JP3683084B2 - 転がり軸受 - Google Patents

転がり軸受 Download PDF

Info

Publication number
JP3683084B2
JP3683084B2 JP30308897A JP30308897A JP3683084B2 JP 3683084 B2 JP3683084 B2 JP 3683084B2 JP 30308897 A JP30308897 A JP 30308897A JP 30308897 A JP30308897 A JP 30308897A JP 3683084 B2 JP3683084 B2 JP 3683084B2
Authority
JP
Japan
Prior art keywords
roller
axial direction
equivalent
distance
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30308897A
Other languages
English (en)
Other versions
JPH11141554A (ja
Inventor
繁夫 鎌本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP30308897A priority Critical patent/JP3683084B2/ja
Publication of JPH11141554A publication Critical patent/JPH11141554A/ja
Application granted granted Critical
Publication of JP3683084B2 publication Critical patent/JP3683084B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/02General use or purpose, i.e. no use, purpose, special adaptation or modification indicated or a wide variety of uses mentioned

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、転がり軸受におけるころのクラウニング形状の改良に関する。
【0002】
【従来の技術】
従来、円筒ころ軸受や円錐ころ軸受においては、内輪と外輪との間に配置されるころの母線に、接触圧力の集中を避けるためにクラウニングと呼ばれるわずかな膨らみを形成するようにしている。ルンドベルグ(Lundberg)は、接触圧力を上記ころの軸方向に均一にするようなクラウニング形状を提案しており、現在ではこのクラウニング形状が最適とされている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来のルンドベルグのクラウニング形状によれば、確かに上記ころの軸方向へ均一な接触圧力分布を呈する。ところが、実際に上記ころが受けるダメージを評価すると、破壊,金属疲労や塑性変形等の材料が受けるダメージの軸方向への分布は一様でないという問題がある。図8は、ルンドベルグのクラウニング形状を適用した上記ころに発生する軸方向に均一な接触圧力下での相当応力σEをヘルツ(Hertz)の最大接触応力Phで無次元化した無次元化相当応力ΣE(=σE/Ph)の分布を示す。ここで、相当応力σEとは、金属材料の降伏条件の一種のフォン・ミーゼス(Von Mises)の降伏条件に用いられる応力成分である。
【0004】
図8より、上記ころ内部における破壊,金属疲労や塑性変形等の材料が受けるダメージを評価する無次元化相当応力ΣEは、回転軸から半径方向に有効長さの0.8倍の箇所Aに帯状に強くあらわれる。そして、特に、帯状箇所Aのうちの側面近傍の領域Bで降伏応力(=0.60)を越える強い値を示し、領域Bから降伏が始まることが分かる。このように、例え、接触圧力分布を軸方向に均一にしたとしても、必ずしも3次元の相当応力分布は均一とはならず、相当応力が集中する箇所が存在する。そのために、上記円筒ころに最大負荷能力を与えることができないという問題がある。
【0005】
そこで、この発明の目的は、相当応力または最大剪断応力等で表される材料が受けるダメージの集中を無くして最大負荷能力を高めることができる転がり軸受を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1に係る発明は、軌道ところを有する転がり軸受において、上記ころと軌道との接触面の間隔における上記ころの軸方向への変化が、接触圧力下の上記軸方向への相当応力分布または最大剪断応力分布等の材料が受けるダメージを評価する物理量が均一になるように設定されており、上記ころと軌道との接触面の間隔における上記軸方向への変化が、実質的に下記の式で表されることを特徴としている。
【数2】
cr (y) ( 12 . 89k・σ Emax 2 ・R /( 1 ・E ' 2 ))
ln( /( 1− ( 2y /( 1 ・L we )) 2 ))
あるいは
cr (y) ( 44 . 44k・τ max 2 ・R /( 1 ・E ' 2 ))
ln( /( 1− ( 2y /( 1 we )) 2 ))
尚、h cr (y): 上記軸方向への位置yにおける2つの相互接触部材の接触面の間隔
: 加工公差に関する係数
: 相対移動方向への等価半径
Figure 0003683084
2 : 必要最大間隔の加工公差に関する係数
': 等価ヤング率
we : 上記ころの有効長
σ Emax : 材料の圧縮に関する強度
τ max : 材料の最大剪断応力に関する強度
【0007】
上記構成によれば、上記ころと軌道との接触面の間隔における上記軸方向への変化は、接触圧力下の上記軸方向への相当応力分布又は最大剪断応力分布等で表される材料が受けるダメージが均一になるように設定されている。したがって、上記相当応力または最大剪断応力等で表される材料にダメージが集中する箇所が存在せず、その分だけ上記ころの最大負荷能力が高められる。
【0008】
さらに、回転方向への等価半径R、等価ヤング率E'、上記ころの有効長Lwe、材料の圧縮に関する強度σEmax、および、材料の最大剪断応力に関する強度τmaxが分かれば、接触圧力下での上記軸方向への相当応力分布または最大剪断応力分布が均一になるような上記ころと軌道との接触面の間隔が容易に得られる。
【0009】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。図1は、本実施の形態の転がり軸受の一例としての円錐ころ軸受の側面図である。また、図2は、図1におけるI−I矢視断面図である。円錐ころ軸受11は、内輪12と外輪13と円錐ころ16と保持器17(図2のみに示し、図1では省略している)を有している。円錐ころ16の大径側端部は、内輪12の大鍔19に押し付けられて、円錐ころ16の軸方向の位置が定まるようになっている。
【0010】
上記円錐ころ16の軸20および外輪13の軸21を通る平面と円錐ころ16の外周面18との交線であるころ輪郭線と、外輪13の軌道面15と上記平面との交線である外輪輪郭線との相対隙間の問題は、図3に示すような有限幅円筒25と半無限体(以下、単に平面と言う)26との隙間の問題に置き換えることができる。図3において、X,Y,Zは無次元座標であり、X軸はx/b,Y軸はy/b,Z軸はz/bである。但し、x,y,zは座標であり、bは回転方向へのヘルツの接触幅の1/2である。同様に、上記ころ輪郭線と、内輪12の軌道面14と上記平面との交線である内輪輪郭線との相対隙間の問題も、図3に示す力学モデルに置き換えることができる。そこで、以下、上記ころ輪郭線と外輪輪郭線との相対隙間、および、上記ころ輪郭線と内輪輪郭線との相対隙間を、図3の力学モデルを用いて説明する。尚、上記ころ輪郭線と外輪輪郭線との相対隙間と、上記ころ輪郭線と内輪輪郭線との相対隙間とは、円錐ころ16の軸20に対して対象であるから、一方のみについて説明すれば、他方も同様である。
【0011】
上述したように、図3に示す有限幅円筒25と平面26との相対隙間においては、有限幅円筒25に対する接触圧力分布を有限幅円筒25の軸方向に均一にしたとしても、3次元の相当圧力分布は均一にはならない。そこで、本実施の形態においては、上述の点に着目して、有限幅円筒25の軸方向への相当応力分布または最大剪断応力分布が均一になるように、有限幅円筒25のクラウニング形状(つまり、円錐ころ16のクラウニング形状)を決定するのである。
【0012】
先ず、上記有限幅円筒25に任意のクラウニング形状与えて、乾燥接触問題における基礎式を用いて接触2物体間(つまり、有限幅円筒25と平面26との間)の相対距離Hを求め、接触圧力を求める。そして、得られた接触圧力の分布を用いて3次元の内部応力分布を得、この3次元内部応力分布から次式によって相当応力を求める。
σE=[1/2{(σX−σY)2+(σY−σZ)2+(σZ−σX)2
+6τXY 2+6τYZ 2+6τZX 2}0.5]
ここで、 σE:相当応力
σX:YZ面に作用する垂直応力成分
σY:XZ面に作用する垂直応力成分
σZ:XY面に作用する垂直応力成分
τXY:XY面に作用する剪断応力成分
τYZ:YZ面に作用する剪断応力成分
τZX:ZX面に作用する剪断応力成分
【0013】
そして、こうして得られた相当応力σEの分布が有限幅円筒25の軸方向に均一になるようにクラウニング形状を変更し、上述の解析を繰り返す。こうして、材料内部のダメージが軸方向に均一に分布するようにクラウニング形状を決定するのである。
【0014】
上述のようにして導出されたクラウニング形状の式は、次のような式である。
【数3】
cr(y)=(12.89k・σEmax 2・R/(C1・E'2))
・ln(1/(1−(2y/(C1・Lwe))2))
あるいは
cr(y)=(44.44k・τmax 2・R/(C1・E'2))
・ln(1/(1−(2y/(C1we))2))
尚、hcr(y):位置yにおけるクラウニング量
k:加工公差に関する係数
(k=1.2〜15:この範囲内で同等の効果を呈する)
R:相対移動方向への等価半径
1/R=1/r1+1/r2
1,r2:相対移動方向への物体1,2の曲率半径
Figure 0003683084
2:必要最大間隔の加工公差に関する係数
(C2=0.6〜8)
E':等価ヤング率
1/E'=1/2{(1−ν1 2)/E1+(1+ν2 2)/E2}
1,E2:物体1,2のヤング率
ν12:物体1,2のポアソン比
we:有限幅円筒25の有効長
σEmax:材料の圧縮に関する強度(圧縮降伏応力または圧縮疲労限)
τmax:材料の最大剪断応力に関する強度(圧縮降伏応力または圧縮疲労限)
【0015】
図4は、上記クラウニング形状の式によって算出された有限幅円筒25のクラウニング量の一例を示す図である。また、図5は、上記クラウニング形状の式が適用された有限幅円筒25における接触圧力pをヘルツの最大接触応力Phで無次元化した無次元化接触圧力P(=p/Ph)の分布である。図5(a)はY=0におけるZX面の接触圧力分布であり、図5(b)はX=0におけるYZ面の接触圧力分布である。また、図6は、図8の場合と同じ荷重条件下での軸方向への無次元化相当応力ΣEの分布を示す。
【0016】
図5(b)から分かる様に、本実施の形態におけるクラウニング形状によれば、有限幅円筒25の軸方向の接触圧力分布は、中央部から軸方向両端のエッジ部に向かって少しずつ減少し、上記エッジ部で曲線的に低下するようになっている。
【0017】
したがって、図6に示すY軸方向への無次元化相当応力ΣEの分布から分かるように、上記ルンドベルグのクラウニング形状を適用した場合の上記エッジ部での無次元化相当応力ΣEの上昇(図8参照)が無くなり、そのまま曲線的に減少している。その結果、図8に見られるような上記帯状領域Aの側面近傍に現れる降伏応力を越える強い相当応力の集中が回避される。
【0018】
通常、上記内輪12の軌道面14および外輪13の軌道面15は円錐状に形成されている。したがって、その場合における円錐ころ16の外周面18における母線に沿った断面形状を上記式で求められるクラウニング形状にすれば、上記母線方向への上記相当応力分布を均一にすることができ、材料内部のダメージが集中する箇所を無くすことがきるのである。尚、内輪12の軌道面14および外輪13の軌道面15が円錐状でない場合には、上記ころ輪郭線と外輪輪郭線との相対隙間、および、上記ころ輪郭線と内輪輪郭線との相対隙間が、上記式で求められる形状になるようにすればよい。
【0019】
上述のように、本実施の形態においては、相互に転がり接触して力を伝達する円錐ころ16と外輪13との上記ころ輪郭線と外輪輪郭線との相対隙間、及び、円錐ころ16と内輪12との上記ころ輪郭線と内輪輪郭線との相対隙間を、円錐ころ16の母線方向への無次元化相当応力ΣEの分布を均一にするように決定している。したがって、円錐ころ16の軸方向両端エッジ部における無次元化相当応力ΣEの集中を防止できる。すなわち、本実施の形態によれば、無次元化相当応力ΣEの集中が無くなる分だけ円錐ころ16の静的最大負荷容量および動的最大負荷容量を高めることができるのである。
【0020】
図7は、円錐ころ軸受の円錐ころに、本実施の形態によるクラウニング形状を適用した場合とルンドベルグのクラウニング形状を適用した場合とにおける累積破損確率と寿命時間との関係を示す。図7より、本実施の形態によるクラウニング形状を適用した方が約10倍の寿命向上が見られた。すなわち、上記円錐ころ16を、従来の円錐ころと同じ材料で巨視的な寸法諸元を同じに形成しても、上述の式による本実施の形態のクラウニング形状を適用することによって転がり疲労寿命が3倍〜10倍と驚異的に伸びることが実証された。
【0021】
尚、上記実施の形態においてはラジアル軸受として使用される円錐ころ軸受を例に説明しているが、スラスト軸受として使用される円錐ころ軸受であっても構わない。また、円筒ころ軸受の場合にも適用可能であることは言うまでもない。さらには、軌道面が平面であるリニアベアリングにも適用できる。
【0022】
【発明の効果】
以上より明らかなように、請求項1に係る発明の転がり軸受は、ころと軌道との接触面の間隔における上記ころの軸方向への変化を、接触圧力下の上記軸方向への相当応力分布または最大剪断応力分布等の材料が受けるダメージを評価する物理量が均一になるように設定したので、上記相当応力または最大剪断応力等で表される材料が受けるダメージが集中する箇所が存在せず、その分だけ上記ころの静的最大負荷容量および動的最大負荷容量を高めることができる。さらに、上記ころの耐圧痕性や寿命の向上を図ることができる。
【0023】
さらに、上記ころと軌道との接触面の間隔における上記軸方向への変化を、実質的に下記の式で表したので、回転方向への等価半径R、等価ヤング率E'、上記ころの有効長Lwe、材料の圧縮に関する強度σEmax、および、材料の最大剪断応力に関する強度τmaxが分かれば、接触圧力下での上記軸方向への相当応力分布または最大剪断応力分布が均一になるような上記ころと軌道との接触面の間隔を容易に得ることができる。
【数4】
cr(y)=(12.89k・σEmax 2・R/(C1・E'2))
・ln(1/(1−(2y/(C1・Lwe))2))
あるいは
cr(y)=(44.44k・τmax 2・R/(C1・E'2))
・ln(1/(1−(2y/(C1we))2))
尚、hcr(y):上記軸方向への位置yにおける2つの相互接触部材の接触面の間隔
k:加工公差に関する係数
Figure 0003683084
2:必要最大間隔の加工公差に関する係数
【図面の簡単な説明】
【図1】 この発明の転がり軸受の一例としての円錐ころ軸受の側面図である。
【図2】 図1におけるI−I矢視断面図である。
【図3】 図1および図2に示す円錐ころ軸受の力学モデルを示す図である。
【図4】 図1および図2における円錐ころに適用されるクラウニング量の一例を示す図である。
【図5】 図1および図2における円錐ころの接触圧力分布を示す図である。
【図6】 図1および図2における円錐ころの無次元化相当応力分布を示す図である。
【図7】 円錐ころにこの発明に係るクラウニング形状を適用した場合とルンドベルグのクラウニング形状を適用した場合との累積破損確率と寿命時間との関係を示す図である。
【図8】 ルンドベルグのクラウニング形状を適用したころにおける図6と同じ荷重条件下での無次元化相当応力分布を示す図である。
【符号の説明】
11…円錐ころ軸受、 12…内輪、
13…外輪、 14,15…軌道面、
16…円錐ころ、 20…円錐ころの軸
21…外輪の軸。

Claims (1)

  1. 軌道ところを有する転がり軸受において、
    上記ころと軌道との接触面の間隔における上記ころの軸方向への変化が、接触圧力下の上記軸方向への相当応力分布または最大剪断応力分布等の材料が受けるダメージを評価する物理量が均一になるように設定されており、
    上記ころと軌道との接触面の間隔における上記軸方向への変化が、実質的に下記の式で表される
    ことを特徴とする転がり軸受。
    Figure 0003683084
    尚、h cr (y): 上記軸方向への位置yにおける2つの相互接触部材の接触面の間隔
    : 加工公差に関する係数
    : 相対移動方向への等価半径
    Figure 0003683084
    2 : 必要最大間隔の加工公差に関する係数
    ': 等価ヤング率
    we : 上記ころの有効長
    σ Emax : 材料の圧縮に関する強度
    τ max : 材料の最大剪断応力に関する強度
JP30308897A 1997-11-05 1997-11-05 転がり軸受 Expired - Fee Related JP3683084B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30308897A JP3683084B2 (ja) 1997-11-05 1997-11-05 転がり軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30308897A JP3683084B2 (ja) 1997-11-05 1997-11-05 転がり軸受

Publications (2)

Publication Number Publication Date
JPH11141554A JPH11141554A (ja) 1999-05-25
JP3683084B2 true JP3683084B2 (ja) 2005-08-17

Family

ID=17916755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30308897A Expired - Fee Related JP3683084B2 (ja) 1997-11-05 1997-11-05 転がり軸受

Country Status (1)

Country Link
JP (1) JP3683084B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113933A1 (de) * 2017-06-23 2018-12-27 Schaeffler Technologies AG & Co. KG Kegelrollenlager mit korrigierter Lauffläche

Also Published As

Publication number Publication date
JPH11141554A (ja) 1999-05-25

Similar Documents

Publication Publication Date Title
DE112009001354B4 (de) Antriebsrad-Lagervorrichtung
EP1757823B2 (en) Tapered roller bearing
CN100416122C (zh) 车轮用轴承装置
EP1035339B2 (en) Roller bearing and a method of producing the same
EP1691090A1 (en) Bearing device for wheel
EP1942284A1 (en) Bearing device for wheel
US20050185874A1 (en) Roller bearing cage and method of producing the same
JP3683084B2 (ja) 転がり軸受
JPH0781582B2 (ja) ころがり軸受の支持体
JPH11141653A (ja) カム・リフタ装置
JP2007170418A (ja) 円すいころ軸受
US5902022A (en) Controlled contact stress roller bearing
WO1999002874A1 (en) Roller bearing
JP6472671B2 (ja) 円すいころ軸受
JP2001241446A (ja) ころ軸受
JP3692223B2 (ja) 相互接触部材装置
WO2007058112A1 (ja) 円すいころ軸受
JP2006064037A (ja) 転がり軸受
JP3618977B2 (ja) カム・タペット装置
CN103415362B (zh) 车轮滚动轴承装置的制造方法
JP4429841B2 (ja) ころ軸受
JP2007147079A (ja) 車輪用軸受装置のハブ輪および外方部材の製造方法
JP4267762B2 (ja) 相互接触部材装置およびころ軸受
JP3753849B2 (ja) 一方向クラッチ
EP1762733A1 (en) Rolling element bearing assembly for a wheel hub unit with a conical cavity in the inner bearing part

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090603

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100603

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110603

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120603

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130603

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees