JP3702412B2 - 角速度検出装置 - Google Patents

角速度検出装置 Download PDF

Info

Publication number
JP3702412B2
JP3702412B2 JP24982296A JP24982296A JP3702412B2 JP 3702412 B2 JP3702412 B2 JP 3702412B2 JP 24982296 A JP24982296 A JP 24982296A JP 24982296 A JP24982296 A JP 24982296A JP 3702412 B2 JP3702412 B2 JP 3702412B2
Authority
JP
Japan
Prior art keywords
angular velocity
electrode
frequency
vibration
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24982296A
Other languages
English (en)
Other versions
JPH1096631A (ja
Inventor
ン ガ ン リ
瀬 好 廣 成
田 孝 弘 山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP24982296A priority Critical patent/JP3702412B2/ja
Priority to US08/902,551 priority patent/US5918280A/en
Publication of JPH1096631A publication Critical patent/JPH1096631A/ja
Application granted granted Critical
Publication of JP3702412B2 publication Critical patent/JP3702412B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis

Description

【0001】
【発明の属する技術分野】
本発明は、振動体をx方向に振動駆動し、振動方向xと直交するy軸を中心とする回転方向の角速度Ωにより現われる振動体の、振動方向xおよび該軸yに直交する方向zの振動成分を検出するためのセンサを有する角速度センサに、該センサが発生する電気信号を角速度Ωを表わす角速度信号に変換する電気回路装置を付加した角速度検出装置に関する。
【0002】
【従来の技術】
この種の角速度センサの1つが、「COMB DRIVE MICROMECHANICAL TUNING FORK GYRO」との名称で、米国特許第5,349,855号明細書に開示されており、もう1つが、「角速度センサ」との名称で、特開平7−43166号公報に開示されている。いずれも半導体加工プロセスを用いてシリコンを微細加工して得るマイクロジャイロである。
【0003】
この種の角速度センサの振動板は、x,y平面に平行な平板の両側端(y平行辺)に各1組、計2組の櫛歯を有し、かつ、両終端(x平行辺)のそれぞれよりy方向に延びる支脚を有し、これらの支脚で支えられて宙吊りとなっており、x方向およびz方向に振動しうる。振動板の第1および第2組の櫛歯と互に噛み合う形で第1組および第2組の固定櫛歯が、振動板の櫛歯とは非接触で微小ギャップを置いて、振動板の両側端の外側にある。振動板と第1組および第2組の固定櫛歯との間に、周波数fの交流高電圧を印加することにより、静電吸引力により振動板が第1組および第2組の固定櫛歯に交互に引かれて、x方向に周波数fで振動する。
【0004】
振動板がx方向に振動しているとき、y軸を中心とする回転の角速度Ωが振動板に加わると、コリオリ力が振動板に作用し、振動板が、x方向の振動にz方向の振動が加わった楕円運動をする。すなわち振動板にz方向の振動が現われる。z方向に微小ギャップを置いて振動板と対向する電極の、振動板/電極間の静電容量が、該z方向の振動により変動する。この変動の振幅は振動板のz方向の振幅に略逆比例する。この静電容量を電気信号レベル(アナログ電圧)すなわち容量検出信号に変換することにより、振幅が振動板のz方向の振幅に逆比例する電圧が得られ、この振幅が角速度Ωの値に対応するので、容量検出信号を振動板の励振信号に同期して位相検波することにより、角速度Ωの値に対応するレベルの直流電圧が得られる。
【0005】
【発明が解決しようとする課題】
振動板の質量をm、振動の振幅をa、周期をω、角速度をΩとすると、振動速度vの最大値はaωであるから、コリオリ力Fcの最大値Fcmaxは、
Fcmax=2mΩaω
となる。コリオリ力Fcの大きさは、aおよびωに比例するが、マイクロジャイロの場合ωの可変範囲は、マイクロジャイロの構造上限定されるため、振幅aを大きくすることにより、大きなコリオリ力Fcを発生させる。そこで従来より、コリオリ力Fcを最も効率良く発生するために、振動板を、共振周波数(固有振動数)で振動駆動するように、駆動電気回路を設計している。しかしながら、振動板の製作誤差により、共振周波数がばらつき、角速度センサ毎にレ−ザトリミングまたは駆動電気回路を調整(チュ−ニング)する必要があるが、小型であるほど製作誤差又はばらつき(個体差)が大きいため、チュ−ニングが難かしい。また、x方向,y方向ともに共振周波数で振動するので振動が不安定になり易く共振周波数には経時変化があり、電源オンからの時間経過あるいは長期的な使用開始からの使用経過による共振周波数の変化には対処できない。
【0006】
前記特開平7−43166号公報には、角速度センサの振動板支持脚端に空隙を設けてそこに電極を付加して、この電極に印加する電圧レベルにより空隙値を調整して、設計周波数での励振で振動板の振幅が最大となるように振動板の共振周波数を調整するが、この調整幅は狭く、センサ個々の寸法のばらつきおよびそれに加えての角速度センサの経時的な振動特性の変化を十分に吸収することができない。振動板の実際の共振周波数は不明であるので、実際の共振周波数に合せて駆動電気回路の励振駆動信号の周波数を調整することはできない。
【0007】
本発明は、角速度検出感度及び精度を高くすることを第1の目的とし、振動板の角速度検出方向zの共振周波数を検出しうる角速度検出装置を提供することを第2の目的とする。
【0008】
【課題を解決するための手段】
本発明の角速度検出装置は、基台(1),該基台に、x方向およびz方向に振動可能に支持された振動体(5),該振動体にx方向に振動する力を及ぼすための第1加振手段(7a〜7d,8a〜8d/52,61,62),前記振動体をz方向に駆動するための第2加振手段(9c,9/51,61,62)、および、振動体のz方向の振動に対応して振動する第1電気信号(31,32の入力)を発生するための振動変換手段(9a,9b,9/53,54)、を含む角速度センサ(20);
指示された周波数(Df)の同期信号を発生する同期信号発生手段(36,37);
第1加振手段に、前記同期信号に同期して第1駆動電圧を与える第1励振手段(38〜41);
第2加振手段に、振動体をz方向に駆動するための第2駆動電圧を与える第2励振手段(42〜45);
第1電気信号の、前記同期信号と実質上同一周波数のレベル変化の振幅を表わす第2電気信号(GLf)を発生する振幅検出手段(31〜34);および、
第2励振手段を介して第2加振手段に第2駆動電圧を与えて振動体をz方向に駆動し、振動変換手段が発生する第1電気信号の周波数(RF)を検索する手段(31〜34,35);を備える。なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応要素の符号を、参考までに付記した。
【0009】
これによれば、周波数検索手段(31〜34,35)により振動体(5)のz方向の共振周波数(RF)が検出される。この共振周波数(RF)の発生を同期信号発生手段(36,37)に指示すると、振動体(5)が該共振周波数(RF)でx方向に振動する。このとき角速度Ωが加わると、振動体(5)が該共振周波数(RF)でx方向およびz方向に振動する。すなわち楕円運動をする。このz方向の振動に対応するレベル変化が第1電気信号(31,32の入力)に現われ、振幅検出手段(31〜34)が発生する第2電気信号(GLf)が、該z方向の振動の振幅すなわち角速度Ωに対応するレベルとなる。このz方向の振動は、振動体(5)のz方向の共振周波数であるので、従来の、振動体の励振周波数がz方向の共振周波数から外れている場合よりも、角速度Ω値に対する振幅が大きい。すなわち角速度検出感度が高く、第2電気信号(GLf)の角速度分解能すなわち角速度検出精度が高い。
【0010】
【発明の実施の形態】
本発明の後述の第1実施例(図1,図4)では、角速度センサ(20)の振動変換手段は、振動体に空隙を置いてz方向で対向する、振動体との間に静電容量を形成する電極であって第1電気信号(31a,31bの入力)のレベルは振動体(5)/電極(9a,9b)間の静電容量に対応し、第2加振手段も振動体に空隙を置いてz方向で対向する電極(9c)であって、振幅検出手段(31〜34)は電極(9a,9b)に、第2励振手段(42〜45)は電極(9c)に接続されている。すなわち、振動板(5)に対向する電極が、振動板(5)のz方向変位を検出するための第1組電極(9a,9b)と、振動板(5)をz方向に駆動するための第2組電極(9c)に分かれている。
【0011】
本発明の後述の第2実施例(図7)では、第2加振手段と振動変換手段とは、同一の電極(9)である。すなわち電極(9)が第2加振手段および振動変換手段に兼用されている。これに伴って、電極(9)を振幅検出手段(31〜34)と第2励振手段(42〜45)の一方に選択的に接続する切換手段(46)が加わっている。周波数検索手段(31〜34,35)は、第2励振手段(42〜45)を介して電極(9)に第2駆動電圧(45の出力電圧)を与える間のみ、切換手段(46)を介して電極(9)を第2励振手段(42〜45)に接続する。
【0012】
本発明の後述の第3実施例(図8〜10)では、角速度センサ(20)は電磁駆動のものであり、第1加振手段は、振動体と一体のy方向に延びる導電体(52)およびこれにz方向の磁界を与える永久磁石(61,62)であり、第1励振手段(38〜41)は導電体(52)に交流電圧を印加する。磁界により導電体(52)にはフレミングの左手の法則に従がうx方向の交流(方向が反転する)推力が加わり、振動板(5)がx方向に振動する。第2加振手段は、振動体と一体であってz軸廻りに周回する導電体(51)と前記永久磁石(61,62)の組合せである。第2励振手段(42〜45)が導電体(51)に第2駆動電圧を印加すると、導電体(51)が振動板(5)の表面側をN極(又はS極)裏面側をS極(又はN極)とする磁束を発生して、永久磁石(61,62)に対して反発又は吸引されて導電体(51)が一体の振動板(5)がz方向に移動する。第2駆動電圧の印加が止まると、反発力又は吸引力が消えるので、振動板(5)が原位置に復帰するように移動を始めて、z方向に自由振動する。振動板(5)は、それをx方向およびz方向に振動可に支持する支持梁(4a,4b)に連続しており、この支持梁に、振動変換手段として歪センサ(53,54)が固着されている。この歪センサ(53,54)が、振動板(5)のz方向の変位量に対応するレベルの第1電気信号(図8の32の入力)を発生する。
【0013】
本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
【0014】
【実施例】
−第1実施例−
図1に、本発明の第1実施例のマイクロジャイロ(角速度センサ)20の内部構造を、蓋板8を削除して示し、図2に該ジャイロ20の、図1のII−II線で破断した断面を、図3にIII−III線で破断した断面を示す。
【0015】
図1を参照すると、絶縁体のシリコン基板1には、導電性とするための不純物を含むポリシリコンの、振動板アンカ2a〜2dおよび駆動電極アンカ3a〜3dが接合している。振動板アンカ2aおよび2bに、y方向に延び同一直線上に位置する振動板支持梁4aおよび4bが連続しており、同様に、振動板アンカ2cおよび2dにy方向に延び同一直線上に位置する振動板支持梁4cおよび4dが連続し、これらの支持梁4a〜4dにx方向に延び、基板1の表面に実質上平行な振動板5が連続している。振動板5に対向する基板1の表面上に、静電容量検出用の電極9a,9bおよび振動板5を高さ方向(z)に励振駆動するためのz駆動電極9cがある。
【0016】
振動板5のx方向の中央位置から左右(y方向)に電極幹6aおよび6bが延び、電極幹6aから前後(x方向)に、櫛歯状にy方向に等ピッチで分布する複数個の移動側電極すなわちx移動電極7aおよび7cが突出し、同様に、電極幹6bから電極7bおよび7dが突出している。
【0017】
駆動電極アンカ3a〜3dのそれぞれには、電極幹6a,6bの櫛歯状のx移動電極7a〜7dのそれぞれの歯間スロットに進入した、櫛歯状の固定側電極すなわちx駆動電極8a〜8dがある。これらのx駆動電極8a〜8dと、x移動電極7a〜7dとの間には微小ギャップがある。
【0018】
上述の、支持梁4a〜4d,振動板5,電極幹6a,6b,x移動電極7a〜7dおよびx駆動電極8a〜8dは、基板1の表面から離れている。すなわち基板1の表面に、ギャップを置いて対向している。これらは、振動板アンカ2a〜2dおよび駆動電極アンカ3a〜3dを、マイクロ加工技術の蒸着によりシリコン基板1の表面上に形成するときに、振動板アンカ2a〜2dあるいは駆動電極アンカ3a〜3dに、一体連続で形成される。この形成過程の概要を次に説明する。
【0019】
まず、すでに静電容量検出用の電極9a,9bおよびz駆動電極9cがパタ−ニングされている基板1の表面に、支持梁4a〜4d,振動板5,電極幹6a,6b,移動側電極7a〜7dおよび固定側電極8a〜8dの直下のギャップを形成するための第1犠牲層が形成される。その後、アンカ2a〜2dおよびアンカ3a〜3dの下面に相当する位置の第1犠牲層がエッチングにより除去される。そして、構造層が基板1の表面にデポジット(堆積)され、次に、導電性とするための不純物を含むシリコン蒸気の蒸着を基板表面全体に行った後に、構造層のアンカ2a〜2dおよびアンカ3a〜3dならびに支持梁4a〜4d,振動板5,電極幹6a,6b,移動側電極7a〜7dおよび固定側電極8a〜8dに相当する位置を除いてエッチングにより除去される。第1犠牲層が溶剤で除去されて、図1〜図3に示す基板1内の各エレメントが現れる。
【0020】
アンカ2a〜2d,3a〜3dおよび電極9a〜9cのそれぞれは、基板上に電極と同時にパタ−ニングされた配線により同一基板上の電気回路あるいはリ−ド電極のそれぞれに接続されている。
【0021】
図1を参照する。例えば、マイクロジャイロ20の外部から、上述のリ−ド電極を介して、アンカ3a,3b(x駆動電極8a,8b)とアンカ2a〜2d(振動板5)との間に高電圧を印加すると、静電気力により振動板5の電極幹6a,6bがアンカ3a,3bに近づく方向に移動する。アンカ3c,3d(x駆動電極8c,8d)とアンカ2a〜2d(振動板5)との間に高電圧を印加すると、静電気力により振動板5の電極幹6a,6bがアンカ3c,3dに近づく方向に移動する。これら2態様の電圧印加を交互に繰返すことにより、振動板2cがx方向に往復振動する。この振動中に、振動板5にy軸廻りの角速度Ωが加わると、コリオリ力により、振動板5はy軸を中心としx−z平面に平行な楕円振動、すなわち、x方向の往復振動にz方向の往復振動が加わったものとなる。
【0022】
角速度Ωが加わっていないときのx方向の往復振動によっては、振動板5/電極9a,9b間の静電容量は実質上変化しないが、角速度Ωが加わってz方向の振動成分が発生すると、これにより振動板5/電極9a,9b間の静電容量が振動し、この振動のレベルが角速度Ωに対応する。したがって振動板5/電極9a,9b間の静電容量の振動レベルを計測することにより角速度Ωを算出することができる。
【0023】
上述の楕円振動が振動板5の共振周波数に合致するものであると、角速度Ωの変化に対する楕円振動(のz方向振動成分)の振動レベルの変化が高い。すなわち角速度Ωの分解能が高い。
【0024】
図4に、上述のジャイロ20に接続した電気回路の概要を示す。アンカ3a,3b(x駆動電極8a,8b)には、高圧スイッチング回路40aの出力端が接続され、アンカ3c,3d(x駆動電極8c,8d)には、高圧スイッチング回路40bの出力端が接続されている。静電容量検出用の電極9aおよび9bにはそれぞれ、振動板5/電極9a間の静電容量および振動板5/電極9b間の静電容量を検出し静電容量値を電圧レベルで表わす容量検出信号を発生するC/V変換器31aおよび31bが接続されている。z駆動電極9cには、高圧スイッチング回路45の出力端が接続されている。
【0025】
D/Aコンバ−タ36が、マイクロコンピュ−タ(以下CPUと称す)35が与える周波数指示デ−タDfを、それが指示する周波数を表わすレベルのアナログ信号に変換して、電圧制御発振器(以下Vcoと称す)37に与え、Vco37が、該アナログ信号のレベルに対応した周波数すなわちデ−タDfが指定する周波数Dfの、振幅が一定の正弦波を発生してパルス整形回路38に与える。該回路38は、該正弦波の正半波の間高レベルH、負半波の間低レベルLのデュ−ティが50%の矩形波パルスをアンドゲ−ト39および42に与える。
【0026】
角速度Ωを検出しそれを表わすデ−タを出力する角速度検出モ−ドでは、CPU35が、信号Cを低レベルLとしてアンドゲ−ト39をオンに、アンドゲ−ト42をオフにする。
【0027】
角速度検出モ−ドでは、パルス整形回路38が与える矩形波パルスをスイッチング回路40bおよびインバ−タ41に与え、インバ−タ41が、該矩形波パルスを反転した(すなわち位相を180度ずらした)矩形波パルスをスイッチング回路40aに与える。スイッチング回路40aは、与えられる矩形波パルスが低レベルLから高レベルHに立上ると、この立上りよりわずかな遅延の後に、図示しない高圧電源の高圧電位Vhをアンカ3a,3b(x駆動電極8a,8b)に印加(出力)する。矩形波パルスが高レベルHから低レベルLに切換わると即座に、高圧電位Vhを遮断して基準電位(高圧電源回路のア−ス)Eをアンカ3a,3bに印加する。スイッチング回路40bも40aと同様に動作するが、両回路に与えられる矩形波パルスに180度のずれがあるので、アンカ3a,3bと3c,3dには、交互に高圧電位Vhが印加され、これにより振動板5がx方向に振動する。振動の周波数はDfである。
【0028】
振動板5がこのように振動しているとき、振動板5に角速度Ωが加わると、振動板5が周波数がDfの楕円振動を生じ、そのz方向振動成分により、振動板5/電極9a,9b間の静電容量が振動する。この振動によりC/V変換器31a,31bの静電容量検出信号(アナログ電圧)が同期して振動する。これらの検出信号の和を表わすレベルの電圧を加算器32が発生して同期検波器33に与える。同期検波器33には、Vcoが発生する正弦波が同期信号として与えられる。
【0029】
同期検波器33は、加算器32が与える、周波数がDfで、振幅が角速度Ωに対応する交流信号の振幅を表わすアナログ信号を発生するものであり、このアナログ信号が、角速度Ωの値に対応するレベルの角速度信号である。同期検波器33の内部において、図示しない移相器が、Vcoが与える正弦波に、それに対するC/V変換器31a,31bの容量検出信号の位相遅れ(略90度)分の位相遅れを与える。図示しないミキサが、この位相遅れが与えられた同期信号に基づいて、C/V変換器31a,31bの容量検出信号(加算器32の出力)を同期検波して、容量検出信号の振幅に対応するレベルのアナログ電圧(直流電圧)を発生する。このアナログ電圧をリセット(クリア)機能を有するロ−パスフィルタが平滑化する。ロ−パスフィルタを通ったアナログ電圧が、角速度信号である。
【0030】
同期検波器33が出力する角速度信号は、増幅器34で角速度Ωを表わすレベルに校正され、CPU35のA/D変換ポ−トに印加される。CPU35は、校正済の角速度信号GLfをデジタル変換して読込み、角速度Ωを表わすデ−タDΩを出力する。
【0031】
振動板5の共振周波数を検出する共振周波数検出モ−ドでは、CPU35が、信号Cを高レベルHとしてアンドゲ−ト39をオフに、アンドゲ−ト42をオンにする。
【0032】
共振周波数検出モ−ドでは、アンドゲ−ト39がオフであるので、スイッチング回路40aおよび40bには駆動パルスが与えられず、それらの回路40aおよび40bの出力は共通電位Eに留まり、振動板5はx方向に振動駆動されない。しかし、Vcoは、CPU35が指示する周波数Dfの正弦波を発生してパルス整形回路38および同期検波器33に与えるので、アンドゲ−ト39,42には、角速度検出モ−ドのときと同様に駆動パルスが与えられる。また、C/V変換器31a,31b,加算器32,同期検波器33および増幅器34は、角速度検出モ−ドのときと同様に動作し、振動板5がz方向に振動すると、振幅に対応する信号(前述の角速度検出信号GLf)がCPU35に与えられる。
【0033】
CPU35がリセット信号B(パルス)を出力すると、この信号により同期検波器33内のロ−パスフィルタがリセットされこれにより該フィルタ内の平滑コンデンサのチャ−ジが放電する。同時に、フリップフロップ43がリセットされてそのQバ−(オ−バライン付Q)出力が低レベルLから高レベルHに転ずる。CPU35の出力Cが高レベルHであるので、パルス成形回路38が発生したパルス(高レベルH)がアンドゲ−ト42を通過してモノマルチバイブレ−タ44に至るが、このパルスによりフリップフロップ43がセットされて、そのQバ−出力がHからLに転じて、アンドゲ−ト42がオフになる。これにより、CPU35がリセットパルスBを出力してから、パルス整形回路38の出力がHのときに、1パルスだけがモノマルチバイブレ−タ44に加わる。モノマルチバイブレ−タ44は、該パルスでトリガ−されて設定幅だけHの1パルスをスイッチング回路45に出力する。
【0034】
スイッチング回路45は、モノマルチバイブレ−タ44が与えるパルス区間(H区間)の間、高電位Vhをz駆動電極9cに出力し、該パルス区間を過ぎると(Lに戻ると)、共通電位Eをz駆動電極9cに与える。これにより、z駆動電極9cが1回だけ振動板5を吸引する。振動板5はこれにより電極9cに強く吸引されて、高さ方向zの、それに近づく方向に移動し、前記パルス区間が経過すると吸引力が消えるので解放されて戻り移動し、元位置を通過して更に電極9cから離れる方向に移動する。そして今度は元位置に戻る方向に反転移動し、また元位置を通過して電極9cに近づく方向に移動する。このように移動しているとき、振動板5には外力は加わらないので、振動板5はその共振周波数(固有振動数)で減衰振動する。
【0035】
同期検波器33には、Vcoから周波数Dfの同期信号が与えられているので、仮に、振動板5の前記減衰振動の周波数(共振周波数)が周波数Dfに合致していると、角速度検出信号GLfのレベルは高くなる。不一致で両者間の位相ずれが大きいときには、同期検波器33において、容量検出信号(加算器32の出力)が同期信号(Vco37の出力)からずれているので、同期検波器33のミキサの出力が交流となり、ロ−パスフィルタがこれを遮断するので、同期検波器33の出力GLf(直流)のレベルは極く低い。又は実質上零である。
【0036】
前記減衰振動の周波数に対して同期信号の周波数Dfが接近して行くにつれて、同期検波器33の出力GLf(直流)のレベルが高くなる。したがって、D/Aコンバ−タ36に与える周波数指示デ−タDfを、前記減衰振動の周波数を含むある周波数範囲の下限値を指定するものから、順次にdF分高いものに更新し、更新のたびに1パルスのリセット信号Bを同期検波器33およびフリップフロップ43に与えて振動板5を一度だけ駆動して自由振動させ、この自由振動の数サイクル後程度のタイミングで角速度検出信号GLfをデジタルデ−タに変換して読込むことにより、振動板5の共振周波数を判定することができる。すなわち、角速度検出信号GLfがピ−ク値となったときの周波数指示デ−タDfが表わす周波数Dfが、振動板5の共振周波数、もしくは共振周波数に非常に近い値である。
【0037】
より正確に共振周波数を決定したい場合には、ピ−ク値となったときの周波数指示デ−タDfが表わす周波数Dfを中心にした狭い、第2の周波数範囲を設定して、その下限値から、dFより小さい値分周波数指示デ−タDf高いものに更新しながら、上述のピ−ク値検出のための操作を行なえばよい。
【0038】
CPU35は、アンドゲ−ト39,42に、モ−ド指示信号C(L:角速度検出モ−ド/H:共振周波数検出モ−ド)を与え、かつ、角速度検出モ−ドを指定しているとき(C=L)には、所定周期で増幅器34の角速度信号GLfをA/D変換して読込み、このデジタルデ−タを、ホストCPU(図示せず)へのデ−タ出力ポ−ト(パラレル出力ラッチ)にセットする。ホストCPUはいつでもこのデ−タ(パラレル出力)を読取ることができる。ホストCPUは、角速度デ−タの必要/不要を示す信号A(A=L:角速度デ−タ必要/A=H:角速度デ−タ不要)をCPU35に与え、CPU35は、A=Lのときには、モ−ド指定信号CをL:角速度検出モ−ドとして、所定周期で角速度デ−タDΩを出力ラッチに更新ラッチする。A=Hのときには、モ−ド指定信号CをH:共振周波数検出モ−ドにして、振動板5の共振周波数(RF)を検出し、信号AがHからL(角速度検出モ−ド)に切換わると、検出している共振周波数(RF)を表わすデ−タDfをD/Aコンバ−タ36に与える。
【0039】
図5に、CPU35の動作の概要を示す。電源が投入されるとCPU35は、その入,出力ポ−トを待機時の信号レベルに設定し、内部タイマ,カウンタ,レジスタ(RAMの一領域に割宛て)等を初期化する(ステップ1)。なお、以下においてカッコ内には、ステップという語を省略してステップNo.数字のみを記す。
【0040】
CPU35は次に、ホストCPUからの信号Aのレベルをチェックして、それがHであると「共振周波数Fr検出」(3)を実行し、Lであるときには「角速度Ω算出」(4)を実行する。
【0041】
図6に、「共振周波数Fr検出」(3)の内容を示す。これに進むとCPU35は、アンドゲ−ト39,42への出力信号CをHレベルにする(31)。次に、励振パルス周波数の切換回数をカウントするためのレジスタRCをクリアし(32)、ピ−ク値格納用のレジスタRGLfのデ−タをクリアし(33)、励振周波数レジスタRFに、設定最低値Fminを書込みレジスタRFのデ−タDfをD/Aコンバ−タ36に出力する(34)。そして、リセットパルスBを1パルス出力する(35)。Vcoが周波数がDf(レジスタRFのデ−タが示す値)の、一定振幅の正弦波を発生し、その正半波区間がHで負半波区間がLの矩形パルスをパルス整形回路38が発生し、この一連のパルスがアンドゲ−ト42,39に加わるが、信号CがHであるのでアンドゲ−ト39はオフであり、スイッチング回路40a,40bはスイッチング動作をせず、それらの出力は共通電位Eに留まり、振動板5はx方向に励振されない。
【0042】
ステップ35でリセットパルスBが出力されると、フリップフロップ43がそれによってリセットされてそのQバ−出力がLからHに転じ、そこでアンドゲ−ト42がオンとなり、そのときあるいはその直後に、パルス整形回路38の出力がHになるとそれがアンドゲ−ト42を通してフリップフロップ43のセット入力端Sおよびモノマルチバイブレ−タ44のトリガ入力端に加わり、フリップフロップ43がセット状態となってそのQバ−出力がHからLに転じ、これによりアンドゲ−ト42がオフとなる。モノマルチバイブレ−タ44は、それに設定された時限の間Hのパルス(1パルス)を発生し、そのH区間のみスイッチング回路45がz駆動用の電極9cに高電圧Vhを印加する。
【0043】
高電圧Vhが電極9cに加わったことにより振動板5が電極9cに強く引かれてそれに近付く。そして電圧Vhが消えると電極9cの吸引力が無くなるので、振動板5は電極9cから離れる方向に移動する。その後自由振動により振動板5がその固有振動数(共振周波数)で減衰振動する。振動板5のこの自由振動はz方向であるので、その振動に対応したレベル変動が加算器32の出力電圧すなわち容量検出信号に現われる。周波数Dfの正弦波をVcoが発生しており、該正弦波が同期検波器33に与えられているので、同期検波器33は、周波数Dfで容量検出信号を検波する。自由振動の周波数が周波数Dfと合致していると、同期検波器33の出力信号すなわち角速度信号GLf(直流電圧)のレベルは最高となり、周波数がずれているとずれが大きいほど角速度信号GLfのレベルは低い。
【0044】
前述のようにリセットパルスBを出力するとCPU35は、それから所定の遅れ時間の後に、角速度信号GLfをデジタル変換して読込む(36)。該遅れ時間は、同期検波器33内のロ−パスフィルタをリセットパルスBでリセット(平滑コンデンサの電圧の放電)してから、前述の振動板5のz方向の自由振動による容量検出信号のレベル振動を同期検波することによりロ−パスフィルタの平滑コンデンサが自由振動対応のレベルに実質上安定するに要する時間であり、これは細かくは自由振動の周波数によって違いがあるが、前記遅れ時間は、励振周波数Dfの走査範囲Fmin〜Fmin+PN・dFの中心値の周波数に合せた値に定めている。
【0045】
次にCPU35は、今回読込んだ角速度信号GLfのレベルがレジスタRGLfのデ−タが示す値(前回読込値)以上であるかをチェックする(37)。その通りであると、レジスタRGLfに今回読込んだデ−タGLfを書込み(38)、励振周波数レジスタRFのデ−タ更新回数を1インクレメントして(39)、更新回数が設定値PNに達した(上限値Fmin+PN・dFの励振周波数Dfを出力した)かをチェックして(40)、そうでない(まだ上限値Fmin+PN・dFより低い)と、励振周波数レジスタRFのデ−タDfを、最小単位dF分高い値に更新してそれをD/Aコンバ−タ36に出力する(41)。
【0046】
そして、またリセットパルスBを発生して(35)、それから所定の遅延時間の後に、角速度信号GLfをデジタル変換して読込む(36)。励振周波数DfのdF分の上昇により、励振周波数Dfが前回よりも振動板5のz方向の共振周波数に近づいているのであれば、位相検波器33の出力信号GLfのレベルが前回よりも高くなる。CPU35は上述と同様にして、今回読込んだデ−タGLfがレジスタRGLfのデ−タが示す値以上であるかをチェックする(37)。その通りであると、レジスタRGLfに今回読込んだデ−タGLfを書込み(38)、励振周波数Dfを更にdF分高い値に更新する(39〜41)。このように、同期検波器33の出力信号レベルGLfが増加傾向であると、励振周波数Dfを順次dFづつ高くする。
【0047】
励振周波数Dfが振動板5のz方向共振周波数に最も近い値になって、次に更に励振周波数DfをdF分小さくすると、同期検波器33の出力信号レベルGLfが前回の読込値(レジスタRGLfの値:振動板5の共振周波数に最も近い値)よりも低下する。
【0048】
するとCPU35は、そこでメインル−チン(図5のステップ2)に戻る。戻ったときにホストCPUからの信号AがL(角速度検出モ−ド)に切換わっていると、CPU35は、レジスタRFのデ−タ(共振周波数)をD/Aコンバ−タ36に与えて信号CをL(角速度検出のための振動板5のx方向励振)に切換えるので、角速度検出は、振動板5を共振周波数で駆動した状態で行なわれることになる。すなわち、信号AがL(角速度検出モ−ド)のときにCPU35はレジスタRFのデ−タ(前述の共振周波数Frの検出(3)で、共振周波数デ−タとなっている)をA/Dコンバ−タ36に出力し、モ−ド指示信号Cを低レベルLとする。これによりアンドゲ−ト39がオン、42がオフとなり、振動板5が、共振周波数でx方向に励振される。
【0049】
CPU35はその後、所定時間間隔で角速度検出信号GLfをA/D変換して読込み、読込んだデ−タを出力レジスタに書込んで、角速度デ−タ出力ポ−ト(パラレル出力ポ−ト)の出力ラッチにセット(更新ラッチ)する。すなわち、この出力更新を行なうごとにCPU35はメインル−チン(図6のステップ2)に戻るが、戻ったときにホストCPUからの信号AがやはりL(角速度検出モ−ド指定)であると、時間時間の経過を待って、角速度検出信号GLfをA/D変換して読込み、出力ラッチを更新するので、信号AがLである間は、CPU35は、角速度信号GLfと出力ラッチの更新を所定時間間隔で繰返し実行する。したがって、角速度出力ポ−トには常時、最新に検出した角速度Ωを表わすデ−タDΩがセットされており、ホストCPUは任意の時点に、最新の角速度デ−タDΩを読取ることができる。
【0050】
ところで、前述の「共振周波数Frの検出」(3)のステップ37でピ−ク値(共振周波数)を検出してメインル−チンに戻ったときにホスCPUからの信号AがやはりH(共振周波数検出モ−ド指定)であると、また、上述の「共振周波数Fr検出」(3)を実行する。したがって、信号Aが連続してHである間は、CPU35は、「共振周波数Fr検出」(3)を繰返し実行し、信号AがLに転ずるのを待つ、ということになる。これが電源投入直後の状態であると、該繰返しの実行は、電源投入後のジャイロ20のウォ−ムアップ(これは自己発熱のみならず、その外部の電気回路,電気装置の放熱によっても生ずる)による振動板5の共振周波数の変化に対応して、励振周波数Dfを、振動板5の最新の共振周波数に合致するものに追従させる、ということになる。
【0051】
なお、CPU35は、共振周波数検出のために、励振周波数(同期検波器33に与える同期信号)を、設定範囲の下限値Fminから、順次にdF分高い値に変更するが、逆にしてもよい。すなわち、設定範囲の上限値Fmin+PN・dFから、順次にdF分低い値に変更してもよい。
【0052】
更には、設定範囲Fmin〜Fmin+PN・dFが広い場合には、dFを比較的に大きい値とし、ピ−ク値となる周波数を検出すると、それを中心とする狭い範囲を設定して、この範囲内で順次に小さい変更量dFm分高い値又は低い値に変更して、より細かく共振周波数を決定するのが好ましい。
【0053】
−第2実施例−
図7に第2実施例の構成を示す。この第2実施例で用いられるジャイロ20は、図1および図4に示す第1実施例の電極9a,9bおよび9cを、一体連続にして一枚の電極9としたものである。第2実施例のジャイロ20のその他の構成は、第1実施例のジャイロ20と同じである。
【0054】
第2実施例では、電極9が一枚であり、これを静電容量検出用と振動板5のz駆動用に共用するために、切換回路46が追加され、この切換回路46で、電極9をスイッチング回路45とC/Vコンバ−タ31に選択的に接続するようにしている。第2実施例のCPU35の制御動作は、前述の第1実施例のものと同じである。第2実施例では、「共振周波数Fr検出」(3)において、モノマルチバイブレ−タ44が1パルス(高レベルH)を出力している間、切換回路46が該パルスに応答して電極9にスイッチング回路45の出力端を接続し、これにより該パルスに応答してスイッチング回路45が出力する高電圧Vhが電極9に加わり、振動板5が電極9に強く吸引される。この高電圧Vhが消えるとき、すなわちモノマルチバイブレ−タ44の出力がLに戻るときに切換回路46が、電極9−C/V変換器間の接続に戻り、振動板5の自由振動によるレベル変動がC/V変換器31の出力信号すなわち容量検出信号に現われる。
【0055】
−第3実施例−
図8に第3実施例の構成を示す。この第3実施例のジャイロ20の全体の縦断面を図10に示し、その主要部の外観を図9に示す。このジャイロ20は、振動板5に、y方向に延びる導体線52と、振動板表面に沿って矩形渦巻き状に分布する導体コイル51を形成し、振動板5よりやや広い平面を有する2個の、シ−ト状の永久磁石61,62を、振動板5を挟むように配設したものである。
【0056】
振動板5は、シリコン基板1のエッチングにより支持梁4a〜4dと共に形成されたものであり、支持梁4a〜4dがシリコン基板1に一体連続で、振動板5は支持梁4a〜4dに一体連続である。振動板5の表面を絶縁体で被覆してから、金蒸着により導体線52と導体コイル51を形成した後、更に絶縁体を被覆し、そして支持梁4aと4bの、振動板5のz方向変位により最も変形する部位に、歪に応じて抵抗値が変化する歪抵抗材を蒸着して歪センサ53,54としている。 永久磁石61および62は、図10に示すようにz方向に磁化しており、それぞれ上蓋および下板に固着されており、磁石61のN極と磁石62のS極とが対向しており、それらの間に導体コイル51(振動板5)が位置する。導体コイル51に、磁石61に対向する側がS極となりしたがって磁石62に対向する側がN極となる方向の電流を通電すると、導体コイル51が両磁石61,62に吸引されるが、導体コイル51は磁石62よりも磁石61に近いので、磁石61で吸引されて導体コイル51(振動板5)が磁石61に近付く方向に移動する。この移動の後に通電を遮断すると、振動板5が該移動の方向と逆方向に戻り移動しそしてz方向で正,逆方向に自由振動(減衰振動)する。この振動の振幅に対応して歪センサ53,54の抵抗値が変化する。
【0057】
図8を参照すると、歪センサ53,54には、分圧抵抗を介して定電圧が加わっており、歪センサ53,54の抵抗値に比例する電圧が加算器32に印加される。歪センサ53および54の抵抗値の変化は、共に振動板5の振動に同期しかつ同方向であるので、加算器32が振動板5の振動に同期したアナログ電圧(振動電圧)を発生する。上述の、導体コイル51に振動板5をz方向に駆動するための電流を流すための電圧を、スイッチング回路45が導体コイル51に印加する。
【0058】
角速度検出のための振動板5のx方向励振は、スイッチング回路40aおよび40bで導体線52に交流電圧を印加することにより実現する。該交流電圧の印加により、導体線52に交流電流が流れる。導体線52に、図8に示す矢印yの方向に電流が流れているときには、磁石61,62間の磁界と該電流との間に、フレミングの左手の法則として知られている電磁力が発生し、導体線52(振動板5)に、矢印xの方向の推力が作用し、振動板5が矢印xの方向に移動する。電流の流れる方向が反転すると推力の方向が反転し振動板5が矢印xとは逆方向に移動する。したがって、導体線52に交流電圧を印加している間、振動板5が、該交流電圧の周波数と等しい周波数でx方向に振動する。
【0059】
図8に示す加算器32〜スイッチング回路45までの電気回路の構成および各電気要素の動作は第1実施例(図4)と同様であるので、ここでの説明は省略する。
【図面の簡単な説明】
【図1】 本発明の第1実施例のジャイロ20の内部を示す斜視図である。
【図2】 図1に示すジャイロ20の、II−II線断面図である。
【図3】 図1に示すジャイロ20の、III−III線断面図である。
【図4】 図1に示すジャイロ20に接続した電気回路の構成を示すブロック図である。
【図5】 図4に示すCPU35の角速度検出処理の概要を示すフロ−チャ−トである。
【図6】 図5に示す「共振周波数Fr検出」(3)の内容を示すフロ−チャ−トである。
【図7】 本発明の第2実施例のジャイロ20の要素ならびにそれに接続された電気回路の構成を示し、ジャイロ20の要素は斜視図で、電気回路はブロック図で示す。
【図8】 本発明の第3実施例のジャイロ20の要素の一部ならびにそれに接続された電気回路の構成を示し、ジャイロ20の要素は斜視図で、電気回路はブロック図で示す。
【図9】 図8に示すジャイロ20の主要要素の斜視図である。
【図10】 図8に示すジャイロ20の、図9に示すX−X線縦断面図である。
【符号の説明】
1:絶縁体のシリコン基板
2a〜2d,3a〜3d:アンカ(導電体のポリシリコン)
4a〜4d:支持梁 5:振動板
6a,6b:電極幹 7a〜7d:x移動電極
8a〜8d:x駆動電極 9a,9b:容量検出用の電極
9c:z駆動電極
9:容量検出用およびz駆動用に共用の電極
10:リ−ド電極 20:マイクロジャイロ
31,31a,31b:C/V変換器
32:加算器(図4)/増幅器(図7)
33:同期検波器 34:増幅器
35:マイクロコンピュ−タ 36:D/Aコンバ−タ
37:電圧制御発振器 38:パルス整形回路
39,42:アンドゲ−ト
40a,40b,45:スイッチング回路 41:インバ−タ
43:フリップフロップ 44:モノマルチバイブレ−タ
46:切換回路 51:導体コイル
52:導体線 53,54:歪センサ
61,62:永久磁石

Claims (11)

  1. 基台,該基台に、x方向およびz方向に振動可能に支持された振動体,該振動体にx方向に振動する力を及ぼすための第1加振手段,前記振動体をz方向に駆動するための第2加振手段、および、振動体のz方向の振動に対応して振動する第1電気信号を発生するための振動変換手段、を含む角速度センサ;
    指示された周波数の同期信号を発生する同期信号発生手段;
    第1加振手段に、前記同期信号に同期して第1駆動電圧を与える第1励振手段; 第2加振手段に、振動体をz方向に駆動するための第2駆動電圧を与える第2励振手段;
    第1電気信号の、前記同期信号と実質上同一周波数のレベル変化の振幅を表わす第2電気信号を発生する振幅検出手段;および、
    第2励振手段を介して第2加振手段に第2駆動電圧を与えて振動体をz方向に駆動し、振動変換手段が発生する第1電気信号の周波数を検索する手段;
    を備える角速度検出装置。
  2. 角速度センサの振動変換手段は、振動体に空隙を置いてz方向で対向する、振動体との間に静電容量を形成する電極を含み、第1電気信号のレベルは振動体/電極間の静電容量に対応する、請求項1記載の角速度検出装置。
  3. 前記電極は、それぞれが振動体に対向する第1組電極および第2組電極を含み、振幅検出手段は第1組電極に接続され;第2励振手段は第2組電極に第2駆動電圧を印加する;請求項2記載の角速度検出装置。
  4. 装置は更に、振動体との間に静電容量を形成する電極を、振幅検出手段と第2励振手段の一方に選択的に接続する切換手段;を含み、前記周波数検索手段は、第2励振手段を介して前記電極に第2駆動電圧を与える間のみ、前記切換手段を介して前記電極を第2励振手段に接続する;請求項2記載の角速度検出装置。
  5. 第1加振手段は、櫛型静電駆動の櫛型電極である請求項1,請求項2,請求項3又は請求項4記載の角速度検出装置。
  6. 第1加振手段は、電磁駆動手段である、請求項1記載の角速度検出装置。
  7. 電磁駆動手段は、振動体と一体のy方向に延びる導電体、および、この導電体にz方向の磁界を与える磁界印加手段、を含み;第1励振手段は、前記導電体と磁界印加手段の一方に交流である第1駆動電圧を与える;請求項6記載の角速度検出装置。
  8. 第2加振手段は、振動体と一体であってz軸廻りに周回する導電体、および、この導電体にz方向の磁界を与える磁界印加手段、を含む;請求項1,請求項6又は請求項7記載の角速度検出装置。
  9. 振動変換手段は、振動板に連続してそれをx方向およびz方向に振動可に支持する支持梁と一体の歪センサを含む;請求項1,請求項6,請求項7又は請求項8記載の角速度検出装置。
  10. 前記周波数検索手段は、第2電気信号のレベルを読み、これを同期信号発生手段に与える指示周波数を変更して行ない、第2電気信号のレベルが実質上ピ−クとなる周波数を検索する、請求項1,請求項2,請求項3,請求項4,請求項5,請求項6,請求項7,請求項8又は請求項9記載の角速度検出装置。
  11. 前記周波数検索手段は、同期信号発生手段に与える周波数指示値を漸増又は漸減し、周波数指示値を変更する度に、第2励振手段を介して前記電極に1パルスの第2駆動電圧を与えて振動体をz方向に駆動し、振動体のz方向の振動によって現われた第2電気信号のレベルを読む、請求項1,請求項2,請求項3,請求項4,請求項5,請求項6,請求項7,請求項8,請求項9又は請求項10記載の角速度検出装置。
JP24982296A 1996-07-29 1996-09-20 角速度検出装置 Expired - Fee Related JP3702412B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24982296A JP3702412B2 (ja) 1996-07-29 1996-09-20 角速度検出装置
US08/902,551 US5918280A (en) 1996-07-29 1997-07-29 Angular rate sensing device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19891396 1996-07-29
JP8-198913 1996-07-29
JP24982296A JP3702412B2 (ja) 1996-07-29 1996-09-20 角速度検出装置

Publications (2)

Publication Number Publication Date
JPH1096631A JPH1096631A (ja) 1998-04-14
JP3702412B2 true JP3702412B2 (ja) 2005-10-05

Family

ID=26511244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24982296A Expired - Fee Related JP3702412B2 (ja) 1996-07-29 1996-09-20 角速度検出装置

Country Status (2)

Country Link
US (1) US5918280A (ja)
JP (1) JP3702412B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220236057A1 (en) * 2019-07-30 2022-07-28 Seiko Epson Corporation Vibrator Device, Electronic Apparatus, And Vehicle

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044707A (en) * 1997-06-20 2000-04-04 Aisin Seiki Kabushiki Kaisha Angular rate sensor
US6253612B1 (en) * 1998-06-05 2001-07-03 Integrated Micro Instruments, Inc. Generation of mechanical oscillation applicable to vibratory rate gyroscopes
US6713938B2 (en) * 1999-01-14 2004-03-30 The Regents Of The University Of Michigan Method and apparatus for filtering signals utilizing a vibrating micromechanical resonator
JP2000321869A (ja) * 1999-05-12 2000-11-24 Konica Corp 画像形成装置
US6742389B2 (en) 2001-01-24 2004-06-01 The Regents Of The University Of Michigan Filter-based method and system for measuring angular speed of an object
US6792792B2 (en) 2001-06-04 2004-09-21 Kelsey-Hayes Company Diagnostic test for a resonant micro electro mechanical system
US7089792B2 (en) * 2002-02-06 2006-08-15 Analod Devices, Inc. Micromachined apparatus utilizing box suspensions
EP2327959B1 (en) * 2002-02-06 2012-09-12 Analog Devices, Inc. Micromachined gyroscope
US6823733B2 (en) * 2002-11-04 2004-11-30 Matsushita Electric Industrial Co., Ltd. Z-axis vibration gyroscope
US7174785B2 (en) * 2004-03-03 2007-02-13 Northrop Grumman Corporation Oscillation of vibrating beam in a first direction for a first time period and a second direction for a second time period to sense angular rate of the vibrating beam
CN100559122C (zh) * 2004-04-14 2009-11-11 模拟设备公司 带有传感元件的线性阵列的惯性传感器
US7036373B2 (en) * 2004-06-29 2006-05-02 Honeywell International, Inc. MEMS gyroscope with horizontally oriented drive electrodes
US7478557B2 (en) * 2004-10-01 2009-01-20 Analog Devices, Inc. Common centroid micromachine driver
US7421897B2 (en) 2005-04-14 2008-09-09 Analog Devices, Inc. Cross-quad and vertically coupled inertial sensors
US7509870B2 (en) * 2005-10-26 2009-03-31 Orthodata Technologies Llc MEMS capacitive bending and axial strain sensor
DE102006015984A1 (de) * 2006-04-05 2007-10-11 Siemens Ag Verfahren zum Betrieb eines Vibrationskreisels und Sensoranordnung
JP2011058860A (ja) * 2009-09-08 2011-03-24 Hitachi Automotive Systems Ltd 角速度検出装置
JP5549399B2 (ja) * 2010-06-14 2014-07-16 富士通株式会社 振動子デバイスの作製方法および振動子デバイス
US9200973B2 (en) 2012-06-28 2015-12-01 Intel Corporation Semiconductor package with air pressure sensor
US9429427B2 (en) 2012-12-19 2016-08-30 Intel Corporation Inductive inertial sensor architecture and fabrication in packaging build-up layers
CN107238755A (zh) * 2017-05-27 2017-10-10 何永平 一种振荡器的谐振频率测量方法及测量系统和谐振器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349855A (en) * 1992-04-07 1994-09-27 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro
JP3230347B2 (ja) * 1993-07-27 2001-11-19 株式会社村田製作所 角速度センサ
KR100363246B1 (ko) * 1995-10-27 2003-02-14 삼성전자 주식회사 진동구조물및진동구조물의고유진동수제어방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220236057A1 (en) * 2019-07-30 2022-07-28 Seiko Epson Corporation Vibrator Device, Electronic Apparatus, And Vehicle
US11940275B2 (en) * 2019-07-30 2024-03-26 Seiko Epson Corporation Vibrator device, electronic apparatus, and vehicle

Also Published As

Publication number Publication date
JPH1096631A (ja) 1998-04-14
US5918280A (en) 1999-06-29

Similar Documents

Publication Publication Date Title
JP3702412B2 (ja) 角速度検出装置
JP3386833B2 (ja) 多軸振動モノリシックジャイロスコープ
US10309782B2 (en) Quality factor estimation for resonators
JP2004301555A (ja) 揺動体装置を用いた電位測定装置、および画像形成装置
JP2006030195A (ja) 電気機械共振器を備える磁力計
JP2000046560A (ja) 角速度センサ
JP2010237204A (ja) 磁気感度が低減されたmemsジャイロスコープ
JPH09126783A (ja) 圧電振動ジャイロ
US5912528A (en) Vibrating gyroscope
JPH1144541A (ja) 角速度センサ
JPH10300478A (ja) 角速度検出素子および角速度計測装置
JPH07120266A (ja) 振動ジャイロセンサー
JP2000105124A (ja) 静電駆動,静電検出式の角速度センサ
JPH11325912A (ja) 複合センサ
JPH09264745A (ja) 弾性表面波ジャイロスコープ
JP3732602B2 (ja) エネルギー閉じ込め型圧電振動ジャイロスコープ
JP2004301575A (ja) 角速度センサ
JP3665978B2 (ja) エネルギー閉じ込め型圧電振動ジャイロスコープ
JPH1183494A (ja) 角速度センサ
JP4641107B2 (ja) 振動ジャイロ
JP2003185438A (ja) 回転振動ジャイロの駆動方法及び振動子構造
JP3736038B2 (ja) 角速度検出装置
JPH04372814A (ja) 角速度センサ
JPH07128355A (ja) 1軸角速度/加速度センサ
JP3398852B2 (ja) エネルギー閉じ込め型圧電振動ジャイロスコープ

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050623

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050706

LAPS Cancellation because of no payment of annual fees