JP3703355B2 - Board plating equipment - Google Patents

Board plating equipment Download PDF

Info

Publication number
JP3703355B2
JP3703355B2 JP2000024169A JP2000024169A JP3703355B2 JP 3703355 B2 JP3703355 B2 JP 3703355B2 JP 2000024169 A JP2000024169 A JP 2000024169A JP 2000024169 A JP2000024169 A JP 2000024169A JP 3703355 B2 JP3703355 B2 JP 3703355B2
Authority
JP
Japan
Prior art keywords
substrate
dimensional filter
processing surface
plating
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000024169A
Other languages
Japanese (ja)
Other versions
JP2001217207A (en
Inventor
保▲広▼ 溝畑
貞雄 平得
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2000024169A priority Critical patent/JP3703355B2/en
Publication of JP2001217207A publication Critical patent/JP2001217207A/en
Application granted granted Critical
Publication of JP3703355B2 publication Critical patent/JP3703355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハや液晶表示装置用のガラス基板(以下、単に基板と称する)に対してメッキ処理を施す基板メッキ装置に係り、特に硫酸銅などのメッキ液を基板の処理面に供給した状態で給電して電解メッキ処理を行う技術に関する。
【0002】
【従来の技術】
従来のこの種の装置として、例えば、メッキ液を貯留したチャンバと、基板の処理面を下向きにして基板を保持し、かつ基板をチャンバに対して昇降させる保持機構とを備えたものが挙げられる。
【0003】
このように構成された装置では、基板の処理面がチャンバのメッキ液に触れる位置にまで基板を下降させた後、チャンバ内のメッキ液を下方から基板の処理面に向けてポンプで上昇させて循環させ、基板の処理面に負電圧を印加するとともにチャンバ内のアノード電極に正電圧を印加する。これにより基板の処理面に対してメッキ処理を施すようになっている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような構成を有する従来例の場合には、次のような問題がある。
すなわち、基板の処理面に負電圧を印加する電極やマスク部材などを含む保持機構により基板の処理面における周辺部には段差が存在するので、この部分においてメッキ液の流れが妨げられ、チャンバ内を下方から上昇して基板の処理面に達したのちにチャンバの側方に流れだすメッキ液の一部が淀んで滞留する。これにより、この部分において膜厚が薄くなり、基板の面内における膜厚均一性が低下するという問題がある。
【0005】
また、基板の処理面のうち中央部に向けて下方から上昇されたメッキ液は、処理面に到達すると周辺部に向かって流れてゆくが、中央部から周辺部に向かうにしたがってメッキ液の流れが処理面から離れてゆく。つまり、流路抵抗が大きい処理面の近くよりも、流路抵抗の小さい処理面からやや離れた場所にメッキ液の流れが集まることによる。これによってもやはり上記と同じ問題が生じる。
【0006】
上記のようにして生じる膜厚の面内均一性を改善するためには、メッキ液の滞留を防止するとともに基板の中央部から周辺部にわたり、処理面に沿ってメッキ液を円滑に流してやる必要がある。そのためには大量のメッキ液をチャンバから供給して循環させる必要が生じ、ポンプ、配管径等の循環系の必要容量が増大し、その結果、メッキ液の循環量が多くなるという別異の問題が生じる。また、その他に、チャンバ内にパンチングプレートを配備して、メッキ液の噴流を適度に分散して基板の処理面全体にわたって均一化する手法もあるが、この場合にはパンチングプレートと基板までの距離を長くとる必要があって装置自体が大型化するという問題が生じてしまう。
【0007】
さらに、電解メッキを利用してメッキ処理を施す関係上、処理面の全面には予め導電性のシード層が形成されているが、構造上、処理面の周辺部にしかカソード電極が取り付けられないので、中央部は周辺部に比較してシード層の抵抗が大きくなる。そのため中央部は周辺部よりも膜厚が薄くなるといったシード層の抵抗の影響を強く受け易いという問題もある。
【0008】
本発明は、このような事情に鑑みてなされたものであって、メッキ液の循環量を増やすことなく基板の処理面の全体にわたってメッキ液の円滑な流れを形成することにより、膜厚の面内均一性を高めるとともにメッキ液の節約ができ、しかもシード層の抵抗による影響を小さくすることができる基板メッキ装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明は、メッキ液を基板の処理面に対して供給することによりメッキ処理を施す基板メッキ装置において、基板の処理面に対して近接し、かつ、処理面側の面が基板の処理面に対してほぼ平行に配設され、流体の流れる方向を三次元的に変えつつ透過させる三次元フィルタを備え、前記三次元フィルタは、メッキ液を貯留するメッキ槽の開口部を閉塞するように配置され、メッキ槽内に配設され、前記三次元フィルタ中におけるメッキ液の電気抵抗をシード層の電気抵抗よりも大きくすることにより、メッキ液に正電圧を印加するアノード電極から、基板の処理面に形成されたシード層に当接し、負電圧を印加するカソード電極までの電圧降下で処理面に形成されているシード層の電気抵抗の大きさによらず電気抵抗を基板面内でほぼ一定とし、前記三次元フィルタを介してメッキ液を供給することを特徴とするものである。
【0010】
また、請求項2に記載の発明によれば、請求項1に記載の基板メッキ装置において、前記三次元フィルタは、ガラス製またはセラミック製の微粒子を複数個集めて焼成してなることを特徴とするものである。
【0011】
また、請求項3に記載の発明によれば、請求項1または2に記載の基板メッキ装置において、前記三次元フィルタは、その中央部の厚みが周辺部の厚みに比較して徐々に薄くなるように、基板の処理面とは反対側に位置した側がすり鉢状に形成されていることを特徴とするものである。
【0012】
また、請求項4に記載の発明によれば、請求項1または2に記載の基板メッキ装置において、前記三次元フィルタは、その中央部に比較的大径の微粒子を用い、その周辺部に比較的小径の微粒子を用いて形成されていることを特徴とするものである。
【0013】
また、請求項5に記載の発明によれば、請求項1または2に記載の基板メッキ装置において、前記三次元フィルタは、基板の処理面側に比較的小径の微粒子を用い、基板の処理面の反対側に比較的大径の微粒子を用いて多層に形成されていることを特徴とするものである。
【0014】
また、請求項6に記載の発明によれば、請求項1ないし5のいずれかに記載の基板メッキ装置において、前記三次元フィルタの側面は、メッキ液が流れ出ることを防止する処理が施されていることを特徴とするものである。
【0015】
また、請求項7に記載の発明によれば、請求項1ないし6のいずれかに記載の基板メッキ装置において、基板の処理面を下向きにして基板を保持する保持手段をさらに備えていることを特徴とするものである。
【0016】
また、請求項8に記載の発明によれば、請求項7に記載の基板メッキ装置において、前記保持手段を前記三次元フィルタに対して昇降させる昇降手段をさらに備え、前記三次元フィルタの上面にメッキ液を盛った状態で前記保持手段を下降させ、基板の処理面と三次元フィルタの上面とがメッキ液で満たされた状態で基板の処理面にメッキ液を供給することを特徴とするものである。
【0017】
また、請求項9に記載の発明によれば、請求項1ないし8のいずれかに記載の基板メッキ装置において、前記三次元フィルタは、基板の処理面側の面と基板の処理面との間隔が10mm以下となるように配設されていることを特徴とするものである。
【0018】
【作用】
請求項1に記載の発明の作用は次のとおりである。
流体の流れる方向を三次元的に変えつつ透過させる三次元フィルタが、基板の処理面に近接し、かつ、基板の処理面側の面が処理面に対してほぼ平行に配設され、メッキ液を貯留するメッキ槽の開口部を閉塞するように配置されているので、これを通して供給されたメッキ液は、流路抵抗が小さい基板の処理面と三次元フィルタの基板の処理面側との隙間を通ることになる。したがって、メッキ液はその隙間を通って基板の中央部から周辺部に向かって円滑に流れる。
【0019】
また、三次元フィルタが介在することにより、その部分におけるメッキ液の抵抗分が大きくなり、シード層のような小さな抵抗分の影響を受けにくくなる。
【0020】
また、請求項2に記載の発明によれば、ガラス製またはセラミック製の微粒子を複数個集めて焼成することで三次元フィルタを形成できる。
【0021】
また、請求項3に記載の発明によれば、中央部の厚みが周辺部の厚みに比較して薄くなった「すり鉢」状に三次元フィルタを形成することにより、基板の中央部における電流及びメッキ液の流れを共に増大させることができる。
【0022】
また、請求項4に記載の発明によれば、中央部に比較的大径の微粒子を、周辺部に比較的小径の微粒子を用いた三次元フィルタとすることで、メッキ液の流れの分布を補正することができる。
【0023】
また、請求項5に記載の発明によれば、基板側に比較的小径の微粒子を用い、その反対側に比較的大径の微粒子を用いた多層の三次元フィルタとすることで、メッキ液の流れのムラを抑制し、三次元フィルタの流路抵抗を小さくすることができる。
【0024】
また、請求項6に記載の発明によれば、三次元フィルタの側面からメッキ液が流出することを防止できる。
【0025】
また、請求項7に記載の発明によれば、保持手段により基板の処理面を下にして基板を保持した状態でメッキ処理を施す。
【0026】
また、請求項8に記載の発明によれば、三次元フィルタの上面にメッキ液を液盛りした状態で昇降手段により保持手段を下降させるので、基板の処理面が最初にメッキ液に接する。したがって、基板の処理面に気泡が残りにくく、基板の周辺部に気泡が溜まりにくい。
【0027】
また、請求項9に記載の発明によれば、基板の処理面と、処理面側の三次元フィルタの面との間隔が10mm以下であれば、メッキ液を中央部から周辺部に向かって円滑に流すことができる。
【0028】
【発明の実施の形態】
以下、図面を参照して本発明の一実施例を説明する。
図1は実施例に係る基板メッキ装置の概略構成を示した縦断面図であり、図2は保持機構の一部拡大図である。
【0029】
基板Wは、図示しないシード層が形成された処理面Wsを下方に向けてスピンベース1によって水平姿勢となるように保持されている。このスピンベース1は、板状で環状を呈するマスク部材3と、このマスク部材3の上部に連結された3本(図示の関係上2本だけを示す)の支柱5と、これら3本の支柱5が連結された中空の回転軸7とを備えている。
【0030】
なお、上記スピンベース1は、本発明における保持手段に相当する。
【0031】
回転軸7は、図1に示すような高さの処理位置と、この処理位置よりも上方に位置する待機位置とにわたって昇降手段9により昇降駆動される。また、図示しない回転駆動手段によって回転駆動される。
【0032】
マスク部材3は、その内周側の上部にシール部材11が装着されている。このシール部材11は、メッキ液が基板の周縁部に達することを防止するものであり、基板Wの処理面Wsのうち周辺部のみに当接するように平面視環状に形成されている。また、処理面Wsのシード層に対して負電圧を印加するためのカソード電極12が、シール部材11の外周側から基板Wの処理面Wsに向けて延出して配設されている。
【0033】
スピンベース1の内部には、基板Wの裏面周辺部を押圧する押圧部材13が配備されている。この押圧部材13は、回転軸7に沿って昇降可能および回転自在に構成されており、スピンベース1内に搬入された基板Wをマスク部材3に対して押圧して基板Wを挟持する。
【0034】
スピンベース1の下方には、基板Wの直径よりもやや小径のメッキ槽17(チャンバ)が備えられ、このメッキ槽17を囲うように回収槽19が配備されている。メッキ槽17の底面には開口部20が形成されており、その周囲には正電圧を印加するためのアノード電極21が配設されている。このアノード電極21は、例えば、環状を呈する。回収槽19からメッキ槽17の開口部20には配管23が連通接続されており、配管23に取り付けられたポンプ25によって回収槽19のメッキ液Lがメッキ槽17の上方に向けて供給されるようになっている。
【0035】
メッキ槽17の上部には、その開口部を閉塞するように、三次元フィルタ27が取り付け具27aによって取り付けられている。三次元フィルタ27の取り付けは、図1の処理位置に基板Wが位置した際に、三次元フィルタ27の上面が基板Wの処理面Wsに近接し、かつ、処理面Wsに対して平行となるように行われている。この三次元フィルタ27は、板状の部材に単に貫通穴を開けたようなものとは異なり、流体の流れる方向を三次元的に変えつつ透過させることにより流れを緩やかにする機能を有する。具体的には、図3に示すように、メッキ液Lに耐性を備えたガラス(例えば、石英ガラス)からなる微小径のボール29を複数個集めて焼成したものである。
【0036】
なお、本発明における微粒子に相当するボール29としては、ガラス製だけでなくセラミック製を採用してもよい。また、外形的には、下部の外周面に傾斜面31を有し、上部の外周面に垂直面33を有する。これらの傾斜面31と垂直面33にはメッキ液Lを透さないための処理が施されている。例えば、メッキ液Lに対して耐性を有するガラス枠をはめ込んだり、同様に耐性を有する塗布被膜を形成しておけばよい。これにより後述する三次元フィルタ27の上面へのメッキ液の液盛りを好適に行うことができる。
【0037】
本実施例における三次元フィルタ27について、約200mm径の基板Wを処理する場合について具体的な形状等の数値例を挙げると次のようになる。
すなわち、平均穴径は約200μmであり、厚さは15mm程度であり、図1に示す処理位置における基板Wの処理面Wsと三次元フィルタ27の上面との間隔gは2〜3mmである。なお、この間隔gは10mm以下であればよい。
【0038】
上述したようにメッキ槽17に三次元フィルタ27を備えているので、本実施例装置におけるシード層の抵抗による影響は次のようになる。
すなわち、図4(a)の模式図に示すように、図中に二点鎖線で囲ったメッキ液Lを含む基板Wの中央部と周辺部における抵抗は、図4(b)に示すようになる。なお、ここでrS はシード層の抵抗であり、RP は三次元フィルタ27中におけるメッキ液Lの抵抗であり、RL はメッキ液Lの抵抗である。また、iC は基板Wの中心部における電流であり、iE は基板Wの周辺部における電流であり、Vはアノード電極21からカソードまでの電圧降下を近似的に示している。
【0039】
三次元フィルタ27中における固体の体積比を90%とすると、三次元フィルタ27中ではメッキ液Lの抵抗RP が等価的に三次元フィルタ27が無い場合の10倍になったと考えることができる。従来例の場合、基板Wの中央部ではシード層の抵抗rS 分だけ周辺部の抵抗よりも大きくなるので、周辺部における電流が少なくなって膜厚が中央部に比較して薄くなるという現象が生じる。しかしながら、本実施例の構成では三次元フィルタ27が存在していることにより、電流経路全体における抵抗が大きくなってシード層の抵抗rS が電流経路全体に及ぼす影響は小さくなる。そのためシード層の抵抗rS の影響により膜厚が不均一になる現象が緩和されることになる。
【0040】
これらを数式的に示すと、
V=iE (RL +RP )=iC (RL +RP +rS
となり、
S ≪RP であれば、iE ≒iC
となることからも明らかである。
【0041】
次に、図5を参照しつつ上述した装置の動作について説明する。
【0042】
まず、待機位置にあるスピンベース1に対して処理対象である基板Wを搬入する(図5(a))。基板Wは処理面Wsが下向きとされた姿勢であり、その姿勢のまま各支柱5の間を通してマスク部材3上に載置される。次に、押圧部材13を下降させて基板Wを押圧し、基板Wの処理面Wsをシール部材11に密着させるとともに、処理面Wsのシード層にカソード電極12を当接させる。
【0043】
さらに、ポンプ25を作動させて一定量のメッキ液Lをメッキ槽17から押し上げ、三次元フィルタ27の上面にメッキ液Lを液盛りする。
【0044】
次に、図5(b)のように、昇降手段9によりスピンベース1と押圧部材13を処理位置まで下降させる。これとともにポンプ25を作動させ、アノード電極21とカソード電極12の間に通電し、図示しない回転駆動手段によりスピンベース1を低速回転させることにより所定時間だけメッキ処理を施す。
【0045】
所定時間が経過した後は、電極への通電及びポンプ25を停止するとともに、昇降手段により待機位置まで基板Wとともにスピンベース1を上昇させる。そして、スピンベース1を高速回転させて、処理面Wsに付着しているメッキ液Lを振り切る。
【0046】
三次元フィルタ27を通して供給されたメッキ液Lは、流路抵抗が小さい基板Wの処理面Wsと三次元フィルタ27の上面との隙間を通り、流路抵抗が相対的に高い三次元フィルタ27側に戻ることなく流れることになるので、メッキ液Lはその隙間を通って基板Wの中央部から周辺部に向かって円滑に流れる。したがって、膜厚の面内均一性を高めることができるとともに、メッキ液Lの噴流を強める必要がないのでメッキ液の循環系を小型化でき、その結果、メッキ液Lの節約ができる。
【0047】
また、本実施例装置のように基板Wの処理面Wsを下にして基板Wを保持した状態でメッキ処理を施すと、構造上どうしても周辺部の隅に気泡が残り易いが、形成された細長い流路を円滑に流れるメッキ液Lにより気泡が容易に押し出されて気泡に起因する処理ムラを防止できる。
【0048】
また、本実施例装置による処理手順のように、液盛りした後に基板Wを下降させると、スピンベース1のマスク部材3よりも基板Wの処理面Wsが最初にメッキ液に接するので、基板Wの処理面Wsに気泡が残りにくく基板Wの周辺部に気泡が溜まりにくい。そのため基板Wの処理面Ws全体にメッキ液Lをゆきわたらせることができ、基板Wの処理面Wsと三次元フィルタ27の上面との間にメッキ液Lが満たされた状態で処理を施すことができるので、メッキ処理をムラなく施すことができる。
【0049】
本発明は、上述した実施例装置に限定されるものではなく、以下のように種々の変形実施が可能である。
【0050】
(1)図6に示すように、三次元フィルタ27Aを構成してもよい。
すなわち、その中央部の厚みが周辺部の厚みに比較して徐々に薄くなるように、基板Wの処理面Wsとは反対側に位置した下面側を『すり鉢状』に形成するようにしてもよい。
【0051】
このように構成によると、基板Wの中央部における電流及びメッキ液Lの流れを共に増大させることができるので、中央部の膜厚が周辺部に比較して薄くなった場合に膜厚の面内均一性を高めることができる。
【0052】
(2)また、図7に示すように、三次元フィルタ27Bを構成してもよい。
すなわち、その中央部には比較的大径のボールを用いたフィルタ27B1 を、その周辺部には比較的小径のボールを用いたフィルタ27B2 を配置する。
【0053】
これによると、メッキ液Lの流れの分布を補正することができるので、膜厚分布の調整が可能である。さらに、この場合、フィルタ27B1 とフィルタ27B2 の開口率を変えなければ中央部と周辺部とで電気抵抗がほぼ一定となるので、電流分布を変えずにメッキ液Lの液流分布だけを調整することができる。
【0054】
(3)また、次のように三次元フィルタを構成してもよい。
すなわち、基板W側に比較的小径のボールを用いた第1層を、その反対側であるメッキ槽側に比較的大径のボールを用いた第2槽を備えた多層の構成とする。
【0055】
この構成では、メッキ液の流れのムラを抑制し、三次元フィルタの流路抵抗を小さくすることができる。したがって、電流分布も液流分布も変えることなく流れだけを補正して膜厚の分布を調整することができる。
【0056】
(4)三次元フィルタ27としては、上述したように微小径のボールを用いるものに限定されるものではなく、繊維などを用いた三次元フィルタ27であってもよい。
【0057】
(5)基板Wの処理面Wsを上に向け、メッキ液Lを上方から供給する基板メッキ装置であっても本発明を適用することができる。
【0058】
(6)メッキ槽17内には、従来装置にもあるパンチングプレートを並設して、三次元フィルタ27に達するメッキ液の流れを均一化するようにしてもよい。
【0059】
(7)三次元フィルタ27を微小径のボール29ではなく、粉状の微粒子で構成してもよく、さらに同じ径でなく種々の径のボール29や微粒子を焼成して構成するようにしてもよい。
【0060】
【発明の効果】
以上の説明から明らかなように、請求項1に記載の発明によれば、三次元フィルタを通して供給されたメッキ液は、流路抵抗が小さい、基板の処理面と三次元フィルタのうちの基板の処理面側の面との隙間を通ることになるので、メッキ液はその隙間を通って基板の中央部から周辺部に円滑に流れる。したがって、膜厚の面内均一性を高めることができるとともに、メッキ液の噴流を強める必要がないのでメッキ液の節約ができる。しかも、三次元フィルタによってメッキ液の抵抗分が大きくなるので、シード層の抵抗による影響を受けにくくすることができる。
【0061】
また、請求項2に記載の発明によれば、ガラス製またはセラミック製の微粒子を複数個集めて焼成することで比較的容易に所望の三次元フィルタを形成することができる。
【0062】
また、請求項3に記載の発明によれば、中央部の厚みが周辺部の厚みに比較して薄くなった「すり鉢」状に三次元フィルタを形成することにより、基板の中央部における電流及びメッキ液の流れを共に増大させることができるので、中央部の膜厚が周辺部に比較して薄くなった場合に膜厚の面内均一性を高めることができる。
【0063】
また、請求項4に記載の発明によれば、中央部に比較的大径の微粒子を、周辺部に比較的小径の微粒子を用いた三次元フィルタとすることで、メッキ液の流れの分布を補正することができるので、膜厚分布の調整が可能である。
【0064】
さらに、この場合、開口率を変えなければ中央部と周辺部とで電気抵抗がほぼ一定であるので、電流分布を変えずにメッキ液の液流分布だけを調整することができる。
【0065】
また、請求項5に記載の発明によれば、基板側に比較的小径の微粒子を用い、その反対側に比較的大径の微粒子を用いた多層の三次元フィルタとすることにより、メッキ液の流れのムラを抑制し、三次元フィルタの流路抵抗を小さくすることができる。したがって、電流分布も液流分布も変えることなく流れだけを補正して膜厚の分布を調整することができる。
【0066】
また、請求項6に記載の発明によれば、三次元フィルタの側面からメッキ液が流出することを防止でき、適切に三次元フィルタの上面に液盛りすることができる。
【0067】
また、請求項7に記載の発明によれば、保持手段により基板の処理面を下にして基板を保持した状態でメッキ処理を施すと、周辺部の隅に気泡が残り易いが、形成された流路を円滑に流れるメッキ液により気泡が容易に押し出され、気泡に起因する処理ムラを防止できる。
【0068】
また、請求項8に記載の発明によれば、基板の処理面が最初にメッキ液に接するので、基板の処理面に気泡が残りにくく、基板の周辺部に気泡が溜まりにくい。したがって、基板の処理面全体にメッキ液をゆきわたらせることができ、基板の処理面と三次元フィルタの上面との間にメッキ液が満たされた状態で処理を施すことができるので、メッキ処理をムラなく施すことができる。
【0069】
また、請求項9に記載の発明によれば、基板の処理面と、処理面側の三次元フィルタの面との間隔が10mm以下であれば、メッキ液を中央部から周辺部に向かって円滑に流すことができ、メッキ液の円滑な流れを形成できる。
【図面の簡単な説明】
【図1】実施例に係る基板メッキ装置の概略構成を示した縦断面図である。
【図2】保持機構の一部を拡大して示した図である。
【図3】三次元フィルタの説明に供する図である。
【図4】シード層の抵抗による影響を説明する図である。
【図5】メッキ処理時の動作説明に供する図である。
【図6】三次元フィルタの変形例を示した図である。
【図7】三次元フィルタの他の変形例を示した図である。
【符号の説明】
W … 基板
Ws … 処理面
L … メッキ液
1 … スピンベース(保持手段)
3 … マスク部材
5 … 支柱
7 … 回転軸
9 … 昇降手段
11 … シール部材
13 … 押圧部材
17 … メッキ槽(チャンバ)
23 … 配管
27 … 三次元フィルタ
29 … ボール(微粒子)
31 … 傾斜面
33 … 垂直面
g … 間隔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate plating apparatus that performs a plating process on a glass substrate (hereinafter simply referred to as a substrate) for a semiconductor wafer or a liquid crystal display device, and in particular, a plating solution such as copper sulfate is supplied to the processing surface of the substrate. The present invention relates to a technique for performing electrolytic plating by supplying power in a state.
[0002]
[Prior art]
As this type of conventional apparatus, for example, a device provided with a chamber in which a plating solution is stored, and a holding mechanism that holds the substrate with the processing surface of the substrate facing down and moves the substrate up and down with respect to the chamber can be cited. .
[0003]
In the apparatus configured as described above, after the substrate is lowered to a position where the processing surface of the substrate comes into contact with the plating solution in the chamber, the plating solution in the chamber is pumped up from below to the processing surface of the substrate. Circulating, applying a negative voltage to the processing surface of the substrate and applying a positive voltage to the anode electrode in the chamber. As a result, a plating process is performed on the processing surface of the substrate.
[0004]
[Problems to be solved by the invention]
However, the conventional example having such a configuration has the following problems.
That is, since there is a step in the peripheral portion of the substrate processing surface by the holding mechanism including an electrode or a mask member that applies a negative voltage to the processing surface of the substrate, the flow of the plating solution is hindered in this portion, and the inside of the chamber A part of the plating solution flowing out to the side of the chamber after rising from below and reaching the processing surface of the substrate stagnates and stays. Accordingly, there is a problem that the film thickness is reduced in this portion, and the film thickness uniformity in the plane of the substrate is lowered.
[0005]
In addition, the plating solution raised from below toward the center of the processing surface of the substrate flows toward the periphery when reaching the processing surface, but the plating solution flows toward the periphery from the center. Goes away from the processing surface. That is, the flow of the plating solution is gathered at a place slightly away from the treatment surface with a small flow resistance rather than near the treatment surface with a high flow resistance. This also causes the same problem as described above.
[0006]
In order to improve the in-plane uniformity of the film thickness generated as described above, it is necessary to prevent the plating solution from staying and to smoothly flow the plating solution along the processing surface from the center to the periphery of the substrate. There is. For this purpose, it is necessary to supply a large amount of plating solution from the chamber and circulate it. This increases the required capacity of the circulation system such as pumps and pipe diameters. As a result, there is another problem that the circulation amount of the plating solution increases. Occurs. In addition, there is another method in which a punching plate is provided in the chamber so that the jet of the plating solution is appropriately dispersed and uniform over the entire processing surface of the substrate. In this case, the distance between the punching plate and the substrate is used. Therefore, there is a problem that the apparatus itself becomes large.
[0007]
Furthermore, a conductive seed layer is formed on the entire processing surface in advance because of the plating process using electrolytic plating, but the cathode electrode can be attached only to the periphery of the processing surface due to the structure. Therefore, the resistance of the seed layer is larger in the central portion than in the peripheral portion. For this reason, there is also a problem that the central portion is easily affected by the resistance of the seed layer, such that the film thickness is thinner than the peripheral portion.
[0008]
The present invention has been made in view of such circumstances, and by forming a smooth flow of the plating solution over the entire processing surface of the substrate without increasing the circulation amount of the plating solution, It is an object of the present invention to provide a substrate plating apparatus that can improve the uniformity inside, save the plating solution, and reduce the influence of the resistance of the seed layer.
[0009]
[Means for Solving the Problems]
In order to achieve such an object, the present invention has the following configuration.
That is, the invention described in claim 1 is a substrate plating apparatus that performs a plating process by supplying a plating solution to the processing surface of the substrate, and is close to the processing surface of the substrate and on the processing surface side. The surface is arranged substantially parallel to the processing surface of the substrate, and includes a three-dimensional filter that transmits the fluid while changing the direction of fluid flow three-dimensionally. The three-dimensional filter is an opening of a plating tank that stores a plating solution. An anode that is disposed so as to close the portion, is disposed in the plating tank, and applies a positive voltage to the plating solution by making the electric resistance of the plating solution in the three-dimensional filter larger than the electric resistance of the seed layer. from the electrode, in contact with the seed layer formed on the treated surface of the substrate, electrical regardless of the magnitude of the electrical resistance of the seed layer formed on the treated surface by the voltage drop to the cathode electrode for applying a negative voltage Anti the substantially constant in the substrate surface, is characterized in supplying the plating solution through the three-dimensional filter.
[0010]
According to a second aspect of the present invention, in the substrate plating apparatus according to the first aspect, the three-dimensional filter is formed by collecting and firing a plurality of glass or ceramic fine particles. To do.
[0011]
According to a third aspect of the present invention, in the substrate plating apparatus according to the first or second aspect, the thickness of the central portion of the three-dimensional filter is gradually reduced as compared with the thickness of the peripheral portion. Thus, the side located on the opposite side of the processing surface of the substrate is formed in a mortar shape.
[0012]
According to a fourth aspect of the present invention, in the substrate plating apparatus according to the first or second aspect, the three-dimensional filter uses a relatively large diameter fine particle at the center portion and is compared with the peripheral portion. It is characterized in that it is formed using fine particles having a small diameter.
[0013]
According to a fifth aspect of the present invention, in the substrate plating apparatus according to the first or second aspect, the three-dimensional filter uses fine particles having a relatively small diameter on the processing surface side of the substrate, and the processing surface of the substrate. It is characterized in that it is formed in a multilayer using relatively large-diameter particles on the opposite side.
[0014]
According to a sixth aspect of the present invention, in the substrate plating apparatus according to any one of the first to fifth aspects, the side surface of the three-dimensional filter is subjected to a treatment for preventing the plating solution from flowing out. It is characterized by being.
[0015]
According to the invention described in claim 7, the substrate plating apparatus according to any one of claims 1 to 6, further comprising holding means for holding the substrate with the processing surface of the substrate facing downward. It is a feature.
[0016]
Further, according to the invention described in claim 8, in the substrate plating apparatus according to claim 7, further comprising elevating means for elevating and lowering the holding means relative to the three-dimensional filter, on the upper surface of the three-dimensional filter. The holding means is lowered in a state where the plating solution is piled up, and the plating solution is supplied to the processing surface of the substrate in a state where the processing surface of the substrate and the upper surface of the three-dimensional filter are filled with the plating solution. It is.
[0017]
According to a ninth aspect of the present invention, in the substrate plating apparatus according to any one of the first to eighth aspects, the three-dimensional filter has an interval between the surface on the processing surface side of the substrate and the processing surface of the substrate. It is arrange | positioned so that it may become 10 mm or less.
[0018]
[Action]
The operation of the first aspect of the invention is as follows.
Three-dimensional filters that transmit while changing the direction of fluid flow in three dimensions is, close to the treated surface of the substrate, and the surface of the treated surface of the substrate is disposed substantially parallel to the processing surface, the plating solution Since the plating solution supplied through this is disposed so as to close the opening of the plating tank for storing the liquid, the gap between the processing surface of the substrate having a low flow resistance and the processing surface side of the substrate of the three-dimensional filter Will go through. Therefore, the plating solution flows smoothly through the gap from the central portion of the substrate toward the peripheral portion.
[0019]
In addition, the presence of the three-dimensional filter increases the resistance of the plating solution at that portion, making it less susceptible to small resistances such as the seed layer.
[0020]
According to the second aspect of the present invention, a three-dimensional filter can be formed by collecting and firing a plurality of glass or ceramic fine particles.
[0021]
Further, according to the invention described in claim 3, by forming the three-dimensional filter in a “mortar” shape in which the thickness of the central portion is thinner than the thickness of the peripheral portion, the current in the central portion of the substrate and Both the flow of plating solution can be increased.
[0022]
According to the invention described in claim 4, the distribution of the flow of the plating solution can be achieved by using a three-dimensional filter that uses relatively large-diameter particles in the central portion and relatively small-diameter particles in the peripheral portion. It can be corrected.
[0023]
Further, according to the invention described in claim 5, by using a multilayer three-dimensional filter using relatively small-diameter particles on the substrate side and relatively large-diameter particles on the opposite side, Flow unevenness can be suppressed, and the flow resistance of the three-dimensional filter can be reduced.
[0024]
Moreover, according to the invention of Claim 6, it can prevent that a plating solution flows out from the side surface of a three-dimensional filter.
[0025]
According to the seventh aspect of the invention, the plating process is performed in a state where the substrate is held by the holding means with the processing surface of the substrate facing down.
[0026]
According to the eighth aspect of the present invention, the holding means is lowered by the elevating means in a state where the plating solution is accumulated on the upper surface of the three-dimensional filter, so that the processing surface of the substrate first comes into contact with the plating solution. Therefore, bubbles are unlikely to remain on the processing surface of the substrate, and bubbles are unlikely to accumulate in the peripheral portion of the substrate.
[0027]
According to the ninth aspect of the present invention, when the distance between the processing surface of the substrate and the surface of the three-dimensional filter on the processing surface side is 10 mm or less, the plating solution is smoothly moved from the central portion toward the peripheral portion. Can be shed.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a substrate plating apparatus according to an embodiment, and FIG. 2 is a partially enlarged view of a holding mechanism.
[0029]
The substrate W is held in a horizontal posture by the spin base 1 with the processing surface Ws on which a seed layer (not shown) is formed facing downward. The spin base 1 has a plate-like mask member 3 having an annular shape, three support columns 5 (only two are shown in the illustration) connected to the upper portion of the mask member 3, and the three support columns. And a hollow rotating shaft 7 to which 5 is connected.
[0030]
The spin base 1 corresponds to the holding means in the present invention.
[0031]
The rotary shaft 7 is driven up and down by an elevating means 9 over a processing position having a height as shown in FIG. 1 and a standby position positioned above the processing position. Moreover, it is rotationally driven by a rotational drive means (not shown).
[0032]
The mask member 3 is provided with a seal member 11 on the inner peripheral side. The seal member 11 prevents the plating solution from reaching the peripheral portion of the substrate, and is formed in an annular shape in plan view so as to contact only the peripheral portion of the processing surface Ws of the substrate W. In addition, a cathode electrode 12 for applying a negative voltage to the seed layer on the processing surface Ws is disposed so as to extend from the outer peripheral side of the seal member 11 toward the processing surface Ws of the substrate W.
[0033]
Inside the spin base 1, a pressing member 13 that presses the periphery of the back surface of the substrate W is provided. The pressing member 13 is configured to be movable up and down along the rotating shaft 7 and to be rotatable, and presses the substrate W carried into the spin base 1 against the mask member 3 so as to sandwich the substrate W.
[0034]
Below the spin base 1, a plating tank 17 (chamber) having a diameter slightly smaller than the diameter of the substrate W is provided, and a recovery tank 19 is provided so as to surround the plating tank 17. An opening 20 is formed in the bottom surface of the plating tank 17, and an anode electrode 21 for applying a positive voltage is disposed around the opening 20. For example, the anode electrode 21 has an annular shape. A pipe 23 is connected to the opening 20 of the plating tank 17 from the recovery tank 19, and the plating solution L in the recovery tank 19 is supplied upward of the plating tank 17 by a pump 25 attached to the pipe 23. It is like that.
[0035]
A three-dimensional filter 27 is attached to the upper part of the plating tank 17 with a fixture 27a so as to close the opening. The three-dimensional filter 27 is attached when the substrate W is positioned at the processing position of FIG. 1, the upper surface of the three-dimensional filter 27 is close to the processing surface Ws of the substrate W and parallel to the processing surface Ws. Has been done so. The three-dimensional filter 27 has a function of slowing the flow by changing the direction of fluid flow three-dimensionally, unlike a plate-like member simply having a through hole. Specifically, as shown in FIG. 3, a plurality of micro-sized balls 29 made of glass (for example, quartz glass) resistant to the plating solution L are collected and fired.
[0036]
The balls 29 corresponding to the fine particles in the present invention may be made of ceramic as well as glass. In terms of the outer shape, the lower outer peripheral surface has an inclined surface 31 and the upper outer peripheral surface has a vertical surface 33. The inclined surface 31 and the vertical surface 33 are processed so as not to allow the plating solution L to pass therethrough. For example, a glass frame having resistance to the plating solution L may be fitted, or a coating film having resistance similarly may be formed. Thereby, it is possible to suitably deposit the plating solution on the upper surface of the three-dimensional filter 27 described later.
[0037]
Regarding the three-dimensional filter 27 in the present embodiment, a specific numerical example of the shape or the like in the case of processing a substrate W having a diameter of about 200 mm is as follows.
That is, the average hole diameter is about 200 μm, the thickness is about 15 mm, and the distance g between the processing surface Ws of the substrate W and the upper surface of the three-dimensional filter 27 at the processing position shown in FIG. In addition, this space | interval g should just be 10 mm or less.
[0038]
As described above, since the plating tank 17 includes the three-dimensional filter 27, the influence of the resistance of the seed layer in the apparatus of this embodiment is as follows.
That is, as shown in the schematic diagram of FIG. 4A, the resistance in the central portion and the peripheral portion of the substrate W containing the plating solution L surrounded by the two-dot chain line in the drawing is as shown in FIG. Become. Here, r S is the resistance of the seed layer, R P is the resistance of the plating solution L in the three-dimensional filter 27, and R L is the resistance of the plating solution L. Further, i C is a current in the central portion of the substrate W, i E is a current in the peripheral portion of the substrate W, and V approximately indicates a voltage drop from the anode electrode 21 to the cathode.
[0039]
If the volume ratio of the solid in the three-dimensional filter 27 is 90%, it can be considered that the resistance R P of the plating solution L in the three-dimensional filter 27 is equivalent to 10 times that when the three-dimensional filter 27 is not present. . In the case of the conventional example, the resistance in the central portion of the substrate W is larger than the resistance in the peripheral portion by the resistance r S of the seed layer, so that the current in the peripheral portion is reduced and the film thickness is reduced compared to the central portion. Occurs. However, in the configuration of the present embodiment, the presence of the three-dimensional filter 27 increases the resistance in the entire current path, and the influence of the seed layer resistance r S on the entire current path is reduced. Therefore, the phenomenon that the film thickness becomes non-uniform under the influence of the resistance r S of the seed layer is alleviated.
[0040]
Expressing these mathematically,
V = i E (R L + R P ) = i C (R L + R P + r S )
And
If r S << R P , i E ≒ i C
It is clear from that.
[0041]
Next, the operation of the above-described apparatus will be described with reference to FIG.
[0042]
First, the substrate W to be processed is carried into the spin base 1 at the standby position (FIG. 5A). The substrate W is in a posture in which the processing surface Ws is directed downward, and is placed on the mask member 3 through the columns 5 while maintaining the posture. Next, the pressing member 13 is lowered to press the substrate W, the processing surface Ws of the substrate W is brought into close contact with the seal member 11, and the cathode electrode 12 is brought into contact with the seed layer of the processing surface Ws.
[0043]
Further, the pump 25 is operated to push up a certain amount of the plating solution L from the plating tank 17, and the plating solution L is deposited on the upper surface of the three-dimensional filter 27.
[0044]
Next, as shown in FIG. 5B, the spin base 1 and the pressing member 13 are lowered to the processing position by the lifting means 9. At the same time, the pump 25 is operated to energize between the anode electrode 21 and the cathode electrode 12, and the spin base 1 is rotated at a low speed by a rotation driving means (not shown), thereby performing plating treatment for a predetermined time.
[0045]
After the predetermined time has elapsed, the energization of the electrodes and the pump 25 are stopped, and the spin base 1 is raised together with the substrate W to the standby position by the elevating means. Then, the spin base 1 is rotated at a high speed to shake off the plating solution L adhering to the processing surface Ws.
[0046]
The plating solution L supplied through the three-dimensional filter 27 passes through the gap between the processing surface Ws of the substrate W having a low flow resistance and the upper surface of the three-dimensional filter 27, and the three-dimensional filter 27 side having a relatively high flow resistance. Therefore, the plating solution L smoothly flows from the central portion of the substrate W toward the peripheral portion through the gap. Therefore, the in-plane uniformity of the film thickness can be improved and the plating liquid circulation system can be reduced in size because it is not necessary to increase the jet of the plating liquid L. As a result, the plating liquid L can be saved.
[0047]
Further, when the plating process is performed while holding the substrate W with the processing surface Ws of the substrate W down as in the apparatus of this embodiment, bubbles tend to remain in the corners of the peripheral portion due to the structure, but the elongated shape formed. Bubbles are easily pushed out by the plating solution L flowing smoothly through the flow path, and processing unevenness caused by the bubbles can be prevented.
[0048]
Further, when the substrate W is lowered after liquid deposition as in the processing procedure by the apparatus of this embodiment, the processing surface Ws of the substrate W first comes into contact with the plating solution rather than the mask member 3 of the spin base 1. Bubbles are unlikely to remain on the processing surface Ws, and bubbles are unlikely to accumulate in the periphery of the substrate W. Therefore, the plating solution L can be spread over the entire processing surface Ws of the substrate W, and the processing is performed in a state where the plating solution L is filled between the processing surface Ws of the substrate W and the upper surface of the three-dimensional filter 27. Therefore, the plating process can be performed evenly.
[0049]
The present invention is not limited to the above-described embodiment apparatus, and various modifications can be made as follows.
[0050]
(1) As shown in FIG. 6, a three-dimensional filter 27A may be configured.
That is, the lower surface side located on the opposite side of the processing surface Ws of the substrate W may be formed in a “mortar shape” so that the thickness of the central portion becomes gradually smaller than the thickness of the peripheral portion. Good.
[0051]
According to such a configuration, both the current in the central portion of the substrate W and the flow of the plating solution L can be increased. Therefore, when the thickness of the central portion becomes thinner than that of the peripheral portion, the film thickness surface The uniformity inside can be improved.
[0052]
(2) Further, as shown in FIG. 7, a three-dimensional filter 27B may be configured.
That is, a filter 27B 1 using a relatively large-diameter ball is disposed at the center, and a filter 27B 2 using a relatively small-diameter ball is disposed at the periphery.
[0053]
According to this, since the distribution of the flow of the plating solution L can be corrected, the film thickness distribution can be adjusted. Further, in this case, if the aperture ratios of the filter 27B 1 and the filter 27B 2 are not changed, the electric resistance is substantially constant between the central portion and the peripheral portion. Therefore, only the liquid flow distribution of the plating solution L is changed without changing the current distribution. Can be adjusted.
[0054]
(3) Further, in the following manner may be constructed a three-dimensional filter.
That is, a first layer using a relatively small-diameter ball on the substrate W side and a second tank using a relatively large-diameter ball on the opposite side of the plating tank side are formed into a multilayer structure.
[0055]
In this configuration, by suppressing the unevenness of the flow of the plating solution, it is possible to reduce the flow resistance of the three-dimensional filter. Therefore, the film thickness distribution can be adjusted by correcting only the flow without changing the current distribution or the liquid flow distribution.
[0056]
(4) As described above, the three-dimensional filter 27 is not limited to the one using a small-diameter ball, and may be a three-dimensional filter 27 using fibers or the like.
[0057]
(5) The present invention can also be applied to a substrate plating apparatus that supplies the plating solution L from above with the processing surface Ws of the substrate W facing upward.
[0058]
(6) Punching plates that are also present in the conventional apparatus may be arranged in the plating tank 17 so that the flow of the plating solution reaching the three-dimensional filter 27 is made uniform.
[0059]
(7) The three-dimensional filter 27 may be constituted by powdery fine particles instead of the minute diameter balls 29, and may be constituted by firing balls 29 and fine particles having various diameters instead of the same diameter. Good.
[0060]
【The invention's effect】
As is apparent from the above description, according to the first aspect of the present invention, the plating solution supplied through the three-dimensional filter has a low flow path resistance, and the processing surface of the substrate and the substrate of the three-dimensional filter. Since it passes through the gap with the surface on the processing surface side, the plating solution flows smoothly from the central portion of the substrate to the peripheral portion through the gap. Therefore, in-plane uniformity of the film thickness can be improved and the plating solution can be saved because there is no need to increase the jet flow of the plating solution. In addition, since the resistance of the plating solution is increased by the three-dimensional filter, it is difficult to be influenced by the resistance of the seed layer.
[0061]
According to the second aspect of the present invention, a desired three-dimensional filter can be formed relatively easily by collecting and firing a plurality of glass or ceramic fine particles.
[0062]
Further, according to the invention described in claim 3, by forming the three-dimensional filter in a “mortar” shape in which the thickness of the central portion is thinner than the thickness of the peripheral portion, the current in the central portion of the substrate and Since both the flow of the plating solution can be increased, the in-plane uniformity of the film thickness can be enhanced when the film thickness in the central part is thinner than that in the peripheral part.
[0063]
According to the invention described in claim 4, the distribution of the flow of the plating solution can be achieved by using a three-dimensional filter using relatively large-diameter particles in the central portion and relatively small-diameter particles in the peripheral portion. Since the correction can be made, the film thickness distribution can be adjusted.
[0064]
Further, in this case, if the aperture ratio is not changed, the electric resistance is substantially constant between the central portion and the peripheral portion, and therefore, only the liquid flow distribution of the plating solution can be adjusted without changing the current distribution.
[0065]
According to the invention described in claim 5, by using a multilayer three-dimensional filter using relatively small-diameter particles on the substrate side and relatively large-diameter particles on the opposite side, Flow unevenness can be suppressed, and the flow resistance of the three-dimensional filter can be reduced. Therefore, the film thickness distribution can be adjusted by correcting only the flow without changing the current distribution or the liquid flow distribution.
[0066]
Further, according to the invention described in claim 6, it is possible to prevent the plating solution from flowing out from the side surface of the three-dimensional filter, and to appropriately deposit the liquid on the upper surface of the three-dimensional filter.
[0067]
According to the invention of claim 7, when the plating process is performed in a state where the substrate is held with the processing surface of the substrate down by the holding means, bubbles are likely to remain in the corners of the peripheral portion, but formed. Bubbles are easily pushed out by the plating solution flowing smoothly through the flow path, and processing unevenness caused by the bubbles can be prevented.
[0068]
According to the eighth aspect of the present invention, since the processing surface of the substrate first comes into contact with the plating solution, bubbles are unlikely to remain on the processing surface of the substrate, and bubbles are unlikely to accumulate in the peripheral portion of the substrate. Therefore, the plating solution can be spread over the entire processing surface of the substrate, and the processing can be performed with the plating solution filled between the processing surface of the substrate and the upper surface of the three-dimensional filter. Can be applied evenly.
[0069]
According to the ninth aspect of the present invention, when the distance between the processing surface of the substrate and the surface of the three-dimensional filter on the processing surface side is 10 mm or less, the plating solution is smoothly moved from the central portion toward the peripheral portion. And a smooth flow of the plating solution can be formed.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a substrate plating apparatus according to an embodiment.
FIG. 2 is an enlarged view of a part of a holding mechanism.
FIG. 3 is a diagram for explaining a three-dimensional filter.
FIG. 4 is a diagram for explaining the influence of the resistance of the seed layer.
FIG. 5 is a diagram for explaining an operation during plating.
FIG. 6 is a diagram showing a modification of the three-dimensional filter.
FIG. 7 is a diagram showing another modification of the three-dimensional filter.
[Explanation of symbols]
W ... Substrate Ws ... Treatment surface L ... Plating solution 1 ... Spin base (holding means)
DESCRIPTION OF SYMBOLS 3 ... Mask member 5 ... Support | pillar 7 ... Rotating shaft 9 ... Elevating means 11 ... Seal member 13 ... Pressing member 17 ... Plating tank (chamber)
23 ... Piping 27 ... Three-dimensional filter 29 ... Ball (fine particles)
31 ... Inclined surface 33 ... Vertical surface g ... Space

Claims (9)

メッキ液を基板の処理面に対して供給することによりメッキ処理を施す基板メッキ装置において、
基板の処理面に対して近接し、かつ、処理面側の面が基板の処理面に対してほぼ平行に配設され、流体の流れる方向を三次元的に変えつつ透過させる三次元フィルタを備え、
前記三次元フィルタは、メッキ液を貯留するメッキ槽の開口部を閉塞するように配置され、メッキ槽内に配設され
前記三次元フィルタ中におけるメッキ液の電気抵抗をシード層の電気抵抗よりも大きくすることにより、
メッキ液に正電圧を印加するアノード電極から、基板の処理面に形成されたシード層に当接し、負電圧を印加するカソード電極までの電圧降下で処理面に形成されているシード層の電気抵抗の大きさによらず電気抵抗を基板面内でほぼ一定とし、
前記三次元フィルタを介してメッキ液を供給することを特徴とする基板メッキ装置。
In a substrate plating apparatus that performs a plating process by supplying a plating solution to the processing surface of the substrate,
Provided with a three-dimensional filter that is close to the processing surface of the substrate and whose surface on the processing surface side is disposed substantially parallel to the processing surface of the substrate, and transmits the fluid while changing the direction of fluid flow in three dimensions ,
The three-dimensional filter is disposed so as to close the opening of the plating tank that stores the plating solution, and is disposed in the plating tank .
By making the electric resistance of the plating solution in the three-dimensional filter larger than the electric resistance of the seed layer,
The electrical resistance of the seed layer formed on the processing surface due to the voltage drop from the anode electrode that applies a positive voltage to the plating solution to the seed layer formed on the processing surface of the substrate and to the cathode electrode that applies a negative voltage Regardless of the size of the electrical resistance, the electrical resistance is almost constant in the substrate surface,
A substrate plating apparatus for supplying a plating solution through the three-dimensional filter.
請求項1に記載の基板メッキ装置において、
前記三次元フィルタは、ガラス製またはセラミック製の微粒子を複数個集めて焼成してなることを特徴とする基板メッキ装置。
The substrate plating apparatus according to claim 1,
The substrate plating apparatus, wherein the three-dimensional filter is formed by collecting and firing a plurality of glass or ceramic fine particles.
請求項1または2に記載の基板メッキ装置において、
前記三次元フィルタは、その中央部の厚みが周辺部の厚みに比較して徐々に薄くなるように、基板の処理面とは反対側に位置した側がすり鉢状に形成されていることを特徴とする基板メッキ装置。
The substrate plating apparatus according to claim 1 or 2,
The three-dimensional filter is characterized in that the side located on the side opposite to the processing surface of the substrate is formed in a mortar shape so that the thickness of the central portion is gradually thinner than the thickness of the peripheral portion. Substrate plating equipment.
請求項1または2に記載の基板メッキ装置において、
前記三次元フィルタは、その中央部に比較的大径の微粒子を用い、その周辺部に比較的小径の微粒子を用いて形成されていることを特徴とする基板メッキ装置。
The substrate plating apparatus according to claim 1 or 2,
3. The substrate plating apparatus according to claim 3, wherein the three-dimensional filter is formed using relatively large-diameter particles at a central portion thereof and relatively small-diameter particles at a peripheral portion thereof.
請求項1または2に記載の基板メッキ装置において、
前記三次元フィルタは、基板の処理面側に比較的小径の微粒子を用い、基板の処理面の反対側に比較的大径の微粒子を用いて多層に形成されていることを特徴とする基板メッキ装置。
The substrate plating apparatus according to claim 1 or 2,
The substrate plating is characterized in that the three-dimensional filter is formed in multiple layers using relatively small-diameter particles on the substrate processing surface side and relatively large-diameter particles on the opposite side of the substrate processing surface. apparatus.
請求項1ないし5のいずれかに記載の基板メッキ装置において、
前記三次元フィルタの側面は、メッキ液が流れ出ることを防止する処理が施されていることを特徴とする基板メッキ装置。
In the board | substrate plating apparatus in any one of Claim 1 thru | or 5,
The substrate plating apparatus, wherein the side surface of the three-dimensional filter is subjected to a treatment for preventing the plating solution from flowing out.
請求項1ないし6のいずれかに記載の基板メッキ装置において、
基板の処理面を下向きにして基板を保持する保持手段をさらに備えていることを特徴とする基板メッキ装置。
In the board | substrate plating apparatus in any one of Claim 1 thru | or 6,
A substrate plating apparatus, further comprising holding means for holding the substrate with the processing surface of the substrate facing downward.
請求項7に記載の基板メッキ装置において、
前記保持手段を前記三次元フィルタに対して昇降させる昇降手段をさらに備え、
前記三次元フィルタの上面にメッキ液を盛った状態で前記保持手段を下降させ、基板の処理面と三次元フィルタの上面とがメッキ液で満たされた状態で基板の処理面にメッキ液を供給することを特徴とする基板メッキ装置。
The substrate plating apparatus according to claim 7,
Elevating means for elevating the holding means relative to the three-dimensional filter;
The holding means is lowered in a state where the plating solution is piled up on the upper surface of the three-dimensional filter, and the plating solution is supplied to the processing surface of the substrate in a state where the processing surface of the substrate and the upper surface of the three-dimensional filter are filled with the plating solution. A substrate plating apparatus characterized by:
請求項1ないし8のいずれかに記載の基板メッキ装置において、
前記三次元フィルタは、基板の処理面側の面と基板の処理面との間隔が10mm以下となるように配設されていることを特徴とする基板メッキ装置。
In the board | substrate plating apparatus in any one of Claim 1 thru | or 8,
The substrate plating apparatus, wherein the three-dimensional filter is disposed so that a distance between a processing surface side of the substrate and a processing surface of the substrate is 10 mm or less.
JP2000024169A 2000-02-01 2000-02-01 Board plating equipment Expired - Fee Related JP3703355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024169A JP3703355B2 (en) 2000-02-01 2000-02-01 Board plating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024169A JP3703355B2 (en) 2000-02-01 2000-02-01 Board plating equipment

Publications (2)

Publication Number Publication Date
JP2001217207A JP2001217207A (en) 2001-08-10
JP3703355B2 true JP3703355B2 (en) 2005-10-05

Family

ID=18550210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024169A Expired - Fee Related JP3703355B2 (en) 2000-02-01 2000-02-01 Board plating equipment

Country Status (1)

Country Link
JP (1) JP3703355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167567B2 (en) 2015-11-30 2019-01-01 Taiwan Semiconductor Manufacturing Company Limited High resistance virtual anode for electroplating cell

Also Published As

Publication number Publication date
JP2001217207A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
TWI555121B (en) Method and apparatus for filling interconnect structures
US7387717B2 (en) Method of performing electrolytic treatment on a conductive layer of a substrate
CN101451264B (en) Plating apparatus and plating method
WO2004009879A1 (en) Plating device
JP2003268591A (en) Method and apparatus for electrolytic treatment
TW201725287A (en) Apparatus and method for manufacturing semiconductor device
TWI607118B (en) High resistance virtual anode for electroplating cell, electoplating cell and method of treating surface of substrate
WO2008071239A1 (en) Apparatus and process for single-side wet chemical and electrolytic treatment of goods
TWI746770B (en) Electrolysis treatment device and electrolysis treatment method
JP3703355B2 (en) Board plating equipment
CN207210560U (en) The electroplating device of wafer
CN102738071B (en) For filling the method and apparatus of interconnection structure
KR101103442B1 (en) Wafer plating apparatus
JP2021014599A (en) Manufacturing apparatus of semiconductor device, manufacturing method of semiconductor device, program, and computer storage medium
JP2004091808A (en) Plating apparatus
KR101184581B1 (en) Apparatus to Plate Substrate
JP4087839B2 (en) Plating equipment
KR20100091774A (en) Apparatus and method for plating substrate
KR20100077447A (en) Wafer plating apparatus
JP3243666U (en) New equipment for cathode conductive rollers used in chip electroplating or chip cleaning machines
JP2014070265A (en) Barrel plating apparatus, and method for producing electronic component using the barrel plating apparatus
KR20120011939A (en) Apparatus for plating substrate
KR102499511B1 (en) Electrolytic treatment jig and electrolytic treatment method
JP2002220700A (en) Substrate plating equipment
JP2002266098A (en) Plating apparatus and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080729

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100729

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees