JP3719393B2 - ハイブリッドシステムの制御装置 - Google Patents

ハイブリッドシステムの制御装置 Download PDF

Info

Publication number
JP3719393B2
JP3719393B2 JP2001108644A JP2001108644A JP3719393B2 JP 3719393 B2 JP3719393 B2 JP 3719393B2 JP 2001108644 A JP2001108644 A JP 2001108644A JP 2001108644 A JP2001108644 A JP 2001108644A JP 3719393 B2 JP3719393 B2 JP 3719393B2
Authority
JP
Japan
Prior art keywords
temperature
filter
internal combustion
combustion engine
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001108644A
Other languages
English (en)
Other versions
JP2002303175A (ja
Inventor
聖 川谷
信章 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2001108644A priority Critical patent/JP3719393B2/ja
Publication of JP2002303175A publication Critical patent/JP2002303175A/ja
Application granted granted Critical
Publication of JP3719393B2 publication Critical patent/JP3719393B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の出力を電力に変換して駆動用モータを作動させるハイブリッドシステムに係り、特に内燃機関の排気通路に排気を浄化するためのフィルタを備えたハイブリッドシステムの制御装置に関する。
【0002】
【従来の技術】
この種のハイブリッドシステムの制御装置としては、例えば特開平11−210448号公報に記載されたハイブリッド車の内燃機関制御装置が挙げられる。この公知の制御装置は、触媒や空燃比センサ等の排気浄化設備を活性温度以上に保持するため、例えば触媒温度が所定温度以下になると電気ヒータに通電し、あるいは内燃機関の負荷を通常よりも増加して排気温度を高めるものとしている。これにより、触媒や空燃比センサの温度が適宜活性温度に保たれるので、これら排気浄化設備の有効活用が図られると考えられる。
【0003】
またハイブリッドシステムにおける内燃機関の排気浄化に関しては、公知の制御装置のように触媒を用いて排気中の有害成分を化学的に転化する場合の他に、フィルタを用いて排気に含まれるパティキュレートを物理的に捕集する場合がある。後者の場合、フィルタを一定期間連続して使用すると、そこに捕集されたパティキュレートの堆積量が増えて排気抵抗が増大するため、その連続使用のためには再生作業を必要とする。この再生作業を内燃機関の運転時に行うために、例えばフィルタの昇温によるパティキュレートの連続燃焼が行われている。具体的には内燃機関の排気温度を上昇させたり、あるいは、外部熱源を用いたりしてフィルタを再生可能温度にまで熱し、その熱でパティキュレートを酸化させて除去するというものである。
【0004】
【発明が解決しようとする課題】
後者の場合において、上述した公知の内燃機関制御装置はフィルタを再生可能な温度にまで昇温させる手段としては利用できるものの、パティキュレートの酸化を促進するための手段としては有効ではない。すなわち、フィルタの再生にあってはその温度条件だけでなく排気中の酸素濃度も重要なファクタとなるため、単に排気温度を上昇させていても、その酸素濃度が極端に低い場合はパティキュレートの酸化が緩慢になり、フィルタの再生には長時間を要することとなる。このためフィルタ再生時に公知の制御装置を用いた場合は多くの燃料を消費し、ハイブリッドシステムの燃費悪化を招くおそれがある。
【0005】
そこで本発明はフィルタの再生時間を短縮し、ハイブリッドシステムの効率的な運用を実現することを課題としたものである。
【0006】
【課題を解決するための手段】
本発明のハイブリッドシステムの制御装置(請求項1)は、内燃機関の運転中にフィルタを再生する場合、フィルタの温度が再生可能な温度状態にあることを条件として内燃機関の負荷を一時的に低下させるものである。
内燃機関の運転中にその負荷を一時的に低下させれば、その間に排気の酸素濃度は一気に増大する。このため一時的にフィルタが高温・高酸素濃度状態となり、パティキュレートの酸化が大幅に促進される。また言うまでもなくフィルタの熱容量は充分に大きいため、負荷の低下によって排気温度が低下しても急激にフィルタが冷却されることはない。
【0007】
通常、ハイブリッドシステムからのアウトプットは、例えば駆動用モータに対する要求出力を賄うことが目標となっている。このためシステム内では駆動用モータに所望の要求出力を発揮させるために必要な電力を供給するべく内燃機関の負荷が決定されている。上述のごとく内燃機関の負荷を一時的に低下させることは、その給電能力の低下を意味することから、その低下分をバッテリから補償し得る範囲内で上述の制御を行うことが望ましいといえる。
【0008】
このため、より実用的なハイブリッドシステムの制御装置(請求項2)はフィルタの温度状態に加え、駆動用モータへの要求出力がバッテリからの給電により出力可能な範囲にあることを条件として内燃機関の負荷を一時的に無負荷まで低下させる。この場合、そのシステム内でフィルタを通る排気の酸素濃度が最大まで引き上げられ、パティキュレートの酸化は最も活発となる。
【0009】
上述のように本発明によるシステムの制御は、内燃機関の負荷を一時的に低下させる分、その間の給電能力の低下をバッテリに依存して補償するものである。このため駆動用モータへの要求出力がバッテリからの給電により出力可能な最大出力を超えているときは、その最大出力と要求出力との差分まで出力を低減するべく内燃機関の負荷を低下させる(請求項3)。このような制御は特に、システムに大きなアウトプットが要求されていたり、バッテリ容量が低下していたりする場合には有効である。
【0010】
また上述のように、フィルタの再生には一定の時間を要するが、その全体的な所要時間は、パティキュレートの酸化を促進するほど短縮可能である。したがって、フィルタに高酸素濃度の排気を供給する回数やその1回あたりの時間を増やせば、更に再生時間の短縮化を図ることができる。
このため本発明の制御装置(請求項4)は、フィルタの温度が高いときほど内燃機関の負荷を低下させる頻度やその時間を増やすことができる。具体的には、所定時間あたりに内燃機関の負荷を低下させる回数を多くすればその頻度が増え、また、1回に負荷を低下させる期間を延ばせばその時間が増える。このような制御が可能となるのは、フィルタ温度はより高温状態のときほど、排気によって冷却される機会が増えたとしても再生可能温度以下まで低下しにくくなることに基づいている。
【0011】
通常、フィルタに多量のパティキュレートが堆積していると、その分、再生に要する時間も長くなる。このような場合には、フィルタの再生を一層促進することで早期に再生を終えることができる。
このため本発明の制御装置(請求項5)はパティキュレートの堆積量を推定し、その推定した堆積量に応じて内燃機関の負荷を低下させる頻度を変更することができる。この場合、堆積量が多いときほど負荷の低下を頻繁に行い、逆に堆積量が少ないときほど頻度を下げるように制御することが好ましい。
【0012】
パティキュレートの酸化の促進がフィルタ再生時間の短縮につながることは上述した通りであるが、その燃焼熱によってフィルタが過熱すると、極端な場合は溶損に至るおそれもある。例えば、フィルタの再生時にパティキュレートの堆積量が極端に多かったり、あるいはフィルタそのものの温度が極端に高かったりする場合、パティキュレートの酸化を大きく促進すると、かえってフィルタを過熱させる危険性の方が高いともいえる。
【0013】
このため本発明の制御装置(請求項6)は、推定したパティキュレートの堆積量が所定量以上である場合、または、フィルタ温度が所定温度以上である場合は内燃機関の負荷の低下を禁止し、通常の条件でフィルタの再生を行う。
また、本発明の制御装置(請求項7)は、内燃機関の運転中にフィルタを再生する場合、フィルタの温度が再生可能な温度状態にあることを条件として内燃機関の負荷を所定期間にわたって間欠的に低下させ、その間に排気の酸素濃度を増大させてフィルタを高温・高酸素濃度状態とし、パティキュレートの酸化を促進するものである。
【0014】
【発明の実施の形態】
図1は、本発明を車両に適用した場合の一実施形態を概略的に示している。このハイブリッド車両のシステムはいわゆるシリーズ式と称されるものであり、エンジン1のクランク軸は発電機2のみに接続されている。エンジン1の出力は発電機2により電力に変換され、その変換された電力は車両の駆動用モータ4およびバッテリ6に供給可能となっている。バッテリ6は二次電池からなり、発電機2から供給される電力を蓄える一方、駆動用モータ4へ電力を供給可能となっている。それゆえ、このハイブリッド車両のシステムでは、駆動用モータ4は発電機2およびバッテリ6からそれぞれ電力の供給を受けて作動する。また駆動用モータ4の出力軸は、例えば歯車減速機構8を介して車軸に接続されており、車両の駆動輪Wはモータ出力によって駆動される。
【0015】
システムのエンジン1はディーゼルエンジンからなり、その排気通路にディーゼルパティキュレートフィルタ(以下、単に「DPF」と称する。)10が配設されている。DPF10はエンジン1の排気に含まれるパティキュレート(粒子状物質)を捕集して排気を浄化する機能を有している。
ハイブリッド車両のシステムは、その具体的な作動を制御ユニット(以下、単に「ECU」と称する。)12によってコントロールされている。例えば、エンジン1の燃料供給系にはコモンレールシステム(図示していない)が採用されており、ECU12はそのインジェクタに対して作動信号を出力し、その燃料噴射量や噴射時期等を具体的に制御している。合わせてECU12は発電機2による発電量やバッテリ6の充電・放電の動作、駆動用モータ4の出力等を総合的に制御し、運転者の要求出力に応じたアウトプット、つまり、駆動輪Wからの駆動力を発生させる機能を有している。
【0016】
運転者の要求出力は例えばアクセルポジションセンサ14を用いて検出することができ、ECU12はアクセルポジションセンサ14からのセンサ信号に基づいてシステムのアウトプットを制御する。例えば車両の加速要求等の場合に運転者の要求出力が増加すると、ECU12はエンジン1の負荷を増やしてその出力を高め、発電機2から駆動用モータ4への電力供給量を多くする。この結果、運転者の要求出力の増加分に応じたモータ出力の増加が得られ、システムのアウトプットは要求出力に合致する。また定常的に要求出力が安定している場合、ECU12はエンジン1の負荷を一定に保持して発電量を安定化させ、あるいはバッテリ6から駆動用モータ4に給電してシステムのアウトプットを要求出力に保持する。
【0017】
以上はハイブリッドシステムを車両に適用した場合の概略的な構成および動作である。ここでECU12は更に、ハイブリッド車両の走行中にDPF10を再生する制御を行う機能も合わせて有している。
図1のハイブリッドシステムにおけるDPF10の再生は、例えば排気温度の上昇によってその条件を整えることができる。この場合、例えばECU12は燃料をポスト噴射させることにより排気温度を通常負荷よりも上昇させ、その熱でDPF10を昇温させることができる。ポスト噴射は例えば、燃料の主噴射後の膨張行程で行われ、このポスト噴射によって供給された燃料は筒内で燃焼し、その燃焼熱で排気温度を高める。なお、このような制御はフィルタ再生手段の一例といえる。
【0018】
またDPF10の上流に酸化触媒(図示していない)を配置している場合は、ポスト噴射によって未燃HCガスを排気に混入させ、酸化触媒での酸化熱によりDPF10の温度を上昇させることもできる。なお、酸化触媒はDPF10そのものに担持されていてもよい。その他、DPF10を電気ヒータ等により加熱して再生を行う態様であってもよい。
【0019】
このように、DPF10の昇温によって再生可能な温度に達すると、その温度条件を保持することでパティキュレートの酸化が進み、やがて再生作業は終了する。以上は通常行われるDPF10の連続再生であるが、パティキュレートの堆積量が通常よりも多い場合等は再生時間も長期化する。
そこで、ECU12は上述のようにDPF10の再生を開始すると、次に再生を促進する必要があるか否かを判断し、その必要があれば再生促進モードを実施する機能を有している。
【0020】
【実施例】
以下、再生促進モードについて具体的な実施例を挙げて説明する。
図2は、再生促進モードの実施に関する制御フローの一例を示している。ECU12はDPF10の再生制御を開始すると、先ずパティキュレートの堆積量を推定する(ステップS1)。堆積量の推定は例えば、DPF10の出入口間の差圧やエンジン1の運転継続時間等に基づいて行うことができる。このためエンジン1の排気通路には、DPF10の前後の位置にそれぞれ排気圧センサ(図示していない)が配置されており、またECU12にはタイマ機能が組み込まれている。排気圧センサを用いる場合、ECU12はそれぞれのセンサ信号に基づいてフィルタ差圧を求め、その大きさからパティキュレートの堆積量を推定することができる。またタイマ機能を働かせる場合、ECU12は前回のフィルタ再生作業が終了した時点から現時点までの経過時間に基づいて運転継続時間を計測し、その時間的な長さから堆積量を推定することができる。なお、このような処理は堆積量推定手段の一例といえる。
【0021】
次にECU12は、推定した堆積量に基づいてDPF10の再生促進が必要であるか否かを判断する(ステップS2)。例えば、堆積量が通常の再生作業において許容しうる範囲内にあれば、特に再生促進モードを実行する必要はないと判断できる(NO)。これに対し、許容範囲を超える量のパティキュレートが堆積している状況にあっては、ECU12は再生促進モードを実行する必要があるものとして判断する(YES)。なお、堆積量の許容範囲は、例えば通常の再生時間内で充分にDPF10の再生が可能なパティキュレートの量を基準として設定することができる。
【0022】
再生促進が必要と判断すると、ECU12は続いてDPF10の温度を検出する(ステップS3)。図1に示されているように、DPF10には温度センサ16が設けられており、ECU12はこの温度センサ16からのセンサ信号に基づいてDPF10の温度(または雰囲気温度)を検出することができる(温度検出手段)。
【0023】
次にECU12は、DPF10の温度が再生可能な温度状態にあるか否かを確認する(ステップS4)。例えば、ECU12はDPF10の温度が所定時間t1継続して再生可能温度T1を超えていることを確認した場合(YES)、次に再生促進モードを開始する(ステップS5)。
ここで、再生可能温度T1の具体的な値としては、例えば約550℃程度を設定することができる。また所定時間t1はDPF10の温度が安定していることを判断できる時間として例えば数秒間に設定することができる。何れにしても、使用するべきフィルタの仕様に応じて再生可能温度T1や所定時間t1の値を適宜設定すればよい。
【0024】
再生促進モードの詳細な内容についてはいくつかの好ましい実施例を挙げることができ、図2には第1実施例が示されている。
ECU12は再生促進モードを開始すると、運転者の車両要求出力がバッテリ6からの給電のみによって駆動用モータ4から出力できる最大出力の範囲内にあるか否かを判定する(ステップS6)。なお最大出力の具体的な値はその都度、バッテリ容量等の条件によって異なったものとなる。
【0025】
上記の判定が成立する場合(YES)、ECU12はエンジン1の無負荷運転を開始する(ステップS7)。無負荷運転はエンジン1を負荷のない状態で運転するものであり、例えばこのとき発電機2による発電は停止した状態になる。
無負荷運転の開始後、所定時間t2が経過するまでECU12はエンジン1の無負荷運転を継続する(ステップS8=NO)。そして所定時間が経過すると(YES)、ECU12はエンジンの無負荷運転を停止して通常運転に復帰する(ステップS9)。
【0026】
次にECU12は、再生促進モードの開始後に所定時間t3が経過したかを確認する(ステップS10)。その所定時間t3が経過していなければ(NO)、ECU12は次に通常運転へ復帰後に所定時間t4が経過したかを確認する(ステップS11)。
ここで、上記の所定時間t2の具体的な値は例えば1秒〜2秒程度に設定することができる。また、所定時間t3の値は例えば5分〜10分程度と最も長く、そして、所定時間t4の値は60秒程度に設定することができる。ただし、これら時間t2,t3,t4は異なる値に設定することもできるし、また後述のようにDPF10の温度や堆積量等の条件に応じて変更することもできる。
【0027】
無負荷運転から通常運転へ復帰した後、上記の所定時間t4が経過すると(ステップS11=YES)ECU12は車両要求出力の判定に戻り(ステップS6)、再度エンジン1の無負荷運転を開始する(ステップS7)。
図3は、再生促進モードの実行による各種状態の時間的な変化を示している。図3のエンジン負荷の変化に示されているように、再生促進モードを開始した時点aから上記の所定時間t3が経過するまでの間、ECU12は所定時間t4の間隔をおいて無負荷運転を繰り返し実施していることが理解される。また酸素濃度の変化から明らかなように、エンジン1の無負荷運転が行われている間(所定時間t2)、DPF10を通る排気の酸素濃度は一気に高くなっている。このような負荷または酸素濃度の急激な変化の様子が観察されることから、本発明において一時的にエンジン1の負荷を低下させることを「軽負荷スパイク運転」と称することができる。
【0028】
「軽負荷スパイク運転」が実施されている期間(所定時間t2)は、駆動用モータ4にはバッテリ6から給電されるので、車両要求出力に対して駆動力が一時的に低下することはない。なお、「軽負荷スパイク運転」の間に排気温度が低下するためDPF10の温度は一時的に低下しているが、DPF10の熱容量が充分大きいためにDPF10の温度が再生可能温度T1を下回ることはない。
【0029】
上述のように、「軽負荷スパイク運転」を実施するとDPF10が一時的に高温・高酸素濃度の状態となり、パティキュレートの酸化が一気に促進される。このため「軽負荷スパイク運転」を停止しても、それ以降の酸化が活発となり、DPF10の再生が促進されることになる。
「軽負荷スパイク運転」には、上述のようにエンジン1を無負荷の状態で運転するだけでなく、一時的に低負荷で運転する場合もある。具体的には、上述した車両要求出力の判定(ステップS6)において、バッテリ6からの給電により出力可能な最大出力を超えていると判定されたとき(NO)、ECU12は演算によりエンジン1の負荷を決定し、その結果に基づいてエンジン1の負荷を一時的に低下させる(ステップS12)。具体的には、車両要求出力から最大出力を減算し、その差分の出力に応じてエンジン1の負荷を決定する。
【0030】
この場合、駆動用モータ4にはバッテリ6および発電機2の双方から給電される。このうち、バッテリ6からの給電による最大出力と、エンジン1の負荷に応じた発電による出力との合算により駆動用モータ4の出力が得られ、結果としてシステムのアウトプットは要求出力に合致する。
なお、制御上は無負荷運転の処理(ステップS7)を迂回しているので、所定時間t2経過の判定は低負荷運転を開始した時点から行われる(ステップS8)。このような低負荷運転の場合であっても、エンジン負荷や酸素濃度の変化の様子は無負荷運転の場合と同様の結果が観測される(図3参照)。
【0031】
図4は、再生促進モードに関する第2実施例を示している。この場合、上述した再生促進モードの開始処理(ステップS5)をサブルーチンとして構成することができる。
ECU12はDPF10の温度が所定温度T2を超えているか否か、あるいは、推定したパティキュレートの堆積量が所定量Gを超えているか否かを判定する(ステップS51)。
【0032】
上記の判定が何れも不成立(NO)の場合、ECU12はDPF10の温度に基づいて上記の所定時間t2,t3,t4等の値を設定する(ステップS52)。例えば、DPF10の温度が充分に高ければ、「軽負荷スパイク運転」の実施によりDPF10が冷却されてもその温度は再生可能温度を下回らないといえる。このため、ECU12はDPF10の温度が高いときほど所定時間t2を延長し、あるいは、所定時間t4を短縮して「軽負荷スパイク運転」の頻度やその時間を増やすようにする。具体的には、ECU12には予め、DPF10の温度に応じて「軽負荷スパイク運転」の頻度および時間を設定するためのマップが与えられており、ECU12はこのマップを検索して所定時間t2,t4等を設定することができる。また、このとき再生促進モードを終了するまでの時間t3を合わせて変更するようにしてもよい。
【0033】
上述のように各所定時間t2,t4の設定を終えると、ECU12は図2のメインルーチンに復帰し、車両要求出力の判定処理(ステップS6)に移行する。図5は、再生促進モードに関する第3実施例を示している。この場合も、同様に再生促進モードの開始処理(ステップS5)がサブルーチンとして構成されている。
【0034】
始めにECU12がDPF10の温度条件またはパティキュレートの堆積量の条件を判定する処理(ステップS51)は第2実施例の場合と同様である。
上記の判定が何れも不成立(NO)の場合、ECU12は推定したパティキュレートの堆積量に基づいて上記の所定時間t2,t3,t4等の値を設定する(ステップS53)。例えば、パティキュレートの堆積量が多い場合、「軽負荷スパイク運転」を頻繁に実施し、逆に堆積量があまり多くない場合は「軽負荷スパイク運転」の頻度を減らしてもよい。
【0035】
このため、ECU12は推定したパティキュレートの堆積量が多いときほど所定時間t4を短縮して「軽負荷スパイク運転」を頻繁に実施し、逆に堆積量が少ないときほど所定時間t4を延長して「軽負荷スパイク運転」の頻度を減らすようにする。ECU12には予め、パティキュレートの堆積量に応じて「軽負荷スパイク運転」の頻度を設定するためのマップが与えられており、ECU12はこのマップを検索して所定時間t4を設定することができる。また、このとき「軽負荷スパイク運転」の1回あたりの時間t2や、再生促進モードを終了するまでの時間t3を合わせて変更するようにしてもよい。
【0036】
また、上述した第2および第3実施例にあっては、最初の判定(ステップS51)においてDPF10の温度が所定温度T2を超えている場合、または、推定堆積量が所定量Gを超えている場合はその判定が成立(YES)する。この場合、ECU12は再生促進モードを禁止するものとする(ステップS54)。
再生促進モードの禁止は、例えばDPF10の温度が極端に高い場合やパティキュレートの堆積量が極端に多い場合に「軽負荷スパイク運転」の実施を禁止するものである。これらの場合、「軽負荷スパイク運転」によってパティキュレートの酸化が促進されると、その燃焼熱でDPF10が過熱し、溶損に至る危険性が高いことを考慮したものである。なお、所定温度T2や所定量Gの具体的な値は、実際に使用するべきDPF10の材質やその耐熱温度等の仕様に応じて適宜決定することができる。
【0037】
再生促進モードを禁止した場合、ECU12はそれ以降の処理を終了する。この場合、ECU12は図2のルーチンを終了し、上述した通常時の制御(ポスト噴射等)によりDPF10の再生を続行する。
上述した第1実施例の場合、「軽負荷スパイク運転」の実施によりパティキュレートの燃焼が活発化し、早期にフィルタ差圧が低下する。このため、DPF2の再生作業に要する時間を大幅に短縮することができる。なお、再生作業の終了時期は例えばフィルタ差圧の低下によって判断することができる。
【0038】
更に第2,第3実施例の場合、フィルタの温度やパティキュレートの堆積量に応じて適切な態様により再生促進が実現され、再生時の諸条件の違いを考慮したきめ細かな制御が可能となる。合わせて再生促進モードの禁止条件を判断しているため、DPF10の信頼性を大きく向上させている。
このようなDPF10の再生促進により、ハイブリッドシステム全体として再生作業の実施回数を少なくすることが可能となる。すなわち、1回の再生作業で除去できるパティキュレートの量を従来よりも多めに見込むことが可能となるため、DPF10の再生頻度を低減することが可能となる。一方、再生作業の促進は1回あたりの燃料消費量を低減し、ハイブリッドシステム全体としての省燃費化に大きく寄与する。
【0039】
本発明は上述した一実施形態に制約されることなく、各種の形態により実施可能である。例えば、本発明が適用されるハイブリッド車両の形態は乗用車だけでなく、トラックやバス等の大型車両にも適合する。ただし、本発明は車両以外にも適用可能である。
再生促進モードの実施例においては、「軽負荷スパイク運転」についてエンジン1を無負荷または低負荷の何れか一方のみに低下させる場合を挙げているが、例えば、車両の走行過程で運転者の要求出力が過渡的に変動した場合、その判定結果(ステップS6)に基づいて無負荷から低負荷へ移行したり、あるいは、低負荷から無負荷へ移行したりする場合もあり得る(ステップS7,S12)。
【0040】
その他、各実施例としてあげた制御フローは何れも好ましい例示であり、その具体的な処理の内容や手順等は適宜書き換えて実施可能である。
【0041】
【発明の効果】
本発明のハイブリッドシステムの制御装置(請求項1、7)は、フィルタの再生に要する期間やその回数を低減し、システムの省燃費性やその信頼性を大きく向上する。
特に、内燃機関の負荷を無負荷まで低下させる場合(請求項2)、システム内の最も高い酸素濃度を作り出すことができ、最大の再生促進効果が得られる。一方、再生促進時に要求出力を犠牲にすることはないので(請求項3)、ハイブリッドシステムの挙動が不安定化することはない。
【0042】
また、フィルタの温度条件やパティキュレート堆積量等に応じて再生促進の頻度を調節する機能を有するため(請求項4,5)、ハイブリッドシステムの利用状態に合わせて好ましい制御が可能となる。更に再生促進の禁止条件をも合わせて考慮していれば(請求項6)、安全性や信頼性の面で大きな優位性を誇る。
【図面の簡単な説明】
【図1】ハイブリッドシステムの制御装置を車両に適用した一実施形態を表す概略図である。
【図2】再生促進モードに関する第1実施例を表すフローチャートである。
【図3】再生促進モードの実施に伴う各種状態の時間的な変化を表すグラフである。
【図4】図2とともに再生促進モードの第2実施例を表すフローチャートである。
【図5】図2とともに再生促進モードの第3実施例を表すフローチャートである。
【符号の説明】
1 エンジン
2 発電機
4 駆動用モータ
6 バッテリ
10 DPF(フィルタ)
12 ECU(制御手段)

Claims (7)

  1. 内燃機関の出力を電力に変換して駆動用モータおよびバッテリに給電するとともに前記バッテリからも前記駆動用モータに給電可能に構成された電力供給系と、前記内燃機関の排気通路に設けられて排気に含まれるパティキュレートを捕集するフィルタとを備えたハイブリッドシステムにおいて、
    前記フィルタの温度を検出する温度検出手段と、
    前記内燃機関が運転中で前記フィルタの温度がその再生可能な温度状態にあるとき、前記内燃機関の負荷を一時的に低下させる制御手段と
    を具備したことを特徴とするハイブリッドシステムの制御装置。
  2. 内燃機関の出力を電力に変換して駆動用モータおよびバッテリに給電するとともに前記バッテリからも前記駆動用モータに給電可能に構成された電力供給系と、前記内燃機関の排気通路に設けられて排気に含まれるパティキュレートを捕集するフィルタとを備えたハイブリッドシステムにおいて、
    前記フィルタの温度を検出する温度検出手段と、
    前記内燃機関が運転中で前記フィルタの温度がその再生可能な温度状態にあり、かつ、前記駆動用モータへの要求出力が前記バッテリからの給電により出力可能な範囲内にあるとき、前記内燃機関の負荷を一時的に無負荷まで低下させる制御手段と
    を具備したことを特徴とするハイブリッドシステムの制御装置。
  3. 内燃機関の出力を電力に変換して駆動用モータおよびバッテリに給電するとともに前記バッテリからも前記駆動用モータに給電可能に構成された電力供給系と、前記内燃機関の排気通路に設けられて排気に含まれるパティキュレートを捕集するフィルタとを備えたハイブリッドシステムにおいて、
    前記フィルタの温度を検出する温度検出手段と、
    前記駆動用モータへの要求出力に応じた電力を得るために前記内燃機関が運転中であって前記フィルタの温度がその再生可能な温度状態にあり、かつ、前記駆動用モータへの要求出力が前記バッテリからの給電により出力可能な最大出力を超えているとき、この最大出力と前記要求出力との差分まで出力を低減するべく前記内燃機関の負荷を一時的に低下させるとともに前記バッテリの給電による最大出力と前記一時的に低下された負荷に応じた発電による出力との合算により前記要求出力を得る制御手段と
    を具備したことを特徴とするハイブリッドシステムの制御装置。
  4. 前記制御手段は、前記フィルタの温度が高いときほど所定時間あたりに前記内燃機関の負荷を低下させる頻度および時間の少なくとも一方を増やすことを特徴とする請求項1から3の何れかに記載のハイブリッドシステムの制御装置。
  5. 前記制御手段は、前記フィルタに捕集されたパティキュレートの堆積量を推定し、その推定した堆積量に応じて所定時間あたりに前記内燃機関の負荷を低下させる頻度を変更することを特徴とする請求項1から3の何れかに記載のハイブリッドシステムの制御装置。
  6. 前記制御手段は、前記フィルタに捕集されたパティキュレートの堆積量を推定し、その推定した堆積量が所定量以上の場合および前記フィルタの温度が所定温度以上の場合の少なくとも一方にあっては、前記内燃機関の負荷を低下させることを禁止することを特徴とする請求項1から3の何れかに記載のハイブリッドシステムの制御装置。
  7. 内燃機関の出力を電力に変換して駆動用モータおよびバッテリに給電するとともに前記バッテリからも前記駆動用モータに給電可能に構成された電力供給系と、前記内燃機関の排気通路に設けられて排気に含まれるパティキュレートを捕集するフィルタとを備えたハイブリッドシステムにおいて、
    前記フィルタの温度を検出する温度検出手段と、
    前記内燃機関が運転中で前記フィルタの温度がその再生可能な温度状態にあるとき、前記内燃機関の負荷を所定期間にわたって間欠的に低下させる制御手段と
    を具備したことを特徴とするハイブリッドシステムの制御装置。
JP2001108644A 2001-04-06 2001-04-06 ハイブリッドシステムの制御装置 Expired - Fee Related JP3719393B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108644A JP3719393B2 (ja) 2001-04-06 2001-04-06 ハイブリッドシステムの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108644A JP3719393B2 (ja) 2001-04-06 2001-04-06 ハイブリッドシステムの制御装置

Publications (2)

Publication Number Publication Date
JP2002303175A JP2002303175A (ja) 2002-10-18
JP3719393B2 true JP3719393B2 (ja) 2005-11-24

Family

ID=18960741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108644A Expired - Fee Related JP3719393B2 (ja) 2001-04-06 2001-04-06 ハイブリッドシステムの制御装置

Country Status (1)

Country Link
JP (1) JP3719393B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026813A1 (ja) * 2008-09-03 2010-03-11 ヤンマー株式会社 ディーゼルエンジン

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248427B2 (ja) 2004-03-11 2009-04-02 トヨタ自動車株式会社 内燃機関排気浄化装置の粒子状物質再生制御装置
JP4293154B2 (ja) 2005-03-30 2009-07-08 三菱ふそうトラック・バス株式会社 ハイブリッド車両のモータ制御装置
KR101326829B1 (ko) 2011-10-13 2013-11-11 현대자동차주식회사 매연 필터 재생 시스템 및 방법
JP6673139B2 (ja) * 2016-10-19 2020-03-25 トヨタ自動車株式会社 ハイブリッド自動車
KR102467053B1 (ko) * 2017-12-11 2022-11-15 현대자동차주식회사 하이브리드 차량의 gpf 재생제어방법
JP7155933B2 (ja) * 2018-11-21 2022-10-19 トヨタ自動車株式会社 プラグインハイブリッド車およびその制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010026813A1 (ja) * 2008-09-03 2010-03-11 ヤンマー株式会社 ディーゼルエンジン
JP2010059861A (ja) * 2008-09-03 2010-03-18 Yanmar Co Ltd ディーゼルエンジン
CN102137989A (zh) * 2008-09-03 2011-07-27 洋马株式会社 柴油发动机
CN102137989B (zh) * 2008-09-03 2013-07-24 洋马株式会社 柴油发动机
US8646256B2 (en) 2008-09-03 2014-02-11 Yanmar Co., Ltd. Diesel engine
KR101562917B1 (ko) * 2008-09-03 2015-10-23 얀마 가부시키가이샤 디젤 엔진

Also Published As

Publication number Publication date
JP2002303175A (ja) 2002-10-18

Similar Documents

Publication Publication Date Title
EP2210788B1 (en) Exhaust gas purifier of hybrid electric car
US8452474B2 (en) Control device for hybrid vehicle and control method therefor
JP3895572B2 (ja) とくにハイブリッド電気車輌における粒子フィルタの再生制御
JP3755406B2 (ja) ハイブリッド車両
EP2211033A1 (en) Exhaust purification device for hybrid electric automobile
WO2009139283A1 (ja) 車両の制御装置および制御方法
JPWO2002066813A1 (ja) ディーゼルエンジンの燃料噴射制御方法と排気ガス後処理装置の再生制御方法
JP4396600B2 (ja) ハイブリッド車両の制御装置
KR20190084870A (ko) 내연기관의 배기가스 후처리 시스템 및 배기가스 후처리 방법
US20200263591A1 (en) Method and apparatus for controlling exhaust gas purification system for vehicle
JP5118442B2 (ja) ハイブリッド電気自動車の排気浄化装置
JP3775391B2 (ja) 車両用の電力制御装置
JP5110327B2 (ja) エンジンの排気浄化装置
JP5118443B2 (ja) ハイブリッド電気自動車の排気浄化装置
JP6149510B2 (ja) ハイブリッド車両及びその制御方法
JP3719393B2 (ja) ハイブリッドシステムの制御装置
JP2000008837A (ja) 内燃機関の排気ガス浄化装置
JP4631767B2 (ja) ハイブリッドシステムの排気浄化装置
JP3802881B2 (ja) ハイブリッドシステムのパティキュレートフィルタ床温制御方法
JP2006220036A (ja) フィルタ付きハイブリッドエンジンの制御システム
JP2004036543A (ja) 内燃機関の排気浄化装置
JP4144557B2 (ja) 排気浄化装置
JP4045764B2 (ja) エンジンの排気浄化装置
JP5962486B2 (ja) エンジンの排気浄化制御装置
KR100841689B1 (ko) 디젤 하이브리드 자동차의 입자상물질 저감을 위한 전기히터식 매연여과장치의 제어방법

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees