JP3673498B2 - リニアモータ - Google Patents
リニアモータ Download PDFInfo
- Publication number
- JP3673498B2 JP3673498B2 JP2001564447A JP2001564447A JP3673498B2 JP 3673498 B2 JP3673498 B2 JP 3673498B2 JP 2001564447 A JP2001564447 A JP 2001564447A JP 2001564447 A JP2001564447 A JP 2001564447A JP 3673498 B2 JP3673498 B2 JP 3673498B2
- Authority
- JP
- Japan
- Prior art keywords
- platen
- axis
- linear motor
- magnetic
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004907 flux Effects 0.000 claims description 96
- 230000013011 mating Effects 0.000 claims description 24
- 239000002131 composite material Substances 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims 2
- 239000011295 pitch Substances 0.000 description 33
- 230000001141 propulsive effect Effects 0.000 description 16
- 230000008033 biological extinction Effects 0.000 description 11
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 238000005859 coupling reaction Methods 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 8
- 230000005284 excitation Effects 0.000 description 7
- 244000208734 Pisonia aculeata Species 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 244000068988 Glycine max Species 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 210000004513 dentition Anatomy 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000036346 tooth eruption Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
- H02K41/031—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
- H02K41/033—Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type with armature and magnets on one member, the other member being a flux distributor
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/18—Machines moving with multiple degrees of freedom
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Linear Motors (AREA)
Description
技術分野
本発明は、ソーヤのリニアモータに関し、特に、多数枚の磁性薄板を積層して成る積層体を固定子(プラテン)として利用できるリニアモータに関する。
背景技術
ソーヤのリニアモータの原理は説明すると、第12図に示すように、磁性厚板の表面にドットピッチPの空間周期でプラテンドットDを繰り返して形成したプラテン(固定子)10と、バイアス磁束を生成するための永久磁石M、その磁極面に接合して進行方向に相縦列し、それぞれ第1及び第2の分岐磁路脚部A,A′(B,B′)を備えた第1及び第2のヨーク(継鉄)Y1(Y2)、第1のヨークY1の第1及び第2の分岐磁路脚部A,A′にそれぞれ巻装された直列接続の第1及び第2のA相励磁コイルCA,CA′、第2のヨークY2の第1及び第2の分岐磁路脚部B,B′にそれぞれ巻装された直列接続の第1及び第2のB相励磁コイルCB,CB′、並びに、第1及び第2の分岐磁路脚部A,A′(B,B′)の下端部にそれぞれ形成され、ドットピッチPの1/2の間隔をおいて進行方向に相並ぶ2つの極歯(突極部)KA,KA′(KB,KB′)から成る可動子(走行体)20とで構成されている。ここで、同分岐磁路脚部の極歯は唯一でも構わないが、複数個の場合はプラテンドットDの至近ドットに対して持つ空間位相が同一である。また、第1の分岐磁路脚部A(B)と第2の分岐磁路脚部A′(B′)との間隔は至近ドットに対する空間位相がP/2だけ進行方向にずれるように配置されており、更に、第2の分岐磁路部A′と第1の分岐磁路部Bとの間隔は至近ドットに対する空間位相がP/4だけ進行方向にずれるように配置されている。
可動子20は圧空噴出口を持ち、圧空の吹き付けによりプラテン10の表面から僅少浮上しているが、第12図(a)に示す如く、第2のヨークY2の第1及び第2のB相励磁コイルCB,CB′の端子にのみ図示の極性のB相電流を流すと、第2の分岐磁路脚部B′の極歯KB′とその至近ドットD1,D2とのエアギャップには永久磁石Mによるバイアス磁束のほか第2の励磁コイルCB′による交番磁束が重畳して強まり集中磁束部aが発生し、至近ドットD1,D2に極歯部KB′を強く磁気吸着すると共に、第1の分岐磁路脚部Bの極歯CBにはバイアス磁束を打ち消す向きに交番磁束が加わるので磁束消滅部bとなる。他方、第1のヨークY1の第1及び第2の分岐磁路脚部A,A′には第2のヨークY2の第2の分岐磁路脚部B′からの集中磁束がプラテン10内部を介して分岐した磁束が通過するが、第1の分岐磁路脚部Aの極歯KAが至近ドットD15,D14に対しP/4だけ進行方向に遅れているので、一方の分岐磁束により至近ドットD15,D14がその極歯KAを進行方向に引き付けると共に、他方の分岐磁束より第2の分岐磁路脚部A′の極歯KA′が至近ドットD10,D9に対しP/4だけ進行方向に進んでいるので、至近ドットD10,D9がその極歯KA′を進行方向とは逆向きに引き付けるため、進行方向への推力と逆方向への引き戻し力とが丁度拮抗し、第1のヨークY1の全体はバランスする。つまり、第1の分岐磁路脚部Aの極歯KAと至近ドットD15,D14とのエアギャップには推力分岐磁束部dが発生し、第2の分岐磁路脚部A′の極歯KA′と至近ドットD10,D9とのエアギャップには引き戻し分岐磁束部cが発生するので、第1のヨークY1自身は磁力吸着ポテンシャルの安定点にある。
次いで第12図(b)に示す如く、第1のヨークY1の第1及び第2のA相励磁コイルCA,CA′の端子にのみ図示の極性のA相電流を流すと、第1の分岐磁路脚部Aの極歯KAと至近ドットD15,D14とのエアギャップは直前で推力分岐磁束部dであったものが、バイアス磁束のほか第2の励磁コイルCAによる交番磁束が重畳して集中磁束部aに切り替わり、また第2の分岐磁路脚部A′の極歯KA′では引き戻し分岐磁束部cから磁束消滅部bに切り替わるので、至近ドットD15,D14が極歯KAを強く磁気吸着して進行推力が可動子20に起こる。他方、第2のヨークY2の第1及び第2の分岐磁路脚部B,B′にはプラテン10内部を介して第1のヨークY1の第1の分岐磁路脚部Aでの集中磁束となるべき分岐磁束が通過するが、第1の分岐磁路脚部Bの極歯KBでは磁束消滅部bから推力分岐磁束部dに切り替わり、また第2の分岐磁路脚部B′の極歯KB′では集中磁束部aから引き戻し分岐磁束部cに切り替わる。このため、2相電流の切り替わりにより、可動子20はP/4だけ歩進する。第12図(c),(d)の励磁パターンを含めると、2相電流では励磁コイルの励磁パターンは4通りであるため、励磁パターンの1巡回では可動子20は4回歩進して1ピッチ分だけ進行する。2相電流の切り替わり過程では、推力分岐磁束部dから集中磁束部aへと転移する極歯で推進力が発生する。
このようなソーヤのリニアモータを用いてプラテン上を可動子がX軸及びY軸の方向に平面移動する平面リニアモータを実現するためには、例えば特開昭9−261944号公報に見られるように、第13図及び第14図に示す如く、プラテン表面に正方形頂面のプラテンドットDを格子点(マトリクス)状に配列形成したプラテン10と、Y軸に平行なストライプ状の突条極歯KA,KA′(KB,KB′)を持ちX軸方向のみへ可動するX軸可動子20X及びX軸に平行なストライプ状の突条極歯KA,KA′(KB,KB′)を持ちY軸方向のみへ可動するY軸可動子20Yを平面内直交関係で支持板30を以って連結して成る複合可動子とで構成するものである。
また、可動子20X(20Y)の進行中の節動又は脈動を低減するには、第15図に示す如く、ヨークY1,Y2の分岐磁路脚部を3本とし、その分岐磁路脚部U,V,W(U′,V′,W′)毎に相互独立相の励磁コイルCU,CV,CW(CU′,CV′,CW′)を巻装し、これらのコイルに3相電流を供給するようにする。
上記の平面リニアモータの利用分野としては、例えば、吊り下げ支持したプラテンの下面を平面移動する可動子側に電子部品を把持しながらプラテン下面の法線方向にスライド移動するアクチュエータを設け、プラテン下に配置した基板のスルーホール等に電子部品を差し込むための部品実装機が知られている。
平面リニアモータに必須の固定子としてのプラテンは、その表面にプラテンドットをマトリクス状に配列形成すること等から、ブロック材で形成された1枚の厚板磁性材(厚鋼板)となっている。このため、この厚板磁性材をプラテンとして用いると、プラテン内を通過する磁束により渦電流が自然発生するため、交流磁化特性が悪く、電力損失(鉄損)が大きいので、可動子の高速化及び高推進力を得難く、大電流容量を必要とする。第16図に示す、速度に対する推進力の依存性の特性曲線αから判るように、駆動周期電流(電流パルス)を高周波数化して進行速度の高速化を図る程、推進力が急激に低下し、効率(速度×推進力/消費電力)が非常に悪くなる。
本発明者らは、渦電流の発生を抑制し、高速化,高推力,高効率の平面リニアモータを実現するために、多数の磁性薄板(例えば1mm以下の板厚)を積層して成る積層体を用い、その積層体の板筋並行面(多数枚の薄板の縁線が互いに並行して現われている面)をプラテン面とし、そのプラテン面にプラテンドットを格子点配列でエッチング等により形成することに着眼した。磁性薄板の積層境界面(合わせ面)では渦電流が貫通し難いため、電流抵抗が高くなり、渦電流の発生を抑制できるため、高速化,高推力,高効率の平面リニアモータが実現できるものと期待した。
1軸可動子の極歯列とこれに対向する至近プラテンドット列とが斉一し、両列を含む面内に形成される磁気回路においてその列方向に沿って集中磁束部,磁束消滅部及び分岐磁束部(推力分岐磁束部と引き戻し分岐磁束部)を巡回的に転移させることにより、1軸可動子がその列方向に沿って進行するものであるから、1軸可動子の極歯列と至近ドット列の配列方向が磁性薄板の板筋方向である場合には、進行磁束のための磁気回路が合わせ面と平行に磁性薄板の板厚内に沿って形成されるので、1軸可動子の板筋方向への進行が可能であり、上記の利点が得られる。
ところが、積層体内の磁束は合わせ面では屈折又は非透過となり、磁気抵抗が高いことから、合わせ面の法線方向に沿っては進行磁束のための磁気回路を事実上形成することができず、合わせ面の法線方向(板筋方向とは直交する方向)への1軸可動子の進行は不可能である。このため、積層体をプラテンとして利用する平面リニアモータの開発は今まで断念されていた。
そこで、上記問題点に鑑み、本発明の課題は、積層体の合わせ面の法線方向へ推動する1軸可動子を実現することにより、磁性薄板の積層体をプラテンとして利用でき、高速化,高推力,高効率のリニアモータを提供することにある。
発明の開示
上記課題を解決するために、本発明の講じた手段は、可動子のための進行磁束(集中磁束部,分岐磁束部)を発生するための磁気回路を積層体の板筋方向に沿って形成すると同時に、可動子の1組の極歯のそれぞれと積層体の合わせ面の法線方向のプラテンドットとの間で磁気結合を生じるように、1組の極歯を合わせ面の法線方向に1ピッチ以内の所定の空間位相関係で食い違い配置としたところにある。
即ち、本発明は、多数のプラテンドットを格子点配列で形成したプラテン面を有するプラテンと、プラテンドットのうち至近ドットとの間で進行磁束を発生させるための少なくとも2n(但し、nは2以上の整数)個の極歯を1組とする極歯パターンを持つX軸可動子とを備えたリニアモータにおいて、プラテンは多数枚の磁性薄板を積層して成る積層体の板筋並行面の側を上記プラテン面とし、極歯パターンの2n個の極歯は、磁性薄板の板筋方向(Y方向)に配列した至近ドットに対して持つ空間位相が相等しい関係の横並び配置である。また、上記極歯パターンの2n個の極歯は、磁性薄板の合わせ面の法線方向に1ドットピッチP以内の食い違い配列であって、法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/2n)ずつ相異なる関係となっている。つまり、各極歯が至近ドットに対して持つ空間位相は、任意の空間位相をpとすると、n=2では、p−P/4,p,p+P/4,p+P/2、にそれぞれ割り当てられ、n=3では、p−P/3,p−P/6,p,p+P/6,p+P/3,p+P/2、にそれぞれ割り当てられ、n=4では、p−3P/8,p−P/4,p−P/8,p,p+P/8,p+P/4,p+3P/8,p+P/2、にそれぞれ割り当てられている。
かかる構成によれば、極歯パターンの2n個の極歯はどれも磁性薄板の板筋方向(Y軸方向)に配列した至近ドットに対して持つ空間位相が相等しいため、X軸可動子はY軸方向への推進力を受けないものの、X軸可動子の極歯パターンの2n個の極歯は、磁性薄板の合わせ面の法線方向に1ドットピッチP以内で相異なる食い違い配置となっているため、進行磁束のための磁気回路は積層体の板筋方向に沿って形成される。そして、X軸可動子の極歯パターンの2n個の極歯は、磁性薄板の合わせ面の法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/2n)ずつ相異なる関係であるため、X軸方向に配列した至近ドットとの間での磁気結合が生じ、Y軸方向に横長状の極歯パターンの2n個の極歯には集中磁束部と分岐磁束部との組み合わせ循環によりX軸方向の推進力が順序的に作用し、X軸可動子はいわば葡萄運動でX軸方向へ並進する。
このように、積層体の合わせ面の法線方向へ推動する1軸可動子を実現できるので、磁性薄板の積層体をプラテンとする利用を現実化でき、高速化,高推力、高効率のリニアモータを提供できる。分岐磁束部から集中磁束部へ切り替わる極歯に推進力が作用するものであるが、分岐磁束部と集中磁束部とが別々のヨークの極歯で生じるものであるから、X軸可動子に作用する回りモーメントが正逆交互に生じる。ただ、高速走行になる程、走行速度に対する回り振動の比率は僅少になる。
磁束消滅部を生じる極歯は集中磁束部を生じる極歯に対して他の極歯よりも一番食い違っており、半ピッチである。板厚が半ピッチ以内の磁性薄板を用いたプラテンの場合、板筋方向に沿って形成される磁気回路はその磁束消滅部を生じる極歯とは磁気結合を元々持ち難いので、バイアス磁束を丁度打ち消す程の強さの交番磁束を発生させる必要がなく、設計の自由度が増す。2相リニアモータの場合、集中磁束部の極歯と一対の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/4であり、一方の分岐磁束部の極歯と他方の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/2である。3相リニアモータの場合、集中磁束部の極歯と一対の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/6であり、一方の分岐磁束部の極歯と他方の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/3である。そこで3相リニアモータの場合は、板厚が1/3ピッチ以内の磁性薄板を用いることが望ましい。一般にn相のリニアモータの場合には、板厚が1/nピッチ以内の磁性薄板を用いることが望ましい。相数が増す程、板厚を薄くする。3相以上では、希薄な分岐磁束部を生じる一対の極歯とも磁気結合が起こり難くなるため、歩進停止に費やされる余分な磁気結合を断ち切り、その分、歩進の推進力に転嫁できる。むしろ、板筋方向へ推動するY軸可動子に比し、その直交方向へ推動するX軸可動子の方が高効率化を期待できる。従って、本発明は、2次元の平面リニアモータのX軸可動子に限らず、積層体を用いたプラテンと、その積層体の合わせ面の法線方向へ推動する1軸可動子とから成る1次元のリニアモータとしての利用価値も十分にある。また、プラテンが磁性薄板の積層体であることから、X軸方向のドット間はプラスチック等の非磁性材を挟み込んだ積層体でも構わず、またドット間に凹みを設けずに済み、プラテンの製造容易化も実現できる。しかも、漏れ磁束を低減でき、更なる高効率化に寄与する。
なお、可動子側の極歯の組とプラテン側の至近ドットの組との空間位相関係は相対的であることから、可動子の極歯相互間で上記位相関係の食い違い配置を持たせる代わりに、プラテン側のX軸方向に配列したプラテンドットの相互間において上記位相関係の食い違い配置を持たせても良い。
X軸可動子が極歯パターンを合わせ面の法線方向に繰り返し配列して成るパターン群を持つ場合、X軸可動子の安定走行と高出力を得ることができる。上記極歯パターンを第1の極歯パターンとし、この第1の極歯パターンに対し第2の極歯パターンを法線方向へ隔てて持つ一対のパターンを形成する。この第2の極歯パターンの極歯は、第1の極歯パターンの磁性薄板の合わせ面の法線方向に配列した至近ドットに対して持つ上記空間位相関係の食い違い配置とは、パターン中心を通るX方向線に関して線対称の食い違い配置である。X軸可動子には正逆の回りモーメントが同時に作用するため、回りモーメントが打ち消されて回り振動を無くすことができる。
X軸可動子が、第1極歯パターンと第2極歯パターンとを合わせ面の法線方向に交互に繰り返し配列して成るパターン群を持つ場合、やはりX軸可動子の安定走行と高出力を得ることができる。
平面リニアモータとしては、上記のようなX軸可動子と、薄磁性板の板筋方向に移動するY軸可動子と、を面内直交関係で連結して成る複合可動子を有する構成とすることが望ましいが、ここで、2個のX軸可動子と2個のY軸可動子とを複合可動子の平面中心点に関してそれぞれ対角配置し、一方のX軸可動子の極歯パターンと他方のX軸可動子の極歯パターンとを平面中心点を通るX方向線に関し線対称とする。複合可動子の平面中心点に関する回りモーメントが同時に正逆方向に作用することになり、回りモーメントが打ち消されて複合可動子全体の回り振動を無くすことができ、低速走行から高速走行に亘ってX軸方向及びY軸方向の安定走行を実現できる。
【図面の簡単な説明】
第1図は、本発明の実施例1に係る2相平面リニアモータの概略構成を示す斜視図である。
第2図は、同モータにおけるX軸可動子を示す斜視図である。
第3図は、同X軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図である。
第4図は、同X軸可動子をX軸方向に見た状態を示す側面図である。
第5図(a)乃至(d)は、それぞれ第3図中のB′−B′線,B−B線,A′−A′線,A−A線に沿って切断した状態を示す断面図である。
第6図は、第1の極歯パターンと第2の極歯パターンとを併有するパターン群を持つX軸可動子を示す概略平面図である。
第7図は、X軸可動子とY軸可動子との配置関係を示す平面図である。
第8図は、本発明の実施例2に係る3相平面リニアモータにおけるX軸可動子の概略構成を示す斜視図である。
第9図は、同X軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図である。
第10図は、同X軸可動子をX軸方向に見た状態を示す側面図である。
第11図(a)乃至(f)は、それぞれ第9図中のW′−W′線,V′−V′線,U′−U′線,W−W線,V−V線,U−U線に沿って切断した状態を示す断面図である。
第12図(a)乃至(d)は、それぞれソーヤモータ(2相リニアモータ)の原理を説明するための歩進動作図である。
第13図は、従来の2相平面リニアモータの概略構成を示す斜視図である。
第14図(a)は第13図中の2相平面リニアモータの平面図、第14図(b)は同2相平面リニアモータの右側面図、第14図(c)は同2相平面リニアモータの正面図である。
第15図(a)は従来の3相平面リニアモータの平面図、第15図(b)は同3相平面リニアモータの右側面図、第15図(c)は同3相平面リニアモータの正面図である。
第16図は、プラテンがブロック材と積層体との場合において、可動子の速度に対する推進力の依存性の特性曲線の比較を示すグラフである。
発明を実施するための最良の形態
【実施例1】
第1図は本発明の実施例1に係る2相平面リニアモータの概略構成を示す斜視図、第2図は同モータのX軸可動子を示す斜視図、第3図は同X軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図、第4図は同X軸可動子をX軸方向に見た状態を示す側面図、第5図(a)乃至(d)はそれぞれ第3図中のB′−B′線,B−B線,A′−A′線,A−A線に沿って切断した状態を示す断面図である。なお、第1図乃至第3図において、第13図及び第14図に示す部分と同一部分には同一参照符号を付し、その説明を省略する。
本例の2相平面リニアモータは、多数のプラテンドットDを格子点配列で形成したプラテン面51を有するプラテン50と、2個のX軸可動子60Xと2個のY軸可動子20Yとを面内直交関係で支持板30を以って連結して成る複合可動子70とから構成されている。複合可動子70は圧空噴出口(図示せず)を持ち、圧空の吹き付けによりプラテン50の表面から僅少浮上しながら平面移動する。
この2相平面リニアモータは例えばICテストハンドラに採用する。ICテストハンドラは、搬入位置のICを吸着保持してテスト位置まで移動した後、下降させてICソケットにICの端子を所定時間押圧し続け、しかる後、ICを上昇させて搬出位置に差し置くコンタクトトランスファを備えるものであり、このICテストハンドラではプラテン50は図示状態とは上下が逆になって吊り下げ支持されており、複合可動子70はコンタクトトランスファの基体としてプラテン50の真下でプラテン面に沿って平面走行するものである。
プラテン50は多数枚の磁性薄板Tを積層して成る積層体であって、第1図,第2図に示す通り、その板筋並行面側をプラテン面51として利用するものである。磁性薄板Tは例えば0.35〜0.5mm程度の絶縁皮膜コートの珪素鋼板である。プラテンドットDの1ドットピッチP(1空間周期)は例えば数ミリ程度である。
Y軸可動子20Yは磁性薄板Tの板筋方向(Y軸方向)に進行する可動子であって、第1及び第2のヨークY1(Y2)は、従来と同様に、X軸と平行なストライプ状の突条極歯KA,KA′(KB,KB′)を持つ。
X軸可動子60Xの第1のヨークY1の第1及び第2の分岐磁路脚部A,A′(B,B′)の極歯KAx,KA′x(KBx,KB′x)は第4図に示す如くY軸方向にはフラットであって、磁性薄板Tの板筋方向に配列した至近ドットDに対して持つ空間位相が相等しい。極歯KAx,KA′x(KBx,KB′x)のY軸方向の長さはプラテンドットDの2ピッチ分であり、いずれの間隔もまた2ピッチ分である。しかしながら、極歯KAx,KA′x(KBx,KB′x)は磁性薄板Tの合わせ面の法線方向(X線方向)には1ドットピッチ(1空間周期=P)毎に繰り返し配列されて、歯列を形成しており、第3図及び第5図に示す如く、1ピッチ以内に収まる横並びの任意の組(極歯パターン)を構成する極歯KAx,KA′x(KBx,KB′x)は、磁性薄板Tの合わせ面の法線方向に1ドットピッチP以内の食い違い配置である。そして、法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/4)ずつ相異なる。
第3図中の2点鎖線で囲まれた極歯パターン61では極歯KAxが至近ドットDと一致しており、第5図(d)に示す如くそのエアギャップに集中磁束部aを発生し、また極歯KA′xは至近ドットDに対して半ピッチだけ食い違っており、第5図(c)に示す如くそのエアギャップは磁束消滅部bとなり、極歯KBxは至近ドットDに対してP/4だけ進んで食い違っており、更に第5図(b)に示す如くそのエアギャップは引き戻し分岐磁束部cとなり、そして極歯KB′xは至近ドットDに対してP/4だけ遅れて食い違っており、第5図(a)に示す如くそのエアギャップは推力分岐磁束部dとなっている。X軸可動子60Xは例えば上記の極歯パターン61を1ピッチ周期でX軸方向に繰り返し展開したパターン群を有するものである。
極歯パターン61の極歯KAx,KA′x(KBx,KB′x)はどれも磁性薄板Tの板筋方向(Y軸方向)に配列した至近ドットDに対して相等しい空間位相であるため、X軸可動子60XはY軸方向への推進力を受けないものの、極歯KAx,KA′x(KBx,KB′x)がX軸方向の1ピッチ以内に収まっているので、進行磁束のための磁気回路は積層体の板筋方向に沿って形成される。第3図及び第5図に示す状態(A相電流による励磁状態)では極歯KB′xが推力分岐磁束部dを発生しているので、A相電流からB相電流への切り替わり過程においては極歯KB′xにX軸方向の推進力が作用し、2番目の相切り替え過程では極歯KA′xにX軸方向の推進力が作用し、3番目の相切り替え過程では極歯KBxにX軸方向の推進力が作用し、4番目の相切り替え過程では極歯KAxにX軸方向の推進力が作用する。Y軸方向に横長の極歯パターン61の4個の極歯には集中磁束部aと分岐磁束部cdとの組み合わせ循環によりX軸方向の推進力が順序的に作用し、X軸可動子60Xはいわば葡萄運動でX軸方向へ並進する。勿論、ブロック材で構成したプラテンの場合でもX軸方向へ並進する。
このように、積層体の合わせ面の法線方向へ推動するX軸可動子60Xを実現できるので、磁性薄板Tの積層体をプラテン50とする利用を現実化できる。第16図に示す、速度に対する推進力の依存性の特性曲線βから判るように、駆動周期電流(電流パルス)を高周波数化して進行速度を高速化しても、高速域(2m/秒)まで推進力はさほど低下しない。従って、高速化,高推力,高効率のリニアモータの実現が可能となる。
X軸可動子60X側の極歯KAx,KA′x(KBx,KB′x)とプラテン50側のX軸方向に配列したプラテンドットDとの空間位相関係は相対的であるので、極歯KAx,KA′x(KBx,KB′x)の相互間で食い違い配置を持たせる代わりに、プラテン50側のX軸方向に配列したプラテンドットDの相互間において食い違い配置を持たせても良い。ただ、プラテン面のドット数は膨大であるため、プラテン50の製造に不都合となるが、小面積のプラテンの場合や、プラテン製造の高精度化の開発により実現も可能である。
推力分岐磁束部dから集中磁束部aへ切り替わる極歯に推進力が作用するものであるが、推力分岐磁束部dと集中磁束部aとが互いに逆のヨークの極歯で生じるものであるから、X軸可動子60Xに作用する回りモーメントは正逆交互に生じ、X軸可動子60Xは回り振動を伴って並進する。ただ、高速走行になる程、走行速度に対する回り振動の比率は僅少になる。
ここで、プラテン50のドットピッチP(X軸可動子60Xの極歯ピッチと同じ)と磁性薄板Tとの関係を考察すると、磁性薄板Tの板厚はドットピッチ以下であっても以上であっても構わないが、高速化,高推力,高効率を達成するにはドットピッチ以下であることが望ましい。磁気回路における磁束消滅部bを生じる極歯に着目すると、この極歯は可動子の推進力にも安定にも直接関係がない。いわば順番的に割り当てられるだけである。そして、この磁束消滅部bを生じる極歯は集中磁束部aを生じる極歯に対して他の極歯よりも一番食い違っており、半ピッチの空間位相差がある。このため、本例のように、板厚が半ピッチ以内の磁性薄板Tを用いたプラテン50の場合、板筋方向に沿って形成される磁気回路は元々その磁束消滅部dを生じる極歯とは磁気結合を持ち難いので、バイアス磁束を丁度打ち消す程の強さの交番磁束を発生させる必要がなく、設計の自由度が増す。これは積層板をプラテンとして用いる利点でもある。また、プラテン50が磁性薄板Tの積層体であることから、X軸方向の相隣るドット間はプラスチック等の非磁性材を挟み込んだ積層体でも構わず、またドット間に凹みを設けずに済み、プラテンの製造容易化も実現できる。しかも、漏れ磁束を低減でき、更なる高効率化に寄与する。
第3図に示す極歯群は、4通りの極歯パターンのうち例えば極歯パターン61を1ピッチ間隔でX軸方向に繰り返し展開した配列に相当している。ここで、極歯パターン61を第1の極歯パターンとすると、例えば第6図に示す如く、この第1の極歯パターンの極歯KAx,KA′x,KBx,KB′xのX軸方向に配列した至近ドットに対して持つ空間位相関係の食い違い配置とは、パターン中心を通るX方向線L1に関して線対称の食い違い配置である極歯Kax,Ka′x,Kbx,Kb′xに係る第2の極歯パターン62を第1の極歯パターン61に対しX軸方向へ隔てて待つパターン群を形成した場合、X軸可動子60Xには正逆の回りモーメントが同時に作用するため、回りモーメントが打ち消されて回り振動を無くすことができる。第1の極歯パターン61の極歯KB′xと第2の極歯パターン62の極歯Kax、第1の極歯パターン61の極歯KBxと第2の極歯パターン62の極歯Ka′x、第1の極歯パターン61の極歯KA′xと第2の極歯パターン62の極歯Kbx、第1の極歯パターン61の極歯KAxと第2の極歯パターン62の極歯Kb′x、はそれぞれ至近ドットに対して持つ空間位相が同じになるからである。
本例では、前述したように、X軸可動子60XとY軸可動子20Yとは面内直交関係で連結し、複合可動子70を構成しているが、第7図に示す如く、2個のX軸可動子60Xと2個のY軸可動子20Yとを複合可動子70の平面中心点Oに関してそれぞれ対角配置し、一方のX軸可動子60Xの極歯パターン61(分岐磁路脚部A,A′,B,B′)と他方のX軸可動子60Xの極歯パターン61(分岐磁路脚部A,A′,B,B′)とが平面中心点Oを通るX方向線L2に関し線対称になるように配置する。複合可動子70の平面中心点Oに関する回りモーメントが同時に正逆方向に作用することになり、回りモーメントが打ち消されて複合可動子70全体の回り振動を無くすことができ、低速走行から高速走行に亘ってX軸方向及びY軸方向の安定走行を実現できる。
【実施例2】
第8図は本発明の実施例2に係る3相平面リニアモータにおけるX軸可動子の概略構成を示す斜視図、第9図は同3相平面リニアモータにおけるX軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図、第10図は同X軸可動子をX軸方向に見た状態を示す側面図、第11図(a)乃至(f)はそれぞれ第9図中のW′−W′線,V′−V′線,U′−U′線,W−W線,V−V線,U−U線に沿って切断した状態を示す断面図である。なお、第8図乃至第11図において、第15図に示す部分と同一部分には同一参照符号を付し、その説明を省略する。また、実施例1と同じ部分については言及しない。
本例のX軸可動子80XにおけるX軸方向に1ピッチ以内の極歯パターン81の6個の極歯KUx,KVx,KWx,KU′x,KV′x,KW′xは磁性薄板Tの合わせ面の法線方向に1ドットピッチP以内の食い違い配置にある。そして、法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/6)ずつ相異なる関係となっている。第9図の2点鎖線で囲まれた極歯パターン81内の極歯KUxが至近ドットDと一致しており、第11図(f)に示す如くそのエアギャップに集中磁束部aを発生し、極歯KVxは至近ドットDに対してP/3だけ進んで食い違っており、第11図(e)ではエアギャップに図示してないように、希薄な分岐磁束部となっており、また、極歯KWxは至近ドットDに対してP/3だけ遅れて食い違っており、第11図(d)ではエアギャップに図示してないように、やはり希薄な分岐磁束部となっている。極歯KU′xは至近ドットDに対して半ピッチだけ食い違っており、第11図(c)に示すように、そのエアギャップは磁束消滅部bとなり、また極歯KV′xは至近ドットDに対してP/6だけ遅れて食い違っており、第11図(b)に示す如くそのエアギャップは推力分岐磁束部dとなっており、更に、極歯KW′xは至近ドットDに対してP/6だけ進んで食い違っており、第11図(a)に示す如くそのエアギャップは引き戻し分岐磁束部cとなっている。X軸可動子80Xは上記の極歯パターン81を1ピッチ間隔でX軸方向に繰り返し展開したパターン群を有するものである。
この3相平面リニアモータでは、集中磁束部aと分岐磁束部cdが別々のヨークY1,Y2で発生する。同相の励磁コイル同士がヨークY1,Y2の別々に巻装されているからである。本例の3相平面リニアモータのその余の構成は実施例1に記載の構成を採用できる。
このような3相平面リニアモータであっても、実施例1と同様に、積層体の合わせ面の法線方向へ推動するX軸可動子80Xを実現できるので、磁性薄板Tの積層体をプラテン50とする利用を現実化でき、高速化,高推力,高効率の平面モータの実現が可能となる。
磁束消滅部bを生じる極歯は集中磁束部aを生じる極歯に対して他の極歯よりも一番食い違っており、半ピッチである。板厚が半ピッチ以内の磁性薄板を用いたプラテンの場合、板筋方向に沿って形成される磁気回路はその磁束消滅部を生じる極歯とは磁気結合を元々持ち難いので、バイアス磁束を丁度打ち消す程の強さの交番磁束を発生させる必要がなく、設計の自由度が増す。本例の3相平面リニアモータの場合、集中磁束部aの極歯と一対の分岐磁束部cdの極歯とが至近ドットに対して持つ空間位相差はP/6であり、一方の分岐磁束部cの極歯と他方の分岐磁束部dの極歯とが至近ドットに対して持つ空間位相差はP/3である。そこで3相平面モータの場合は、板厚が1/3ピッチ以内の磁性薄板を用いることが望ましい。磁束消滅部bを生じる極歯とは磁気結合が合わせ面により起こり難く、無効磁束を低減できると同時に、希薄な分岐磁束部を生じる一対の極歯(第11図ではKVxとKWx)とも磁気結合が起こり難くなるため、歩進停止に費やされる磁気結合を断ち切り、その分、歩進の推進力に転嫁できる。
なお、4相以上のリニアモータを実現することができることは云うまでもない。
産業上の利用可能性
以上のように、本発明に係るリニアモータは、積層体の合わせ面の法線方向へ推動する1軸可動子であるため、磁性薄板の積層体をプラテンとする利用を現実化でき、高速化,高推力,高効率のモータを提供できるので、部品実装機に限らず、ICテストハンドラ等の各種機器や機械に用いるのに適している。
本発明は、ソーヤのリニアモータに関し、特に、多数枚の磁性薄板を積層して成る積層体を固定子(プラテン)として利用できるリニアモータに関する。
背景技術
ソーヤのリニアモータの原理は説明すると、第12図に示すように、磁性厚板の表面にドットピッチPの空間周期でプラテンドットDを繰り返して形成したプラテン(固定子)10と、バイアス磁束を生成するための永久磁石M、その磁極面に接合して進行方向に相縦列し、それぞれ第1及び第2の分岐磁路脚部A,A′(B,B′)を備えた第1及び第2のヨーク(継鉄)Y1(Y2)、第1のヨークY1の第1及び第2の分岐磁路脚部A,A′にそれぞれ巻装された直列接続の第1及び第2のA相励磁コイルCA,CA′、第2のヨークY2の第1及び第2の分岐磁路脚部B,B′にそれぞれ巻装された直列接続の第1及び第2のB相励磁コイルCB,CB′、並びに、第1及び第2の分岐磁路脚部A,A′(B,B′)の下端部にそれぞれ形成され、ドットピッチPの1/2の間隔をおいて進行方向に相並ぶ2つの極歯(突極部)KA,KA′(KB,KB′)から成る可動子(走行体)20とで構成されている。ここで、同分岐磁路脚部の極歯は唯一でも構わないが、複数個の場合はプラテンドットDの至近ドットに対して持つ空間位相が同一である。また、第1の分岐磁路脚部A(B)と第2の分岐磁路脚部A′(B′)との間隔は至近ドットに対する空間位相がP/2だけ進行方向にずれるように配置されており、更に、第2の分岐磁路部A′と第1の分岐磁路部Bとの間隔は至近ドットに対する空間位相がP/4だけ進行方向にずれるように配置されている。
可動子20は圧空噴出口を持ち、圧空の吹き付けによりプラテン10の表面から僅少浮上しているが、第12図(a)に示す如く、第2のヨークY2の第1及び第2のB相励磁コイルCB,CB′の端子にのみ図示の極性のB相電流を流すと、第2の分岐磁路脚部B′の極歯KB′とその至近ドットD1,D2とのエアギャップには永久磁石Mによるバイアス磁束のほか第2の励磁コイルCB′による交番磁束が重畳して強まり集中磁束部aが発生し、至近ドットD1,D2に極歯部KB′を強く磁気吸着すると共に、第1の分岐磁路脚部Bの極歯CBにはバイアス磁束を打ち消す向きに交番磁束が加わるので磁束消滅部bとなる。他方、第1のヨークY1の第1及び第2の分岐磁路脚部A,A′には第2のヨークY2の第2の分岐磁路脚部B′からの集中磁束がプラテン10内部を介して分岐した磁束が通過するが、第1の分岐磁路脚部Aの極歯KAが至近ドットD15,D14に対しP/4だけ進行方向に遅れているので、一方の分岐磁束により至近ドットD15,D14がその極歯KAを進行方向に引き付けると共に、他方の分岐磁束より第2の分岐磁路脚部A′の極歯KA′が至近ドットD10,D9に対しP/4だけ進行方向に進んでいるので、至近ドットD10,D9がその極歯KA′を進行方向とは逆向きに引き付けるため、進行方向への推力と逆方向への引き戻し力とが丁度拮抗し、第1のヨークY1の全体はバランスする。つまり、第1の分岐磁路脚部Aの極歯KAと至近ドットD15,D14とのエアギャップには推力分岐磁束部dが発生し、第2の分岐磁路脚部A′の極歯KA′と至近ドットD10,D9とのエアギャップには引き戻し分岐磁束部cが発生するので、第1のヨークY1自身は磁力吸着ポテンシャルの安定点にある。
次いで第12図(b)に示す如く、第1のヨークY1の第1及び第2のA相励磁コイルCA,CA′の端子にのみ図示の極性のA相電流を流すと、第1の分岐磁路脚部Aの極歯KAと至近ドットD15,D14とのエアギャップは直前で推力分岐磁束部dであったものが、バイアス磁束のほか第2の励磁コイルCAによる交番磁束が重畳して集中磁束部aに切り替わり、また第2の分岐磁路脚部A′の極歯KA′では引き戻し分岐磁束部cから磁束消滅部bに切り替わるので、至近ドットD15,D14が極歯KAを強く磁気吸着して進行推力が可動子20に起こる。他方、第2のヨークY2の第1及び第2の分岐磁路脚部B,B′にはプラテン10内部を介して第1のヨークY1の第1の分岐磁路脚部Aでの集中磁束となるべき分岐磁束が通過するが、第1の分岐磁路脚部Bの極歯KBでは磁束消滅部bから推力分岐磁束部dに切り替わり、また第2の分岐磁路脚部B′の極歯KB′では集中磁束部aから引き戻し分岐磁束部cに切り替わる。このため、2相電流の切り替わりにより、可動子20はP/4だけ歩進する。第12図(c),(d)の励磁パターンを含めると、2相電流では励磁コイルの励磁パターンは4通りであるため、励磁パターンの1巡回では可動子20は4回歩進して1ピッチ分だけ進行する。2相電流の切り替わり過程では、推力分岐磁束部dから集中磁束部aへと転移する極歯で推進力が発生する。
このようなソーヤのリニアモータを用いてプラテン上を可動子がX軸及びY軸の方向に平面移動する平面リニアモータを実現するためには、例えば特開昭9−261944号公報に見られるように、第13図及び第14図に示す如く、プラテン表面に正方形頂面のプラテンドットDを格子点(マトリクス)状に配列形成したプラテン10と、Y軸に平行なストライプ状の突条極歯KA,KA′(KB,KB′)を持ちX軸方向のみへ可動するX軸可動子20X及びX軸に平行なストライプ状の突条極歯KA,KA′(KB,KB′)を持ちY軸方向のみへ可動するY軸可動子20Yを平面内直交関係で支持板30を以って連結して成る複合可動子とで構成するものである。
また、可動子20X(20Y)の進行中の節動又は脈動を低減するには、第15図に示す如く、ヨークY1,Y2の分岐磁路脚部を3本とし、その分岐磁路脚部U,V,W(U′,V′,W′)毎に相互独立相の励磁コイルCU,CV,CW(CU′,CV′,CW′)を巻装し、これらのコイルに3相電流を供給するようにする。
上記の平面リニアモータの利用分野としては、例えば、吊り下げ支持したプラテンの下面を平面移動する可動子側に電子部品を把持しながらプラテン下面の法線方向にスライド移動するアクチュエータを設け、プラテン下に配置した基板のスルーホール等に電子部品を差し込むための部品実装機が知られている。
平面リニアモータに必須の固定子としてのプラテンは、その表面にプラテンドットをマトリクス状に配列形成すること等から、ブロック材で形成された1枚の厚板磁性材(厚鋼板)となっている。このため、この厚板磁性材をプラテンとして用いると、プラテン内を通過する磁束により渦電流が自然発生するため、交流磁化特性が悪く、電力損失(鉄損)が大きいので、可動子の高速化及び高推進力を得難く、大電流容量を必要とする。第16図に示す、速度に対する推進力の依存性の特性曲線αから判るように、駆動周期電流(電流パルス)を高周波数化して進行速度の高速化を図る程、推進力が急激に低下し、効率(速度×推進力/消費電力)が非常に悪くなる。
本発明者らは、渦電流の発生を抑制し、高速化,高推力,高効率の平面リニアモータを実現するために、多数の磁性薄板(例えば1mm以下の板厚)を積層して成る積層体を用い、その積層体の板筋並行面(多数枚の薄板の縁線が互いに並行して現われている面)をプラテン面とし、そのプラテン面にプラテンドットを格子点配列でエッチング等により形成することに着眼した。磁性薄板の積層境界面(合わせ面)では渦電流が貫通し難いため、電流抵抗が高くなり、渦電流の発生を抑制できるため、高速化,高推力,高効率の平面リニアモータが実現できるものと期待した。
1軸可動子の極歯列とこれに対向する至近プラテンドット列とが斉一し、両列を含む面内に形成される磁気回路においてその列方向に沿って集中磁束部,磁束消滅部及び分岐磁束部(推力分岐磁束部と引き戻し分岐磁束部)を巡回的に転移させることにより、1軸可動子がその列方向に沿って進行するものであるから、1軸可動子の極歯列と至近ドット列の配列方向が磁性薄板の板筋方向である場合には、進行磁束のための磁気回路が合わせ面と平行に磁性薄板の板厚内に沿って形成されるので、1軸可動子の板筋方向への進行が可能であり、上記の利点が得られる。
ところが、積層体内の磁束は合わせ面では屈折又は非透過となり、磁気抵抗が高いことから、合わせ面の法線方向に沿っては進行磁束のための磁気回路を事実上形成することができず、合わせ面の法線方向(板筋方向とは直交する方向)への1軸可動子の進行は不可能である。このため、積層体をプラテンとして利用する平面リニアモータの開発は今まで断念されていた。
そこで、上記問題点に鑑み、本発明の課題は、積層体の合わせ面の法線方向へ推動する1軸可動子を実現することにより、磁性薄板の積層体をプラテンとして利用でき、高速化,高推力,高効率のリニアモータを提供することにある。
発明の開示
上記課題を解決するために、本発明の講じた手段は、可動子のための進行磁束(集中磁束部,分岐磁束部)を発生するための磁気回路を積層体の板筋方向に沿って形成すると同時に、可動子の1組の極歯のそれぞれと積層体の合わせ面の法線方向のプラテンドットとの間で磁気結合を生じるように、1組の極歯を合わせ面の法線方向に1ピッチ以内の所定の空間位相関係で食い違い配置としたところにある。
即ち、本発明は、多数のプラテンドットを格子点配列で形成したプラテン面を有するプラテンと、プラテンドットのうち至近ドットとの間で進行磁束を発生させるための少なくとも2n(但し、nは2以上の整数)個の極歯を1組とする極歯パターンを持つX軸可動子とを備えたリニアモータにおいて、プラテンは多数枚の磁性薄板を積層して成る積層体の板筋並行面の側を上記プラテン面とし、極歯パターンの2n個の極歯は、磁性薄板の板筋方向(Y方向)に配列した至近ドットに対して持つ空間位相が相等しい関係の横並び配置である。また、上記極歯パターンの2n個の極歯は、磁性薄板の合わせ面の法線方向に1ドットピッチP以内の食い違い配列であって、法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/2n)ずつ相異なる関係となっている。つまり、各極歯が至近ドットに対して持つ空間位相は、任意の空間位相をpとすると、n=2では、p−P/4,p,p+P/4,p+P/2、にそれぞれ割り当てられ、n=3では、p−P/3,p−P/6,p,p+P/6,p+P/3,p+P/2、にそれぞれ割り当てられ、n=4では、p−3P/8,p−P/4,p−P/8,p,p+P/8,p+P/4,p+3P/8,p+P/2、にそれぞれ割り当てられている。
かかる構成によれば、極歯パターンの2n個の極歯はどれも磁性薄板の板筋方向(Y軸方向)に配列した至近ドットに対して持つ空間位相が相等しいため、X軸可動子はY軸方向への推進力を受けないものの、X軸可動子の極歯パターンの2n個の極歯は、磁性薄板の合わせ面の法線方向に1ドットピッチP以内で相異なる食い違い配置となっているため、進行磁束のための磁気回路は積層体の板筋方向に沿って形成される。そして、X軸可動子の極歯パターンの2n個の極歯は、磁性薄板の合わせ面の法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/2n)ずつ相異なる関係であるため、X軸方向に配列した至近ドットとの間での磁気結合が生じ、Y軸方向に横長状の極歯パターンの2n個の極歯には集中磁束部と分岐磁束部との組み合わせ循環によりX軸方向の推進力が順序的に作用し、X軸可動子はいわば葡萄運動でX軸方向へ並進する。
このように、積層体の合わせ面の法線方向へ推動する1軸可動子を実現できるので、磁性薄板の積層体をプラテンとする利用を現実化でき、高速化,高推力、高効率のリニアモータを提供できる。分岐磁束部から集中磁束部へ切り替わる極歯に推進力が作用するものであるが、分岐磁束部と集中磁束部とが別々のヨークの極歯で生じるものであるから、X軸可動子に作用する回りモーメントが正逆交互に生じる。ただ、高速走行になる程、走行速度に対する回り振動の比率は僅少になる。
磁束消滅部を生じる極歯は集中磁束部を生じる極歯に対して他の極歯よりも一番食い違っており、半ピッチである。板厚が半ピッチ以内の磁性薄板を用いたプラテンの場合、板筋方向に沿って形成される磁気回路はその磁束消滅部を生じる極歯とは磁気結合を元々持ち難いので、バイアス磁束を丁度打ち消す程の強さの交番磁束を発生させる必要がなく、設計の自由度が増す。2相リニアモータの場合、集中磁束部の極歯と一対の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/4であり、一方の分岐磁束部の極歯と他方の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/2である。3相リニアモータの場合、集中磁束部の極歯と一対の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/6であり、一方の分岐磁束部の極歯と他方の分岐磁束部の極歯とが至近ドットに対して持つ空間位相差はP/3である。そこで3相リニアモータの場合は、板厚が1/3ピッチ以内の磁性薄板を用いることが望ましい。一般にn相のリニアモータの場合には、板厚が1/nピッチ以内の磁性薄板を用いることが望ましい。相数が増す程、板厚を薄くする。3相以上では、希薄な分岐磁束部を生じる一対の極歯とも磁気結合が起こり難くなるため、歩進停止に費やされる余分な磁気結合を断ち切り、その分、歩進の推進力に転嫁できる。むしろ、板筋方向へ推動するY軸可動子に比し、その直交方向へ推動するX軸可動子の方が高効率化を期待できる。従って、本発明は、2次元の平面リニアモータのX軸可動子に限らず、積層体を用いたプラテンと、その積層体の合わせ面の法線方向へ推動する1軸可動子とから成る1次元のリニアモータとしての利用価値も十分にある。また、プラテンが磁性薄板の積層体であることから、X軸方向のドット間はプラスチック等の非磁性材を挟み込んだ積層体でも構わず、またドット間に凹みを設けずに済み、プラテンの製造容易化も実現できる。しかも、漏れ磁束を低減でき、更なる高効率化に寄与する。
なお、可動子側の極歯の組とプラテン側の至近ドットの組との空間位相関係は相対的であることから、可動子の極歯相互間で上記位相関係の食い違い配置を持たせる代わりに、プラテン側のX軸方向に配列したプラテンドットの相互間において上記位相関係の食い違い配置を持たせても良い。
X軸可動子が極歯パターンを合わせ面の法線方向に繰り返し配列して成るパターン群を持つ場合、X軸可動子の安定走行と高出力を得ることができる。上記極歯パターンを第1の極歯パターンとし、この第1の極歯パターンに対し第2の極歯パターンを法線方向へ隔てて持つ一対のパターンを形成する。この第2の極歯パターンの極歯は、第1の極歯パターンの磁性薄板の合わせ面の法線方向に配列した至近ドットに対して持つ上記空間位相関係の食い違い配置とは、パターン中心を通るX方向線に関して線対称の食い違い配置である。X軸可動子には正逆の回りモーメントが同時に作用するため、回りモーメントが打ち消されて回り振動を無くすことができる。
X軸可動子が、第1極歯パターンと第2極歯パターンとを合わせ面の法線方向に交互に繰り返し配列して成るパターン群を持つ場合、やはりX軸可動子の安定走行と高出力を得ることができる。
平面リニアモータとしては、上記のようなX軸可動子と、薄磁性板の板筋方向に移動するY軸可動子と、を面内直交関係で連結して成る複合可動子を有する構成とすることが望ましいが、ここで、2個のX軸可動子と2個のY軸可動子とを複合可動子の平面中心点に関してそれぞれ対角配置し、一方のX軸可動子の極歯パターンと他方のX軸可動子の極歯パターンとを平面中心点を通るX方向線に関し線対称とする。複合可動子の平面中心点に関する回りモーメントが同時に正逆方向に作用することになり、回りモーメントが打ち消されて複合可動子全体の回り振動を無くすことができ、低速走行から高速走行に亘ってX軸方向及びY軸方向の安定走行を実現できる。
【図面の簡単な説明】
第1図は、本発明の実施例1に係る2相平面リニアモータの概略構成を示す斜視図である。
第2図は、同モータにおけるX軸可動子を示す斜視図である。
第3図は、同X軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図である。
第4図は、同X軸可動子をX軸方向に見た状態を示す側面図である。
第5図(a)乃至(d)は、それぞれ第3図中のB′−B′線,B−B線,A′−A′線,A−A線に沿って切断した状態を示す断面図である。
第6図は、第1の極歯パターンと第2の極歯パターンとを併有するパターン群を持つX軸可動子を示す概略平面図である。
第7図は、X軸可動子とY軸可動子との配置関係を示す平面図である。
第8図は、本発明の実施例2に係る3相平面リニアモータにおけるX軸可動子の概略構成を示す斜視図である。
第9図は、同X軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図である。
第10図は、同X軸可動子をX軸方向に見た状態を示す側面図である。
第11図(a)乃至(f)は、それぞれ第9図中のW′−W′線,V′−V′線,U′−U′線,W−W線,V−V線,U−U線に沿って切断した状態を示す断面図である。
第12図(a)乃至(d)は、それぞれソーヤモータ(2相リニアモータ)の原理を説明するための歩進動作図である。
第13図は、従来の2相平面リニアモータの概略構成を示す斜視図である。
第14図(a)は第13図中の2相平面リニアモータの平面図、第14図(b)は同2相平面リニアモータの右側面図、第14図(c)は同2相平面リニアモータの正面図である。
第15図(a)は従来の3相平面リニアモータの平面図、第15図(b)は同3相平面リニアモータの右側面図、第15図(c)は同3相平面リニアモータの正面図である。
第16図は、プラテンがブロック材と積層体との場合において、可動子の速度に対する推進力の依存性の特性曲線の比較を示すグラフである。
発明を実施するための最良の形態
【実施例1】
第1図は本発明の実施例1に係る2相平面リニアモータの概略構成を示す斜視図、第2図は同モータのX軸可動子を示す斜視図、第3図は同X軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図、第4図は同X軸可動子をX軸方向に見た状態を示す側面図、第5図(a)乃至(d)はそれぞれ第3図中のB′−B′線,B−B線,A′−A′線,A−A線に沿って切断した状態を示す断面図である。なお、第1図乃至第3図において、第13図及び第14図に示す部分と同一部分には同一参照符号を付し、その説明を省略する。
本例の2相平面リニアモータは、多数のプラテンドットDを格子点配列で形成したプラテン面51を有するプラテン50と、2個のX軸可動子60Xと2個のY軸可動子20Yとを面内直交関係で支持板30を以って連結して成る複合可動子70とから構成されている。複合可動子70は圧空噴出口(図示せず)を持ち、圧空の吹き付けによりプラテン50の表面から僅少浮上しながら平面移動する。
この2相平面リニアモータは例えばICテストハンドラに採用する。ICテストハンドラは、搬入位置のICを吸着保持してテスト位置まで移動した後、下降させてICソケットにICの端子を所定時間押圧し続け、しかる後、ICを上昇させて搬出位置に差し置くコンタクトトランスファを備えるものであり、このICテストハンドラではプラテン50は図示状態とは上下が逆になって吊り下げ支持されており、複合可動子70はコンタクトトランスファの基体としてプラテン50の真下でプラテン面に沿って平面走行するものである。
プラテン50は多数枚の磁性薄板Tを積層して成る積層体であって、第1図,第2図に示す通り、その板筋並行面側をプラテン面51として利用するものである。磁性薄板Tは例えば0.35〜0.5mm程度の絶縁皮膜コートの珪素鋼板である。プラテンドットDの1ドットピッチP(1空間周期)は例えば数ミリ程度である。
Y軸可動子20Yは磁性薄板Tの板筋方向(Y軸方向)に進行する可動子であって、第1及び第2のヨークY1(Y2)は、従来と同様に、X軸と平行なストライプ状の突条極歯KA,KA′(KB,KB′)を持つ。
X軸可動子60Xの第1のヨークY1の第1及び第2の分岐磁路脚部A,A′(B,B′)の極歯KAx,KA′x(KBx,KB′x)は第4図に示す如くY軸方向にはフラットであって、磁性薄板Tの板筋方向に配列した至近ドットDに対して持つ空間位相が相等しい。極歯KAx,KA′x(KBx,KB′x)のY軸方向の長さはプラテンドットDの2ピッチ分であり、いずれの間隔もまた2ピッチ分である。しかしながら、極歯KAx,KA′x(KBx,KB′x)は磁性薄板Tの合わせ面の法線方向(X線方向)には1ドットピッチ(1空間周期=P)毎に繰り返し配列されて、歯列を形成しており、第3図及び第5図に示す如く、1ピッチ以内に収まる横並びの任意の組(極歯パターン)を構成する極歯KAx,KA′x(KBx,KB′x)は、磁性薄板Tの合わせ面の法線方向に1ドットピッチP以内の食い違い配置である。そして、法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/4)ずつ相異なる。
第3図中の2点鎖線で囲まれた極歯パターン61では極歯KAxが至近ドットDと一致しており、第5図(d)に示す如くそのエアギャップに集中磁束部aを発生し、また極歯KA′xは至近ドットDに対して半ピッチだけ食い違っており、第5図(c)に示す如くそのエアギャップは磁束消滅部bとなり、極歯KBxは至近ドットDに対してP/4だけ進んで食い違っており、更に第5図(b)に示す如くそのエアギャップは引き戻し分岐磁束部cとなり、そして極歯KB′xは至近ドットDに対してP/4だけ遅れて食い違っており、第5図(a)に示す如くそのエアギャップは推力分岐磁束部dとなっている。X軸可動子60Xは例えば上記の極歯パターン61を1ピッチ周期でX軸方向に繰り返し展開したパターン群を有するものである。
極歯パターン61の極歯KAx,KA′x(KBx,KB′x)はどれも磁性薄板Tの板筋方向(Y軸方向)に配列した至近ドットDに対して相等しい空間位相であるため、X軸可動子60XはY軸方向への推進力を受けないものの、極歯KAx,KA′x(KBx,KB′x)がX軸方向の1ピッチ以内に収まっているので、進行磁束のための磁気回路は積層体の板筋方向に沿って形成される。第3図及び第5図に示す状態(A相電流による励磁状態)では極歯KB′xが推力分岐磁束部dを発生しているので、A相電流からB相電流への切り替わり過程においては極歯KB′xにX軸方向の推進力が作用し、2番目の相切り替え過程では極歯KA′xにX軸方向の推進力が作用し、3番目の相切り替え過程では極歯KBxにX軸方向の推進力が作用し、4番目の相切り替え過程では極歯KAxにX軸方向の推進力が作用する。Y軸方向に横長の極歯パターン61の4個の極歯には集中磁束部aと分岐磁束部cdとの組み合わせ循環によりX軸方向の推進力が順序的に作用し、X軸可動子60Xはいわば葡萄運動でX軸方向へ並進する。勿論、ブロック材で構成したプラテンの場合でもX軸方向へ並進する。
このように、積層体の合わせ面の法線方向へ推動するX軸可動子60Xを実現できるので、磁性薄板Tの積層体をプラテン50とする利用を現実化できる。第16図に示す、速度に対する推進力の依存性の特性曲線βから判るように、駆動周期電流(電流パルス)を高周波数化して進行速度を高速化しても、高速域(2m/秒)まで推進力はさほど低下しない。従って、高速化,高推力,高効率のリニアモータの実現が可能となる。
X軸可動子60X側の極歯KAx,KA′x(KBx,KB′x)とプラテン50側のX軸方向に配列したプラテンドットDとの空間位相関係は相対的であるので、極歯KAx,KA′x(KBx,KB′x)の相互間で食い違い配置を持たせる代わりに、プラテン50側のX軸方向に配列したプラテンドットDの相互間において食い違い配置を持たせても良い。ただ、プラテン面のドット数は膨大であるため、プラテン50の製造に不都合となるが、小面積のプラテンの場合や、プラテン製造の高精度化の開発により実現も可能である。
推力分岐磁束部dから集中磁束部aへ切り替わる極歯に推進力が作用するものであるが、推力分岐磁束部dと集中磁束部aとが互いに逆のヨークの極歯で生じるものであるから、X軸可動子60Xに作用する回りモーメントは正逆交互に生じ、X軸可動子60Xは回り振動を伴って並進する。ただ、高速走行になる程、走行速度に対する回り振動の比率は僅少になる。
ここで、プラテン50のドットピッチP(X軸可動子60Xの極歯ピッチと同じ)と磁性薄板Tとの関係を考察すると、磁性薄板Tの板厚はドットピッチ以下であっても以上であっても構わないが、高速化,高推力,高効率を達成するにはドットピッチ以下であることが望ましい。磁気回路における磁束消滅部bを生じる極歯に着目すると、この極歯は可動子の推進力にも安定にも直接関係がない。いわば順番的に割り当てられるだけである。そして、この磁束消滅部bを生じる極歯は集中磁束部aを生じる極歯に対して他の極歯よりも一番食い違っており、半ピッチの空間位相差がある。このため、本例のように、板厚が半ピッチ以内の磁性薄板Tを用いたプラテン50の場合、板筋方向に沿って形成される磁気回路は元々その磁束消滅部dを生じる極歯とは磁気結合を持ち難いので、バイアス磁束を丁度打ち消す程の強さの交番磁束を発生させる必要がなく、設計の自由度が増す。これは積層板をプラテンとして用いる利点でもある。また、プラテン50が磁性薄板Tの積層体であることから、X軸方向の相隣るドット間はプラスチック等の非磁性材を挟み込んだ積層体でも構わず、またドット間に凹みを設けずに済み、プラテンの製造容易化も実現できる。しかも、漏れ磁束を低減でき、更なる高効率化に寄与する。
第3図に示す極歯群は、4通りの極歯パターンのうち例えば極歯パターン61を1ピッチ間隔でX軸方向に繰り返し展開した配列に相当している。ここで、極歯パターン61を第1の極歯パターンとすると、例えば第6図に示す如く、この第1の極歯パターンの極歯KAx,KA′x,KBx,KB′xのX軸方向に配列した至近ドットに対して持つ空間位相関係の食い違い配置とは、パターン中心を通るX方向線L1に関して線対称の食い違い配置である極歯Kax,Ka′x,Kbx,Kb′xに係る第2の極歯パターン62を第1の極歯パターン61に対しX軸方向へ隔てて待つパターン群を形成した場合、X軸可動子60Xには正逆の回りモーメントが同時に作用するため、回りモーメントが打ち消されて回り振動を無くすことができる。第1の極歯パターン61の極歯KB′xと第2の極歯パターン62の極歯Kax、第1の極歯パターン61の極歯KBxと第2の極歯パターン62の極歯Ka′x、第1の極歯パターン61の極歯KA′xと第2の極歯パターン62の極歯Kbx、第1の極歯パターン61の極歯KAxと第2の極歯パターン62の極歯Kb′x、はそれぞれ至近ドットに対して持つ空間位相が同じになるからである。
本例では、前述したように、X軸可動子60XとY軸可動子20Yとは面内直交関係で連結し、複合可動子70を構成しているが、第7図に示す如く、2個のX軸可動子60Xと2個のY軸可動子20Yとを複合可動子70の平面中心点Oに関してそれぞれ対角配置し、一方のX軸可動子60Xの極歯パターン61(分岐磁路脚部A,A′,B,B′)と他方のX軸可動子60Xの極歯パターン61(分岐磁路脚部A,A′,B,B′)とが平面中心点Oを通るX方向線L2に関し線対称になるように配置する。複合可動子70の平面中心点Oに関する回りモーメントが同時に正逆方向に作用することになり、回りモーメントが打ち消されて複合可動子70全体の回り振動を無くすことができ、低速走行から高速走行に亘ってX軸方向及びY軸方向の安定走行を実現できる。
【実施例2】
第8図は本発明の実施例2に係る3相平面リニアモータにおけるX軸可動子の概略構成を示す斜視図、第9図は同3相平面リニアモータにおけるX軸可動子の極歯とプラテンドットとの空間位相関係を示す平面図、第10図は同X軸可動子をX軸方向に見た状態を示す側面図、第11図(a)乃至(f)はそれぞれ第9図中のW′−W′線,V′−V′線,U′−U′線,W−W線,V−V線,U−U線に沿って切断した状態を示す断面図である。なお、第8図乃至第11図において、第15図に示す部分と同一部分には同一参照符号を付し、その説明を省略する。また、実施例1と同じ部分については言及しない。
本例のX軸可動子80XにおけるX軸方向に1ピッチ以内の極歯パターン81の6個の極歯KUx,KVx,KWx,KU′x,KV′x,KW′xは磁性薄板Tの合わせ面の法線方向に1ドットピッチP以内の食い違い配置にある。そして、法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/6)ずつ相異なる関係となっている。第9図の2点鎖線で囲まれた極歯パターン81内の極歯KUxが至近ドットDと一致しており、第11図(f)に示す如くそのエアギャップに集中磁束部aを発生し、極歯KVxは至近ドットDに対してP/3だけ進んで食い違っており、第11図(e)ではエアギャップに図示してないように、希薄な分岐磁束部となっており、また、極歯KWxは至近ドットDに対してP/3だけ遅れて食い違っており、第11図(d)ではエアギャップに図示してないように、やはり希薄な分岐磁束部となっている。極歯KU′xは至近ドットDに対して半ピッチだけ食い違っており、第11図(c)に示すように、そのエアギャップは磁束消滅部bとなり、また極歯KV′xは至近ドットDに対してP/6だけ遅れて食い違っており、第11図(b)に示す如くそのエアギャップは推力分岐磁束部dとなっており、更に、極歯KW′xは至近ドットDに対してP/6だけ進んで食い違っており、第11図(a)に示す如くそのエアギャップは引き戻し分岐磁束部cとなっている。X軸可動子80Xは上記の極歯パターン81を1ピッチ間隔でX軸方向に繰り返し展開したパターン群を有するものである。
この3相平面リニアモータでは、集中磁束部aと分岐磁束部cdが別々のヨークY1,Y2で発生する。同相の励磁コイル同士がヨークY1,Y2の別々に巻装されているからである。本例の3相平面リニアモータのその余の構成は実施例1に記載の構成を採用できる。
このような3相平面リニアモータであっても、実施例1と同様に、積層体の合わせ面の法線方向へ推動するX軸可動子80Xを実現できるので、磁性薄板Tの積層体をプラテン50とする利用を現実化でき、高速化,高推力,高効率の平面モータの実現が可能となる。
磁束消滅部bを生じる極歯は集中磁束部aを生じる極歯に対して他の極歯よりも一番食い違っており、半ピッチである。板厚が半ピッチ以内の磁性薄板を用いたプラテンの場合、板筋方向に沿って形成される磁気回路はその磁束消滅部を生じる極歯とは磁気結合を元々持ち難いので、バイアス磁束を丁度打ち消す程の強さの交番磁束を発生させる必要がなく、設計の自由度が増す。本例の3相平面リニアモータの場合、集中磁束部aの極歯と一対の分岐磁束部cdの極歯とが至近ドットに対して持つ空間位相差はP/6であり、一方の分岐磁束部cの極歯と他方の分岐磁束部dの極歯とが至近ドットに対して持つ空間位相差はP/3である。そこで3相平面モータの場合は、板厚が1/3ピッチ以内の磁性薄板を用いることが望ましい。磁束消滅部bを生じる極歯とは磁気結合が合わせ面により起こり難く、無効磁束を低減できると同時に、希薄な分岐磁束部を生じる一対の極歯(第11図ではKVxとKWx)とも磁気結合が起こり難くなるため、歩進停止に費やされる磁気結合を断ち切り、その分、歩進の推進力に転嫁できる。
なお、4相以上のリニアモータを実現することができることは云うまでもない。
産業上の利用可能性
以上のように、本発明に係るリニアモータは、積層体の合わせ面の法線方向へ推動する1軸可動子であるため、磁性薄板の積層体をプラテンとする利用を現実化でき、高速化,高推力,高効率のモータを提供できるので、部品実装機に限らず、ICテストハンドラ等の各種機器や機械に用いるのに適している。
Claims (7)
- 多数のプラテンドットを格子点配列で形成したプラテン面を有するプラテンと、前記プラテンドットのうち至近ドットとの間で進行磁束を発生させるための少なくとも2n(但し、nは2以上の整数)個の極歯を1組とする極歯パターンを持つX軸可動子とを備えたリニアモータにおいて、
前記プラテンは多数枚の磁性薄板を積層して成る積層体の板筋並行面側を前記プラテン面とし、前記極歯パターンの2n個の極歯は、前記磁性薄板の板筋方向に配列した至近ドットに対して持つ空間位相が相等しい関係の横並び配置であり、且つ、前記極歯パターンの2n個の極歯は、前記磁性薄板の合わせ面の法線方向に1ドットピッチ(P)以内の食い違い配置であって、前記法線方向に配列した至近ドットに対して持つ空間位相が空間位相差(P/2n)ずつ相異なる関係となっていることを特徴とするリニアモータ。 - 請求項1において、前記X軸可動子は、前記極歯パターンを前記法線方向に繰り返し配列して成るパターン群を持つことを特徴とするリニアモータ。
- 請求項1において、前記X軸可動子は、前記極歯パターンを第1の極歯パターンとし、この第1の極歯パターンの前記磁性薄板の合わせ面の法線方向に配列した至近ドットに対して持つ前記空間位相関係の食い違い配置とは、パターン中心を通るX方向線に関して線対称の食い違い配置である第2の極歯パターンを、当該第1の極歯パターンに対し前記法線方向へ隔てて持つことを特徴とするリニアモータ。
- 請求項1乃至請求項3のいずれか一項において、前記X軸可動子と、前記薄磁性板の板筋方向に移動するY軸可動子と、を面内直交関係で連結して成る複合可動子を有することを特徴とするリニアモータ。
- 請求項4において、2個の前記X軸可動子と2個の前記Y軸可動子とを前記複合可動子の平面中心点に関してそれぞれ対角配置し、一方の前記X軸可動子の前記極歯パターンと他方の前記X軸可動子の前記極歯パターンとが前記平面中心点を通るX方向線に関し線対称であることを特徴とするリニアモータ。
- 請求項1乃至請求項5のいずれか一項において、前記磁性薄板の板厚が前記プラテンドットの半ピッチ以下の厚さであることを特徴とするリニアモータ。
- 請求項6において、前記磁性薄板の板厚が前記プラテンドットのピッチの1/n以下の厚さであることを特徴とするリニアモータ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000056721 | 2000-03-02 | ||
PCT/JP2001/001533 WO2001065671A1 (fr) | 2000-03-02 | 2001-02-28 | Moteur linéaire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3673498B2 true JP3673498B2 (ja) | 2005-07-20 |
Family
ID=18577619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001564447A Expired - Fee Related JP3673498B2 (ja) | 2000-03-02 | 2001-02-28 | リニアモータ |
Country Status (7)
Country | Link |
---|---|
US (1) | US6661125B2 (ja) |
EP (1) | EP1176704A4 (ja) |
JP (1) | JP3673498B2 (ja) |
KR (1) | KR100439777B1 (ja) |
CN (1) | CN1235328C (ja) |
TW (1) | TW513843B (ja) |
WO (1) | WO2001065671A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050062347A1 (en) * | 2003-09-20 | 2005-03-24 | Korea Electrotechnology Research Institute | System for integrating linear motion guide and reluctance-type linear motor |
US7456527B2 (en) * | 2004-03-04 | 2008-11-25 | Asml Netherlands B.V. | Moveable object carrier, lithographic apparatus comprising the moveable object carrier and device manufacturing method |
KR100614444B1 (ko) * | 2004-08-11 | 2006-08-21 | 현대자동차주식회사 | 비틀림 진동 댐퍼 |
JP2006054971A (ja) * | 2004-08-13 | 2006-02-23 | Shin Etsu Chem Co Ltd | 工作機械用リニアモータ |
US7242117B2 (en) * | 2004-11-25 | 2007-07-10 | Sanyo Denki Co., Ltd. | Linear motor |
EP1985002A1 (en) * | 2006-02-16 | 2008-10-29 | Kadant Inc. | Linear traversing carriage incorporating an air gap inductive motivator |
CN102857065B (zh) * | 2011-07-01 | 2014-12-10 | 中国江南航天工业集团林泉电机厂 | 一种容错型横向磁场永磁直线电机 |
CN104769500B (zh) * | 2012-08-21 | 2018-07-31 | Asml荷兰有限公司 | 光刻设备和器件制造方法 |
CN105406682B (zh) * | 2015-11-30 | 2018-05-08 | 南京航空航天大学 | 一种平板型直线开关磁链电机及其错齿位移选择方法 |
CN106787598B (zh) * | 2017-01-18 | 2023-11-28 | 威灵(芜湖)电机制造有限公司 | 复合励磁直线电机 |
CN106685177B (zh) * | 2017-01-23 | 2019-05-17 | 北京理工大学 | 一种分段倾斜模块化开关磁通直线电机 |
CN107659109B (zh) * | 2017-10-11 | 2023-09-08 | 常州汉姆智能科技有限公司 | 直线步进电机 |
CN112187010B (zh) * | 2020-10-22 | 2021-07-02 | 华中科技大学 | 一种同性极永磁直线同步电机 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU411601B2 (en) * | 1966-05-31 | 1971-03-12 | Alden Sawyer | Magnetic positioning device |
JPS6014679A (ja) | 1983-07-04 | 1985-01-25 | Taiheiyo Kogyo Kk | 電動弁の弁位置検出・停止方法 |
JPS6014679U (ja) * | 1983-07-08 | 1985-01-31 | 富士通株式会社 | リニアパルスモ−タ |
JPS6298481A (ja) | 1985-10-24 | 1987-05-07 | 三菱電機株式会社 | 有料道路の前払カ−ド利用システム |
JPH0312058Y2 (ja) * | 1985-12-10 | 1991-03-22 | ||
JP2975659B2 (ja) | 1990-09-13 | 1999-11-10 | 膺一 大平 | 二方向性リニアモータ |
JP2680932B2 (ja) | 1990-12-13 | 1997-11-19 | 群馬日本電気株式会社 | リニアパルスモータの鉄心構造 |
-
2001
- 2001-02-02 US US09/926,430 patent/US6661125B2/en not_active Expired - Fee Related
- 2001-02-28 CN CNB018004105A patent/CN1235328C/zh not_active Expired - Fee Related
- 2001-02-28 KR KR10-2001-7013874A patent/KR100439777B1/ko not_active IP Right Cessation
- 2001-02-28 JP JP2001564447A patent/JP3673498B2/ja not_active Expired - Fee Related
- 2001-02-28 WO PCT/JP2001/001533 patent/WO2001065671A1/ja active Application Filing
- 2001-02-28 EP EP01908170A patent/EP1176704A4/en not_active Withdrawn
- 2001-03-01 TW TW090104736A patent/TW513843B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US20020140295A1 (en) | 2002-10-03 |
TW513843B (en) | 2002-12-11 |
EP1176704A4 (en) | 2004-09-22 |
CN1235328C (zh) | 2006-01-04 |
WO2001065671A1 (fr) | 2001-09-07 |
EP1176704A1 (en) | 2002-01-30 |
KR100439777B1 (ko) | 2004-07-12 |
US6661125B2 (en) | 2003-12-09 |
KR20020005020A (ko) | 2002-01-16 |
CN1364333A (zh) | 2002-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3673498B2 (ja) | リニアモータ | |
US7339289B2 (en) | Synchronous permanent magnet planar motor | |
US6445093B1 (en) | Planar motor with linear coil arrays | |
JP3791082B2 (ja) | リニアモータ | |
US7230355B2 (en) | Linear hybrid brushless servo motor | |
JP2008514175A (ja) | 電気機械 | |
JP2004357368A (ja) | 永久磁石を利用したモータ | |
CN105075081B (zh) | 直线电机 | |
JP2002238241A (ja) | リニアモータ | |
JP2002142436A (ja) | リニアモータ | |
JPH0135592B2 (ja) | ||
JP2004297977A (ja) | リニアモータ | |
US6876108B2 (en) | Linear motor, its controlling method, and XY table | |
JPS62193543A (ja) | 可動コイル形リニアモ−タ | |
JP2001086726A (ja) | コアレスリニアモータ | |
CN109991814B (zh) | 一种位移装置 | |
JP2020191777A (ja) | トランスデューサ並びにこれを用いたアクチュエータ及びエネルギハーベスタ | |
JP2001008432A (ja) | リニアモータ | |
Fujii et al. | XY linear synchronous motors without force ripple and core loss for precision two-dimensional drives | |
JP2001008391A (ja) | 回転電機 | |
JP7391820B2 (ja) | 電動機 | |
JP5470990B2 (ja) | 多自由度アクチュエータ | |
JP5096839B2 (ja) | 電磁アクチュエータ及び電気式かみそり | |
JP3824061B2 (ja) | リニアモータ | |
JP2001095226A (ja) | コアレスリニアモータ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041109 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050329 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050422 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |