが検出されており「CB=0」でない場合にはステップS503に進む。続くステップS503〜507の処理は、プレイグニッション回避のための点火時期遅角補正を実行するためのものである。
【0138】
ECU92は、ステップS503の処理として、遅角ディレイカウンタecprdlyに「1」を加算する。この遅角ディレイカウンタecprdlyのカウント値は、ステップS204(図14)の処理によってプレイグニッション回避のために燃料噴射量が増量されたときからの経過時間に対応したものとなる。続いてステップS504に進み、ECU92は、遅角ディレイカウンタecprdlyが例えば「50」以上であるか否かを判断する。そして、「ecprdly≧50」である場合にはステップS505に進み、「ecprdly≧50」でない場合にはステップS506に進む。
【0139】
ECU92は、ステップS505の処理として、遅角カウンタecprstpに「1」を加算する。この遅角カウンタecprstpのカウント値は、段階的に点火時期遅角補正が行われる際における当該補正の時間間隔に対応したものとなる。続いてステップS506に進み、ECU92は、遅角カウンタecprstpが例えば「13」以上であるか否かを判断する。そして、「ecprstp≧13」である場合にはステップS507に進み、「遅角カウンタecprstp」でない場合にはステップS508に進む。
【0140】
ECU92は、ステップS507の処理として、現在の点火時期遅角量t−aprを更に例えば0.5°CAだけ更に遅角側へ増加させるとともに、遅角カウンタecprstpを「0」にリセットする。こうしたステップS507の処理での点火時期遅角補正は、
(1)プレイグニッション検出時に燃料噴射量が増量補正されたときから「ecprdly≧50」になるまでの時間が経過すること。
【0141】
(2)上記の条件を満たしたとき或いは「ecprstp=0」へとリセットされたときから「ecprstp≧13」になるまでの時間が経過すること。
という二つの条件が満たされたときに実行される。
【0142】
そして、(1)及び(2)の条件を満たすことによって、図7(a)及び(b)に示すように、プレイグニッション検出時の燃料噴射量増量補正が行われた後、点火時期遅角補正が実行されるのに所定の時間が経過するようになる。また、一回の点火時期遅角補正が実行されてから次の点火時期遅角補正が実行されるまでに所定の時間間隔が必要になるため、図7(b)に実線で示すように点火時期遅角補正が段階的に行われるようになる。このように点火時期が徐々に遅角補正されることによって、点火時期遅角補正に起因するエンジン11の急激な出力トルク低下が生じることがなく、点火時期遅角補正時のエンジン11の運転を安定維持することが可能になる。
【0143】
上記燃料噴射量増量補正の実行時から点火時期遅角補正の実行までに経過する時間の調整は、上記ステップS504における「50」という値を適宜変更することによって行われ、その調整によって点火時期遅角補正の開始時期が変更される。このように点火時期遅角補正の開始時期を可変とすることで、一回のプレイグニッション発生の際に行われる点火時期の総遅角量を好適に調整することができるようになる。即ち、上記総遅角量は、点火時期遅角補正開始時期を早めることで多くされ、点火時期遅角補正開始時期を遅らせることで少なくされる。
【0144】
また、段階的に行われる点火時期遅角補正の時間間隔の調整は、ステップS506における「13」という値を適宜変更することによって行われる。このように点火時期遅角補正の時間間隔を調整することで、全体的な点火時期遅角補正の速さを変更して、その速さを好適に調整することができるようになる。即ち、上記全体的な点火時期遅角補正は、一つの点火時期遅角補正毎の時間間隔を小さくとることで速くされ、その時間間隔を大きくとることで遅くされる。
【0145】
なお、メインルーチンにおけるステップS103〜S108(図12)の判断処理でNOと判断され、続くステップS113(図13)でプレイグニッションカウンタCBが「0」にリセットされた直後で、しかもプレイグニッションが発生していない場合等では、上記ステップS502で「CB=0」であると判断されるようになる。このような状況とき、ステップS502からステップS510へと進み、ECU92は、同ステップS502の処理として、上記遅角ディレイカウンタecprldy及び遅角カウンタecprstpを「0」にリセットする。そして、その後にステップS508に進む。
【0146】
さて、上記ステップS507若しくはステップS510からステップS508に進むと、ECU92は、そのステップS508の処理として、点火時期遅角量t−aprを上記ステップS501で算出した目標遅角量t−aprgで上限ガードする。その結果、図7(b)に実線で示す点火時期遅角量t−aprが二点鎖線で示す目標遅角量t−aprgを越えて大きくなることはなく、最終的には点火時期遅角量t−aprと目標遅角量t−aprgとが一致する。
【0147】
その目標遅角量t−aprgは、前記ガード値egdによって下限ガードされた燃料増量値efprigに基づき算出されるため、点火時期及び燃料噴射量等のエンジン11の運転状態が最終的に図9の位置γへ向けて収束する。即ち、最終的に点火時期及び燃料噴射量は、図中実線Zで示される等排気温線上にほぼ位置した状態となり、プレイグニッション回避の実行によりエンジン11の排気温度が触媒33a等に故障を生じさせるほど高くなるのを防止することができるようになる。しかも、レイグニッション回避に伴う燃料悪化と出力トルク低下との両方を極力抑えることができるようになる。
【0148】
ECU92は、続くステップS509の処理として、燃料カットカウンタCf/cに「1」を加算するとともに、くすぶり検出フラグxkus及びプレイグニッション検出フラグxprigを「0」にリセットする。
【0149】
そして、こうした各ステップの処理が実行された後、当該処理ルーチンから図12及び図13に示すメインルーチンに戻る。
以上詳述した処理が行われる本実施形態によれば、以下に示す効果が得られるようになる。
【0150】
・一般に、くすぶりによる漏洩電流は点火指令信号(図5の波形a)の立ち上り直後(一次電流通電初期)に発生し、プレイグニッションによるイオン電流は点火指令信号の立ち下がり直前に発生する。従って、故障等によってバッテリ電圧が過度に高くなる(本実施形態では15.1V以上)など、一次電流の通電時間tが過度に短くなるようなエンジン11の稼動状況のとき、点火指令信号の立ち上りと立ち下がりとが接近し、漏洩電流をイオン電流として誤検出し易くなる。このようにバッテリ電圧が過度に高いエンジン11の稼動状況のときには、メインルーチンにおけるステップS107(図12)の判断処理でNOと判断され、プレイグニッション判定処理が行われるステップS109(図13)へは進まなくなる。そのため、故障等によってバッテリ電圧が過度に高くなって、一次電流が過度に短くなるようなエンジン11の稼動状況のとき、くすぶりによる漏洩電流をプレイグニッションによるイオン電流として誤検出するのを防止することができる。
【0151】
・また、図5の波形bで示されるような一次電流の定電流制御では、一次電流が徐々に立ち上がるときに限界値を越えないよう一定値へと制御されるが、その際に一次電流に増減方向への変動が生じる。こうして一次電流が変動すると、図5の波形cで示すようにイオン電流検出回路部53cが検出する電流にも変動が生じ、その電流変動を誤ってイオン電流として検出し易くなる。このように定電流制御が行われるようなエンジン11の稼動状況としては、イグニッションコイル53aのコイル温度が低く一次電流が流れ易い場合や、エンジン回転数NEが低くて一次電流の通電時間tが長くなるような場合がある。そして、コイル温度が過度に低い(本実施形態では0℃より低いとき)ときや、エンジン回転数NEが過度に低い(本実施形態では3000rpmより低いとき)ときには、メインルーチンにおけるステップS104,S105(図12)の判断処理でNOと判断される。その結果、プレイグニッション判定処理が行われるステップS109(図13)へは進まなくなる。そのため、イグニッションコイル53aのコイル温度やエンジン回転数NEが過度に低いなど、定電流制御が行われるエンジン11の稼動状況のとき、イオン電流検出回路部53cによって検出される電流変動をイオン電流として誤検出するのを防止することができる。
【0152】
・上記ステップS104,ステップS105の処理を実行する前に、ステップS103(図12)の処理として各種センサが異常でないか否かを判断する。そして、例えばイグニッションコイル53aのコイル温度を求めるための水温センサ11b及び吸気温センサ35や、エンジン回転数NEを求めるためのクランクセンサ14cに異常が生じている場合には、ステップS103でNOと判断され、上記ステップS104,S105へは進まなくなる。従って、それらセンサ11b,14c,35の異常によるステップS104,S105での判断の誤りや、その誤判断に起因するステップS109(図13)でのプレイグニッションの誤検出を防止することができる。
【0153】
・そのステップS109の処理でのプレイグニッション判定を実行する前に、ステップS106の処理でイオン電流検出回路部53cに設けられた断線検出部61からの検出信号に基づき、そのイオン電流検出回路部53cに断線が発生しているか否かが判断される。そして、断線が発生している場合にはステップS107でNOと判断され、上記ステップS109へは進まなくなる。従って、イオン電流検出回路部53cでの断線等の故障によって、ステップS109の処理でプレイグニッションの誤検出が生じるのを防止することができる。
【0154】
・また、本実施形態では、メインルーチンにおけるステップS108の処理として、エンジン負荷及びエンジン回転数NEが図11のマップに斜線で示すようなプレイグニッションが発生する可能性のある燃焼室16内の温度領域内の値であるか否かが判断される。そして、ステップS108でYESと判断されたときのみ、ステップS109(図13)に進んでプレイグニッション判定が行われる。従って、プレイグニッションが発生するはずのないエンジン負荷領域及びエンジン回転領域にあるとき、無駄なプレイグニッション判定を実行することがなくなり、プレイグニッション判定にかかるECU92の制御負担を軽減することができる。
【0155】
・本実施形態では、くすぶりは、一次電流通初期の第1時点P1(図5の波形a)において、イオン電流検出回路部53cにより検出される電流が所定のしきい値を越えることに基づき検出される。また、プレイグニッションは、一次電流の通電終期の第2時点P2(図5の波形a)において、イオン電流53cにより検出される電流が所定のしきい値を越えていることに基づき検出される。一般に、図5の波形dに一点鎖線で示すように、くすぶりによる漏洩電流は、一次電流通電初期に発生するとともにくすぶりの進行に伴い発生終了時期が遅れるようになる。また、プレイグニッションによるイオン電流は、一次電流通電終期に発生するとともにプレイグニッションの進行に伴い発生開始時期が早まるようになる。従って、くすぶりが進行して漏洩電流の発生時期が第2時点P2にさしかかったり、プレイグニッションが進行してイオン電流の発生時期が第1時点P1にさしかかったりすると、漏洩電流とイオン電流とを間違って検出してしまうことがある。そして、その間違った電流検出によって、くすぶりをプレイグニッションとして誤検出したり、プレイグニッションをくすぶりとして誤検出したりすることがある。しかし、本実施形態では、第1時点P1でイオン電流検出回路部53cにより検出された電流がしきい値を越えたとき、くすぶりカウンタCAをカウントアップし、第2時点P2でイオン電流検出回路部53cにより検出された電流がしきい値を越えたとき、くすぶりカウンタCBをカウントアップするようにした。そして、図14及び図15に示す処理ルーチンのステップS213(図15)の判断処理において、「CA≧CB」で且つ「CA,CB≠0」のときにくすぶり発生の旨の判定、即ちくすぶりが進行した燃焼状態である旨の判定をした。また、上記ステップS213の判断処理において、「CA<CB」であるのときには、プレイグニッション発生の旨の判定をするようにした。従って、くすぶり及びプレイグニッションが進行したときでも、くすぶりが発生しているか、或いはプレイグニッションが発生しているのかを的確に判定することができる。
【0156】
・くすぶりが進行してゆくと、上記「CA≧CB」で且つ「CA,CB≠0」という条件を維持した状態で、カウンタCA,CBが大きくなってゆく。また、プレイグニッションが進行してゆくと、上記「CA<CB」という条件を維持した状態で、カウンタCA,CBが大きくなってゆく。従って、図16及び図17に示す処理ルーチンのステップS301,S302(図16)の処理において、カウンタCA,CBの大きさに基づきプレイグニッションが進行しているか否か、即ち暴走性プレイグニッションが発生しているか否かの判定を的確に行うことができるようになる。更に、ステップS306(図16)の処理において、カウンタCA,CBの大きさに基づきくすぶりが進行しているか否か、即ちくすぶりが進行している燃焼状態か否かを的確に判定することができる。
【0157】
・本実施形態では、上記ステップS213(図15)の判断処理において、「CA,CB≠0」であるならば「CA=CB」であってもYESと判断され、くすぶり発生の旨の判定が行われるようにした。これは一般に、燃焼室16内での混合ガスの燃焼状態によっては、点火プラグ51の電極56bに急激にカーボンが付着することがあり、この場合にくすぶりの進行した状態が突発的に生じて初回のくすぶり発生時にCA,CBが両方ともカウントアップされるようになるためである。即ち、このような状態のときでも、「CA=CB」且つ「CA,CB≠0」という条件が満たされ、上記ステップS213の判定処理によって的確にくすぶり発生の旨の判定を行えるようにするためである。従って、本実施形態では、上記のようにくすぶりの進行した状態が突発的に生じたとしても、そのくすぶり発生の旨の判定を的確に行うことができる。
【0158】
・本実施形態では、ステップS211(図15)の判断処理によって、くすぶりが解消した直後にプレイグニッションが発生したか否かの判断を行い、同ステップS211でYESと判断された場合には、続くステップS212の処理でカウンタCA,CBを「0」にリセットするようにした。このようにカウンタCA,CBを「0」にリセットするのは、くすぶり解消直後におけるプレイグニッション発生の旨の判定を的確に行うためである。即ち、プレイグニッションはくすぶりが解消した直後にも発生することがある。また、くすぶり発生の旨の判定がなされたとき、くすぶりカウンタCAがプレイグニッションカウンタCBに比べて極めて大きい場合もある。この場合、くすぶり発生の旨の判定直後にプレイグニッションが検出されてカウンタCBがカウントアップされても、すぐに「CA<CB」となることがないためにプレイグニッション発生の旨の判定が行われない。しかし、本実施形態では、くすぶり解消直後のプレイグニッション発生を検出した場合には、上記のようにカウンタCA,CBを「0」リセットするため、そのプレイグニッション発生の旨の判定が遅れるのを防止することができるようになる。
【0159】
・本実施形態では、プレイグニッションが検出されるとステップS204(図14)の処理によって燃料噴射量が増量補正され、そのプレイグニッションが速やかに回避される。その後、ステップS201(図14)の処理によって燃料増量値efprigが徐々に減少される。更に、燃料増量値efprigの減少に伴って、図19に示す処理ルーチンのステップS507の処理によって、点火時期の遅角量が徐々に大きくなるよう点火時期遅角補正が実行される。こうした燃料噴射量補正及び点火時期補正により、燃料噴射量増量によるプレイグニッション回避が点火時期遅角によるプレイグニッション回避に徐々に置き換えられる。そのため、燃料噴射量増量による速やかなプレイグニッション回避と、燃費を悪化させることのない点火時期遅角によるプレイグニッション回避とを両立させることができる。しかも、プレイグニッション回避のための点火時期遅角補正は徐々に行われるため、点火時期遅角補正に伴うエンジン11の出力トルクの急激な低下を抑え、エンジン11の運転を安定維持することができる。
【0160】
・また、上記のように徐々に減少する燃料増量値efprigは、図18に示す処理ルーチンのステップS402の処理によって算出されたガード値egdで下限ガードされる。このガード値egdは、上記プレイグニッション回避のための燃料噴射量増量補正及び点火時期遅角補正が行われた際、最終的なエンジン11の排気温を許容限界値へとできる限り接近させるべく図9の実線Z上の値となるように算出される。即ち、プレイグニッション回避のための上記補正により、エンジン11の運転状態は図9に示す位置α,位置β,位置γへと順次推移するが、その位置γの状態のときには、エンジン11の排気温がほぼ実線Z上の値となる。従って、プレイグニッション回避のための点火時期遅角補正により、エンジン11の排気温が過度に高くなって上記実線Zよりも右側領域へ移行し、触媒33a等のエンジン11の排気系に故障が生じるのを防止することができる。また、上記燃料噴射補正及び点火時期補正後の最終的な排気温度は、ほぼ実線Z上に位置した状態となるため、それら補正に起因する燃費悪化と出力トルク低下との両方を極力抑えることができる。
【0161】
・本実施形態では、プレイグニッション回避のための燃料噴射量増量が行われた後、所定時間経過してから点火時期遅角補正を実行するようにしている。そして、上記燃料噴射量増量から点火時期遅角開始までの時間は、図19の処理ルーチンにおけるステップS504で用いられる「50」という値を変更することで適宜調整され、その調整によって点火時期遅角補正の開始時期が可変とされる。このように点火時期遅角補正の開始時期を可変とすることで、一回のプレイグニッション発生の際に行われる点火時期の総遅角量を好適に調整することができるようになる。なお、上記総遅角量は、点火時期遅角補正開始時期を早めることで多くされ、点火時期遅角補正開始時期を遅らせることで少なくされる。
【0162】
・また、上記点火時期遅角補正は段階的に行われる。そして、点火時期遅角補正の時間間隔は、ステップS506(図19)における「13」という値を適宜変更することによって調整される。このように点火時期遅角補正の時間間隔を調整することで、全体的な点火時期遅角補正の速さを変更して、その速さを好適に調整することができるようになる。なお、上記全体的な点火時期遅角補正は、一つの点火時期遅角補正毎の時間間隔を小さくとることで速くされ、その時間間隔を大きくとることで遅くされる。
【0163】
・本実施形態では、暴走性のプレイグニッションが発生している旨の判定がなされたとき、図16及び図17に示す処理ルーチンのステップS312(図17)の処理によって、所定期間だけ噴射燃料の燃料カットが実行される。このように燃料カットを実行することで燃焼室16内の温度が効率よく冷却され、暴走性プレイグニッションが的確に抑制されるようになる。また、初回の暴走性プレイグニッション発生の旨が判定された後では、ステップS303(図16)の処理によって、暴走性プレイグニッション発生の旨の判定を初回の場合よりも早期に行うようにした。そのため、暴走性プレイグニッション抑制のための燃料カットは、初回の暴走性プレイグニッションを抑制するためのものよりも、二回目以後の暴走性プレイグニッションを抑制のためのものの方が早期に行われるようになる。従って、暴走性プレイグニッションによるエンジン11への悪影響を抑えることができるようになる。
【0164】
・また、上記燃料カットは、ステップS310(図17)の処理によって、燃料増量値efprigが上限値となった状態にて実行される。一般に、燃料カット中には空気のみが燃焼室16に送り込まれるため、吸気ポート17、吸気及び排気バルブ19,20の裏側に付着した燃料等も蒸発してしまう。そのため、燃料カット実行後に燃料噴射が再開されたとき、その燃料噴射量がプレイグニッション回避のための増量補正が行われた状態にあると、その燃料増量分が吸気ポート17、吸気及び排気バルブ19,20の裏側等に付着し、結果的に燃焼室16内の燃料量が燃焼に適した値となってノッキングが発生し易くなる。しかし、本実施形態では、燃料カット実行後に燃料噴射を再開したとき、上記ステップS310の処理によって燃料噴射量が上限値へと増量補正された状態になるため、上記ノッキングの発生を抑制することができる。
【0165】
なお、本実施形態は、例えば以下のように変更することもできる。
・図12及び図13に示すメインルーチンのステップS103,S106,S108の処理の内、少なくとも一つの処理を省略してECU92の制御負担を軽減してもよい。なお、ステップS106の処理を省略する場合には、イオン電流検出回路部53cの断線検出部61も必要なくなるため、イグナイタ53bの構成を簡略化することができるようになる。
【0166】
・メインルーチンにおけるステップS104,S105の処理の内の少なくとも一方の処理を省略し、ECU92の制御負担を軽減してもよい。これら処理の一方を省略した場合でも、定電流制御が行われるエンジン11の稼動状況を、上記実施形態に準じた状態で判断することはできる。また、それら処理を両方とも省略した場合でも、ステップS107の処理によって、一次電流通電時間tが過度に短くなるエンジン11の稼動状況を判断することはできる。
【0167】
・ステップS104,S105,S107の判断処理で、その判断の基準となる値を適宜変更してもよい。
【0168】
【発明の効果】
請求項1記載の発明によれば、プレイグニッションの発生を誤検出するような内燃機関の稼動状況のときには、そのプレイグニッションの検出が検出禁止手段によって禁止されため、プレイグニッションの発生の誤検出を防止することができる。
【0169】
ここで、一次電流通電時間が許容時間に満たなくなるような内燃機関の稼動状況のとき、一次電流の立ち上り直後に発生する漏洩電流を、同一次電流の立ち下がり直前に発生するイオン電流と誤検出し易くなる。このような内燃機関の稼動状況のときには、プレイグニッションの発生の検出が禁止される。従って、一次電流通電時間が許容時間に満たなくなるときに、漏洩電流を誤ってイオン電流として検出してしまうことに基づくプレイグニッションの発生の誤検出を防止することができる。
【0170】
請求項記載の発明によれば、故障等によってバッテリ電圧に異常が生じ、そのバッテリ電圧に基づき算出される一次電流通電時間が許容時間よりも短くなると漏洩電流をイオン電流として誤検出し易くなるが、この場合には検出禁止手段によってプレイグニッションの発生の検出が禁止される。従って、故障等により一次電流通電時間が許容時間に満たなくなるバッテリ電圧となっても、漏洩電流を誤ってイオン電流として検出することに基づくプレイグニッションの発生の誤検出を防止することができる。
【0171】
請求項記載の発明によれば、イグニッションコイルに流れる一次電流が所定値よりも小さくなるよう定電流制御が行われ、この定電流制御の開始時には立ち上り中の一次電流が一定値となるよう制御される。この定電流制御開始時には、一次電流に増減方向への変動が生じて電流検出手段によって検出される電流にも変動が生じ、当該電流の変動を誤ってイオン電流として検出し易くなる。しかしこの場合には、検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、定電流制御開始時に上記電流変動を誤ってイオン電流として検出することに基づくプレイグニッションの発生の誤検出を防止することができる。
【0172】
請求項記載の発明によれば、イグニッションコイルのコイル温度や内燃機関の機関回転数が低いときといった一次電流の定電流制御が行われ易い内燃機関の稼動状況のとき、検出禁止手段によってプレイグニッションの発生の検出が禁止される。そのため、上記コイル温度や機関回転数が過度に低くなったときに行われる定電流制御の開始時において上記電流変動を誤ってイオン電流として検出することに基づくプレイグニッションの発生の誤検出を防止することができる。
【0173】
請求項記載の発明によれば、稼動状況監視手段に異常が生じると、稼動状況判断手段による内燃機関の稼動状況がプレイグニッションの発生を誤検出する状況か否かの判断に誤りが生じることとなる。しかし、こうした稼動状況監視手段の異常時には検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、当該稼動状況監視手段の異常に基づくプレイグニッションの発生の誤検出を防止することができる。
【0174】
請求項記載の発明によれば、電流検出手段に故障が生じると、その電流検出手段の検出結果に基づき検出されるプレイグニッションの発生に誤検出が生じることとなる。しかし、こうした電流検出手段の故障時には検出禁止手段によってプレイグニッションの発生の検出が禁止されるため、当該電流検出手段の故障に基づくプレイグニッションの発生の誤検出を防止することができる。
【0175】
請求項記載の発明によれば、プレイグニッションが発生しない温度領域内に燃焼室内の温度があるときには、検出禁止手段によってプレイグニッション発生の検出が禁止されるため、プレイグニッションの発生の検出にかかる制御負担を軽減することができる。
【図面の簡単な説明】
【図1】本発明が適用されたエンジン全体を示す概略断面図。
【図2】点火プラグの電極を示す拡大断面図。
【図3】上記エンジンにおける点火系の電気的構成を示すブロック図。
【図4】本実施形態のエンジン制御装置の電気的構成を示すブロック図。
【図5】一回の点火が行われる際の点火指令信号、一次電流及びイオン電流検出回路部による検出電流の推移態様を示すタイムチャート。
【図6】一次電流通電時間を算出する際に参照されるマップ。
【図7】プレイグニッション発生時における燃料噴射量増量、点火時期遅角量及びカウント値の推移態様を示すタイムチャート。
【図8】目標遅角量を算出する際に参照されるマップ。
【図9】プレイグニッション回避のための燃料噴射量制御及び点火時期制御が行われた際、エンジン11の運転状態がどのように推移するかを示すグラフ。
【図10】カウント値、燃料増量値の推移態様及び燃料カット実行態様を示すタイムチャート。
【図11】エンジン回転数及び負荷がプレイグニッション検出領域内にある値か否かを判断する際に参照されるマップ。
【図12】エンジン制御装置によって実行される制御全体の手順を示すフローチャート。
【図13】エンジン制御装置によって実行される制御全体の手順を示すフローチャート。
【図14】くすぶり及びプレイグニッションを判定する手順、及びプレイグニッション検出時における燃料噴射量の増量補正手順を示すフローチャート。
【図15】くすぶり及びプレイグニッションを判定する手順、及びプレイグニッション検出時における燃料噴射量の増量補正手順を示すフローチャート。
【図16】暴走性プレイグニッション及びくすぶり進行を判定する手順、及び暴走性プレイグニッション発生の判定がなされたときの燃料カット手順を示すフローチャート。
【図17】暴走性プレイグニッション及びくすぶり進行を判定する手順、及び暴走性プレイグニッション発生の判定がなされたときの燃料カット手順を示すフローチャート。
【図18】徐々に減少する燃料増量値の下限ガード値を算出する手順を示すフローチャート。
【図19】プレイグニッション検出時における点火時期の遅角補正手順を示すフローチャート。
【図20】従来における一回の点火が行われる際の点火指令信号、及びイオン電流検出回路部による検出電流の推移態様を示すタイムチャート。
【図21】従来における一回の点火が行われる際の点火指令信号、一次電流及びイオン電流検出回路部による検出電流の推移態様を示すタイムチャート。
【符号の説明】
11…エンジン、11b…水温センサ、14c…クランクセンサ、16…燃焼室、34…エアフローメータ、35…吸気温センサ、51…点火プラグ、53a…イグニッションコイル、54…バッテリ、53b…イグナイタ、53c…イオン電流検出回路部、56a,56b…電極、58…一次コイル、59…二次コイル、60…定電流制御回路、61…断線検出部、92…電子制御ユニット(ECU)。

Claims (7)

  1. 内燃機関の燃焼室内での燃焼によって生じるイオンに基づいて点火プラグの電極間に流れる電流を検出する電流検出手段を備え、該電流検出手段によって検出される電流に基づき前記燃焼室内でのプレイグニッションの発生を検出する内燃機関のプレイグニッション検出装置において、
    内燃機関の稼動状況を監視する稼動状況監視手段と、
    前記稼動状況監視手段によって監視される内燃機関の稼動状況がプレイグニッションの発生を誤検出する状況であるか否かを判断する稼動状況判断手段と、
    前記稼動状況判断手段によって内燃機関の稼動状況が前記プレイグニッションの発生を誤検出する状況にある旨判断されるとき、前記プレイグニッションの発生の検出を禁止する検出禁止手段とを備え
    前記稼動状況判断手段は、イグニッションコイルへの一次電流通電時間が許容時間に満たなくなる稼動状況であるか否かを判断し、
    前記検出禁止手段は、前記稼動状況判断手段によって前記一次電流通電時間が許容時間に満たなくなる稼動状況である旨の判断がなされるとき、前記プレイグニッションの発生の検出を禁止するものである
    ことを特徴とする内燃機関のプレイグニッション検出装置。
  2. 前記稼動状況監視手段は、前記イグニッションコイルに供されるバッテリ電圧を監視するものであり、前記一次電流通電時間は、少なくとも前記バッテリ電圧に基づいて通電時間が制御されるものである
    請求項1記載の内燃機関のプレイグニッション検出装置。
  3. 内燃機関の燃焼室内での燃焼によって生じるイオンに基づいて点火プラグの電極間に流れる電流を検出する電流検出手段を備え、該電流検出手段によって検出される電流に基づき前記燃焼室内でのプレイグニッションの発生を検出する内燃機関のプレイグニッション検出装置において、
    内燃機関の稼動状況を監視する稼動状況監視手段と、
    前記稼動状況監視手段によって監視される内燃機関の稼動状況がプレイグニッションの発生を誤検出する状況であるか否かを判断する稼動状況判断手段と、
    前記稼動状況判断手段によって内燃機関の稼動状況が前記プレイグニッションの発生を誤検出する状況にある旨判断されるとき、前記プレイグニッションの発生の検出を禁止する検出禁止手段とを備え、
    前記稼動状況判断手段は、イグニッションコイルに流れる一次電流の定電流制御により該一次電流が増減される稼動状況であるか否かを判断し、
    前記検出禁止手段は、前記稼動状況判断手段によって前記定電流制御により前記一次電流が増減される稼動状況である旨の判断がなされるとき、前記プレイグニッションの発生の検出を禁止する
    ことを特徴とする内燃機関のプレイグニッション検出装置。
  4. 前記稼動状況監視手段は、前記イグニッションコイルのコイル温度と内燃機関の機関回転数との少なくとも一方を監視するものであり、
    前記稼動状況判断手段は、前記稼動状況監視手段によって監視されるイグニッションコイルのコイル温度及び内燃機関の機関回転数の少なくとも一方に基づき、前記定電流制御により前記一次電流が増減される稼動状況である旨の判断をするものである
    請求項3記載の内燃機関のプレイグニッション検出装置。
  5. 請求項1〜4のいずれかに記載の内燃機関のプレイグニッション検出装置において、
    前記検出禁止手段は、前記稼動状況監視手段の異常が検出されるとき、前記プレイグニッションの発生の検出を禁止する
    ことを特徴とする内燃機関のプレイグニッション検出装置。
  6. 請求項1〜5のいずれかに記載の内燃機関のプレイグニッション検出装置において、
    前記検出禁止手段は、前記電流検出手段の故障が検出されるとき、前記プレイグニッションの発生の検出を禁止する
    ことを特徴とする内燃機関のプレイグニッション検出装置。
  7. 請求項1〜6のいずれかに記載の内燃機関のプレイグニッション検出装置において、
    前記検出禁止手段は、前記燃焼室内の温度がプレイグニッションの発生する温度領域内の値でないとき、前記プレイグニッションの発生の検出を禁止する
    ことを特徴とする内燃機関のプレイグニッション検出装置。
JP20647897A 1997-07-31 1997-07-31 内燃機関のプレイグニッション検出装置 Expired - Fee Related JP3726434B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20647897A JP3726434B2 (ja) 1997-07-31 1997-07-31 内燃機関のプレイグニッション検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20647897A JP3726434B2 (ja) 1997-07-31 1997-07-31 内燃機関のプレイグニッション検出装置

Publications (2)

Publication Number Publication Date
JPH1150939A JPH1150939A (ja) 1999-02-23
JP3726434B2 true JP3726434B2 (ja) 2005-12-14

Family

ID=16524046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20647897A Expired - Fee Related JP3726434B2 (ja) 1997-07-31 1997-07-31 内燃機関のプレイグニッション検出装置

Country Status (1)

Country Link
JP (1) JP3726434B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743139B2 (ja) * 2007-03-06 2011-08-10 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
US8509989B2 (en) * 2009-12-18 2013-08-13 Conti Temic Microeletronic GMBH Monitoring concept in a control device

Also Published As

Publication number Publication date
JPH1150939A (ja) 1999-02-23

Similar Documents

Publication Publication Date Title
WO2007086595A1 (en) Method and device for control ignition timing through knock control in an internal combustion engine
JP2002339780A (ja) 筒内直接噴射式エンジンの制御装置
US8447498B2 (en) Control device for internal combustion engine
MX2014011269A (es) Controlador de motor de combustion interna con sobrealimentador.
JP2009024682A (ja) スプレーガイド式筒内噴射内燃機関の制御装置
KR102406055B1 (ko) 실화에 따른 촉매 손상 방지 방법
JP2004150378A (ja) 内燃機関のノッキング制御装置
US7753027B2 (en) Apparatus and method for controlling knock in an internal combustion engine
JPH1150892A (ja) 内燃機関の制御装置
JPH1150878A (ja) 内燃機関の制御装置
JP3726434B2 (ja) 内燃機関のプレイグニッション検出装置
JP3552142B2 (ja) エンジンのプレイグニッション抑止装置
JP2009215908A (ja) 内燃機関の制御装置
JPH10159699A (ja) 内燃機関の燃焼制御装置
US7191760B2 (en) Ignition control method and ignition control device for two-cycle internal combustion engine
JPH1150940A (ja) 内燃機関の燃焼状態判定装置
JP7123476B2 (ja) 内燃機関の制御装置
US11067052B2 (en) Device for controlling internal combustion engine and method for controlling internal combustion engine
JP2021046828A (ja) 内燃機関の制御装置
JP4220736B2 (ja) 火花点火式内燃機関の始動制御装置
JP4911135B2 (ja) 自着火燃焼検出装置
US20220316436A1 (en) Control Device for Internal Combustion Engine
JP3046465B2 (ja) イオン電流によるmbt制御方法
JP2010127103A (ja) 内燃機関の制御装置
JP7117137B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091007

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101007

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111007

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121007

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131007

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees