JP3716828B2 - ファンモータ制御装置 - Google Patents

ファンモータ制御装置 Download PDF

Info

Publication number
JP3716828B2
JP3716828B2 JP2002337863A JP2002337863A JP3716828B2 JP 3716828 B2 JP3716828 B2 JP 3716828B2 JP 2002337863 A JP2002337863 A JP 2002337863A JP 2002337863 A JP2002337863 A JP 2002337863A JP 3716828 B2 JP3716828 B2 JP 3716828B2
Authority
JP
Japan
Prior art keywords
fan motor
rotational speed
air flow
optimum
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002337863A
Other languages
English (en)
Other versions
JP2003185131A (ja
Inventor
康秀 池内
富雄 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP2002337863A priority Critical patent/JP3716828B2/ja
Publication of JP2003185131A publication Critical patent/JP2003185131A/ja
Application granted granted Critical
Publication of JP3716828B2 publication Critical patent/JP3716828B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【産業上の利用分野】
本願発明は、送風流路に配置された送風用のファンを回転させるファンモータに電源を供給してファンモータを回転させる、ファンモータ制御装置に関する。
【0002】
【従来の技術】
従来のファンモータ制御装置として、例えば特開平5−164323号公報に記載されているように、ファンモータの電流が所定値に達したときに、警報ランプを点滅させたり燃焼を禁止したりするように構成されたものがあった。
【0003】
また従来のファンモータ制御装置として、例えば特開平4−36508号公報に記載されているように、送風流路に風速センサなどを設置し、この風速センサなどからの検知信号に応じてファンモータの回転数を制御するように構成されたものもあった。
【0004】
【発明が解決しようとする課題】
ファンモータの電流が所定値に達したときに、警報ランプを点滅させたり燃焼を禁止したりするように構成された、従来のファンモータ制御装置では、風圧スイッチを設けずに吸排気不良を検出できるものの、送風流路の流路抵抗に応じた適切な送風量を維持することができず、最適燃焼を確保できないという課題があった。すなわち、送風流路の流路抵抗は、経年変化、逆風、流路長、吸排気の差圧、流路の曲がり具合、吸気フィルターの目詰まりなどの各種の要因により変化し、ファンモータの回転数を一定に制御しても、送風流路の流路抵抗の変化により送風量が変化することから、送風流路の流路抵抗に応じた適切なモータ回転数を維持できなければ、空燃比が悪化し、消炎、不完全燃焼、火移り不良などの燃焼不良が生じるのである。
【0005】
また、送風流路に風速センサなどを設置し、この風速センサなどからの検知信号に応じてファンモータの回転数を制御するように構成された、従来のファンモータ制御装置では、所定の送風量を維持できるものの、送風流路に風速センサなどを設置することから、風速センサなどが送風流路の流路抵抗の増大を招くと共に、風速センサなどが製造コストを増大させるという課題があった。
【0006】
本願発明は上記の点に鑑みて提案されたもので、風速センサなどの風量検知手段を送風流路に設置することなく、送風流路の流路抵抗とファンモータの回転数に基づいてファンの実際の送風量を好適に推定することのできるファンモータ制御装置を提供することを、その目的としている。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、本願発明では、次の技術的手段を講じている。
【0008】
すなわち、本願の請求項1に記載した発明は、送風流路に配置された送風用のファンを回転させるファンモータに電源を供給してファンモータを回転させるファンモータ制御装置において、燃焼器の燃焼量に基づいて最適送風量を判別する最適送風量判別手段と、
ファンモータの回転数を検出する回転数検出手段と、ファンモータの駆動電流に関する情報を検出する駆動電流検出手段と、流路抵抗をパラメータとしたファンモータの回転数と駆動電流との関係を示すデータが記憶された第1の記憶手段と、流路抵抗をパラメータとしたファンモータの回転数と送風量との関係を示すデータが記憶された第2の記憶手段と、駆動電流検出手段からの検出値と回転数検出手段により検出された回転数と第1の記憶手段に記憶されたデータとを用いて送風流路の流路抵抗を判別する流路抵抗判別手段と、この流路抵抗判別手段により判別された流路抵抗と回転数検出手段により検出された回転数と第2の記憶手段に記憶されたデータとを用いて現実の送風量を推測する送風量推測手段と、最適送風量判別手段により判別された最適送風量と送風量推測手段により推測された現実の送風量との偏差に基づいてファンモータの最適回転数を判別する最適回転数判別手段と、この最適回転数判別手段により判別された最適回転数となるようにファンモータを駆動するモータ制御手段とを設けたことを特徴としている。
【0009】
【作用】
上記請求項1に記載した発明によれば、最適送風量判別手段が、燃焼器の燃焼量に基づいて最適送風量を判別し、回転数検出手段が、ファンモータの回転数を検出し、駆動電流検出手段が、ファンモータの駆動電流に関する情報を検出し、流路抵抗判別手段が、駆動電流検出手段からの検出値と回転数検出手段により検出された回転数と第1の記憶手段に記憶されたデータとを用いて送風流路の流路抵抗を判別し、送風量推測手段が、流路抵抗判別手段により判別された流路抵抗と回転数検出手段により検出された回転数と第2の記憶手段に記憶されたデータとを用いて現実の送風量を推測する。さらに、最適回転数判別手段が、最適送風量判別手段により判別された最適送風量と送風量推測手段により推測された現実の送風量との偏差に基づいてファンモータの最適回転数を判別し、モータ制御手段が、最適回転数判別手段により判別された最適回転数となるようにファンモータを駆動する。
【0010】
【実施例の説明】
以下、本願発明の好ましい実施例を、図面を参照しつつ具体的に説明する。
【0011】
(実施例1)
図1は、本願発明の実施例1に係るファンモータ制御装置を備えた給湯装置の概略構成図であって、給湯装置のケーシング1の内部には、バーナ2と熱交換器3とが配置されている。ケーシング1に連続するファンケース4の内部には、ファンモータ5により駆動されるシロッコファン6が設置されており、ケーシング1の上部には、排気口7が形成されている。バーナ2には、ガスあるいは石油などの燃料を供給するための燃料供給管8が接続されており、熱交換器3には、水を供給するための給水管10が接続されている。燃料供給管8および給水管10にはバルブ11,12が介装されており、これらバルブ11,12は給湯制御部13により制御される。
【0012】
ファンモータ制御装置は、ファンモータ5からの回転パルスに基づいてファンモータ5の回転数を検出する回転数検出手段15と、ファンモータ5の駆動電流に関する情報を検出する駆動電流検出手段16と、駆動電流検出手段16からの検出値と回転数検出手段15により検出された回転数とに基づいてケーシング1およびファンケース4内の送風流路の流路抵抗を判別する流路抵抗判別手段17と、バーナ2の燃焼量すなわち給湯制御部13からの燃料供給量に応じた信号に基づいて最適送風量を判別する最適送風量判別手段18と、最適送風量判別手段18により判別された最適送風量と流路抵抗判別手段17により判別された流路抵抗とに基づいてファンモータ5の最適回転数を判別する最適回転数判別手段19と、最適回転数判別手段19により判別された最適回転数となるようにファンモータ5を駆動するモータ制御手段20と、流路抵抗判別手段17により判別された流路抵抗に基づいて燃焼の異常を判別する異常判別手段21と、異常判別手段21により燃焼の異常と判別されたときに給湯制御部13に停止信号を出力してバーナ2の燃焼を停止させる異常処理手段22とを備えている。なお、流路抵抗判別手段17と最適送風量判別手段18と最適回転数判別手段19と異常判別手段21と異常処理手段22とは、マイクロコンピュータ23により実現されている。
【0013】
図2は、ファンモータ5の回路図であって、ファンモータ5は、複数のホール素子25と、スイッチング制御手段26と、端子27a〜27eと、駆動コイルU,V,Wと、トランジスタQ1〜Q16と、ダイオードD1〜D6と、抵抗器R1〜R29と、キャパシタC1とを備えている。ICからなるスイッチング制御手段26は、ホール素子25からの検出信号に基づいてトランジスタQ1〜Q6をオン・オフさせ、スイッチング制御を行う。端子27aには直流電圧VCCが入力され、スイッチング制御手段26などに供給される。端子27bは接地されている。端子27cからはスイッチング制御手段26からトランジスタQ16を介してファンモータ5の回転数に応じた回転パルスVFGが出力される。端子27dには駆動電圧VDCが印加され、駆動コイルU,V,Wに供給される。ファンモータ5の回転数は端子27dに印加される駆動電圧VDCによって決定される。端子27eからは駆動コイルU,V,Wに流れる駆動電流が出力される。なお、ファンモータ5の回路構成は周知であるので、具体的な接続状態の説明は省略する。
【0014】
図3は、駆動電流検出手段16の回路図であって、この駆動電流検出手段16は、ファンモータ5に内蔵されており、入力端子29と、出力端子30と、カレントトランスCT1と、演算増幅器OP1,OP2と、可変抵抗器VR1,VR2と、抵抗器R30〜R35と、キャパシタC2,C3とを備えている。入力端子29は、カレントトランスCT1を介して接地されていると共に、ファンモータ5の端子27eに接続されている。すなわち、ファンモータ5の駆動コイルU,V,Wを流れた駆動電流は、カレントトランスCT1を通って電源に帰る。カレントトランスCT1の出力端には抵抗器R30が接続されており、この抵抗器R30の一端は接地されている。抵抗器R30の他端は演算増幅器OP1の非反転入力端に接続されている。演算増幅器OP1の反転入力端は抵抗器R31を介して接地されており、演算増幅器OP1の出力端と反転入力端との間には抵抗器R32とキャパシタC2との並列回路が接続されている。演算増幅器OP1の出力端は抵抗器R34を介して演算増幅器OP2の反転入力端に接続されており、直流電圧VCCと接地との間には抵抗器R33と可変抵抗器VR1との直列回路が介装されている。可変抵抗器VR1の摺動子は演算増幅器OP2の非反転入力端に接続されており、演算増幅器OP2の出力端は出力端子30と可変抵抗器VR2の一端とに接続されている。可変抵抗器VR2の他端は、抵抗器R35とキャパシタC3との並列回路を介して演算増幅器OP2の反転入力端に接続されている。
【0015】
カレントトランスCT1と演算増幅器OP1と抵抗器R30〜R32とキャパシタC2とは、ファンモータ5の駆動電流量を電圧に変換する電流・電圧変換回路を構成している。抵抗器R33と可変抵抗器VR1とは、基準電圧を発生させる基準電圧回路を構成している。演算増幅器OP2と抵抗器R34とは、電流・電圧変換回路の出力と基準電圧回路の出力との差を増幅する増幅回路を構成している。可変抵抗器VR2と抵抗器R35とキャパシタC3とは、増幅回路の出力を入力側に帰還させる帰還回路を構成している。可変抵抗器VR1は、基準電圧回路により発生された基準電圧を調整するための第1の調整手段を構成している。可変抵抗器VR2は、帰還回路による帰還率を調整するための第2の調整手段を構成している。
【0016】
次に、上記給湯装置の動作について、図4に示すフローチャートを参照しながら説明する。図外のリモートコントローラからコントローラに運転指令が入力されると、給湯制御部13が、バルブ11,12や図外のイグナイタなどを制御し、点火動作を開始すると共に、最適送風量判別手段18にバーナ2の燃焼量すなわちバルブ11の開弁量に応じた信号を出力する。これにより最適送風量判別手段18が、給湯制御部13からの信号に基づいて、バーナ2の燃焼量に応じた最適な送風量を演算する(ステップS1)。
【0017】
この時点ではファンモータ5は回転しておらず、流路抵抗判別手段17による判別結果が最適回転数判別手段19に供給されないので、最適回転数判別手段19は、予め設定された例えば毎分3000回転程度の初期回転数に対応した信号をモータ制御手段20に出力する(ステップS2)。これによりモータ制御手段20が、初期回転数で回転するようにファンモータ5に電源VDCを供給し、ファンモータ5を駆動する。
【0018】
次に、異常判別手段21が、内蔵しているタイマを起動させる(ステップS3)。
【0019】
次に、駆動電流検出手段16が、ファンモータ5の駆動電流を検出する(ステップS4)。すなわち、ファンモータ5の駆動コイルU,V,Wを流れた駆動電流は、図3に示すように、ファンモータ5の端子27eから駆動電流検出手段16の入力端子29に流入し、カレントトランスCT1を通って電源に帰る。したがってカレントトランスCT1にはファンモータ5の駆動電流に応じた電圧が誘起され、これが抵抗器R30に印加され、演算増幅器OP1の非反転入力端に入力される。演算増幅器OP1は、非反転入力端に入力された電圧を抵抗器31,32で決まる増幅率で増幅し、抵抗器R34を介して演算増幅器OP2の反転入力端に供給する。これにより演算増幅器OP2は、演算増幅器OP2の非反転入力端に入力される電圧と演算増幅器OP1の出力電圧との差電圧を、可変抵抗器VR2と抵抗器R34,R35とによって決まる増幅率で増幅し、検出電圧Eとして出力端子30に出力する。この検出電圧Eは流路抵抗判別手段17に供給される。
【0020】
ここで、演算増幅器OP2の非反転入力端に入力される電圧は、可変抵抗器VR1の摺動子を移動させることにより変化する。すなわち、可変抵抗器VR1の摺動子を移動させると、演算増幅器OP2によって増幅される、演算増幅器OP1の出力電圧との差電圧が変化するので、カレントトランスCT1を流れる駆動電流と出力端子14に表れる検出電圧Eとの関係が変化する。したがって、図5に示すように、ファンモータ5の回転数Nと出力端子30に表れる検出電圧Eとの関係は、可変抵抗器VR1の摺動子を移動させることにより、例えば実線の状態から破線の状態へとレベルがシフトする。この結果、製造時に個々のファンモータ5の回転数と駆動電流との特性のレベルにばらつきがある場合、それを可変抵抗器VR1により調整して予め検出特性を調整しておくことができる。
【0021】
また、可変抵抗器VR2の摺動子を移動させると、可変抵抗器VR2の抵抗値が変化するので、帰還率が変化し、演算増幅器OP2の増幅率が変化することから、カレントトランスCT1を流れる駆動電流と出力端子30に表れる検出電圧Eとの関係が変化する。したがって、図6に示すように、ファンモータ5の回転数Nと出力端子30に表れる検出電圧Eとの関係は、可変抵抗器VR2の摺動子を移動させることにより、例えば実線の状態から破線の状態へと傾きが変化する。この結果、製造時に個々のファンモータ5の回転数と駆動電流との特性の傾きにばらつきがある場合、それを可変抵抗器VR2により調整して予め検出特性を調整しておくことができる。
【0022】
次に、回転数検出手段15が、ファンモータ5のホール素子25からの回転パルスに基づいて、ファンモータ5の回転数を検出する(ステップS5)。
【0023】
次に、流路抵抗判別手段17が、駆動電流検出手段16からの検出電圧Eと回転数検出手段15からの回転数に対応した信号とに基づいて、ファンケース4およびケーシング1内の送風流路の流路抵抗Φを判別する(ステップS6)。すなわち、ファンモータ5の回転数Nと駆動電流Iとの関係は、図7に示すように、流路抵抗Φに応じて変化するので、回転数Nと駆動電流Iと流路抵抗Φとの関係のデータを予めメモリなどに保持しておくことにより、回転数Nと駆動電流Iとから流路抵抗Φを決定できる。例えば、回転数NがN1のときに駆動電流IがI0になり、あるいは回転数NがN2のときに駆動電流IがI1になれば、流路抵抗ΦがΦ1であると判断でき、回転数NがN0のときに駆動電流IがI0になれば、流路抵抗ΦがΦ0であると判断できる。なお、Φ0はΦ1よりも小さい。また、この流路抵抗Φは、ファンモータ5の回転数をN、駆動電流をIとすれば、例えば実験的に下記数1により求められる。ただし、g(N)、f(N)は回転数Nの関数である。あるいは、別の実験式として、下記数2により求められる。
【数1】
Figure 0003716828
【数2】
Figure 0003716828
【0024】
次に、異常判別手段21が、流路抵抗判別手段17により判別された流路抵抗Φが、予め決められた下限値ΦLと上限値ΦHとの間に入っているか否かを判断する(ステップS7)。すなわち、流路抵抗Φが下限値ΦLと上限値ΦHとの間から外れた領域を図8に斜線で示しているが、流路抵抗Φがこのような値になった場合、ファンモータ5の回転数を制御しても適切な送風量を確保できないので、異常状態と判断する必要があり、流路抵抗Φが下限値ΦLと上限値ΦHとの間に入っていれば、ファンモータ5の回転数を制御することにより適切な送風量を確保できるので、正常状態であると判断できる。なお、図8の第1象限はファンモータ5の回転数Nと駆動電流Iと流路抵抗Φとの関係を表しており、第4象限はファンモータ5の回転数Nと送風量Qと流路抵抗Φとの関係を表している。
【0025】
異常判別手段21は、流路抵抗Φが下限値ΦLと上限値ΦHとの間に入っていれば正常と判別して、内蔵しているタイマをクリアする(ステップS8)。このタイマは、クリアされると直ちに再起動して、計時動作を再開する。
【0026】
次に、最適回転数判別手段19が、流路抵抗判別手段17により判別された流路抵抗Φと最適送風量判別手段18により判別された最適送風量とに基づいて、最適回転数を演算する(ステップS9)。すなわち、図7に示すように、ファンモータ5の回転数Nと送風量Qとの関係は流路抵抗Φによって変化するので、最適送風量が得られるように流路抵抗Φに応じて最適回転数を判別するのである。この最適回転数Nsは、最適送風量をQ0とし、基準となる流路抵抗Φ0と燃焼量とに基づいて決定された基準回転数をNgとすると、例えば下記数3の実験式により求められる。あるいは、別の実験式として、下記数4によっても求められる。
【数3】
Figure 0003716828
【数4】
Figure 0003716828
【0027】
さらに、最適回転数判別手段19が、演算した最適回転数をモータ制御手段20に出力する(ステップS10)。
【0028】
これにより、モータ制御手段20が、最適回転数判別手段19からの最適回転数と回転数検出手段15からの実際の回転数とに基づいて、ファンモータ5が最適回転数となるようにファンモータ5を駆動する。
【0029】
次に、最適送風量判別手段18が、給湯制御部13からの信号に基づいて燃焼量に変更があったか否かを判断し(ステップS11)、変更がなければ、マイクロコンピュータ23が、リモートコントローラから運転終了の指示が入力されたか否かを判断し(ステップS12)、入力されていなければ、ステップS5に戻る。入力されていれば、ルーチンを終了する。
【0030】
ステップS11において、最適送風量判別手段18が燃焼量に変更があったと判断すれば、ステップS1に戻る。
【0031】
ステップS7において、異常判別手段21が、流路抵抗Φが予め決められた下限値ΦLと上限値ΦHとの間に入っていないと判断すれば、さらに異常判別手段21が、内蔵のタイマがタイムアップしているか否かを判断し(ステップS13)、タイムアップしていなければステップS9に進む。タイムアップしていれば、異常処理手段22に異常である旨を出力する。すなわち、流路抵抗Φは風の影響などにより絶えず変化する場合があるので、流路抵抗Φが所定時間以上にわたって異常な値になったときにのみ、異常状態と判断するのである。
【0032】
次に、異常処理手段22が、異常判別手段21からの異常である旨の信号が入力されることにより、給湯制御部13に異常信号を出力してバーナ2の燃焼を停止させるなどの異常処理を行って(ステップS14)、ルーチンを終了する。
【0033】
このように、ファンモータ5の回転数を検出する回転数検出手段15と、ファンモータ5の駆動電流に関する情報を検出する駆動電流検出手段16と、駆動電流検出手段16からの検出値と回転数検出手段15により検出された回転数とに基づいて送風流路の流路抵抗を判別する流路抵抗判別手段17とを設けたので、送風流路の流路抵抗を判別できる。したがって、送風流路の流路抵抗に応じた適切なモータ回転数を維持することが可能になる。
【0034】
さらに、バーナ2の燃焼量に基づいて最適送風量を判別する最適送風量判別手段18と、最適送風量判別手段18により判別された最適送風量と流路抵抗判別手段17により判別された流路抵抗とに基づいてファンモータ5の最適回転数を判別する最適回転数判別手段19と、最適回転数判別手段19により判別された最適回転数となるようにファンモータ5を駆動するモータ制御手段20とを設けたので、送風流路の流路抵抗に応じた適切なモータ回転数を常に維持できる。したがって、流路抵抗が変化しても、常に最適送風量を維持できる。
【0035】
さらに、流路抵抗判別手段17により判別された流路抵抗に基づいて燃焼の異常を判別する異常判別手段21と、異常判別手段21により燃焼の異常と判別されたときにバーナ2の燃焼を停止させる異常処理手段22とを設けたので、バーナ2の火炎が消失する以前の段階で流路抵抗から燃焼の異常を的確に判断でき、安全性の向上を図ることができる。
【0036】
(実施例2)
図9は、本願発明の実施例2に係るファンモータ制御装置を備えた給湯装置の概略構成図であって、図1に示す実施例1の給湯装置と異なる点は、マイクロコンピュータ23により実現される構成要素として、流路抵抗判別手段17により判別された流路抵抗と回転数検出手段15により検出された回転数とに基づいて現実の送風量を推測する送風量推測手段32と、バーナ2の燃焼量に基づいてファンモータ5の目標回転数を判別する目標回転数判別手段33とを加えた点である。したがって、最適回転数判別手段19は、最適送風量判別手段18により判別された最適送風量と送風量推測手段32により推測された現実の送風量との偏差と、目標回転数判別手段33により判別された目標回転数とに基づいてファンモータ5の最適回転数を判別する。また異常判別手段21は、送風量推測手段32により推測された現実の送風量に基づいて燃焼の異常を判別する。その他の構成は図1に示す実施例1の給湯装置と同様である。
【0037】
次に、上記給湯装置の動作について、図10に示すフローチャートを参照しながら説明する。図外のリモートコントローラからコントローラに運転指令が入力されると、給湯制御部13が、バルブ11,12や図外のイグナイタなどを制御し、点火動作を開始すると共に、最適送風量判別手段18にバーナ2の燃焼量すなわちバルブ11の開弁量に応じた信号を出力する。これにより最適送風量判別手段18が、給湯制御部13からの信号に基づいて、バーナ2の燃焼量に応じた最適な送風量を演算する(ステップS21)。
【0038】
次に、目標回転数判別手段33が、給湯制御部13からの信号に基づいて、バーナ2の燃焼量に応じた最適な送風量を得るための目標回転数を演算する(ステップS22)。
【0039】
この時点ではファンモータ5は回転しておらず、流路抵抗判別手段17による判別結果が最適回転数判別手段19に供給されないので、最適回転数判別手段19は、予め設定された例えば毎分3000回転程度の初期回転数に対応した信号をモータ制御手段20に出力する(ステップS23)。これによりモータ制御手段20が、初期回転数で回転するようにファンモータ5に電源を供給し、ファンモータ5を駆動する。
【0040】
次に、異常判別手段21が、内蔵しているタイマを起動させる(ステップS 24)。
【0041】
次に、駆動電流検出手段16が、ファンモータ5の駆動電流を検出する(ステップS25)。
【0042】
次に、回転数検出手段15が、ファンモータ5のホール素子25からの回転パルスに基づいて、ファンモータ5の回転数を検出する(ステップS26)。
【0043】
次に、流路抵抗判別手段17が、駆動電流検出手段16からの検出電圧Eと回転数検出手段15からの回転数に対応した信号とに基づいて、ファンケース4およびケーシング1内の空気流路の流路抵抗Φを判別する(ステップS27)。
【0044】
次に、送風量推測手段32が、流路抵抗判別手段17により判別された流路抵抗Φと回転数検出手段15により検出されたファンモータ5の回転数Nとに基づいて、現実の送風量Qを演算する(ステップS28)。すなわち、図7に示すように、ファンモータ5の現実の回転数Nと現実の送風量Qとの関係は、空気流路の流路抵抗Φの変化により変化するが、流路抵抗Φが決まればそれに応じて一意に定まるので、回転数Nと流路抵抗Φと送風量Qとの関係を求めて予めメモリに記憶させておくことにより、ファンモータ5の回転数Nと流路抵抗Φとから現実の送風量Qを演算できる。
【0045】
次に、異常判別手段21が、送風量推測手段32により推測された送風量Qが、予め決められた下限値QLと上限値QHとの間に入っているか否かを判断する(ステップS29)。
【0046】
異常判別手段21は、送風量Qが下限値QLと上限値QHとの間に入っていれば正常と判別して、内蔵しているタイマをクリアする(ステップS30)。このタイマは、クリアされると直ちに再起動して、計時動作を再開する。
【0047】
次に、最適回転数判別手段19が、送風量推測手段32により推測された現実の送風量Q1と最適送風量判別手段18により判別された最適送風量Q0との偏差に基づいて、下記数5により最適回転数N1を演算する(ステップS31)。すなわち、最適送風量Q0と推測された現実の送風量Q1との偏差の比例成分と積分成分との和をフィードバック成分として、目標回転数N0に加えている。したがって、最適送風量Q0と推測された現実の送風量Q1との偏差がゼロの状態で安定すれば、目標回転数N0が最適回転数N1になる。
【数5】
Figure 0003716828
【0048】
さらに、最適回転数判別手段19が、演算した最適回転数をモータ制御手段20に出力する(ステップS32)。
【0049】
これにより、モータ制御手段20が、最適回転数判別手段19からの最適回転数と回転数検出手段15からの実際の回転数とに基づいて、ファンモータ5が最適回転数となるようにファンモータ5を駆動する。
【0050】
次に、最適送風量判別手段18が、給湯制御部13からの信号に基づいて燃焼量に変更があったか否かを判断し(ステップS33)、変更がなければ、マイクロコンピュータ23が、リモートコントローラから運転終了の指示が入力されたか否かを判断し(ステップS34)、入力されていなければ、ステップS25に戻る。入力されていれば、ルーチンを終了する。
【0051】
ステップS33において、最適送風量判別手段18が燃焼量に変更があったと判断すれば、ステップS21に戻る。
【0052】
ステップS29において、異常判別手段21が、送風量Qが予め決められた下限値QLと上限値QHとの間に入っていないと判断すれば、異常判別手段21が、内蔵のタイマがタイムアップしているか否かを判断し(ステップS35)、タイムアップしていなければステップS31に進む。タイムアップしていれば、異常処理手段22に異常である旨を出力する。すなわち、送風量Qは風の影響などにより絶えず変化する場合があるので、送風量Qが所定時間以上にわたって異常な値になったときにのみ、異常状態と判断するのである。
【0053】
次に異常処理手段22が、異常判別手段21からの異常である旨の信号が入力されることにより、給湯制御部13に異常信号を出力してバーナ2の燃焼を停止させるなどの異常処理を行って(ステップS36)、ルーチンを終了する。
【0054】
このように、ファンモータ5の回転数を検出する回転数検出手段15と、ファンモータ5の駆動電流に関する情報を検出する駆動電流検出手段16と、駆動電流検出手段16からの検出値と回転数検出手段15により検出された回転数とに基づいてケーシング1およびファンケース4の送風流路の流路抵抗を判別する流路抵抗判別手段17と、この流路抵抗判別手段17により判別された流路抵抗と回転数検出手段15により検出された回転数とに基づいて現実の送風量を推測する送風量推測手段32とを設けたので、風速センサなどの風量検知手段を送風流路に設置することなく、現実の送風量を正確に推測できる。したがって、風速センサなどの風量検知手段による流路抵抗の増加を招くことなく、推測した送風量からファンモータ5を適切に制御することが可能になる。しかも、風速センサなどの風量検知手段を送風流路に設置する必要がないことから、製造コストを低減できる。
【0055】
さらに、バーナ2の燃焼量に基づいて最適送風量を判別する最適送風量判別手段18と、最適送風量判別手段18により判別された最適送風量と送風量推測手段32により推測された現実の送風量との偏差に基づいてファンモータ5の最適回転数を判別する最適回転数判別手段19と、最適回転数判別手段19により判別された最適回転数となるようにファンモータ5を駆動するモータ制御手段20とを設けたので、風速センサなどの風量検知手段を送風流路に設置することなく、現実の送風量を推測してファンモータ5を適切に制御できる。したがって、流路抵抗などの変化にかかわらず、常に最適燃焼を維持できる。
【0056】
さらに、バーナ2の燃焼量に基づいてファンモータ5の目標回転数を判別する目標回転数判別手段と、最適送風量判別手段18により判別された最適送風量と送風量推測手段32により推測された現実の送風量との偏差と目標回転数判別手段により判別された目標回転数とに基づいてファンモータ5の最適回転数を判別する最適回転数判別手段19とを設け、目標回転数判別手段により判別された目標回転数をN0、最適送風量判別手段18により判別された最適送風量をQ0、送風量推測手段32により推測された現実の送風量をQ1、所定の定数をKp、Kiとしたときに、最適回転数判別手段19が、最適回転数N1を上記数1にしたがって演算する構成としたので、風速センサなどの風量検知手段を送風流路に設置することなく、現実の送風量を推測してファンモータ5を適切に制御できる。したがって、流路抵抗などの変化にかかわらず、常に最適燃焼を維持できる。しかも、最適送風量と推測された現実の送風量との偏差を用いてPI制御によりモータ回転数を制御するので、ファンモータ5を円滑に制御できる。
【0057】
さらに、送風量推測手段32により推測された現実の送風量に基づいて燃焼の異常を判別する異常判別手段21と、異常判別手段21により燃焼の異常と判別されたときにバーナ2の燃焼を停止させる異常処理手段22とを設けたので、バーナ2の火炎が消失する以前の段階で送風量から燃焼の異常を的確に判断でき、安全性の向上を図ることができる。
【0058】
なお、上記実施例2では、図10のステップS29において、異常判別手段21が、送風量推測手段32により推測された現実の送風量Qが下限値QLと上限値QHとの間の値であるか否かにより異常を判別するように構成したが、異常判別手段21が、最適送風量判別手段18により判別された最適送風量と送風量推測手段32により推測された現実の送風量との偏差が所定の上限値以上であるか否かにより異常を判別するように構成してもよい。このようにしても、バーナ2の火炎が消失する以前の段階で燃焼の異常を的確に判断でき、安全性の向上を図ることができる。
【0059】
また、上記各実施例では、異常判別手段21にタイマを内蔵させて、流路抵抗Φあるいは送風量Qの値が所定時間以上継続して所定範囲外になったときに異常と判断したが、必ずしもタイマを設ける必要はなく、流路抵抗Φあるいは送風量Qの値が所定範囲外になれば、すぐに異常と判断するように構成してもよい。
【0060】
また、上記各実施例では、図4のステップS2あるいは図10のステップS23において、最適回転数判別手段19が、モータ制御手段20に所定の初期回転数を出力するように構成したが、最適回転数判別手段19が、最適送風量判別手段18により判別された最適送風量に応じた回転数をモータ制御手段20に出力するように構成してもよい。
【0061】
【発明の効果】
以上説明したように、請求項1の発明によれば、送風量推測手段により、送風流路の流路抵抗とファンモータの回転数とに基づいて現実の送風量を推測するので、風速センサなどの風量検知手段を送風流路に設置することなく、現実の送風量を正確に推測できる。したがって、風速センサなどの風量検知手段による流路抵抗の増加を招くことなく、推測した送風量からファンモータを適切に制御することが可能になる。しかも、風速センサなどの風量検知手段を送風流路に設ける必要がないことから、製造コストの低減も可能になる。また、燃焼量に応じた最適送風量と現実の送風量との偏差に基づいてファンモータの最適回転数を判別し、その最適回転数となるようにファンモータを駆動するので、風速センサなどの風量検知手段を送風流路に設置することなく、現実の送風量を推測してファンモータを適切に制御できる。したがって、流路抵抗などが変化しても、常に最適燃焼を維持できる。
【図面の簡単な説明】
【図1】本願発明の実施例1に係るファンモータ制御装置を備えた給湯装置の概略構成図である。
【図2】本願発明の実施例1に係るファンモータ制御装置により制御されるファンモータの回路図である。
【図3】本願発明の実施例1に係るファンモータ制御装置に備えられた駆動電流検出手段の回路図である。
【図4】本願発明の実施例1に係るファンモータ制御装置の動作を説明するフローチャートである。
【図5】本願発明の実施例1に係るファンモータ制御装置に備えられた駆動電流検出手段による検出電圧とファンモータの回転数との関係の説明図である。
【図6】本願発明の実施例1に係るファンモータ制御装置に備えられた駆動電流検出手段による検出電圧とファンモータの回転数との関係の説明図である。
【図7】本願発明の実施例1に係るファンモータ制御装置により制御されるファンモータの駆動電流と回転数と送風量との関係の説明図である。
【図8】本願発明の実施例1に係るファンモータ制御装置に備えられた異常判別手段による異常判別領域の説明図である。
【図9】本願発明の実施例2に係るファンモータ制御装置を備えた給湯装置の概略構成図である。
【図10】本願発明の実施例2に係るファンモータ制御装置の動作を説明するフローチャートである。
【符号の説明】
2 バーナ
5 ファンモータ
6 シロッコファン
15 回転数検出手段
16 駆動電流検出手段
17 流路抵抗判別手段
18 最適送風量判別手段
19 最適回転数判別手段
20 モータ制御手段
21 異常判別手段
22 異常処理手段
32 送風量推測手段
33 目標回転数判別手段

Claims (1)

  1. 送風流路に配置された送風用のファンを回転させるファンモータに電源を供給してファンモータを回転させるファンモータ制御装置において、前記燃焼器の燃焼量に基づいて最適送風量を判別する最適送風量判別手段と、前記ファンモータの回転数を検出する回転数検出手段と、前記ファンモータの駆動電流に関する情報を検出する駆動電流検出手段と、流路抵抗をパラメータとした前記ファンモータの回転数と駆動電流との関係を示すデータが記憶された第1の記憶手段と、流路抵抗をパラメータとした前記ファンモータの回転数と送風量との関係を示すデータが記憶された第2の記憶手段と、前記駆動電流検出手段からの検出値と前記回転数検出手段により検出された回転数と前記第1の記憶手段に記憶されたデータとを用いて前記送風流路の流路抵抗を判別する流路抵抗判別手段と、この流路抵抗判別手段により判別された流路抵抗と前記回転数検出手段により検出された回転数と前記第2の記憶手段に記憶されたデータとを用いて現実の送風量を推測する送風量推測手段と、前記最適送風量判別手段により判別された最適送風量と前記送風量推測手段により推測された現実の送風量との偏差に基づいて前記ファンモータの最適回転数を判別する最適回転数判別手段と、この最適回転数判別手段により判別された最適回転数となるように前記ファンモータを駆動するモータ制御手段とを設けたことを特徴とする、ファンモータ制御装置。
JP2002337863A 2002-11-21 2002-11-21 ファンモータ制御装置 Expired - Fee Related JP3716828B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337863A JP3716828B2 (ja) 2002-11-21 2002-11-21 ファンモータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337863A JP3716828B2 (ja) 2002-11-21 2002-11-21 ファンモータ制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6297445A Division JPH08159082A (ja) 1994-11-30 1994-11-30 ファンモータ制御装置

Publications (2)

Publication Number Publication Date
JP2003185131A JP2003185131A (ja) 2003-07-03
JP3716828B2 true JP3716828B2 (ja) 2005-11-16

Family

ID=27606801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337863A Expired - Fee Related JP3716828B2 (ja) 2002-11-21 2002-11-21 ファンモータ制御装置

Country Status (1)

Country Link
JP (1) JP3716828B2 (ja)

Also Published As

Publication number Publication date
JP2003185131A (ja) 2003-07-03

Similar Documents

Publication Publication Date Title
KR20060087071A (ko) 풍량센서를 이용한 오일 버너의 적정 공연비 제어 시스템및 그 제어방법
JP3716826B2 (ja) ファンモータ制御装置
JP3716828B2 (ja) ファンモータ制御装置
JP4354374B2 (ja) 燃焼装置
JP3716827B2 (ja) ファンモータ制御装置
JPH08159082A (ja) ファンモータ制御装置
JP3465518B2 (ja) ファンモータ制御装置
JP2857321B2 (ja) 燃焼装置
JP4106148B2 (ja) 燃焼装置
JPH08266080A (ja) モータ制御装置
JP3531443B2 (ja) 燃焼装置
JP2669771B2 (ja) 燃焼装置
JP3182101B2 (ja) 燃焼機器のファン制御装置
JP2939124B2 (ja) 送風装置
JP2982062B2 (ja) 燃焼制御装置
JP2982063B2 (ja) 燃焼制御装置
JPH09261988A (ja) 直流モータ制御装置
KR0153711B1 (ko) 연소장치
JP3012497B2 (ja) 燃焼装置
JP2857326B2 (ja) 送風装置
JP3300150B2 (ja) 燃焼装置およびその燃焼能力更新方法
JP3531400B2 (ja) 燃焼装置のファンモータ制御方法およびその装置
JP2945602B2 (ja) 燃焼装置
JP3204050B2 (ja) 燃焼装置の送風量制御装置
JPH07310919A (ja) 燃焼制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees