JP3713350B2 - 光反応装置 - Google Patents

光反応装置 Download PDF

Info

Publication number
JP3713350B2
JP3713350B2 JP02402297A JP2402297A JP3713350B2 JP 3713350 B2 JP3713350 B2 JP 3713350B2 JP 02402297 A JP02402297 A JP 02402297A JP 2402297 A JP2402297 A JP 2402297A JP 3713350 B2 JP3713350 B2 JP 3713350B2
Authority
JP
Japan
Prior art keywords
light
optical
waveform
reaction efficiency
optical waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02402297A
Other languages
English (en)
Other versions
JPH10223959A (ja
Inventor
紳一郎 青島
晴義 豊田
誠 細田
晴康 伊藤
裕 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP02402297A priority Critical patent/JP3713350B2/ja
Publication of JPH10223959A publication Critical patent/JPH10223959A/ja
Application granted granted Critical
Publication of JP3713350B2 publication Critical patent/JP3713350B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Liquid Crystal (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光と物質の相互作用である光反応を行わせる装置に関する。
【0002】
【従来の技術】
化学工業分野では、目的の生成物を高い収率や特定の収率で得られる化学反応制御が強く要求されている。P.ブルマーらは、「レーザーによる化学反応の制御」(邦訳、日経サイエンス1995年5月号86〜93頁)でレーザ光線の照射により特定の化学反応を他の反応に優先させる制御が可能なことを示している。例えば、2原子分子を解離する場合に、2つのパルスレーザを照射することで、目的の生成物の収率を全体の3%〜95%までの範囲で操作できることを理論計算により指摘している。
【0003】
一方、励起源として用いるパルス列の波形を制御することにより、軟X線の利得係数を高められることを、原民夫が「X線レーザー」(光エレクトロニクス第130委員会第196研究会資料8〜13頁、1996年)で示している。
【0004】
これらはいずれも物体と光の干渉作用に基づくものであり、光反応によって化学反応や物理現象を制御する可能性を示したものである。短光パルスは連続光と異なり、異なる周波数のコヒーレントな光が集合したものである。周波数が異なる光は、異なるエネルギーを有している。さらに、ハイデルベルグの不確定性原理により、パルス幅が短いほどその中に含まれるエネルギー範囲は広くなる。分子の状態は、特有のエネルギー値によって定まる。したがって、これに対応するエネルギー値を与えるコヒーレントな光を分子に衝突させることで、分子の状態を変えることができる。
【0005】
このような特定のエネルギー値をパルス光に与えるには、パルスを構成するいろいろな振動数成分の相対的強度分布を変えること、即ち、パルスの波形を変形することによって行うことができる。また、軟X線の利得係数は、光の振動数には強く依存せず、光強度とパルスの波形が直接的に反応に影響を及ぼす。所定形状の光パルス列を発生するには従来、図19〜21に示すような装置が用いられてきた。
【0006】
図19は、光パルスを伸長するシングルモード光ファイバ101と、特定の透過特性を有するフィルタ102から構成される装置を示している。入力光パルスは、光ファイバ101を通過する際に、長波長成分が先行し、短波長成分が後から出力されて、伸長される。この伸長された光パルスを所定の透過特性を有するフィルタ102を通過させることにより、パルス幅、強度の異なる光パルスの組み合わせに変形させることができる。
【0007】
しかし、この装置では、所定の透過特性を有するフィルタ102の製作が困難であった。そこで、図20に示されるように、1対の回折格子103、104と特定の部位を通る光のみを透過するマスク105からなる装置が用いられてきた。この装置では、回折格子103で分光された光は、マスク105を通過する際に、特定の位置つまり特定の周波数の光が遮断される。こうして得られた透過光を回折格子104で集光することにより、図19の装置と同様の出力光を得ることができる。
【0008】
さらに、図21は、図20に示される装置のマスク105の代わりに空間光変調器106を用いることで、光波形の制御を行う装置を示している。
【0009】
【発明が解決しようとする課題】
しかし、光反応で必要とするパルス波形を理論的に求めるには、通常膨大なシミュレーション計算が必要とされるため、パルス波形を理論的に求めることは困難であり、シミュレーションできない現象もある。仮に、シミュレーション結果が得られる場合でも、図19、図20に示される装置では、特定波長の光の透過を厳密に制御することが難しく、望み通りの光波形を得ることが困難だった。特に、これらの装置では、光波形の微調整が困難という問題点があった。
【0010】
一方、図21に示される装置では、特定波長の位相を厳密に制御することが難しく、特に、理論的なシミュレーションが困難な場合や不可能な場合には、最適な光波形を新たに設定する必要があるが、こうした新たな設定は多分の手間と労力がかかるため、事実上不可能だった。
【0011】
さらに、図19〜図21の装置を用いて計算結果通りの光パルス列を生成できた場合でも、シミュレーションの精度や他の条件の相違等によりその光波形では、計算どおりの光反応が得られないことも多かった。
【0012】
本発明は、自動的に最適な反応効率が得られる光波形を出力して光反応を起こさせることができる光反応装置を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明の光反応装置は、(1)複数の周波数成分を含むコヒーレントな光が集合した短パルス光を射出する光源と、(2)この短パルス光を入力光とし、この光の波形を変形して射出する光波形変形手段と、(3)光波形変形手段の出力光を用いて所定の光反応を行う光反応作用手段と、(4)光反応の反応効率を随時測定する反応効率測定手段と、(5)光波形制御手段で設定された光波形に関する情報及びこれに対応する反応効率測定手段で測定された反応効率を関連づけて随時記憶する記憶手段と、(6)光波形変形手段を制御して光波形変形手段で変形される光波形を調整する機能を有し、所定のシーケンスに従って光波形を変化させながら反応効率測定手段により測定した反応効率をこの光波形に関する情報と共に記憶手段に記憶させ、所定シーケンス終了後、記憶手段に記憶された光波形と反応効率の組み合わせの中から最適な反応効率の光波形を呼び出して光波形変形手段を制御することにより、この光波形に調整する光波形制御手段とを備えていることを特徴とする。
【0014】
一般的に、分子に特定の周波数の光を照射することにより、特定の状態に移行させることができる。複数の周波数成分を含むコヒーレントな光が集合した短パルス光の光波形を制御することで、所定の周波数成分のみを含む短パルス光を生成することが可能である。この装置では、その光波形を光波形制御手段によって所定シーケンスに基づいて自動的に変形し、その結果得られた光による光反応の効率を測定して光波形と関連づけて記憶手段に記憶しておき、全シーケンス終了後に記憶しておいた光波形と反応効率の組み合わせの中から最も反応効率の良い光波形を呼び出すことにより、最終的にその光波形に固定する制御を行うことで、最適な光反応を行わせることができる。
【0015】
また本発明の光反応装置は、上記の(1)〜(5)と、光波形変形手段を制御して光波形変形手段で変形される光波形を調整する機能を有し、光波形変形を制御するパラメータのうち特定のパラメータを所定の範囲で変化させながら、反応効率測定手段により反応効率を測定して、得られた反応効率を基にこの特定パラメータの所定範囲中における好適な範囲を絞り込み、この絞り込んだ特定パラメータの好適な範囲においてさらに同一又は他のパラメータについて同様の絞り込みを行う動作を繰り返すことにより、最適な反応効率の光波形を判定したうえで、光波形変形手段を制御してこの光波形に調整する光波形制御手段とを備える装置であってもよい。
これにより、光波形を制御して光反応を行わせる光反応装置において、光波形制御手段によりその光波形をそれぞれのパラメータごとに自動的に変形し、得られた光による光反応の効率を測定して、これを随時記憶しておいたそれまでに得られた他の光波形による反応効率と比較することで、それぞれのパラメータについての好適な範囲を絞り込み、この絞り込んだ範囲においてさらに同一の又は他のパラメータについて同様に好適な範囲を絞り込む動作を繰り返すことで、最も反応効率の良い光波形を自動的に求め、そのうえでその光波形に固定して最適な光反応を行わせることができる。
【0016】
さらに、光波形変形手段は、空間光変調器と、その入出力側のそれぞれに配置された2個の回折格子とを有していてもよい。これにより、空間変調器の入力側の回折格子で光を分光して空間光変調器でその周波数成分ごとに光を変調したうえで、出力側の回折格子で分光された光が合成されて出力される。
【0017】
そして、空間変調器は、その光路が直列に接続された強度変調用と位相変調用の2つの平行配向ネマチック液晶(PAL−SLM)型空間光変調器であってもよい。これにより、光の位相、強度が2つの空間光変調器でそれぞれ独立に変調される。
【0018】
一方、光波形変形手段への入力光は1次元方向に広がりを有するストライプ状の平行光であって、この1次元方向は入力側回折格子の分光方向に直交していてもよい。これにより、回折格子を経て空間光変調器へ入射する光は、波長分布方向と直交する方向に広がりを有する光となり、その広がりの方向で独立した光変調が行えるので、一度に複数の異なる光波形が形成される。
【0019】
あるいは、空間光変調器は、読出光の波長分布方向に対応して分光反射特性を異ならせた読出光反射鏡を有するPAL−SLM型空間光変調器であってもよい。これにより、空間光変調器への入射位置により波長成分を異ならせた読出光は、全波長領域で高い反射率を有する読み出し光反射鏡を用いた時と同様に、効率的に反射される。
【0020】
または、空間光変調器は、書込みがレーザ走査により行われるPAL−SLM型空間光変調器であってもよい。これにより、高速で分解能の高い空間光変調器への画像書込みが行える。
【0021】
一方、光波形変形手段は、入力された短パルス光の強度を増幅する光増幅器をさらに備えていてもよい。これにより、光強度の増幅を含めた光波形の変形が可能になり、光波形変形の自由度が増す。
【0022】
また、反応効率測定手段は、光源あるいは光波形変形手段の出力光の光強度を測定する手段と、この光強度をもとに反応効率を補正する手段とをさらに備えていてもよい。これにより、光反応を引き起こす光の強度変動を補正した反応効率が測定される。
【0023】
あるいは、光波形変形手段からの出力光を複数に分割し、分割された出力光相互の遅延時間を制御して光反応作用手段に導く出力光導光手段をさらに備えていてもよい。これにより、パルス間隔の異なる光ダブルパルスが光反応作用手段に導かれる。
【0024】
または、反応効率測定手段は、光反応作用手段から出力された光の強度の時間変化を測定するストリークカメラを有していてもよい。これにより、反応効率に関係する光反応作用手段からの出力光の強度の時間的変化の測定が容易になる。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。説明を簡単にするため、以下、光反応作用としてレーザ励起プラズマから軟X線を発生する装置について説明する。図1は、本発明に係る装置の基本的な全体構成のブロック図であり、図2は、その第1の実施形態の全体構成図である。
【0026】
装置の構成説明に先立って、レーザ励起プラズマからの軟X線発生について簡単に説明する。パルスレーザを励起源として用いることにより、軟X線域遷移について利得を発生できることが知られている。前述した原の報告では、第1パルスの直後にその4分の1の強度の第2パルスを入射させると、利得係数が向上することが報告されている。ただし、ここでは、第1、第2パルス共、連続する8個の短パルス列で代用している。
【0027】
しかし、レーザ励起プラズマの物理現象が完全には解明されていないため、シミュレーション等により軟X線を発生するのに最適な光波形を導くことが困難である。本実施形態は、パルス列波形を制御することにより最適な光波形を自動的に判定したうえで、最適な光波形に制御して軟X線を発生する装置である。
【0028】
まず、本発明の装置全体の基本的な構成を図1により説明する。複数の周波数成分を含むコヒーレントな広帯域光を発する光源1の出力光路上には、各種光学系からなる入力光導光手段2を介して、光波形を変形する光波形変形手段3が接続されている。光波形変形手段3には、さらに、各種光学系からなる出力光導光手段4を介して、光反応を起こさせる光反応作用手段5が接続されている。光波形変形手段3には、光波形を制御する各種パラメータを含んだ光波形制御信号を用いて光波形変形手段3を制御する光波形制御手段6が接続されている。また、光反応作用手段5には、光反応作用の反応効率を測定する反応効率測定手段7が接続されている。光波形制御手段6には、この反応効率測定手段7と、光波形を制御するパラメータ及び反応効率に関する情報を関連づけて記憶する記憶手段8とが接続されている。
【0029】
続いて、図2を参照して第1の実施形態の各構成要素について説明する。
【0030】
光源1には、例えば、パルス幅10fsで波長750〜900nm、パルス強度1mJのチタンサファイアレーザを用いることができる。入力光導光手段2は例えば、集光レンズ20と光ファイバ21とコリメートレンズ22を組み合わせた光学系により構成されている。光波形変形手段3は、入力光をミラー30で1対の回折格子31、32に導く。これらの回折格子31、32の間には、2つの透過型の空間光変調器33、34が直列に配置されており、それぞれの空間光変調器33(34)の入出力側には、入出力光の光路をそれぞれ調整する一対ずつの凸レンズ35、36(37、38)が配置されている。回折格子32の出力側には、ミラー39が配置されている。出力光導光手段4は、入力光導光手段2と同様に、集光レンズ40と光ファイバ41とコリメートレンズ42を組み合わせた光学系により構成されている。光反応作用手段5は、出力光導光手段4から出力された光により軟X線の励起プラズマを発生するアルミターゲット50からなる。
【0031】
一方、光波形制御手段6は、パソコン60と光波形変形手段3へ光波形を制御する光波形制御信号を転送するインタフェース61からなる。また、光反応効率測定手段7は、光反応作用手段5のアルミターゲット50から放出された光を測定処理系に導くミラー70、グレーティング71、スリット72と、光強度を測定するCsI光電面を利用した光電管73と、光電管73の出力を積分する積分回路74と、積分結果を演算処理するパソコン60からなる。記憶手段8は、記憶する情報を関連づけて処理するパソコン60と、情報を磁気的に記録するハードディスク80からなる。
【0032】
次に、図2を参照して、この実施形態の動作について説明する。光源1から発せられた短パルス光は、入力光導光手段2の集光レンズ20、光ファイバ21、コリメートレンズ22を経て、平行光に調整されて、光波形変形手段3に導かれる。光波形変形手段3に入射した平行光は、ミラー30により、回折格子31に導かれ、1次元方向に周波数分布を持つ光に分光される。この光は、凸レンズ33により、ほぼ平行光に調整されて強度変調を行う第1の空間光変調器33に入射される。ここで強度変調された光は、2枚の凸レンズ36、37により再び平行光に調整されて、位相変調を行う第2の空間光変調器34に入射される。こうして第2の空間光変調器34で周波数成分ごとに位相変調された光は、凸レンズ38で集光されて回折格子32に導かれ、平行なパルス光に調整された上でミラー39を経て出力光導光手段4に送られる。このようにして周波数成分ごとに強度と位相の変調を行うことで所定のパルス波形に変形することができる。
【0033】
ここで、回折格子31に入射する光の分光される方向のビーム幅が狭いと、波長分解能が低下することが知られている。一方、このビーム幅が広すぎると、空間光変調器33、34での波長成分間のクロストークが大きくなり、光変調の精度を低下させることになる。従って、分光方向のビーム幅を適切な幅に調整する必要がある。さらに精度を向上させるためには、レンズ35のF値に対応するようビームに広がりを持たせて、回折格子31表面のビーム照射面積が広くなるようビームを入射させることが望ましい。
【0034】
光波形変形手段3で所定のパルス波形に変形されたパルス光は、出力光導光手段4の集光レンズ40、光ファイバ41、コリメートレンズ42により、平行光に調整されて、光反応作用手段5のアルミターゲット50に照射される。これにより、アルミターゲット上にAlの多価イオンを多量に含む高温プラズマが生成される。そのプラズマから軟X線が放出される。この軟X線をミラー70を介してグレーティング71で分光させた後、必要な周波数成分のみをスリット72により抽出して光電管73でその強度を電気信号に変換する。変換した電気信号は、積分回路74によって発生した軟X線の強度が積分されて、パソコン60に送られる。
【0035】
パソコン60は、所定のシーケンスに基づいて、光波形変形手段3で変形する光波形を制御するパラメータを含む異なる制御信号を生成して、順次インタフェース61を介して、光波形変形手段3の空間光変調器33、34へ転送する。また、この制御信号と、積分回路74から送られた軟X線強度に対応する電気信号を関連づけてハードディスク80に記憶する操作を行っている。そして、ハードディスク80に記憶された制御信号と軟X線強度の電気信号の組み合わせを読み出して比較することにより、軟X線強度が最大になる制御信号を選び出し、最終的にこの制御信号をインタフェース61を介して転送して空間光変調器33、34によって変形されるパルス波形を固定することにより生成する軟X線強度を最大になるように保つ。
【0036】
続いて、この軟X線強度が最大となる制御信号を求めるシーケンスの一例を、図3を用いて説明する。図3は制御例のフローチャートである。以下、空間光変調器33、34は、周波数分布方向に画素が1000画素あるものとして説明する。入力光パルスの波長領域は前述したように750〜900nmであるため、この場合は、1画素あたり0.15nm幅の波長の光を制御することになる。光波形の変形は1パルスごとに別々の波形に変形し、その反応効率を測定する。
【0037】
最初に、周波数領域を均等に10分割(周波数分布方向に空間光変調器33、34の画素を100画素ずつ同時に制御することに相当)する(S1)。そして、分割した各領域の強度値を絞り込む(S2)。例えば、位相を固定して、各領域の強度値を0、50、100%のうちのいずれかとする全ての組み合わせ(310=59049通り)の光波形に対する光反応効率を比較し、反応効率が最も良かった上位2つの強度の組み合わせを選び出す。次に、これら2つの強度の組み合わせに固定して、位相値の絞り込みを行う(S3)。固定された強度の組み合わせに対して、それぞれの分割領域の位相を0、120、240度のいずれかに変化させる全ての組み合わせ(2×310=118098通り)について同じように光反応効率を比較して反応効率が最も良い組み合わせ2つを選定する。ここまでの操作には、311=177,147通りの組み合わせを試す必要がある。
【0038】
続いて、この組み合わせを基にして、さらに周波数領域を前回の10倍の100分割(空間光変調器33、34の画素を周波数分布方向に10画素ずつ同時に制御することに相当)して(S4)、強度、位相を細かく設定した絞り込みを行う。まず、短波長側の最初の10個の分割領域(10画素ずつの100画素に相当)を指定領域に設定し(S5)、すでに絞り込まれた強度、位相の組み合わせを基にして、指定領域の光強度を±25%変化させた全ての組み合わせ(2×310=118,098通り)について同じように光反応効率が最適となる2つの組み合わせを選定する(S6)。次に、この2つの組み合わせについて、指定領域の位相を±60度変更させた組み合わせ(2×310=118,098通り)について同じように光反応効率が最適となる2つの組み合わせを選定する(S7)。その後、全ての領域の選定が終了するまで(S8)指定領域を順次隣の長波長側の領域にずらして(S9)、全分割領域について同様の選定操作(S5、S6)を繰り返す。この100分割した領域の絞り込み動作には、10×2×2×310=2,361,960通りの組み合わせを試す必要がある。
【0039】
続いて、周波数領域をさらに10倍の1000分割(空間光変調器33、34の周波数分布方向の1画素ずつを個別に制御することに相当)して(S10)、強度、位相をさらに細かくして最適な波形への絞り込みを行う。まず、短波長側の最初の10画素を指定領域に設定する(S11)。次に、選定した強度、位相の組み合わせに対して、指定領域のいずれかの画素の強度を±12.5%変化させた全ての組み合わせ(2×310=118098通り)について同じように光反応効率が最適となる2つの組み合わせを選定する(S12)。次に、この2つの組み合わせについて、指定領域の位相を±30度変更させた組み合わせ(2×310=118098通り)について同じように光反応効率が最適となる2つの組み合わせを選定する(S13)。全ての周波数領域について選定が終了するまで(S14)、調整した画素に隣接する次の10画素を指定領域に設定し(S15)、同様の操作(S6、S7)を繰り返して、最終的に1000分割した周波数領域について最適な強度、位相の組み合わせ1つに絞り込む(S16)。この1000分割した領域の絞り込み動作には100×2×2×310=23,619,600通りの組み合わせを試す。
【0040】
したがって、強度の分解能が12.5%、位相の分解能が30度、波長分解能が0.15nmのとき、軟X線の発生効率が最適となる光波形を求めるには、全部で26,158,707通りの計算が必要になる。
【0041】
このアルゴリズムは、制御の一例であって、最適な波形を求めるアルゴリズムはこれに限られるものではない。例えば、位相、強度の分解能の全ての組み合わせについて反応効率を測定し、最後に最適な組み合わせを判定する方法や、シミュレーションなどによって求めた波形形状がある場合は、これを基にして特定の範囲で強度、位相を変動させて調整する方法などが適用できる。
【0042】
続いて、本発明の他の実施形態について説明する。以下に説明する他の実施形態においては、それらの基本的な構成は図1、図2に示す第1の実施形態と同様であり、以下第1の実施形態と共通する部分については説明を省略する。
【0043】
図4は、図2に示される入力光導光手段2に光路切り替え装置を備えた第2の実施形態の入力光導光手段2部分のブロック図である。入力光導光手段2は、時間的に出力される光の経路を切り替える音響光学変調器201を1個と、切り替えによって分岐された光を光波形変形手段3に導く凸レンズ202及び光ファイバ203を複数個組み合わせて構成されている。したがって、この第2の実施形態では、後続の光波形変形手段3以降の構成要素は同一の構成で分割された光路数と同じ数だけ必要となる。入力光導光手段2には、音響光学変調器201のほかに、機械的な切り替えスイッチ等を用いることもできる。
【0044】
光源1として繰り返し周波数が300Hzのパルス光源を用い、凸レンズ202及び光ファイバ203を10組使用して、1つの光路を10本の光路に分岐させる場合、音響光学変調器201には、入力パルス光に同期した30Hzの駆動信号が印加されている。そして、入力パルス光を1個ずつ10本の進路に振り分けることにより、繰り返し周波数30Hzのパルス光10組を生成する。こうして生成されたパルス光は、凸レンズ2021〜20210と対応する光ファイバ2031〜20310を経て、後続する10組の光波形変形手段3のうち対応する1組へ送られる。この実施形態では、複数の光波形変形手段3を用いて単位時間あたりに多くの波形を生成することができるので、最適な波形を求める絞り込み処理の時間を短縮することができる。
【0045】
光波形変形手段3を複数用意する場合は、図2に示されるパソコン60は、それぞれの光波形変形手段3あるいは複数の光波形変形手段3に対応させて複数台設けても、1台で全ての光波形変形手段3に対応させても良い。複数台のパソコン60を使用する場合は、記憶手段であるハードディスク80はそれぞれのパソコン60に設けても、共有しても良い。複数のパソコン60を使用する場合は、それぞれのパソコン60がネットワークにより情報の転送、共有ができるように構成されている必要がある。
【0046】
次に、図5を参照して、光波形変形手段3に光増幅手段を備えた第3の実施形態について説明する。図5は、この第3の実施形態の光波形変形手段3部分のブロック図である。光路上に入射光を増幅する光増幅手段300と、光波形を所定形状に変形する光変調手段320が直列に配置されている。ここで、光変調手段320は、図2に示される光波形変形手段3と同一の構成のものを用いることができる。
【0047】
このうち、光増幅手段300の具体的な構成例を図6に示す。増幅を高効率化するためパルス幅を引き伸ばすパルス伸長部301と、実際にパルス強度を増幅する光増幅部302と、パルス幅を圧縮して元の幅に戻すパルス圧縮部303とから構成されている。パルス伸長部301は例えば、単一モード光ファイバであり、入出力光を調整する凸レンズ304、305がこの光ファイバ301の両端に配置されている。凸レンズ304の後ろには、光増幅部302へ光を導くミラー306が配置されている。光増幅部302は、1対の対向して配置されたミラー307、308の間に偏光方向を変えるポッケルスセル309と、偏光状態を変換する1/4波長板310と、偏光状態によって光を分岐する偏光子311と、レーザ媒質312とを設置した構成になっている。光増幅部302からの出力光路は、入力光の光路とずれており、この出力光路上にはミラー313のみが配置されている。ミラー313からの反射光の光路上には、パルス圧縮部303が配置されている。パルス圧縮部303は対向して置かれた1対の回折格子315、316とミラー317により構成されている。パルス圧縮部303からの出力光の光路は、入力光の光路とずれており、この出力光路上には、光増幅器300外部へ光を導くためのミラー314、318が配置されている。
【0048】
次に、この光増幅手段300の動作を図6を参照して説明する。光増幅手段300へ入力された光パルス(図6(a)参照)は、凸レンズ304を経て、パルス伸長部301に送られる。パルス伸長部301の光ファイバは1km程度あり、入力された超短パルスのうち長波長成分のほうが短波長成分より短い光路長を経由して早く出力され、短波長成分は遅れて出力される。この結果、光パルスはパルス幅数百psまで引き伸ばされる(同図(b)参照)。この伸長された光パルスが凸レンズ305とミラー306を介して光増幅部302に入射される。
【0049】
光増幅部302に入射された光パルスは、偏光子311に反射された後、ミラー307、308で多重反射され、レーザ媒質312を複数回往復して通過することにより十分に増幅される。この後に、ポッケルスセル309で偏光状態が変えられた後で、4分の1波長板310と偏光子311によって光増幅部302の外部へ取り出される(同図(c)参照)。取り出された光はミラー313で反射されて、パルス圧縮部303に入射される。パルス圧縮部303内部では、入射光は、第1の回折格子315で分光されて、第2の回折格子316で平行光線に調整された後、ミラー317で反射されて再度第2の回折格子316に入射して集光され、第1の回折格子315で再び一本の光に集光されてパルス圧縮部303の外へ送られる。この際に、図示のように先行して入射する長波長成分は長い経路を通り、後続して入射する短波長成分が短い経路を通るように光路が調整されているため、光ファイバ301で伸長した分が補償される形となり、パルス幅が圧縮される。圧縮されたパルス光(同図(d)参照)は、ミラー314と、ミラー319を経て光増幅器300外部へ送られる。
【0050】
この実施形態では、光増幅に再生光増幅技術を用いたが、これに限られるものではなく、光増幅部302のミラー307、308で光を多重反射させることなく、レーザ媒質中を複数回通過させることにより増幅させる技術などが適用できる。また、ここでは、図5に示されるように光増幅手段300が光変調手段320の前にある例について説明したが、光増幅と光変調はこの順序に限られるものではなく、光変調を光増幅の前、つまり図6(a)の位置のほか、パルス伸長の直後(図6(b)の位置)、又は光増幅器302の内部、又は光増幅後(同図(c)の位置)、又はパルス圧縮部303内部のいずれの位置で行っても良い。
【0051】
続いて、図7を参照して、図1の光波形変形手段3としてPAL−SLMを2つ用いた第4の実施形態について説明する。図7は、この実施形態の光波形変形手段3のブロック図であり、これを図5に示す第3の実施形態の光変調手段320として用いてもよい。以下、光変調手段320として説明する。
【0052】
まず、光変調手段320の構成を説明する。光変調手段320は、図7に示されるように、入力光の光強度を変える強度変調部351と光の位相を変える位相変調部352の2つの部分から構成されている。強度変調部351と位相変調部352にはそれぞれ、光の変調を行うPAL−SLM型の空間光変調器353、354と、それぞれの空間光変調器353、354に変調情報を書込むCRT355、356と、CRT355、356の像を空間光変調器353、354に導く結像レンズ357、358と、空間光変調器353、354に読出光を入力させる凹面鏡359、360及び変調された読出光を外部に導く凹面鏡361、362がそれぞれ配置されている。さらに、強度変調部351の光入力側には、入力光を特定の偏光成分に調整する偏光子363と、周波数成分に分光する回折格子364が配置されている。また、強度変調部351と位相変調部352の間には、特定の偏光成分のみを通過する検光子365が配置されている。さらに、位相変調部352の出力側には分光された光を一本にまとめる回折格子366が配置されている。
【0053】
ここで、PAL−SLM型空間光変調器353、354の具体的構成を図8により詳細に説明する。図8に示されるように、この形式の空間光変調器は、書込光が入射する側は、光を透過するガラス面板370の入射面と反対の面に第1の透明電極膜(ITO)371と、入射光によりインピーダンスの変化する水素化アモルファスシリコン層372と、多層膜により読出光を反射する誘電体ミラー373と、第1の配向層374が順に積層されている。一方、読出光側は、ガラス面板375の入射面と反対の面に第2のITO376と、第2の配向層377が積層され、第1の配向層374と第2の配向層377を対向させて間に枠型のスペーサ378を挟み込み、挟まれた内部の空間に平行配向のネマチック液晶379が充填された構成となっている。配向層374、377は液晶の配向を揃える働きがある。ITO371、376間に電圧を印加して、書込光を入射すると、書込光の強度に対応してアモルファスシリコン層372のインピーダンスが低下する。この結果、液晶379に電圧が印加されて、内部の液晶分子が傾き、出力される読出光の位相が変化する。
【0054】
続いて、この光変調手段320の動作を図7を参照して説明する。光変調手段320に送られたパルス光は、まず偏光子363により、所定方向に偏光される。その後、回折格子364により、周波数成分ごとに分光される。この光は凹面鏡359により読出光として第1の空間光変調器353に導かれる。第1の空間光変調器353には、CRT355の出力像が結像レンズ357を経由して結像され書き込まれている。
【0055】
この第1の空間光変調器353には平行配向ネマチック液晶が用いられているため、図9(a)に示す一般的なツイスト配向液晶と異なり、同図(b)に示すように、書込み前の液晶の配向方向は、入出力面に平行に配されている。書込光により液晶の傾き角が変化して同図(c)のようになる。このとき、読出光の偏光方向が液晶分子軸の長軸方向とずれているため、液晶から出力される光は楕円偏光となる。この光を図7に示されるように凹面鏡361で集光して検光子365を通過させることにより、強度変調された光が出力される。前述したように入力光は回折格子364により分光されているため、分光方向に対して異なる変調を与えることによって周波数成分ごとに強度を変調することが可能である。
【0056】
この強度変調された光が凹面鏡360により読出光として第2の空間光変調器354に導かれる。この第2の空間光変調器354には、第1の空間光変調器353と同じようにCRT356と結像レンズ358により書込光が入射されている。入射する読出光の偏光方向は第2の空間光変調器354の液晶の本来の配向方向と一致している。このため、図9(c)に示されるように液晶分子の長軸方向に平行な偏光成分にのみ位相の変化が与えられ、これに直交する成分は影響を受けない。この結果、純粋な位相変調を行うことができる。こうして分光方向に対して異なる変調を与えることにより周波数成分ごとに位相変調された光は、図7に示すように凹面鏡362で集光されて、回折格子366によりそれぞれの光の周波数成分を併せ持つ一本のパルス光に調整されて出力光導光手段4へ送られる。このようにして所定の周波数成分ごとに強度と位相の変調を行うことにより、パルス光の波形を様々に変形することができる。但し、強度変調も原理的には位相変調であるので、位相変調部352の変調量は、強度変調部351における位相変調量を考慮して調整する必要がある。
【0057】
空間光変調器353、354としては、例えば、50mm角で1000×1000画素の解像度が得られるタイプのものを使用することができる。また、CRT355、356には、65mm角で1000ラインの解像度を有するものを使用することができる。したがって、空間光変調器353、354上への書込像は結像レンズ357、358により0.77倍に調整されている。
【0058】
次に、図10を参照して、空間光変調器への光書込をレーザ光によって書込む第5の実施形態を説明する。図10は、空間光変調器への光書込部分を示している。この第5の実施形態は、図7に示される第4の実施形態における書込み系であるCRT355(356)と結像レンズ357(358)に代えて用いることが好ましい。書込系は、レーザ光を発するHe−Neレーザ光源367と、書込む光の強度を制御して書込画像を調整する強度変調器368と、空間光変調器353(354)への書込位置を調整するX−Yスキャナ369とからなり、強度変調器368と、X−Yスキャナ369は光波形制御手段6のパソコン60にインターフェース61を介して接続されている(図2参照)。
【0059】
He−Neレーザ367から射出されたレーザ光は、パソコン60から送られた制御信号により、強度変調器368で強度を調整された後、X−Yスキャナ369で空間光変調器353(354)の所定の位置に照射される。このレーザ光の強度と照射される位置を制御することにより所望の画像を空間光変調器353(354)に書込むことができる。レーザ光で画像を書込む速さが遅いと初期に書き込んだ画素では、インピーダンスが回復してそこでの液晶層379(図8参照)のインピーダンス変化が小さくなり、光変調が十分に行われないため、レーザ光照射のスキャン速度を空間光変調器353(354)の応答時間に対して速くする必要がある。レーザ光照射を利用することにより、第4の実施形態のようにCRTを書き込みに使用する場合に比べて空間光変調器にビデオレートの30Hzより高速で画像を書き込むことができ、30Hzを超える繰り返し周期のパルス光に対応させることができる。したがって、CRT利用の場合よりも高速で絞り込み操作を繰り返すことができ、最適な反応効率を求めるために必要な時間も短縮できる。また、CRTによる書き込みに比べて分解能を向上させることもできる。
【0060】
続いて、図8に示される空間光変調器に用いられる誘電体ミラー373に読出光の波長分布方向で分光反射特性を異ならせたミラーを使用した第6の実施形態について説明する。図11は、この誘電体ミラー373の配置の概念図であり、模様の異なる部分は、異なる分光反射特性を有していることを示している。読出光の全波長領域で高い反射特性を有するミラーを製作するのは困難であり、そのようなミラーを製作すると誘電体ミラー373の厚さが厚くなって、誘電体ミラー373自体のインピーダンスが大きくなるため、空間光変調器の感度が低下して好ましくない。一方、前述したように読出光は分光されているため、空間光変調器の所定部位に入射する読出光の光波長領域は限定されている。このため、入射する読出光の波長領域についてのみ高い反射特性を有するミラーを製作すれば、薄い誘電体ミラーで効率良く読出光を反射でき、空間光変調器の感度低下を防止することができる。
【0061】
ここでは、段階的に異なるコーティングを施す例を示したが、コーティングの際に誘電体ミラー373がコーティングされるシリコン層372(図8参照)を予め傾けておき、蒸着膜の厚さを連続的に変化させて、場所ごとの分光反射特性を変化させてもよい。
【0062】
次に、図12、図13を参照して、1つの光変調手段を用いて多数の光波形を生成する第7の実施形態について説明する。図12は、この実施形態における光波形変形手段3の概略図であり、図13は、図12に示される光変調手段320の斜視図である。最初に、この実施形態の構成を説明する。図12に示されるように、凸レンズ330と、シリンドリカルレンズ331と、平面凹レンズ332が光変調手段320の入力側に直列に配置されている。図13に示されるように、光変調手段320は、一対の回折格子321、322の間に、一対のシリンドリカルレンズ323、324を直列に配置して、さらにその間に透過型の空間光変調器325を配置した構成になっている。空間光変調器は、2次元方向に画素を有し、それぞれの画素で独立して光変調を行うことができる。
【0063】
続いて、本実施形態の動作を説明する。図12に示されるように、入射光は、凸レンズ330によって平行光に調整された後、シリンドリカルレンズ331と、平面凹レンズ332によって、1次元方向に広がりのあるストライプ状の平行光に調整され、光変調手段320に入射される。図13に示されるように、光変調手段320に入射したこのストライプ状の平行光は、回折格子321により分光されて、分光方向と直交する方向にも広がりを持つ2次元光に調整される。この光をシリンドリカルレンズ323により空間光変調器325に導く。空間光変調器では、分光方向とこれに直交する方向で異なる変調を与える。図13に示される例では、分光方向と直交する方向に4分割してそれぞれ異なる光変調を加えている。こうして変調された光は、シリンドリカルレンズ324により集光され、回折格子322によって、再びストライプ状の光に調整される。従って、ストライプの長手方向で分割された4つの異なる光波形の光が出力される。空間光変調器として1000×1000画素の空間光変調器を用いた場合は、最大1000個の波形を同時に変形することも可能である。
【0064】
ここでは、光変調手段320として透過型の空間光変調器を1個用いる例について説明したが、図7に示されるような反射型のPAL−SLM型空間光変調器を2個用いる光変調手段を用いてもよい。この場合は、強度と位相を独立に制御して、1組の光変調手段で複数の光波形を生成できる利点がある。この場合、分光方向だけでなく、それに直交する方向についても各々の空間光変調器のそれぞれの画素が正確に対応するよう光学系を調整する必要がある。
【0065】
次に、図14を参照して、出力光導光手段4に光分岐手段を備えた第8の実施形態について説明する。図14(a)はミラーを用いた光分岐手段であり、同図(b)は、光ファイバを用いた光分岐手段を示している。同図 (a)に示される手段では、入力光の1次元分布方向に並べられた複数個のミラー43とこれにそれぞれ対向するミラー44が組み合わされて構成されている。一方、同図(b)に示される手段では、入力光は凸レンズ45と光ファイバ46を複数組み合わせて構成されている。いずれの場合も、入射光は、複数に分割されて、複数の出力光が取り出される。得られた複数の出力光はすべて同一の波形を有する。一方、第7の実施形態の光変調手段を利用した場合は、入力光はストライプ状で、ストライプの長手方向で異なる波形を有している。したがって、本実施形態の光分岐手段を用いることにより、それぞれの波形の光を分離することができる。こうして取り出された複数の出力光は、図2に示される光反応作用手段5の同じアルミターゲット50の異なる位置に照射されても良いし、別々のアルミターゲット50に照射されてもよい。
【0066】
続いて、図15を参照して、光源1の強度変動を補正する手段を有する第9の実施形態について述べる。この実施形態では、図2の反応効率測定手段7に図15に示す補正回路75等を付加したものである。図15に示されるように光源1の強度変動を補正する手段は、光源1の出力光を分岐するビームスプリッタ11と、分岐した光を検出する光検出器12と、光検出器12と積分回路74の出力を入力として、補正後の信号をパソコンに出力する補正回路75からなる。光源1から射出されたレーザ光は、ビームスプリッタ11で一部が分岐される。分岐された光は光検出器12に入射されて光強度に対応した電気信号が出力される。補正回路75は、この電気信号によって積分回路74の出力信号を補正してパソコン60に転送する。この結果、光源の強度が変動する場合でも、反応効率を正しく評価することができ、検出精度が向上する。光強度を検出する手段は、光源1の直後に限られるものではなく、光反応作用手段5までのいずれの段階に設置してもかまわない。
【0067】
次に、図16を参照して、出力光導光手段4で分離された光をさらに分岐して用いる第10の実施形態について述べる。ここでは、図14(b)に示される出力光を光ファイバにより分岐する装置で用いる場合について示すが、同図(a)に示される複数のミラーで出力光を分岐する場合についても適用可能である。図16に示されるように、光ファイバ46に光を複数の経路に分岐する光分岐器47が接続され、分岐された光経路上には、それぞれの光相互の遅延時間を調整して出力する出射光学系48が配置されている。この出力光は、アルミターゲット50に導かれる。出射光学系48はコントローラ49を介して装置全体を制御するパソコン60に接続されている。
【0068】
光分岐器47により分岐された光は、出射光学系48によりそれぞれアルミターゲット50に照射されるタイミングが調整される。つまり、アルミターゲット50に衝突させる光ダブルパルスの時間間隔を調整することが可能となる。このタイミングの調整は、パソコン60によりコントローラ49を介して行われる。従って、この照射されるパルスの時間間隔も光反応効率を左右するパラメータとして用いることができる。分岐の数は2本より多くてもよい。また、ここでは、アルミターゲット50の同じ位置に光を入射させているが、入射位置を変更して、異なる光波形の光が異なる位置に入射するように配置しても良い。あるいは、光分岐器47を用いずに、異なるチャンネルの光ファイバ46を経由した光を異なる出射光学系48に導いて、同一場所に照射しても良い。さらにこの場合は、、出射光学系48の後に光スイッチを設けても良い。
【0069】
次に、図17を参照して、反応効率測定にストリークカメラを用いた第11の実施形態について説明する。図17は、ストリークカメラを用いた反応効率測定手段7の概略図である。ここでは、アルミターゲット50に複数の光パルスを同時に照射させる場合の反応効率の測定について説明する。この複数の光パルスは、アルミターゲット50の1次元状に並んだ異なる位置に入射される。以下の説明では、同時に10個の光パルスが入射するものとする。
【0070】
まず、装置の構成を説明する。アルミターゲット50から出射された光は、射出位置の違いによって1次元状に並んだ複数の光からなる。出射光の光路上には、この1次元方向(以下、出射光の分布方向と呼ぶ)に円筒軸を合わせたシリンドリカルレンズ76が配置されている。このレンズ76の焦点位置には、グレーティング71が配置されている。このグレーティング71の分光方向は、出射光の分布方向に直交する方向である。グレーティング71で分光された光の光路上には、出射光の分布方向に沿って細長いスリット72が設けられている。このスリット72の後ろには、入力光学系77、ストリークカメラ78、撮像装置79が配置されている。
【0071】
次に、本装置の動作を説明する。出力光導光手段4から10個の異なる波形の光パルスがアルミターゲット50の1次元状に並んだ異なる位置に同時に入射される。それぞれの光パルスに対応してアルミターゲット50から出射される光もそれぞれこの1次元状に並んで分散している(前述の出射光の分布方向)。それぞれの光は、分散位置を保ったまま、レンズ76により集光されて、グレーティング71の反射面に入射し、ここでこの1次元方向に直交する方向に分光される。分光された光のうち、所望の波長の光のみがスリット72を通過して、入力光学系77を経て、ストリークカメラ78に入射する。ストリークカメラ78では、図18に示されるような観測画像が得られる。図18から分かるようにそれぞれの出射光について強度の時間変化の情報が得られる。したがって、反応効率の時間変化の測定が容易になり、かつ、一度に複数の波形に対する反応効率の測定ができて好ましい。この画像を図17に示されるように、撮像装置79により、電気信号に変換して、パソコン60に伝送して処理する。
【0072】
以上説明した実施形態は、それぞれ単独で用いるのではなく、組み合わせて用いることができる。例えば、光波形変形手段の入力光を分岐する第2の実施形態と、光波形変形手段としてPAL−SLMを2個用いる第4の実施形態と、多数の光波形を生成する第7の実施形態と、光波形変形手段の出力光を分岐する第8の実施形態を組み合わせて使用する例について述べる。光源に繰り返し周波数300Hzのパルス光を使用し、これを10組に分割することで、10組あるそれぞれの光波形変形手段には繰り返し周波数30Hzのパルス光が入射する。このため、空間光変調器への書込みはビデオレートに制限されるCRTにより行うことができる。空間光変調器1つで10個の異なる波形に変形すれば、1秒間に30×10×10=3000個の異なる波形のパルス光を生成することができる。出力光導光手段でこの異なる波形ごとに分割してアルミターゲットの異なる位置あるいは異なるアルミターゲットに照射することで、1秒間に3000個の異なるパルス波形に対する反応効率を得ることができる。
【0073】
例えば、図3に示した制御シーケンスを行う場合、1秒間に3000種類の光パルス波形を生成して、強度の分解能が12.5%、位相の分解能が30度の最適な光波形を求めるには、全部で26,158,707/3000秒、すなわち約8720秒=約2.4時間で最適な光波形を求めることができる。
【0074】
さらに、強度、位相の分解能を高める場合には、強度、位相の変更幅を前回の半分にして図3のS11〜S16を繰り返せばよい。強度の分解能を約1.6%、位相の分解能を3.75度とする場合は、さらにもう3回繰り返す必要がある。前述したように、1秒間に3000種類の光パルスの組み合わせについて検討を行えば、この場合でも約9.0時間で最適な光波形が得られる。
【0075】
空間光変調器の台数や1つの空間光変調器で1度に生成する波形の数を増やすことにより、単位時間に得られる波形の数及びこれに対応する反応効率の測定数を増やすことができ、最適な波形を求める絞り込み時間も短縮される。
【0076】
最適な波形を求めるアルゴリズムには、いろいろなものがあるが、図3に示す制御シーケンスでは、チャンネルが多くなると、反応効率を試す組み合わせが指数関数的に増大していく。また、光学系の経時変動などを吸収して、常に最高の効率が得られるような最適な制御を行う必要がある場合も存在する。これには、いわゆる「山登り法」等に代表されるフィードバック型のアルゴリズムを適用できる。
【0077】
反応効率を最大にする場合の「山登り法」の制御シーケンスの一例を以下に述べる。このシーケンスのフロー図を図19に示す。以下、説明を簡略化するため、チャンネルxに与える強度変調量をA(x)、位相変調量をP(x)として表す。また、random[a,b]は、aからbまでの乱数発生関数を表している。そして、評価関数Vは、それぞれの強度変調量、位相変調量に対して得られる軟X線の強度を示す(図2の積分回路74の出力信号に相当する)。
【0078】
最初に、変調量A(x)、P(x)の初期値A0(x)、P0(x)を設定する(S21)。初期変調量として与えるA0(x)、P0(x)は、シミュレーションより求めた最適解を用いても良いし、乱数等を利用して与えても良い。設定した変調量A(x)、P(x)によって光波形を変形して、変形した光波形を用いて光反応を起こし、その反応効率を測定することによってこの変調量A(x)、P(x)に対応する評価関数Vを得る(S22)。続いて、変調量変化分ΔA(x)、ΔP(x)を乱数を用いて設定する(S23)。ここで、Ca、Cpは学習係数であり、これらは正の実数値、例えば0.01とする。
【0079】
そして、変調量A(x)、P(x)にこの変調量変化分ΔA(x)、ΔP(x)を加えて新しい変調量Anew(x)、Pnew(x)を設定する(S24)。そして、この変調量によって光波形を変形して、変形した光波形を用いて光反応を起こし、その反応効率を測定することによってこの変調量に対応する評価関数Vnewを得る(S25)。そして、評価関数VnewとVの値を比較する(S26)。
【0080】
newがVより大きいときは、Anew(x)、Pnew(x)、Vnewをそれぞれ新たなA(x)、P(x)、Vに設定し(S27)、S24に戻り、この変調量A(x)、P(x)にこの変調量変化分ΔA(x)、ΔP(x)を加えて新しい変調量Anew(x)、Pnew(x)を設定する。そして、S25以降を繰り返す。一方、VnewがVと等しいか、それ以下のときは、S23に戻り、新たな変調量変化分ΔA(x)、ΔP(x)を乱数を用いて設定して、S24以降を繰り返す。
【0081】
これによって評価関数が大きな値をとるように、A(x)、P(x)をフィードバック制御することができる。特に、学習係数を工夫することによって、収束の速さを改善するほか、評価関数の極大値に変調量が設定される等の問題点を回避することもできる。
【0082】
以上の説明においては、光源として、短パルス光を発するチタンサファイアレーザを用いた例について説明したが、光源はこれに限られるものではなく、QスイッチモードロックNd:YAGレーザやモード同期Cr:LiSAFレーザ、モード同期色素レーザ等のパルスレーザの他、位相の揃った複数のコヒーレント光を同軸上に合成して用いてもよい。
【0083】
さらに、空間変調器としては、PAL−SLMを用いた例について説明したが、光変調材料としてニオブ酸リチウム(LiNbO3)を用いた空間光変調器(MSLM)やBSOを用いたPROM素子の2次元空間光変調器を利用することができる。あるいは、簡易的にLCTV(液晶テレビ)のような電気アドレス型の空間光変調器を用いても良い。
【0084】
また、ここでは、軟X線を発生する光反応作用手段について説明したが、光反応は、種々の化学反応や超短光パルスを発生する光反応についても適用可能である。これらのケースに適用する場合には、それぞれの反応効率を的確に把握できる反応効率測定手段を用いる必要がある。
【0085】
【発明の効果】
以上説明したように、本発明によれば、光波形を所定シーケンスに基づいて自動的に変形し、その結果得られた光による光反応の効率を測定して光波形とともに記憶しておき、シーケンス終了後に記憶しておいた光波形と反応効率の組み合わせの中から最も反応効率の良い光波形を自動的に求め、その光波形に固定して最適な光反応を行わせることができる。したがって、理論シミュレーションによって光反応を起こさせる光波形を求めることが不可能な場合や困難な場合でも、最適な光反応を起こさせることができる。
【0086】
また、光波形の設定は、それぞれのパラメータごとに自動的に変形し、得られた光による光反応の効率を測定して随時記憶しておいた反応効率と比較することにより、それぞれのパラメータについて好適な範囲を絞り込み、この絞り込んだ範囲においてさらに同一の又は他のパラメータについて同様に好適な範囲を絞り込む動作を繰り返すことで、最も反応効率の良い光波形を自動的に求め、そのうえでその光波形に固定して最適な光反応を行わせることもできる。この場合は、より短時間で最適な光波形を求めることが可能である。さらに、理論的なシミュレーションが可能な場合には、計算結果をもとにして調整を行うことで、計算精度等による計算結果の最適な波形からのずれを調整することが可能である。
【0087】
光波形変形手段として空間光変調器と、その入出力側のそれぞれに配置された2個の回折格子を用いれば、周波数成分ごとに光変調が可能なため、光波形の変形が容易であり、細かい調整ができる。
【0088】
この空間変調器にその光路を直列に接続した強度変調用と位相変調用のPAL−SLM型空間光変調器を2つ用いれば、光の周波数成分ごとに強度と位相を独立に制御できるため、簡単に任意のパルス波形を出力することが可能となる。
【0089】
光波形変形手段への入力光を回折格子の分光方向に直交する1次元方向に広がりを持つ光とすれば、空間光変調器へ入射する読出光が2次元分布を有する光となるため、1台の空間光変調器で複数の光波形を生成することができて、最適な光波形を求める時間が短縮される。
【0090】
また、空間光変調器は、読出光の波長分布方向に対応して分光反射特性を異ならせた読出し光反射鏡を有するPAL−SLM型空間光変調器を用いれば、全領域で反射率の高い反射鏡を製作する場合に比較して反射鏡の厚さを薄くすることができ、反射鏡のインピーダンス増大に伴う空間光変調器の感度低下を防止できる。
【0091】
レーザ走査により書込みを行うPAL−SLM型空間光変調器を用いれば、CRTよりも高速な書込みが可能となり、結果的に、装置全体の応答速度を向上させることができ、最適な光波形を求める時間も短縮される。また、書込画像の分解能を向上させることができる。
【0092】
光波形変形手段は、入力された短パルス光の強度を増幅する光増幅器を有していてもよい。光増幅により、光波形変形の自由度が増すからである。
【0093】
反応効率測定手段は、測定した反応効率に対応する光強度を測定する光源の光強度を測定する手段と、この光強度をもとに反応効率を補正する手段をそなえていてもよい。これにより、光源の強度変動を補正して、反応効率の検出精度を高めることができ、最適な光波形を正確に求めることができる。
【0094】
また、光波形変形手段からの出力光を複数に分割し、分割された出力光相互の遅延時間を制御して光反応作用手段に導く出力光導光手段をさらに備えていてもよい。これにより、複数の光パルスを衝突させることによる光反応を起こさせることが可能となり、これについても自動的に最適な光波形及び遅延時間を設定することができる。
【0095】
反応効率測定手段は、光反応作用手段から出力された光の強度の時間変化を測定するストリークカメラを有していてもよい。反応効率の時間的変化を合わせて測定することにより、一度に複数の光波形の評価が可能となり、最適な光波形の評価がさらに容易になる。
【図面の簡単な説明】
【図1】本発明の装置全体の基本構成のブロック図である。
【図2】本発明の第1の実施形態の全体構成図である。
【図3】図2に係る第1の実施形態の制御フロー図である。
【図4】本発明の第2の実施形態の入力光導光手段のブロック図である。
【図5】本発明の第3の実施形態の光波形変形手段のブロック図である。
【図6】図5に示される光波形変形手段の光増幅手段のブロック図である。
【図7】本発明の第4の実施形態の光変調手段のブロック図である。
【図8】PAL−SLM型空間光変調器の断面構成図である。
【図9】図8に示されるPAL−SLM型空間光変調器の動作原理を示す図である。
【図10】本発明の第5の実施形態の空間光変調器への光書込系を示す図である。
【図11】本発明の第6の実施形態の空間光変調器の断面概略図である。
【図12】本発明の第7の実施形態の光波形変形手段の概略図である。
【図13】図12に係る光波形変形手段の光変調手段の構成図である。
【図14】本発明の第8の実施形態の出力光導光手段のブロック図である。
【図15】本発明の第9の実施形態の光源強度の変動補正手段のブロック図である。
【図16】本発明の第10の実施形態の出力光導光手段のブロック図である。
【図17】本発明の第11の実施形態の反応効率測定手段のブロック図である。
【図18】図17に係るストリークカメラの観測画像の例を示す図である。
【図19】本発明の他の制御シーケンスのフロー図である。
【図20】光波形変形手段の第1の従来例を示す図である。
【図21】光波形変形手段の第2の従来例を示す図である。
【図22】光波形変形手段の第3の従来例を示す図である。
【符号の説明】
1…光源、2…入力光導光手段、3…光波形変形手段、4…出力光導光手段、5…光反応作用手段、6…光波形制御手段、7…反応効率測定手段、8…記憶手段、11…ビームスプリッタ、12…光検出器、20…集光レンズ、21…光ファイバ、22…コリメートレンズ、30…ミラー、31、32…回折格子、33、34…空間光変調器、35〜38…凸レンズ、39…ミラー、40…集光レンズ、41…光ファイバ、42…コリメートレンズ、43、44…ミラー、45…凸レンズ、46…光ファイバ、47…光分岐器、48…出射光学系、49…コントローラ、50…アルミターゲット、60…パソコン、61…インタフェース、70…ミラー、71…グレーティング、72…スリット、73…光電管、74…積分回路、75…補正回路、76…レンズ、77…入力光学系、78…ストリークカメラ、79…撮像装置、80…ハードディスク、101…シングルモード光ファイバ、102…フィルタ、103、104…回折格子、105…マスク、106…空間光変調器、201…音響光学変調器、202…凸レンズ、203…光ファイバ、300…光増幅手段、301…パルス伸長部、302…光増幅部、303…パルス圧縮部、304、305…凸レンズ、306〜308…ミラー、309…ポッケルスセル、310…1/4波長板、311…偏光子、312…レーザ共振器、313、314…ミラー、315、316…回折格子、317、318…ミラー、320…光変調手段、321、322…回折格子、323、324…シリンドリカルレンズ、325…空間光変調器、330…凸レンズ、331…シリンドリカルレンズ、332…平面凹レンズ、351…強度変調部、352…位相変調部、353、354…空間光変調器、355、356…CRT、357、358…結像レンズ、359〜362…凹面鏡、363…偏光子、364…回折格子、365…検光子、366…回折格子、367…He−Neレーザ、368…強度変調器、369…X−Yスキャナ、370、375…ガラス面板、371、376…ITO、372…アモルファスシリコン層、373…誘電体ミラー層、374、377…配向層、378…スペーサ、379…液晶層。

Claims (11)

  1. 複数の周波数成分を含むコヒーレントな光が集合した短パルス光を射出する光源と、
    前記短パルス光を入力光とし、この光の波形を変形して射出する光波形変形手段と、
    前記光波形変形手段の出力光を用いて所定の光反応を行う光反応作用手段と、
    前記光波形変形手段で変形された光波形に対する前記光反応の反応効率を随時測定する反応効率測定手段と、
    前記光波形変形手段で変形された光の波形に関する情報及びこれに対応する前記反応効率測定手段で測定された反応効率を関連づけて随時記憶する記憶手段と、
    前記光波形変形手段を制御して前記光波形変形手段で変形される光波形を調整する機能を有し、所定のシーケンスに従って光波形を変化させながら前記反応効率測定手段により測定した反応効率をこの光波形に関する情報と共に前記記憶手段に記憶させ、所定シーケンス終了後、前記記憶手段に記憶された光波形と反応効率の組み合わせの中から最適な反応効率の光波形を呼び出して前記光波形変形手段を制御することにより、この光波形に調整する光波形制御手段と、
    を備えることを特徴とする光反応装置。
  2. 複数の周波数成分を含むコヒーレントな光が集合した短パルス光を射出する光源と、
    前記短パルス光を入力光とし、この光の波形を変形して射出する光波形変形手段と、
    前記光波形変形手段の出力光を用いて所定の光反応を行う光反応作用手段と、
    前記光波形変形手段で変形された光の波形に対する前記光反応の反応効率を随時測定する反応効率測定手段と、
    前記光波形変形手段で変形された光の波形に関する情報及びこれに対応する前記反応効率測定手段で測定された反応効率を関連づけて随時記憶する記憶手段と、
    前記光波形変形手段を制御して前記光波形変形手段で変形される光波形を調整する機能を有し、光波形変形を制御するパラメータのうち特定のパラメータを所定の範囲で変化させながら、前記反応効率測定手段により反応効率を測定して、得られた反応効率を基に前記特定のパラメータの前記所定範囲中における好適な範囲を絞り込み、この絞り込んだ特定パラメータの好適な範囲においてさらに同一又は他のパラメータについて同様の絞り込みを行う動作を繰り返すことにより、最適な反応効率の光波形を判定したうえで、前記光波形変形手段を制御してこの光波形に調整する光波形制御手段と、
    を備えることを特徴とする光反応装置。
  3. 前記光波形変形手段は、空間光変調器と、その入出力側のそれぞれに配置された2個の回折格子と、を有していることを特徴とする請求項1又は2に記載の光反応装置。
  4. 前記空間変調器は、その光路が直列に接続された強度変調用と位相変調用の2つの平行配向ネマチック液晶型空間光変調器であることを特徴とする請求項3記載の光反応装置。
  5. 前記光波形変形手段へ入力される前記短パルス光は1次元方向に広がりを有するストライプ状の平行光であって、前記1次元方向は前記入力側回折格子の分光方向に直交していることを特徴とする請求項3記載の光反応装置。
  6. 前記空間光変調器は、読出光の波長分布方向に対応して分光反射特性を異ならせた読出光反射鏡を有する平行配向ネマチック液晶空間光変調器であることを特徴とする請求項3〜5のいずれかに記載の光反応装置。
  7. 前記空間光変調器は、書込みがレーザ走査により行われる平行配向ネマチック液晶空間光変調器であることを特徴とする請求項4〜6のいずれかに記載の光反応装置。
  8. 前記光波形変形手段は、入力された前記短パルス光の強度を増幅する光増幅器を有していることを特徴とする請求項1又は2に記載の光反応装置。
  9. 前記反応効率測定手段は、前記光源あるいは前記光波形変形手段の出力光の光強度を測定する手段と、前記光強度をもとに前記反応効率測定結果を補正する手段とをさらに備えている請求項1又は2に記載の光反応装置。
  10. 前記光波形変形手段からの出力光を複数に分割し、分割された出力光相互の遅延時間を制御して光反応作用手段に導く出力光導光手段をさらに備えていることを特徴とする請求項1又は2に記載の光反応装置。
  11. 前記反応効率測定手段は、前記光反応作用手段から出力された光の強度の時間変化を測定するストリークカメラを有していることを特徴とする請求項1又は2に記載の光反応装置。
JP02402297A 1997-02-06 1997-02-06 光反応装置 Expired - Fee Related JP3713350B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02402297A JP3713350B2 (ja) 1997-02-06 1997-02-06 光反応装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02402297A JP3713350B2 (ja) 1997-02-06 1997-02-06 光反応装置

Publications (2)

Publication Number Publication Date
JPH10223959A JPH10223959A (ja) 1998-08-21
JP3713350B2 true JP3713350B2 (ja) 2005-11-09

Family

ID=12126919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02402297A Expired - Fee Related JP3713350B2 (ja) 1997-02-06 1997-02-06 光反応装置

Country Status (1)

Country Link
JP (1) JP3713350B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6885683B1 (en) 2000-05-23 2005-04-26 Imra America, Inc. Modular, high energy, widely-tunable ultrafast fiber source
JP2002273583A (ja) 2001-03-19 2002-09-25 Inst Of Physical & Chemical Res 透明媒質加工装置
JP2004317809A (ja) * 2003-04-16 2004-11-11 Japan Science & Technology Agency 光変調装置
JP2005055652A (ja) * 2003-08-04 2005-03-03 Hamamatsu Photonics Kk 可変スペクトル光発生装置
JP2005070610A (ja) 2003-08-27 2005-03-17 Fujitsu Ltd 多波長光源装置
JP4388334B2 (ja) * 2003-09-17 2009-12-24 財団法人光科学技術研究振興財団 光反応装置及び光反応制御方法
JP2005317669A (ja) * 2004-04-27 2005-11-10 Research Foundation For Opto-Science & Technology テラヘルツ波発生装置及びそれを用いた計測装置
JP4650090B2 (ja) * 2005-05-12 2011-03-16 株式会社島津製作所 固体レーザ装置および適正温度測定方法
JP2007041310A (ja) * 2005-08-03 2007-02-15 Hamamatsu Photonics Kk ファイバレーザ装置
JP2007110089A (ja) * 2005-09-15 2007-04-26 Aisin Seiki Co Ltd 高パワー短光パルス発生方法及び高パワー短光パルス発生装置
WO2007149956A2 (en) * 2006-06-23 2007-12-27 Kansas State University Research Foundation Method and apparatus for controlling carrier envelope phase
JP2010263247A (ja) * 2010-08-18 2010-11-18 Shimadzu Corp 固体レーザ装置
DE102019201280A1 (de) * 2019-01-31 2020-08-06 Trumpf Laser Gmbh Anordnung und Verfahren zum Formen eines Laserstrahls
JP7436311B2 (ja) * 2020-07-14 2024-02-21 浜松ホトニクス株式会社 光整形装置及び光整形方法

Also Published As

Publication number Publication date
JPH10223959A (ja) 1998-08-21

Similar Documents

Publication Publication Date Title
JP3713350B2 (ja) 光反応装置
JP4824855B2 (ja) 空間光変調器および光パルス波形制御装置
US5090795A (en) Integrated adaptive optics apparatus
US6744950B2 (en) Correlators and cross-correlators using tapped optical fibers
DE112008003278T5 (de) Phasenmodulationsvorrichtung und Phasenmodulationsverfahren
JP6654948B2 (ja) パルス光の波形計測方法及び波形計測装置
US20090244415A1 (en) Liquid crystal optical modulation element, liquid crystal optical modulation device and method for driving liquid crystal optical modulation element
US6707021B2 (en) Transparent medium processing device
CN107677458B (zh) 一种实时可控的激光束模拟发生装置
CN111123560A (zh) 基于多频声光调制及光栅衍射的光脉冲调控方法和系统
CN113340570B (zh) 高功率脉冲激光动态光场及动态焦斑的测量装置和测量方法
US8605285B2 (en) Apparatus and method for sample analysis
CN114739521A (zh) 基于空频复用的单次曝光超短脉冲时空测量装置和方法
CN115900976A (zh) 飞秒激光脉冲宽度的测量装置及方法
US6735012B2 (en) System for phase modulating an incoming optical wavefront
JPH0460538B2 (ja)
CN113690719B (zh) 高精度活塞相位闭环控制方法及系统
US20230333007A1 (en) Dispersion measurement device and dispersion measurement method
JP2018537678A (ja) パルス動作における光学伝播チャネル間の相対遅延を測定するための方法
CN114460045A (zh) 散射介质光学传输矩阵的测量方法
JP4026983B2 (ja) 光飛跡観測装置
Giles et al. Setting up a liquid crystal phase screen to simulate atmospheric turbulence
JP2000214082A (ja) 媒質の非線形光学応答測定装置
JP3566936B2 (ja) 光信号電界の時間波形測定方法及び装置
RU2758003C1 (ru) Способ регистрации голографических изображений объектов

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050822

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees