JP3704881B2 - 永久磁石併用同期回転機およびその駆動方法 - Google Patents

永久磁石併用同期回転機およびその駆動方法 Download PDF

Info

Publication number
JP3704881B2
JP3704881B2 JP10869397A JP10869397A JP3704881B2 JP 3704881 B2 JP3704881 B2 JP 3704881B2 JP 10869397 A JP10869397 A JP 10869397A JP 10869397 A JP10869397 A JP 10869397A JP 3704881 B2 JP3704881 B2 JP 3704881B2
Authority
JP
Japan
Prior art keywords
rotating machine
permanent magnet
rotor core
synchronous rotating
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10869397A
Other languages
English (en)
Other versions
JPH10304633A (ja
Inventor
裕章 梶浦
慶一郎 伴在
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP10869397A priority Critical patent/JP3704881B2/ja
Priority to US09/066,749 priority patent/US5955807A/en
Publication of JPH10304633A publication Critical patent/JPH10304633A/ja
Application granted granted Critical
Publication of JP3704881B2 publication Critical patent/JP3704881B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に、使用回転数範囲の広い電気自動車用の回転機として利用できる永久磁石併用同期回転機に関する。
【0002】
【従来の技術】
永久磁石形同期回転機を電気自動車用走行モータに適用する場合の問題の一つに、坂道下降時タイヤから回転機が回されるモードになったとき、回転機誘起電圧がそれに繋がる電力変換器素子の耐電圧以下になるように設定する必要がある。これにより回転機設計自由度が下がり、そのため必要以上に大きな体格の回転機或いは電力変換器が必要となってくる。
【0003】
永久磁石形同期回転機を発電機として使用するとき、発電量の調整はステータ巻線からの反作用起磁力で制御する必要がある。この場合無制御の状態が出力最大となり安全上問題となるため、永久磁石同期形回転機は一般に発電機として使用されない。また永久磁石には常に反作用磁界が減磁界として加わり、不可逆減磁が生じ易い。
【0004】
上記問題を解決する手段として、特開平6ー351206号公報に示すハイブリッド励磁形の永久磁石形同期回転機においては、永久磁石部と鉄心部を設けたロータを、ステータ側から直流励磁し、鉄心部をN 極またはS 極に励磁することで、ステータ上で永久磁石の磁束の方向を変えて、ステータ巻線に鎖交する量を調整することで誘起電圧量を制御している。しかし、この方法ではステータ内の磁束が電磁鋼板シートを貫通する方向に鎖交し、鉄損を増やすことになる。
【0005】
【発明が解決しようとする課題】
しかし、上述の永久磁石形同期回転機においては、ステータ内の磁束が電磁鋼板シートを貫通する方向に鎖交し、鉄損を増やすことになり、効率の低下が生じる。
そこで、本発明は、これらの問題点を解決するためになされたもので、永久磁石同期回転機の回転子側に界磁巻線を設け、永久磁石による回転子から固定子への磁束を調整することで、モータ動作時の高速回転域効率の向上、低回転数域出力の向上、電力変換器の小型化の実現を目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するため、以下の技術的手段を採用する。
すなわち、請求項1の発明によれば、磁性体よりなる薄板を軸方向に積層した回転子コアに磁石と、この磁石の磁束を磁気的に短絡する知絡手段と、この短絡手段に流れる磁束量を制御するための界磁巻線を設けたものであり、短絡手段により回転子コアの薄板を一体にするものである。それにより、部品点数が増すことなく、確実に回転子コアを作ることができる。
【0007】
さらに、回転子磁極を積層電磁鋼板にて構成することで、固定子からの起磁力変動により磁極表面に発生する鉄損を低減できるため回転機単体効率を向上することが可能である。
そして、発電機としての作動時には外部励磁回路により固定子への磁束量が制御可能なため、高効率な発電出力調整が容易に実現できる。またモータ駆動時には、低回転数域で磁束量を増加し、高回転数域で磁束を減少させることで、固定子巻線への必要入力電流を抑えることができる。そのため回転機効率が向上し、更に小型の電力変換器が使用できる。
【0008】
さらに回転子は円環状電磁鋼板により構成され、また制御巻線は回転子回転軸を中心として巻装されるため、共に遠心力に強い構造となっている。
【0009】
【発明の実施の形態】
以下、図1、図2および図3に本発明の第1実施例を示す。
図1の断面図(図3のA−A線に沿う断面図)に示す如く、回転機1000はフロントフレーム1910およびエンドフレーム1911の内部に固定子に相当するステータ1100と、フロントフレーム1910およびエンドフレーム1911に対してベアリング1920、1921によりステータ1100内側をエアギャップを介して回転可能な回転子に相当するロータ1200と、ロータ1200の回転位置を測定するレゾルバロータ1930、レゾルバステータ1931とを有する。
【0010】
ステータ1100は回転磁界を作る3相コイル1110及び電磁鋼板を積層したステータコア1120で構成され、ステータコア1120は3相コイル1110を挿入するスロット1121、ティース1122およびコアバック1123により構成される。
ロータ1200はロータヨーク1210、1220と、ロータヨーク1210の内部に設けられた界磁巻線1230で磁気回路ブロック1250を構成し、さらに、磁気回路ブロック1250の両側にそれぞれ非磁性プレート1260が設けられている。また、円筒状鉄心1231の内側には、先端にスプライン1241をもつシャフト1240を有しており、界磁巻線1230は、ブラシホルダ1310、ブラシ1320、スリップリング1330およびシャフト1240内部に樹脂モールド等の絶縁部1340を介して設けられているリード部1350を介して外部から給電を受ける。
【0011】
図2は図1のB−B線に沿う断面を示したものであり、ロータヨーク1210は円環状電磁鋼板を積層したものでn個の軸方向磁石挿入穴1211が周方向に等間隔で設けられ、また隣り合う2つの磁石挿入穴1211の周方向中央部に丸穴1212が形成されている。また図3は図1のC−C線に沿う断面を示したものであり、図3に示すように、ロータヨーク1220は電磁鋼板が積層されたものであり、円環部1221とボス部1222と、円環部からボス部へのn/2個の径方向リブ1223で構成される。
【0012】
円環部1221にはロータヨーク1210同様、軸方向磁石挿入穴1224が周方向に等間隔で設けられている。磁石挿入穴1211および1224は説明上符号が異なっているが共に同一寸法形状をなす。また磁石挿入穴1224間には周方向中央部に丸穴1225が設けらている。これも前記図2に示す丸穴1212と同一寸法形状をなす。リブ1223は円環部1221の丸穴1225位置の内周から(720/n)°の間隔で径方向に配置され、ボス部1222と繋がる。ボス部1222は中央にシャフト1240の挿入穴をもつ円環状の部材である。
【0013】
前述した磁気回路ブロック1250は、シャフト1240のセレ−ションに圧入された円筒状鉄心1231とその外周に設けられた樹脂ボビン1232、樹脂ボビン1232に一方向に巻装された界磁巻線1230を設け、その両端を一対のロータヨーク1220でそのリブ1223が互いに対向しないようにずらして挟みこむことで構成されている。
【0014】
磁石挿入穴1211、1224には、磁石1280が隣合う磁石の磁極が同磁極となる向きに軸方向から挿入され、また丸穴1212、1225には丸穴1213および1225と同一形状の短絡手段をなす軟磁性体ピン1281が軸方向から圧入されている。このピン1281により、複数の積層した円環状電磁鋼板からなるロータヨーク1210を一体に固定している。
【0015】
回転機1000の3相コイル1110は電力変換器200に、電力変換器200はバッテリ300に結線される。またブラシ1320は界磁回路400に接続され、レゾルバステータ1931は信号処理回路500に接続される。さらにインバータ200、界磁回路400、信号処理回路500を制御する制御回路600を有する。
【0016】
そして、ロータ1200に挿入された磁石1280は、周方向に着磁され、この磁石1280によりロータ1200外周はN磁極,S磁極の各磁極を構成するが、N磁極の磁束はN磁極側軟磁性体ピン1281、ロータヨーク1220のN磁極側リブ部1223、円筒状鉄心1231、S磁極側リブ部1223およびS磁極側軟磁性体ピン1281を通ってS磁極に短絡している。これにより、ステータ1100側への有効磁束を分流、短絡し減少させている。
【0017】
ここで、図4 において、回転機の磁気回路を等価的に示す。ステータ側の磁気抵抗Rs、エアギャップ磁気抵抗Rg,磁石部磁気抵抗Rm,短絡部磁気抵抗Rr,磁石起磁力Fm,界磁巻線起磁力Fcとすると、ステータ側に流れる有効磁束量Φ1は次式で表わせる。
Figure 0003704881
各パラメータの設定により有効磁束量Φ1は任意に設定できる。例えば界磁巻線に電流を流さないとき(Fc=0)、
Φ10=RrFm/(RrRm+Rm(Rg+Rs)+(Rg+Rs)Rr)
となり、短絡部磁気抵抗Rrが小のときはΦ10≒0となる。短絡部磁気抵抗Rrは軟磁性体ピン1281、リブ部1223、円筒状鉄心1231および各部材の接合部の磁気抵抗により決定されるため、各部の断面積および長さを設定することで、界磁巻線1230に電流を流さない時の有効磁束量Φ10を調整することができる。ここではロータ1200からステータ1100への磁路が構成磁性体のB−H(磁束密度−磁界)カーブ線形領域で使用できる様、磁束密度を1T(テスラ)以下に設定する。
【0018】
界磁巻線に通電した場合は、界磁巻線起磁力Fc分の磁束Φ1c
Φ1c =RmFc/(RrRm+Rm(Rg+Rs)+(Rg+Rs)Rr)
が加算され、有効磁束量Φ11は
Φ1=Φ10+Φ1c
となり、界磁巻線通電電流により有効磁束量を調整することが可能である。
【0019】
本発明の回転機を例えば電気自動車用走行モータの様な広使用回転数域のモータに適用した場合について記載する。つまり、シャフト1240が、電気自動車の車輪に接続される。
弱め界磁制御が不要なモータ低回転数域においては、界磁巻線への通電電流を増加し、作用磁束量Φ1を増加する。モータ発生トルクは作用磁束量Φ1とトルク電流に比例するため、作用磁束量Φ1を増加することでステータ巻線に流れるトルク電流を低減することが可能である。
【0020】
また反作用誘起電圧が印加電圧を超えるため、モータ駆動に弱め界磁制御が必要な高回転数域においては、界磁巻線への通電電流をゼロとし磁石による磁束Φ10のみにすることで、トルク電流とは別な本来必要無い弱め界磁電流を減少させることができる。これにより、ステータ最大電流を減らすことができるため、巻線部の発熱が抑えられ回転機の小型化が可能となる。また、電力変換器の電流容量も低減することができるため、電力変換器の小型化と低コスト化が実現可能である。
【0021】
更に界磁巻線部の銅損はステータ巻線の銅損に比べてわずかであるため、本発明のような界磁巻線部で弱め界磁を行う制御方法は、ステータ巻線のみからの弱め界磁を行う従来の永久磁石式回転機の制御方法に比べて銅損が少ないため効率が良い。
また一般にステータ巻線はスロットに集中的に巻装されるため、例えステータ巻線に歪のない正弦波電流が流れた場合でも、ある瞬間を見れば、ステータ内周およびロータ外周間のエアギャップにおけるステータ側からロータ側への発生界磁(ステータ界磁)は、ステータの周方向位置に対して空間的に階段状である。この階段状磁界により例えば空間的に正弦波分布をしたロータ磁界を打ち消す場合、ロータ磁界の波長に相当する基本波レベルで打ち消せてもその差の高調波磁界が残り、これがエアギャップ、ステータコアおよびロータコアに交番する高調波磁束となる(図5)。この高調波磁束は周波数が高いことからステータ鉄損及びロータ表面鉄損を大幅に増加する原因となり好ましくない。
【0022】
これに対し本発明では、ロータからの起磁力を直接減らす制御法であるため、ステータ巻線の弱め界磁電流がわずか或いはゼロでよい(但しステータ巻線にはトルク電流分の電流は流れている)ため高調波磁束の発生が抑えられ、それによるステータおよびロータ表面に発生する鉄損を最小限に抑えることが可能である。
【0023】
また、界磁巻線起磁力Fc=0のときの有効磁束量Φ10を有効磁路内構成部材磁気特性のB−Hカーブの線形領域で設定した理由は、有効磁束量Φ10による反作用誘起電圧が印加電圧以上となる高回転数域でモータ駆動する必要が生じたとき、ステータからの弱め界磁に必要なステータ電流を最小限に抑えることが可能であるためである。図6において説明すると、ステータ磁界により有効磁束をΦ1からΦ2に減少させる場合、B−Hカーブが線形であるときの必要ATをATa ,非線形であるときの必要ATをATb とするとATa <ATb となって、ステータ巻線の巻数が同じである場合、その差はステータ巻線電流の差となるためである。
【0024】
従来の永久磁石式回転機をモータとして動作させた時のT−N(トルク−回転数)カーブにおける効率マップ(図7)に対して、本発明の回転機を上記制御方法にて駆動した場合のT−Nカーブにおける効率マップは図8のようになり、効率マップ上の最大効率範囲が拡大する。
また、本発明のロータ磁極構造では従来の埋め込み磁石形回転機同様、横軸インダクタンスが直軸インダクタンスと比較して大きくなるため、リラクタンストルクを出力トルクとして利用でき、主磁束トルクのみの場合に対して出力トルクが増加する。
【0025】
本発明の回転機を車両用発電機として使用する場合は、Φ10を車両用常用負荷のレベルに設定しておき、それ以上の出力が要求されるときのみ界磁巻線に通電すれば、界磁巻線の銅損が低減でき高効率の発電が可能である。
従来、ロータからの界磁をコントロールできる同期回転機として突極形同期機、クローポール形同期機があげられる。両者は共に界磁巻線のみにより、有効磁束を得ており、必要最小限を界磁巻線で補う本発明に対して界磁巻線での抵抗損が大きい。また両者ともリラクタンストルクによるトルク向上は期待できない。
【0026】
更に、突極形同期機では界磁巻線をロータ各極に集中巻した構造であるため遠心力に対して強度が無いが、界磁巻線が回転軸に対して集中巻される本発明は遠心力に対して有利であり、高速化による小型化に対応可能である。
また、クローポール形同期機に対しては、ロータ磁極表面が電磁鋼板シートにより構成されるため、ロータ磁極表面での鉄損を抑えることが可能である。
【0027】
図9に本発明の第2実施例を示す。図9は第1実施例に対して磁石挿入位置を変更したもので、軟磁性体ピン1281の内側に磁石1282を、磁界が径方向を向き、隣合う磁石の極が異なるように配置する。ここでは磁石の両端部に磁束もれ防止用穴1284を設けて、隣合う磁石1282の磁束が円環状電磁鋼板内で短絡するのを防止する。
【0028】
図10に本発明の第3実施例を示す。図10は図9の磁束もれ防止用穴1284に補助磁石1283を挿入したものであり、磁石1282が円環状電磁鋼板に作る磁極と接する面が前記磁極と同極とすることで、第2実施例に対して更に有効磁束量を増やすことが可能となる。
図11に本発明の第4実施例を示す。図11は第1実施例を軸長の長いタイプの回転機に適用した例である。
【0029】
図11に示す如く、回転機1000はフロントフレーム1910およびエンドフレーム1911内部に固定子に相当するステータ1100と、フロントフレーム1910およびエンドフレーム1911に対してベアリング1920、1921によりステータ1100内側をエアギャップを介して回転可能な回転子に相当するロータ1200とロータ1200の回転位置を測定するレゾルバロータ1930、レゾルバステータ1931を有する。
【0030】
ステータ1100は回転磁界を作る3相コイル1110及び電磁鋼板を積層したステータコア1120で構成され、ステータコア1120は3相コイル1110を挿入するスロット1121、ティース1122およびコアバック1123により構成される。
ロータ1200はロータヨーク1210、ロータヨーク1220と、ロータヨーク1210の内部に設けられた界磁巻線1230で構成された複数の磁気回路ブロック1250と、磁気回路ブロック1250を複数重ねたものの両端に設けられた円板状の非磁性プレート1260と、先端にスプライン1241をもつシャフト1240を有しており、ブラシホルダ1310、ブラシ1320、スリップリング1330およびシャフト1240内部に樹脂モールド等の絶縁部1340を介して設けられているリード部1350を介して外部から給電を受けている。
【0031】
図2は図11のB−B線に沿う断面を示したものであり、図2に示す如く、ロータヨーク1210は円環状電磁鋼板を積層したもので、n個の軸方向磁石挿入穴1211が周方向に等間隔で設けられ、また隣り合う2つの磁石挿入穴1211の周方向中央部に丸穴1212が設けらている。また図3は図11のC−C線に沿う断面を示したものであり、ロータヨーク1220は電磁鋼板が積層されたものであり、円環部1221とボス部1222と、円環部からボス部へのn/2個の径方向リブ1223で構成される。円環部1221にはロータヨーク1210同様、軸方向磁石挿入穴1224が周方向に等間隔で設けられている。磁石挿入穴1211および1224は説明上符号が異なっているが共に同一寸法形状をなす。また磁石挿入穴1224間には周方向中央部に丸穴1225が設けらている。これも前記図2に示す丸穴1212と同一寸法形状をなす。リブ1223は円環部1221の丸穴1225位置の内周から(720/n)°の間隔で径方向に配置され、ボス部1222と繋がる。ボス部1222は中央にシャフト1240の挿入穴をもつ円環状の部材である。
【0032】
軟磁性体ピン1281は複数の磁気回路ブロック1250および非磁性プレート1260の各穴を貫通をし、また磁石は各磁気回路ブロック1250で独立したものでなくても良く、実施例では2つの磁気回路ブロック1250に対して共通化している。
なお、磁石の磁束をロータ内にて短絡する原理、有効磁路に有効磁束を発生する原理および基本効果については第1実施例と同様である。
【0033】
また第2および第3実施例の磁石配置も本第4実施例にそのまま適用できる。第5実施例を図12、図13および図14に示す。(なお、断面図については図2を参照のこと)第5実施例は第1実施例のロータヨーク1220を電磁鋼板から軟磁性体鉄心に変更した例であり、第1実施例(図1)に対してロータが異なるのみであるため、ロータのみを図12、図13、図14で説明する。ここで図13は図12のロータのP視を、図14は図12のロータのQ視を示す。
【0034】
ロータヨーク1290は軟磁性体鉄心を鍛造加工したものであり、円板部1291と、円板部1291内径側に構成されるボス部1292と、円板部1291から径方向に放射状に張り出したn/2個のリブ部1293で構成される。ボス部1292は、中心軸にシャフト1240の挿入穴をもち、リブ部1293に丸穴1295が設けらている。これは図2に示す丸穴1212と同一寸法形状をなす。
【0035】
磁気回路ブロック1250は、ロータヨーク1210の内周側に樹脂ボビン1232と、樹脂ボビンに一方向に巻装された界磁巻線1230を設け、その両端をロータヨーク1290でそのリブ部1293が互いに対向しないようにずらして挟みこんだものである。
磁石挿入穴1211には、磁石1280が隣合う磁石の磁極が同磁極となる向きに軸方向から挿入され、また丸穴1212、1295には丸穴1212および1295と同一形状の軟磁性体ピン1281が軸方向から圧入されている。
【0036】
本実施例では、ロータヨーク1290が磁路以外に電磁鋼板で構成されるロータヨーク1210の軸方向への動きを拘束する部材を兼ねることができるため、非磁性プレートを廃止することが可能となる。
なお、磁石の磁束をロータ内にて短絡する原理、有効磁路に有効磁束を発生する原理および基本効果については第1実施例と同様である。
【0037】
また第2および第3実施例の磁石配置も本実施例にそのまま適用できる。
第6実施例を図15、図16図17に示す(なお、断面図については図2を参照のこと)。第5実施例のロータをブラシレス化したものであり、第5実施例(図12)に対してロータが異なるのみであるため、ロータのみを図15、図16、図17および図2(第1実施例と共通でE−E断面を示す)で説明する。ここで図16は図15のロータのP視を、図17は図15のロータのQ視を示す。
【0038】
図15に示すが如く、ロータ1200は、複数の電磁鋼板で構成されたロータヨーク1210、軟磁性体鉄心よりなるロータヨーク1270およびロータヨーク1275と、ロータヨーク1270とロータヨーク1275を機械的に繋ぐ非磁性材料で構成されたリング1950と、ロータヨーク1210およびロータヨーク1275の内側に設けられ、軟磁性体よりなる界磁巻線ボビン1274と、先端にスプライン1241をもつシャフト1240を有している。
【0039】
界磁巻線ボビン1272には界磁巻線1230が一方向に巻装され、またフレーム1911に対してボルト1940で固定される。界磁巻線1230はリード部1350を介して外部から給電を受けている。
図15および図16に示すように、ロータヨーク1270は軟磁性体鉄心を鍛造加工したものであり、円板部1271と、円板部1271内径側に構成されるボス部1272と、円板部1271から径方向に放射状に張り出したn/2個のリブ部1273で構成される。ボス部1272は、中心軸にシャフト1240の挿入穴をもち、リブ部1273に丸穴1278が設けらている。これは前記図2に示す丸穴1212と同一寸法形状をなす。
【0040】
また、図17に示すように、ロータヨーク1275は軟磁性体鉄心を鍛造加工したものであり、円環部1276と、円環部1276から径方向に放射状に張り出したn/2個のリブ部1277で構成される。またリブ部1277には丸穴1279が設けられている。
磁石挿入穴1211には、磁石1280が隣合う磁石の磁極が同磁極となる向きに軸方向から挿入され、また丸穴1212、1278および1279には丸穴1212、1278および1279と同一形状の軟磁性体ピン1281が軸方向から圧入されている。
【0041】
ロータ側に界磁巻線を有する構成であるのに係わらず、本実施例ではブラシレス回転機を実現している。
なお、磁石の磁束をロータ内にて短絡する原理、有効磁路に有効磁束を発生する原理および基本効果については第1実施例と同様である。
また第2および第3実施例の磁石配置も本実施例にそのまま適用できる。
【0042】
以上説明した様に本発明によれば、埋込み磁石形回転子の中に有効磁束をコントロール可能な界磁巻線を設けることにより、回転機の全回転数領域において効率最大となる制御が可能となる。また、磁極を円環状電磁鋼板により構成しているため遠心力に対して強く、磁極表面に発生する鉄損を低減することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の一部断面を表す模式図である。
【図2】図1及び図11のB−B線及び図12のD−D線,図15のE−E線に沿う断面図である。
【図3】図1及び図11のC−C線に沿う断面図である。
【図4】磁気回路を表すブロック図である。
【図5】各磁界を表す特性図である。
【図6】磁束密度と磁界の関係を示す特性図である。
【図7】従来の回転機のトルクと回転数の関係を示す特性図である。
【図8】本発明の回転機のトルクと回転数の関係を示す特性図である。
【図9】本発明の第2実施例を示す断面図である。
【図10】本発明の第3実施例を示す断面図である。
【図11】本発明の第4実施例を示す断面図である。
【図12】本発明の第5実施例を示す断面図である。
【図13】図12におけるロータのP視からの矢視図である。
【図14】図12におけるロータのQ視からの矢視図である。
【図15】本発明の第6実施例を示す断面図である。
【図16】図15におけるロータのP視からの矢視図である。
【図17】図15におけるロータのQ視からの矢視図である。
【符号の説明】
1000 回転電機
1100 ステ−タ
1120 ステ−タコア
1200 ロ−タ
1210、1220 ロ−タヨ−ク
1230 界磁巻線
1211、1224 磁石挿入穴
1212、1225 丸穴
1280 磁石
1281 軟磁性体ピン。

Claims (11)

  1. 固定子巻線が巻装された固定子と、
    磁性体よりなる薄板を軸方向に積層した回転子コアと、
    前記回転子コアの磁極表面から前記固定子に磁束を供給すると共に、前記回転子コア上にN極及びS極の磁極を構成するように設けられた磁石と、
    前記回転子コアのN極及びS極を磁気的に短絡する短絡手段と、
    前記短絡手段に流れる磁束量を制御するための界磁巻線とを備え、
    前記短絡手段により前記回転子コアの薄板を一体にしたことを特徴とする永久磁石併用同期回転機。
  2. 前記回転子コアの軸方向に設けられた複数の第1の穴を設けると共に、
    前記磁石は第1の穴に挿入することで、前記回転子コア上にN極及びS極の磁極を構成したことを特徴とする請求項1に記載の永久磁石併用同期回転機。
  3. 前記短絡手段は、前記回転子コアの前記磁極の軸方向に設けられた複数の第2の穴に軸方向に挿入された磁性体ピンであることを特徴とする請求項2に記載の永久磁石併用同期回転機。
  4. 前記回転子は、
    前記短絡手段と前記界磁巻線とを組み合わせて、軸方向に直列に複数配置したことを特徴とする請求項1ないし3のいずれか1項に記載の永久磁石併用同期回転機。
  5. 前記回転子コアの第1の穴は、前記回転子コアの中心軸側から放射状に伸びた矩形穴であり、
    前記回転子コアの磁極は、第1の穴間に形成されると共に、
    磁の方向が前記回転子コアの周方向に沿い、かつ隣り合う前記磁石の対向し合う極が同極となるように挿入されたことを特徴とする請求項3に記載の永久磁石併用同期回転機。
  6. 前記第1の穴は、前記回転子コアの前記ピン挿入穴より内径側に設けられ、
    前記第1の穴間には、漏洩磁束防止用の抜き穴が設けられると共に、
    前記磁石は径方向に着磁され、隣合う磁極が交互に異なるように前記第1の穴に挿入されることを特徴とする請求項3に記載の永久磁石併用同期回転機。
  7. 前記漏洩磁束防止用の抜き穴に、着磁の方向がコアの周方向に沿い、かつ前記磁石により磁化される前記回転子コアの前記磁極に対して同じ極が対向するように挿入される補助磁石とを有することを特徴とする請求項6に記載の永久磁石併用同期回転機。
  8. 前記短絡手段は、
    前記回転子コアと、
    前記回転子コアの軸方向両端部に設けられると共に、軸方向に形成された鉄心ヨークとを有し、
    前記磁性体ピンは前記鉄心ヨークに設けられた穴に圧入することで、前記回転子コアと前記鉄心ヨ−クとを固定することを特徴とする請求項3に記載の永久磁石併用同期回転機。
  9. 前記請求項1から8のいづれか1項に記載の永久磁石併用同期回転機をモータ及び発電機として駆動する場合において、
    前記永久磁石併用同期回転機の前記固定子巻線に電気的に結線され交流電力を供需給する電力変換回路と、
    前記界磁巻線に電気的に結線され直流電力を供給する界磁回路と、を備え、
    前記電力変換回路により前記固定子巻線に流れる電流の位相と量と、
    前記界磁制御回路により前記界磁巻線に流れる電流量と、を調整して、
    前記永久磁石併用同期回転機内損失を最小にて駆動することを特徴とする永久磁石併用同期回転機の駆動方法。
  10. 前記請求項1から8のいづれか1項に記載の永久磁石併用同期回転機をモータとして駆動する場合において、
    前記永久磁石併用同期回転機の前記固定子巻線に電気的に結線され交流電力を供需給する電力変換回路と、
    前記界磁巻線に電気的に結線され直流電力を供給する界磁回路と、を備え、
    前記界磁巻線に通電する電流量を低回転数域で大きく、高回転数域で小さくすることを特徴とする永久磁石併用同期回転機の駆動方法。
  11. 前記請求項1から8のいづれか1項に記載の永久磁石併用同期回転機を発電機として駆動する場合において、
    前記界磁巻線に電気的に結線され直流電力を供給する界磁回路と、を備え、
    前記界磁巻線に通電する電流量を増減して出力を調整することを特徴とする永久磁石併用同期回転機の駆動方法。
JP10869397A 1997-04-25 1997-04-25 永久磁石併用同期回転機およびその駆動方法 Expired - Fee Related JP3704881B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10869397A JP3704881B2 (ja) 1997-04-25 1997-04-25 永久磁石併用同期回転機およびその駆動方法
US09/066,749 US5955807A (en) 1997-04-25 1998-04-27 Synchronous electric machine having auxiliary permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10869397A JP3704881B2 (ja) 1997-04-25 1997-04-25 永久磁石併用同期回転機およびその駆動方法

Publications (2)

Publication Number Publication Date
JPH10304633A JPH10304633A (ja) 1998-11-13
JP3704881B2 true JP3704881B2 (ja) 2005-10-12

Family

ID=14491258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10869397A Expired - Fee Related JP3704881B2 (ja) 1997-04-25 1997-04-25 永久磁石併用同期回転機およびその駆動方法

Country Status (1)

Country Link
JP (1) JP3704881B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11050331B2 (en) 2018-04-27 2021-06-29 Exedy Corporation Rotational electric machine
US11133732B2 (en) 2018-04-27 2021-09-28 Exedy Corporation Rotational electric machine
US11146138B2 (en) 2018-04-27 2021-10-12 Exedy Corporation Rotating electrical machine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3899668B2 (ja) * 1998-04-28 2007-03-28 株式会社デンソー 界磁巻線式同期機の駆動制御装置
JP4269544B2 (ja) 2000-09-14 2009-05-27 株式会社デンソー 複数ロータ型同期機
DE10162214B4 (de) 2000-12-19 2014-02-13 Denso Corporation Kraftfahrzeug-Motor-/Generatorgerät mit Synchronmaschine
JP4640422B2 (ja) 2008-02-29 2011-03-02 株式会社デンソー ランデルロータ型モータ
JP6432430B2 (ja) * 2015-04-15 2018-12-05 株式会社デンソー 回転電機のロータ
JP6579395B2 (ja) 2016-06-03 2019-09-25 株式会社デンソー 回転電機
JP2018121431A (ja) * 2017-01-25 2018-08-02 株式会社デンソー 回転電機の回転子及び回転電機
WO2020144888A1 (ja) * 2019-01-10 2020-07-16 三菱電機株式会社 回転電機の回転子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11050331B2 (en) 2018-04-27 2021-06-29 Exedy Corporation Rotational electric machine
US11133732B2 (en) 2018-04-27 2021-09-28 Exedy Corporation Rotational electric machine
US11146138B2 (en) 2018-04-27 2021-10-12 Exedy Corporation Rotating electrical machine

Also Published As

Publication number Publication date
JPH10304633A (ja) 1998-11-13

Similar Documents

Publication Publication Date Title
JP4403253B1 (ja) 磁束量可変軸方向間隙回転電機システム
JP5085071B2 (ja) 永久磁石式回転電機の回転子
JP4649625B1 (ja) 磁束量可変回転電機システム
US8987967B2 (en) Claw-pole motor with permanent magnet and electrically exciting parts
JP5159171B2 (ja) 永久磁石式回転電機
WO2010098006A1 (ja) 磁束量可変回転電機システム
US8294321B2 (en) Brushless machine having ferromagnetic side plates and side magnets
US20070085436A1 (en) Permanent Magnet Rotating Electric Machine and Electric Car Using the Same
JP2008136298A (ja) 回転電機の回転子及び回転電機
JP4337989B1 (ja) 磁石励磁の磁束量可変回転電機システム
JP2003032978A (ja) 回転電機
US20150015126A1 (en) Transverse Magnetic Flux Rotating Electrical Machine and Vehicle
JP3704881B2 (ja) 永久磁石併用同期回転機およびその駆動方法
JP2011078202A (ja) アキシャルギャップモータ
JP4735772B1 (ja) 磁石励磁回転電機システム
JP2010063196A (ja) アキシャルギャップモータ及び電動式流体駆動装置
WO2014188757A1 (ja) 回転電機の回転子、回転電機、電動駆動システム、及び電動車両
JP3117164B2 (ja) 永久磁石回転電機とその制御方法及び制御装置並びにそれを使用した電気自動車
JP2011182622A (ja) 磁束量可変回転電機システム
JP3508709B2 (ja) 磁石界磁回転形回転電機
JP4066219B2 (ja) 静止界磁コイル式磁石併用同期機
JP2009005445A (ja) 界磁制御電磁回転システム
JP2001145209A (ja) 車両用回転電機
JP4211200B2 (ja) 磁石併用同期機
JP3829888B2 (ja) 永久磁石併用同期回転機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110805

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120805

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130805

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees