JP3716532B2 - 燃料噴射装置 - Google Patents

燃料噴射装置 Download PDF

Info

Publication number
JP3716532B2
JP3716532B2 JP03048497A JP3048497A JP3716532B2 JP 3716532 B2 JP3716532 B2 JP 3716532B2 JP 03048497 A JP03048497 A JP 03048497A JP 3048497 A JP3048497 A JP 3048497A JP 3716532 B2 JP3716532 B2 JP 3716532B2
Authority
JP
Japan
Prior art keywords
fuel injection
pzt actuator
inductance
injection valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03048497A
Other languages
English (en)
Other versions
JPH10227249A (ja
Inventor
千尋 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP03048497A priority Critical patent/JP3716532B2/ja
Publication of JPH10227249A publication Critical patent/JPH10227249A/ja
Application granted granted Critical
Publication of JP3716532B2 publication Critical patent/JP3716532B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料噴射装置に関し、特に、PZTアクチュエータにより駆動される燃料噴射弁を備えた燃料噴射装置に関する。
【0002】
【従来の技術】
従来より、例えば特公平7−72513号に開示される如く、PZTアクチュエータにより駆動される燃料噴射弁を備えた燃料噴射装置が公知である。燃料噴射弁は、PZTアクチュエータの伸縮変形に応じて変位される弁体と、該弁体の変位に応じて開閉されるノズルとを備えている。従って、PZTアクチュエータの伸縮変形に応じてノズルが開閉されることで、燃料噴射のオンオフが制御される。一般に、PZTアクチュエータは高い時間応答性を有している。このため、上記従来の燃料噴射装置によれば、燃料噴射のオン・オフが高速で切り替えられることで、燃料噴射量を広い範囲で正確に制御することが可能とされる。
【0003】
ところで、一般にPZTアクチュエータは温度の低下に応じて静電容量が小さくなる特性を有している。また、PZTアクチュエータの伸び量は充電された電荷量に比例している。従って、PZTアクチュエータに一定の電圧が付与された場合、温度の低下に応じてチャージされた電荷量が減少し、これに応じて、PZTアクチュエータの変形量は小さくなる。かかるPZTアクチュエータの温度依存性を補償するため、上記従来の燃料噴射装置においては、PZTアクチュエータの温度上昇に応じてPZTアクチュエータに付与する電圧を減少させることとしている。従って、上記従来の燃料噴射装置によれば、温度変化にかかわらずPZTアクチュエータの伸縮変形量が一定に維持される。
【0004】
【発明が解決しようとする課題】
上述の如く、PZTアクチュエータは高い時間応答性を有している。このため、上記従来の燃料噴射装置において、PZTアクチュエータは高速で収縮変形し、これに伴って、弁体によるノズルの開閉も高速で行なわれる。このように、燃料噴射弁が高速で動作することによって大きな動作音が発生し、特に、アイドル運転時等の比較的静寂な車両の運転状態において、運転者に違和感を与えてしまうことになる。
【0005】
また、上述の如く、PZTアクチュエータの静電容量は温度に依存して変化する。PZTアクチュエータの静電容量が変化すると、PZTアクチュエータを駆動する駆動回路の時定数も変化する。このため、上記従来の燃料噴射装置によれば、温度変化に応じてPZTアクチュエータの動作速度が変化し、燃料噴射弁の応答性が一定に保たれなくなってしまう。
【0006】
本発明は、上述の点に鑑みてなされたものであり、PZTアクチュエータにより駆動される燃料噴射弁を備えた燃料噴射装置において、PZTアクチュエータの動作速度を制御することにより、燃料噴射弁の動作音により運転者に違和感を与えるのを防止すると共に、温度変化にかかわらず燃料噴射弁の応答性を一定に維持することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的は、請求項1に記載する如く、PZTアクチュエータにより駆動される燃料噴射弁と、前記PZTアクチュエータを駆動する共振回路とを備える燃料噴射装置であって、
PZTアクチュエータの静電容量に影響を及ぼす部位の温度情報又はPZTアクチュエータの静電容量の変化に応じた情報を検出する情報検出手段と、
該情報検出手段により検出された情報に基づいて、前記共振回路の共振周波数を変化させる共振周波数変化手段とを備える燃料噴射装置により達成される。
【0010】
本発明において、共振回路の共振周波数はPZTアクチュエータの静電容量に依存して変化する。一般に、PZTアクチュエータの静電容量は温度変化に応じて変化する。従って、温度変化に応じて共振回路の共振周波数は変化する。共振周波数変化手段は温度に応じた情報に基づいて、共振回路の共振周波数を変化させる。この結果、静電容量の変化に起因する共振周波数の変化が補償される。PZTアクチュエータの応答性は共振回路の共振周波数に応じて変化する。従って、温度変化に伴ってPZTアクチュエータの応答性が変化することが防止され、これにより、燃料噴射弁の応答性は温度変化にかかわらず一定に維持される。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の一実施例である燃料噴射装置について説明する。図1は、本実施例の燃料噴射装置が備える燃料噴射弁10の構成図である。図1に示す如く、燃料噴射弁10はハウジング12を備えている。ハウジング12はその内部の図1中上部にピストン室12aを備えていると共に、図1中下面に開口するノズル室12bを備えている。ピストン室12aとノズル室12bとは通路12cにより互いに連通されている。
【0012】
ハウジング12のピストン室12aの内部の図1中上底面にはPZTアクチュエータ14が固定されている。PZTアクチュエータの図1中下面にはピストン16が連結されている。PZTアクチュエータ14は端子14a、14b間に電圧が付与されると図1中上下方向に伸びるように構成されている。従って、端子14a、14b間に付与される電圧がオンオフされることにより、PZTアクチュエータ14に伸縮変形が生じ、かかる伸縮変形に伴ってピストン16は図1中上下方向に変位する。
【0013】
ハウジング12のノズル室12bにはノズル18が図1中下向きに突出して伸びるように取り付けられている。ノズル18の図1中下端部には噴射口18aが設けられている。ノズル18の内部にはプランジャ20が図1中上下方向に摺動可能に、かつ、ノズル18の内面との間に僅かな流体の流れを許容する隙間を形成するように配設されている。ノズル18の内部のプランジャ20より図1中下方にはノズル室18bが画成されている。なお、ピストン16とプランジャ20との間に画成された空間を、以下、液圧室22と称する。
【0014】
プランジャ20と、ハウジング12のノズル室12bの底面との間にはスプリング24が配設されている。スプリング24はプランジャ20を図1中下向きに付勢している。また、プランジャ20の図1中下端面にはニードル26が連結されている。ニードル26の先端部には弁体26aが固定されている。ニードル26がプランジャ20と共に図1中上下方向に変位することで、弁体26aが噴射口18aを開閉させる。ノズル18には、ノズル室18bと、図示しない燃料ポンプとを連通する燃料供給通路28が連通している。ノズル室18bには燃料供給通路28を介して高圧の燃料が供給される。
【0015】
次に、燃料噴射弁10の動作について説明する。なお、常態において、PZTアクチュエータ14の端子14a、14bには所定の電圧が付与されており、従って、PZTアクチュエータ14は伸張状態にある。上述の如く、プランジャ20とノズル18の内面との間には僅かな流体の流れを許容する隙間が形成されている。このため、ノズル室18bに燃料が供給された場合、定常的にはノズル室18b及び液圧室22の液圧は互いに等しく維持される。かかる状態では、プランジャ20はスプリング24の発する付勢力によって、弁体26aが噴射口18aを閉塞するように、図1中下向きに変位されるため、燃料の噴射は遮断されている。
【0016】
この状態から、PZTアクチュエータ14の端子14a、14bへ付与された電圧がオフされると、PZTアクチュエータ14は収縮し、ピストン16は図1中上向きに変位する。この場合、液圧室22内の圧力が急速に低下することでプランジャ20に作用する力の均衡が崩れ、プランジャ20はニードル26と共に図1中上向きに変位する。このため、弁体26aが噴射孔18aから離脱し、噴射口18aが開放されることで、ノズル室18b内の燃料が噴射口18aから噴射される。この状態から、再びPZTアクチュエータ14の端子14a、14b間に電圧が付与されると、液圧室22の圧力は上昇し、プランジャ20が図1中下向きに変位されることで、燃料噴射は遮断される。
【0017】
このように、燃料噴射弁10においてはPZTアクチュエータ14の端子14a、14bに付与する電圧がオフされると、PZTアクチュエータ14が収縮変形することで燃料が噴射口18aから噴射され、一方、端子14a、14bに付与される電圧がオンされると、PZTアクチュエータ14が伸張変形することで燃料の噴射が停止される。一般に、PZTアクチュエータは高い時間応答性を有している。このため、燃料噴射弁10によれば、短い周期で燃料噴射をオンオフさせることができる。
【0018】
図2に、本実施例の燃料噴射弁10、及び、従前の電磁式燃料噴射弁について、燃料噴射を指令した期間の長さ(以下、指示噴射期間Tと称す)と、1回の噴射当たりの燃料噴射量Qとの関係を、それぞれ○印及び◆印で示す。なお、燃料噴射弁10においては、指示噴射期間Tは、PZTアクチュエータ14の端子14a、14bに付与する電圧をオフする期間の長さに相当している。
【0019】
図2に示す如く、燃料噴射弁10及び電磁式燃料噴射弁の何れにおいても、1回の噴射当たりの燃料噴射量Qは指示噴射期間Tに比例して変化している。従って、指示噴射期間Tを変化させることで、燃料噴射量Qを制御することができる。しかしながら、図2に示す如く、電磁式燃料噴射弁によれば、指示噴射期間Tが0.5msec以下の領域では、噴射弁が燃料噴射の指令に対して追従することができず、指示噴射期間Tと燃料噴射量Qとの間の直線性が損なわれている。一方、燃料噴射弁10については、PZTアクチュエータ14が高い応答性を有していることで、図2に示す如く、指示噴射期間Tが0.2msec以下の領域においても、指示噴射期間Tと燃料噴射量Qとの間の直線性が維持されている。このように、本実施例の燃料噴射弁10によれば、電磁弁式燃料噴射弁と比較して、指示噴射期間Tのより短い領域まで燃料噴射量Qを正確に制御することができる。
【0020】
また、図2からわかるように、燃料噴射弁10と電磁弁式燃料噴射弁とを比較すると、同一の指示噴射期間Tに対する燃料噴射量Qは燃料噴射弁10の方が大きい。即ち、燃料噴射弁10においては、噴射口18aの開口面積を増大させることにより単位時間当たりの燃料噴射量を増加させているのである。一方、上述の如く、燃料噴射量Qを制御可能な指示噴射期間Tの下限値が低減されていることで、燃料噴射量Qの最小値は小さく抑制されている。このように、本実施例の燃料噴射弁10によれば、従前の電磁式燃料噴射弁と比較して、燃料噴射量Qを広範囲で制御することができる。
【0021】
次に、図3及び図4を参照して、燃料噴射弁10のPZTアクチュエータ14を駆動する駆動回路の構成及びその動作について説明する。図3は、PZTアクチュエータ14を駆動する駆動回路30の回路図を示す。図3に示す如く、駆動回路30はDC−DCコンバータ32を備えている。DC−DCコンバータ32は端子32a、32bを備えている。DC−DCコンバータ32は、制御装置33から付与される制御信号に応じて0V又は所定の正の電圧E0 の何れかの電圧をとる出力電圧Eを端子32a、32b間に出力するように構成されている。DC−DCコンバータ32の端子32aには、充電コイル34の一端が接続されている。充電コイル34の他端は充電サイリスタ36を介して、PZTアクチュエータ14の端子14aに接続されている。一方、DC−DCコンバータ32の端子32aにはPZTアクチュエータ14の端子14bが接続されている。また、PZTアクチュエータの端子14aと端子14bとの間には、放電コイル38及び放電サイリスタ40が直列に接続されている。
【0022】
充電サイリスタ36及び放電サイリスタ40は、それぞれの制御端子36a、及び40aに電圧パルスが付与されることによりオン状態に切り替えられて電流を流通させると共に、オン状態において流通する電流の値がゼロとなった時点でオフ状態に復帰するように構成されている。また、制御装置33により、DC−DCコンバータ32の出力電圧Eの立ち上がり、及び、立ち下がりに同期して、それぞれ、充電サイリスタ36及び放電サイリスタ40の制御端子36a、及び40aに電圧パルスが付与される。
【0023】
充電コイル34及び放電コイル38は、インダクタンス制御装置42に接続されている。インダクタンス制御装置42には、エンジン回転数Neを検出する回転数センサ43、及び、アクセル開度Oaを検出するアクセル開度センサ44が接続されている。後述する如く、充電コイル34及び放電コイル38のインダクタンスLは、インダクタンス制御装置42によって変化される。
【0024】
図4は、PZTアクチュエータ14の動作タイムチャートを示す。図4には、上段から順に、(a)DC−DCコンバータ32の出力電圧E(以下、制御電圧Eと称す)、(b)充電サイリスタ36のオン・オフ状態、(c)放電サイリスタ40のオン・オフ状態、(d)PZTアクチュエータ14に供給される電流(充電電流を正、放電電流を負で示す)、及び(e)PZTアクチュエータ14の端子14a、14b間の電圧Vが示されている。
【0025】
図4(a)に示す如く、時刻t1 以前において、制御電圧Eは電圧E0 に維持されている。時刻t1 において制御電圧Eが0Vに立ち下がると、(c)に示す如くこれに同期して放電サイリスタ40がオンされる。放電サイリスタ40がオンされると、放電コイル38のインダクタンスL、PZTアクチュエータ14の静電容量C、及び回路抵抗RからなるLCR共振回路Cd が形成される。このため、PZTアクチュエータ14に充電されていた電荷が放電されることにより放電電流が共振回路Cd を循環する。この場合、放電電流は次式で表される周期を有する発振電流となる。
【0026】
t=2πL/√(4L/C−R2 ) (1)
ただし、上述の如く、放電サイリスタ40は、オン状態に切り替えられた後、流通する電流値がゼロとなるとオフ状態に復帰する。このため、図4(d)に示す如く、放電電流は時刻t1 から1周期分が流れた後ゼロになる。この場合、図4(e)に示す如く、PZTアクチュエータ14から電荷が放電されることにより端子14a、14b間の電圧Vは低下する。これに伴い、PZTアクチュエータ14が収縮し、燃料噴射弁10から燃料が噴射される。この場合、PZTアクチュエータ14の収縮変形速度は、共振の周期tが短くなるほど大きくなる。従って、制御電圧が立ち下がった時刻t1 から燃料の噴射が開始されるまでの遅れ時間は、上記時間tが小さくなるのに応じて短縮される。
【0027】
時刻t2 において、制御電圧Eが0VからE0 Vに立ち上がると、これに同期して図4(b)に示す如く充電サイリスタ36がオンされる。充電サイリスタ36がオンされると、充電コイル34のインダクタンスL、PZTアクチュエータ14の静電容量C、及び回路抵抗RからなるLCR共振回路Cc が形成される。このため、DC−DCコンバータ32からPZTアクチュエータ14に対して充電電流が供給される。
【0028】
上述の如く、充電サイリスタ36は、オン状態に切り替えられた後、流通する電流値がゼロとなるとオフ状態に復帰する。このため、図4(d)に示す如く、充電電流は時刻t2 から1周期分のみが流れた後ゼロになる。かかる充電電流がPZTアクチュエータ14に供給されることで、図4(e)に示す如く、PZTアクチュエータ14の端子14a、14b間の電圧Vは上昇する。これに伴ってPZTアクチュエータ14が伸張変形することで、燃料噴射弁10からの燃料の噴射は遮断される。この場合、燃料噴射を開始する場合と同様に、制御電圧Eが立ち上がった時刻t2 から燃料噴射が停止されるまでの遅れ時間は、周期tが短くなるのに応じて短縮される。なお、上述の如く、時間tは、PZTアクチュエータ14の変形速度、即ち、燃料噴射弁10の応答性を示すパラメータとみなすことができる。このため、以下、上記時間tを応答時間tとも称する。
【0029】
上述の如く、PZTアクチュエータ14は高い時間応答性を備えている。このため、応答時間tを短く設けることで、制御電圧Eの変化に対してPZTアクチュエータ14の伸縮変形を高速で追従させることができる。従って、制御電圧Eを0Vに維持する期間、即ち、噴射指示時間Tを短く設定することで、燃料噴射期間を短い領域まで制御することができ、これにより、燃料噴射量Qを小さな値まで正確に制御することができる。
【0030】
なお、一般に、PZTアクチュエータに一定電圧が付与された状態での変形量は、温度が上昇するにつれて増加する。そこで、本実施例においては、温度上昇に応じてDC−DCコンバータ32の出力する電圧E0 を減少させることにより、PZTアクチュエータ14の変形量が温度に依存して変化することを防止している。
【0031】
ところで、燃料噴射弁10の動作時には、PZTアクチュエータ14の伸縮変形に伴ってPZTアクチュエータ14自身から音が発生し、また、噴射口18aが開閉される際に、弁体26aと噴射口18aとの衝突に伴う衝突音が発生する。更に、PZTアクチュエータ14の伸縮変形に伴うハウジング12の変形や、ニードル室18a内の燃料の圧力変化に伴う音も発生する。燃料噴射弁10の動作時に生ずるこれらの動作音のレベルは、PZTアクチュエータ14が高速で駆動されるほど高くなる。このため、特に、アイドリング運転時の如く、車両が比較的静粛な状態で運転されている状態で、PZTアクチュエータ14が高速で変形されると、上記した燃料噴射弁10の動作音が騒音として耳につきやすくなり、運転者に違和感を与えることになる。
【0032】
これに対して、本実施例の燃料噴射装置は、車両の運転状態に応じて上記共振回路Cd 、Cc の共振の周期t、即ち、応答時間tを変化させることで、運転者に違和感を与えるのを防止し得る点に特徴を有している。即ち、本実施例においては、アイドリング運転時等の静粛な運転状態において、応答時間tを増加させることでPZTアクチュエータ14の変形速度を低下させ、これにより、燃料噴射弁10の動作音のレベルを低減させる。
【0033】
上記(1)式からわかるように、応答時間tは、インダクタンスL、静電容量C、及び回路抵抗Rによって定められる。従って、L,C、又はRの何れかを変化させることにより、応答時間tを変化させることができる。この場合、静電容量Cは、例えば共振回路Cd 、Cc に可変コンデンサを付加することにより変化させることができ、また、回路抵抗Rは回路に可変抵抗を付加することにより変化させることができる。しかしながら、回路抵抗Rを変化させると、抵抗による熱損失が変化する。このため、PZTアクチュエータ14に付与されるエネルギーが変化することで、PZTアクチュエータ14の伸縮量が変化してしまう。また、(1)式からわかるように、静電容量Cを変化させるよりも、インダクタンスLを変化させる方が、応答時間tを大きく変化させることができる。そこで、本実施例においては、インダクタンス制御装置42によって充電コイル34及び放電コイル38のインダクタンスLを変化させることにより応答時間tを制御することとしている。
【0034】
以下、図5を参照して、充電コイル34、放電コイル38、及び、インダクタンス制御装置42の構成を説明する。なお、充電コイル34及び放電コイル38の構成は同一であるため、以下、充電コイル34について代表的に説明する。
図5に示す如く、充電コイル34はサブコイル51、52、及び53を備えている。サブコイル51、52、53は、それぞれ、インダクタンスL1 、L2 、L3 を有している。サブコイル51の一端は端子34aに接続され、他端はスイッチング素子55を介してサブコイル52の一端に接続されている。サブコイル52の他端はスイッチング素子56を介してサブコイル53の一端に接続されている。また、サブコイル53の他端は端子34bに接続されている。
【0035】
スイッチング素子55及び56は、それぞれ、制御端子55a、56aに通電されない状態(オフ状態)では、サブコイル51及び52を端子34b側に接続し、通電された状態(オン状態)では、サブコイル51及び52をそれぞれ隣接するサブコイル52及び53側に接続するように構成されている。スイッチング素子55及び56の制御端子55a及び56aはインダクタンス制御装置42に接続されている。従って、インダクタンス制御装置42によってスイッチング素子55及び56のオンオフ状態を切り替えることができる。
【0036】
表1に、スイッチング素子55、56のオン・オフ状態の各組み合わせに対する端子34a、34b間のインダクタンスLを示す。スイッチング素子55、56が共にオフ状態の場合(表1に示す状態I)においては、端子34a、34b間にサブコイル51のみが接続される。従って、この場合、インダクタンスLはL1 となる。スイッチング素子55がオン状態、スイッチング素子56がオフ状態とされた場合(状態II) においては、端子34a、34b間にサブコイル51、52が直列接続される。従って、この場合、インダクタンスLは(L1 +L2 )となる。更に、スイッチング素子55、56が共にオン状態とされた場合(状態III)においては、端子34a、34b間にサブコイル51、52、53が直列接続される。従って、この場合、インダクタンスLは(L1 +L2 +L3 )となる。
【0037】
【表1】
Figure 0003716532
【0038】
インダクタンス制御装置42は、上記状態I〜III の何れかが実現されるように、スイッチング素子55、56のオン・オフを制御する。これにより、インダクタンスLは、L1 、(L1 +L2 )、及び、(L1 +L2 +L3 )の3段階に切り替えられる。
なお、スイッチング素子55、56はサイリスタの組み合わせや、リードリレー等により構成することができる。この場合、サイリスタあるいはリードリレーの動作速度は高速であるため、インダクタンスLの切り替えを高速に行なうことができる。
【0039】
上述の如く、本実施例において、インダクタンスLはL1 〜(L1 +L2 +L3 )の範囲で変化するため、L1 〜L3 を適切に選択することにより、広範囲のインダクタンスLの変化を容易に実現することができる。なお、本実施例においては、3個のサブコイルを用いてインダクタンスLを3段階に切り替えることとしているが、これに限らず、4個以上のサブコイルを用いてインダクタンスLを4段階以上に切り替えることによって、より細かく、かつ広範囲のインダクタンスLの変化を実現することとしてもよい。あるいは、装置の簡単化のため、2個のサブコイルを用いてインダクタンスLを2段階に切り替えることとしてもよい。 本実施例の燃料噴射装置において、インダクタンス制御装置42は、回転数センサ43から出力されるエンジン回転数Ne、及び、アクセル開度センサ44から出力されるアクセル開度Oaに基づいて車両の運転状態の静寂性を判断する。そして、その判断結果に基づいてインダクタンスLを変化させることにより、車両の静寂性に応じて燃料噴射弁10の動作音を適正に制御する。
【0040】
表2は、上記機能を実現するべくインダクタンス制御装置42が参照する表である。表2に示す如く、エンジンの回転数Neは、所定値未満Nの低回転領域と、所定値N以上の高回転数領域とに区分されている。また、アクセル開度Oaは、所定値A1 未満の低開度領域、所定値A1 以上所定値A2 未満の中開度領域、及び、所定値A2 以上の高開度領域に区分されている。インダクタンス制御装置42はエンジン回転数Ne及びアクセル開度Oaがそれぞれ何れの領域にあるかを判別し、表2に基づいて、上記状態I、II、及びIII の何れかを実現することによりインダクタンスを「小」、「中」、「大」の3段階に変化させる。
【0041】
【表2】
Figure 0003716532
【0042】
表2において、エンジン回転数Neが低回転数領域にあり、かつ、アクセル開度Oaが低開度領域にある場合には、車両はアイドリング運転等の比較的静寂な状態で運転されており、従って、燃料噴射弁10の動作音は抑制されるべきと判断される。この場合、インダクタンス制御装置42は、インダクタンスLを「大」とすることにより、即ち、状態III を実現することにより応答時間tを増加させることで、燃料噴射弁10の動作音を抑制する。かかる処理により、車両が静寂な状態で運転されている場合に、燃料噴射弁10の動作音により運転者に違和感を与えることが防止される。
【0043】
また、アクセル開度Oaが高開度領域にある場合、及び、エンジン回転数Neが高回転領域にあり、かつ、アクセル開度Oaが中開度領域にあると判別された場合には、車両の運転音は大きく、燃料噴射弁10から多少の動作音が生じても運転者に違和感を与えることはないと判断される。また、エンジン回転数Neが高くなると、燃料噴射が可能な時間は短く制約されるため、燃料噴射弁10の応答性を過度に低下させるのは好ましくない。従って、この場合には、インダクタンス制御装置42はインダクタンスLを「小」とすることにより、即ち、状態Iを実現することにより、応答時間tを減少させる。
【0044】
更に、エンジン回転数Neが高回転数領域にあり、かつ、アクセル開度Oaが低開度領域にある場合、及び、Neが低回転数領域にあり、かつ、Oaが中開度領域にある場合には、車両の運転音は中程度であり、従って、燃料噴射弁10の動作音も中程度に抑制するべきと判断される。この場合、インダクタンス制御装置42はインダクタンスLを「中」とすることにより、即ち、表1に示す状態IIを実現することにより、応答時間tを中間値に設定する。。
【0045】
以上のように、本実施例によれば、インダクタンス制御装置42がエンジン回転数Ne及びアクセル開度Oaに基づいて車両の静寂性を判断し、その結果に応じて燃料噴射弁10の動作音を変化させることで、燃料噴射弁10の動作音により運転者に違和感を与えるのを防止することができる。
なお、本実施例において上記所定値は、例えば、Nを1500rpm、A1 を15%、A2 を30%としている。ただし、所定値N、A1 、A2 はエンジン回転数Ne及びアクセル開度Oaと車両の運転音との関係より実験的に定められる値であり、エンジンの仕様に応じて変化する。また、エンジン回転数Ne及びアクセル開度Oaの組み合わせと、車両の運転音との間の関係は、運転者の運転操作によって変化することもある。従って、運転者の運転操作の特徴を学習し、その特徴に応じてこれらの所定値を最適に設定することとしてもよい。
【0046】
また、上記実施例において、エンジン回転数Neを2つの領域、アクセル開度Oaを3つの領域に区分しているが、これに限らず任意の数の領域に区分してもよい。また、上記実施例においては、Ne及びOaの各領域の組み合わせに応じてインダクタンスLを3段階に切り替えることとしているが、上記した如く、充電コイル34、放電コイル38を構成するサブコイルの数を変更することで、任意の数の段階で切り替えることとしてもよい。
【0047】
また、本実施例においては、エンジン回転数Ne及びアクセル開度Oaに基づいて車両の静寂性を判断することとしたが、本発明はこれに限定されるものではなく、車速やエンジン負荷等に基づいて車両の静寂性を判断してもよい。あるいは、騒音センサを設けて、運転室内の音響レベルを直接検出することとしてもよい。
【0048】
なお、インダクタンスLを変化させて応答時間tを変化させた場合、PZTアクチュエータ14に付与される充電電流のピーク値も変化する。充電電流のピーク値が増加した場合、回路抵抗による熱損失が増加するため、PZTアクチュエータ14に供給される有効エネルギーが減少し、その結果、PZTアクチュエータ14の伸び量も減少することとなる。従って、本実施例の構成によれば、インダクタンスLを変化させることによって、PZTアクチュエータ14の変形量を制御することも可能である。
【0049】
ところで、充電コイル34及び放電コイル38のインダクタンスLを変化させるための構成は図5に示す例に限られるものではなく、図6及び図7に示す構成によっても同様の目的を達成するとができる。
図6は、充電コイル34のインダクタンスLを変化させる構成の別の例を示す。図6に示す如く、インダクタンス制御装置42にはモータ60が接続されている。モータ60の回転シャフト60aにはレバー62が連結されている。モータ60がインダクタンス制御装置42から駆動信号が付与されることにより駆動されると、レバー62は回転シャフト60aを回転軸として回転する。レバー62の回転シャフト60a側の端部は、端子34aに接続されている。
【0050】
モータ60の回転シャフト60aの周囲には、相異なるインダクタンスLa 〜Lh を有する8個のコイル66a〜66hが放射状に配設されている。レバー62が回転されるとその回転位置に応じて、レバー62の外径側端部と、コイル66a〜66hのうち何れか1つの内径側の端部とが接続される。コイル66a〜66hの外径側端部は共に端子34bへ接続されている。従って、レバー62の回転位置に応じて、端子34a、34b間にコイル66a〜66hのうちの何れか1つのコイルが接続される。
【0051】
このように、図6に示す構成においては、インダクタンス制御装置42によりモータ60の回転角度、即ち、レバー62の回転角度を制御することで、充電コイル34のインダクタンスLをLa 〜Lh の8段階に切り替えることができる。なお、本構成においては8個のコイルを用いてインダクタンスLを8段階に切り替えることとしているが、これに限らず、任意の数のコイルを用いてインダクタンスLを任意の段階に切り替えることができる。
【0052】
次に、図7は、充電コイル34のインダクタンスLを変化させる更に別の構成を示す。図7において、充電コイル34は鉄心70を備えている。鉄心70はコの字型の鉄心本体70aと、アーム70bとより構成されている。鉄心本体70aには巻線72が巻回されている。巻線72の両端は端子34a、34bに接続されている。アーム部70bは鉄心本体70aの一方の端部に軸70cの周りに回動可能に連結されていると共に、鉄心本体70aの他方の端部との間にギャップGを形成している。軸70cにはモータ74の回転シャフトが連結されている。モータ74はインダクタンス制御装置42に接続されており、インダクタンス制御装置42から駆動信号が付与されることで駆動される。モータ74が駆動されると、アーム70bが軸70cを中心として回動されることによりギャップGが変化される。ギャップGが増加すると、巻線72に通電された際に巻線72と鎖交する磁束の大きさが減少する。このため、充電コイル34のインダクタンスLは減少する。同様に、ギャップGが減少すると、インダクタンスLは増加する。このように、図7に示す構成においては、インダクタンス制御装置42からモータ70へ付与する制御信号に応じて、充電コイル34のインダクタンスLを変化させることができる。
【0053】
本構成においては、ギャップGに応じてインダクタンスLが変化するため、インダクタンスLを連続的に変化させることができる。また、図5及び図6に示す構成と異なり、複数のコイルを設けることが不要であるため装置コストが低減されている。更に、本構成においては、機械的な接点が存在しないため、装置の信頼性、耐久性が向上されている。
【0054】
なお、上記実施例においては、駆動回路30が請求項1に記載した共振回路に、回転数センサ43及びアクセル開度センサ44が請求項1に記載した運転状態検出手段に、充電コイル34、放電コイル38、及びインダクタンス制御装置42が請求項1に記載した共振周波数変化手段に、それぞれ相当している。ただし、上記したように、運転状態として回転数Ne、アクセル開度Oaの他、車速、エンジン負荷、運転室内の音響レベル等を用いることができる。
【0055】
次に、本発明の第2実施例の燃料噴射装置について説明する。本実施例の燃料噴射装置は、インダクタンス制御装置42が実行する処理の内容を除いて上記第1実施例の燃料噴射装置と同一の構成を有している。
上述の如く、図3に示す駆動回路30において、温度変化にかかわらずPZTアクチュエータ14の伸縮量を一定に維持するため、DC−DCコンバータ32の出力する電圧E0 を温度上昇に応じて減少させることとしている。しかしながら、PZTアクチュエータ14は、温度の上昇に応じてその静電容量Cが増加する特性を有している。このため、温度変化が生ずると、上記(1)式からわかるように、静電容量Cの変化に応じて応答時間tが変化し、PZTアクチュエータ14の動作速度は変化してしまう。
【0056】
本実施例の燃料制御弁は、温度変化が生じた場合に、PZTアクチュエータ14の伸び量を一定に維持するのみならず、その動作速度をも一定に維持し得る点に特徴を有している。以下、かかる特徴部について説明する。
図8は、PZTアクチュエータ14に付与される充電電流の波形が温度に応じて変化する様子を示している。図8に示す如く、低温になるほどPZTアクチュエータ14の静電容量Cが減少することで、応答時間tが短くなっている。この場合、上述の如く、PZTアクチュエータ14の伸び量は一定に維持されるため、PZTアクチュエータ14への充電量、即ち、充電電流の積分値は一定に維持される。このため、温度が低下して共振周期tが短くなるのに応じて、電流のピーク値Pは増大することになる。そこで、本実施例においては、インダクタンス制御装置42により充電電流のピーク値Pを検出し、ピーク値Pと予め実験的に定めた所定の閾値a及びbとの大小関係に基づいてインダクタンスLを変化させることにより、応答時間tの変化を抑制することとしている。
【0057】
即ち、インダクタンス制御装置42はピーク値Pが所定の閾値aを上回った場合には、温度低下に伴って応答時間tが小さくなっていると判断し、表1に示す状態III を実現することによりインダクタンスLを「大」とする。一方、ピーク値Pが第2の所定の閾値b(b<a)を下回った場合には温度上昇に伴って応答時間tが長くなっていると判断し、状態Iを実現することによりインダクタンスLを「小」とする。更に、ピーク値Pがb以上a以下である場合には、状態IIを実現することによりインダクタンスLを「中」とする。従って、PZTアクチュエータ14に温度変化が生じた場合、静電容量Cの変化を補償するようにインダクタンスLが増減されることで、応答時間tの変動が抑制される。
【0058】
このように、本実施例によれば、温度変化に起因するPZTアクチュエータ14の応答速度の変化を抑制することができ、これにより、燃料噴射弁10の応答性を温度変化にかかわらず一定に維持することができる。
なお、上記第2実施例において、充電電流のピーク値Pに基づいてインダクタンスLを変化させることとしているが、本発明はこれに限定されるものではなく、PZTアクチュエータ14の温度変化に応じて変化する任意の情報をインダクタンスLを変化させる際の基準として用いることができる。例えば、図8に示す如く、応答時間tは温度の低下に応じて減少する。従って、応答時間tを充電電流の信号波形より検出し、応答時間tが所定値ta を上回った場合にインダクタンスLを減少させ、tが所定値tb (tb <ta )を下回った場合にインダクタンスLを増加させることとしてもよい。
【0059】
また、図4(e)に示す如く、PZTアクチュエータ14の端子14a、14b間の電圧にはオーバーシュートが生ずる。図9は、端子14a、14bの電圧波形の温度による変化を示している。図9に示す如く、PZTアクチュエータ14が低温になるほど、応答時間tが減少することに起因してオーバシュート量Sは増加する。従って、端子14a、14b間の電圧波形よりオーバシュート量Sを検出し、オーバシュート量Sが所定値Sa を上回った場合にインダクタンスLを増加させ、Sが所定値Sb (Sb <Sa )を下回った場合にインダクタンスLを減少させることとしてもよい。
【0060】
あるいは、PZTアクチュエータ14の温度Tpを検出する温度センサを設け、温度Tpが所定値Ta を上回った場合にインダクタンスLを増加させ、温度Tpが所定値Tb (Tb <Ta )を下回った場合にインダクタンスLを減少させることとしてもよい。この他、外気温等、PZTアクチュエータ14の温度と相関をもって変化する任意の環境パラメータに基づいてインダクタンスLを変化させてもよい。
【0061】
なお、上記第2実施例においては、駆動回路30が請求項に記載した共振回路に、充電コイル34、放電コイル38、及びインダクタンス制御装置42が請求項に記載した共振周波数変化手段に、それぞれ相当している。また、インダクタンス制御装置42が充電電流又はPZTアクチュエータ14の端子間電圧に基づいてピークP、時間t、又はオーバシュートSを検出することにより、あるいは、温度センサの出力に基づいて温度Tpを検出することにより、請求項に記載した情報検出手段が実現されている。
【0062】
【発明の効果】
発明によれば、温度変化に伴って燃料噴射弁の応答性が変化するのを防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である燃料噴射装置が備える燃料噴射弁の構成図である。
【図2】本実施例の燃料噴射弁の指示噴射期間と燃料噴射量との関係を従前の電磁式燃料噴射弁の場合と共に示す図である。
【図3】本実施例において燃料噴射弁を駆動するPZTアクチュエータの駆動回路の構成図である。
【図4】図3に示す駆動回路の動作のタイムチャートである。
【図5】充電コイル(又は放電コイル)の構成をインダクタンス制御装置との接続関係と共に示す図である。
【図6】充電コイル(又は放電コイル)の別の構成を示す図である。
【図7】充電コイル(又は放電コイル)の更に別の構成を示す図である。
【図8】PZTアクチュエータに付与される充電電流の温度に応じた変化を示す図である。
【図9】PZTアクチュエータの端子間電圧の温度に応じた変化を示す図である。
【符号の説明】
10 燃料噴射弁
14 PZTアクチュエータ
30 駆動回路
34 充電コイル
38 放電コイル
42 インダクタンス制御装置

Claims (1)

  1. PZTアクチュエータにより駆動される燃料噴射弁と、前記PZTアクチュエータを駆動する共振回路とを備える燃料噴射装置であって、
    PZTアクチュエータの静電容量に影響を及ぼす部位の温度情報又はPZTアクチュエータの静電容量の変化に応じた情報を検出する情報検出手段と、
    該情報検出手段により検出された情報に基づいて、前記共振回路の共振周波数を変化させる共振周波数変化手段とを備えることを特徴とする燃料噴射装置。
JP03048497A 1997-02-14 1997-02-14 燃料噴射装置 Expired - Fee Related JP3716532B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03048497A JP3716532B2 (ja) 1997-02-14 1997-02-14 燃料噴射装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03048497A JP3716532B2 (ja) 1997-02-14 1997-02-14 燃料噴射装置

Publications (2)

Publication Number Publication Date
JPH10227249A JPH10227249A (ja) 1998-08-25
JP3716532B2 true JP3716532B2 (ja) 2005-11-16

Family

ID=12305121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03048497A Expired - Fee Related JP3716532B2 (ja) 1997-02-14 1997-02-14 燃料噴射装置

Country Status (1)

Country Link
JP (1) JP3716532B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931234C1 (de) * 1999-07-07 2000-12-28 Siemens Ag Verfahren zum Ansteuern eines kapazitiven Stellgliedes eines Kraftstoffeinspritzventils einer Brennkraftmaschine
DE19931238A1 (de) * 1999-07-07 2001-01-18 Siemens Ag Verfahren zum Ansteuern eines kapazitiven Stellgliedes eines Kraftstoffeinspritzventils einer Brennkraftmaschine
DE19931235C2 (de) 1999-07-07 2001-08-30 Siemens Ag Verfahren und Vorrichtung zum Laden eines kapazitiven Stellgliedes
WO2006082807A1 (ja) * 2005-02-07 2006-08-10 National University Corporation Saitama University 等価容量型アクチュエータの駆動装置
HUE025390T2 (en) * 2006-05-23 2016-02-29 Delphi Int Operations Luxembourg Sarl A method for operating a fuel injector
JP5720418B2 (ja) * 2011-05-23 2015-05-20 株式会社リコー 液滴吐出装置およびそれを備えたインクジェット記録装置

Also Published As

Publication number Publication date
JPH10227249A (ja) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3134724B2 (ja) 内燃機関の弁駆動装置
JP4110751B2 (ja) インジェクタ駆動制御装置
US5992391A (en) Electromagnetic fuel injector and control method thereof
US10072596B2 (en) Control unit for a fuel injector
US5213078A (en) Method for determining at least one end position of a displacement device in a motor vehicle
GB2318466A (en) Fuel injector driver with boost supply provided by solenoid back-emf
JP6520814B2 (ja) 燃料噴射制御装置
EP1895133A2 (en) Piezoelectric fuel injectors
JP2002021679A (ja) 燃料噴射装置及び内燃機関
JP3716532B2 (ja) 燃料噴射装置
JP2009041451A (ja) 燃料噴射弁充電制御装置及び燃料噴射弁充電制御システム
EP1199458A2 (en) Internal combustion engine fuel injection apparatus and control method thereof
US6690563B2 (en) Electromagnetic actuator controller
JP4615967B2 (ja) ピエゾインジェクタの駆動装置
JPH02185650A (ja) 圧電素子の駆動装置
US5066201A (en) Driving load controller for variable displacement type hydraulic pump
JP4582061B2 (ja) ピエゾインジェクタ及びインジェクタ駆動システム
EP1371820B1 (en) Control apparatus for electromagnetically driven valve
JP5880872B2 (ja) 燃料噴射弁及び燃料噴射装置
JP4066213B2 (ja) 電磁駆動バルブの制御装置
JP4432624B2 (ja) アクチュエータ駆動回路
JP2001132579A (ja) 内燃機関のユニットインジェクタ及び燃料噴射制御装置
JP3644148B2 (ja) 電磁弁駆動装置
JP6332400B2 (ja) 燃料噴射弁および燃料噴射装置
JP6028877B2 (ja) 燃料噴射弁および燃料噴射装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080909

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090909

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100909

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110909

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120909

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130909

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees