JP3667320B2 - 負帰還増幅器 - Google Patents

負帰還増幅器 Download PDF

Info

Publication number
JP3667320B2
JP3667320B2 JP2003009085A JP2003009085A JP3667320B2 JP 3667320 B2 JP3667320 B2 JP 3667320B2 JP 2003009085 A JP2003009085 A JP 2003009085A JP 2003009085 A JP2003009085 A JP 2003009085A JP 3667320 B2 JP3667320 B2 JP 3667320B2
Authority
JP
Japan
Prior art keywords
diode
electrode connected
amplifier
power supply
negative feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003009085A
Other languages
English (en)
Other versions
JP2004222101A (ja
Inventor
等 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2003009085A priority Critical patent/JP3667320B2/ja
Priority to US10/618,601 priority patent/US6900698B2/en
Publication of JP2004222101A publication Critical patent/JP2004222101A/ja
Application granted granted Critical
Publication of JP3667320B2 publication Critical patent/JP3667320B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/52Circuit arrangements for protecting such amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/444Diode used as protection means in an amplifier, e.g. as a limiter or as a switch

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高速光ファイバ通信システム等で用いられる負帰還増幅器、特にその信頼性向上技術に関するものである。
【0002】
【従来の技術】
【0003】
【特許文献1】
特開2001−110993号公報
【0004】
静電気放電(Electrostatic Discharge:ESD)は、半導体装置が配置されている機器の他の回路部分や絶縁物、また半導体装置を取り扱う人間の体などから発生し、半導体装置の損傷を引き起こす。ESDは半導体装置の信頼性を左右する重要な要因であり、より安定した動作を確保するために、ESDに対する耐圧を十分高めることが望ましい。
【0005】
このようなESDによって特に損傷を受けやすいのが、入力部に位置する増幅用のトランジスタである。この損傷は、一般的には熱破壊と考えられている。即ち、ESDが加わることにより、電極金属と半導体の接合部に電流が流れ、これにより温度が上昇して接合部の抵抗が低くなって熱暴走が生じ、この接合部が溶解して破壊されると考えられている。
【0006】
このようなESDから半導体装置を保護するために、増幅回路の入力側または出力側に、所定電圧以上で動作するように設計されたツェナーダイオードなどを設ける方法が従来から行われている。
【0007】
図2(a)〜(c)は、従来の増幅器における静電保護回路の説明図である。図2(a)は、保護対象の増幅器(AMP)1の入力端子と、プラス側の電源端子2及びマイナス側の電源端子3との間に、ダイオード4,5をそれぞれ逆バイアス方向となるように接続したものである。これにより、入力端子にESDが印加されたときにはダイオード4ないしダイオード5が導通することによって、EDSから増幅器1が保護される。しかしながら、増幅器1の入力端子と電源端子2,3との間に接続されたダイオード4,5の容量成分の影響のため、高周波特性が低下するという問題があった。
【0008】
図2(b),(c)は、高周波特性を損なわずにESDから半導体装置を保護するための静電保護回路として、前記特許文献1に記載されたものである。
【0009】
図2(b)では、高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)で構成された保護対象の増幅器1の入力端子に、保護用のダイオード6のカソードを接続し、このダイオード6のアノードをプラス側の電源端子2に接続している。更に、増幅器1の入力端子に保護用のダイオード7のカソードを接続し、このダイオード7のアノードをマイナス側の電源端子3に接続している。これらのダイオード6,7は、増幅器1と同一プロセスで形成されるHEMTのソースとドレインを短絡配線したショットキー・ダイオードを、通常の入力信号に対してオフ状態となるように複数個直列に接続したものである。
【0010】
図2(c)では、図2(b)に示したようにダイオード6,7のカソードを入力端子に直接接続するのではなく、ダイオード8を介して接続するようにしている。このような構成により、高周波素子の特性を劣化させることなく、ESD耐圧を向上させることができるとされている。
【0011】
【発明が解決しようとする課題】
しかしながら、従来の静電保護回路では、次のような課題があった。
例えば、高速光ファイバ通信システムでは、光ファイバを通して運ばれた光信号は、フォトダイオード等の光電変換素子によって電流信号に変換され、この電流信号が負帰還増幅器によって電圧に変換されて増幅される。負帰還増幅器には、低雑音、高ダイナミックレンジ、高帯域及び高利得といった特性が要求され、一般的には出力側と入力側の間に帰還抵抗が接続されたトランスインピーダンス型増幅器と呼ばれる増幅器が用いられる。
【0012】
ところで、負帰還増幅器の周波数帯域fwは、次式のように表される。
fw=A/(2π・Rf・Cin)
【0013】
ここで、Aは増幅器の開ループ利得、Rfは帰還抵抗、Cinは入力容量である。また、入力容量Cinは、「フォトダイオード等の接合容量」、「増幅器の入力容量」、及び「実装上付加される浮遊容量」の合計である。
【0014】
例えば、10Gbpsクラスで動作する負帰還増幅器の場合、通常用いられるフォトダイオードの接合容量は150fF程度、増幅器の入力容量は50〜100fF程度、そして浮遊容量は数十fF程度と予測され、これらの合計の入力容量Cinは、概ね200〜300fFとなる。
【0015】
このような負帰還増幅回路に、図2(a)〜(c)のような静電保護回路を付加すると、保護ダイオード自体が数百fF以上の容量を有するため、入力容量Cinは2倍以上に増加し、所望の周波数帯域fwを得ることが困難であった。
【0016】
本発明は、周波数帯域fwの減少が少なく、かつ有効なESD保護が可能な負帰還増幅器を提供するものである。
【0017】
【課題を解決するための手段】
前記課題を解決するために、本発明は、第1及び第2の電源端子から電源が供給される増幅器の出力端子と入力端子の間に帰還抵抗を接続した負帰還増幅器において、前記帰還抵抗を前記入力端子側の第1の抵抗と前記出力端子側の第2の抵抗に分割する分割ノードを設けると共に、第1電極(アノード)が前記第1の電源端子に接続され、第2電極(カソード)が前記分割ノードに接続された第1のダイオードと、第1電極が前記第2の電源端子に接続され、第2電極が前記分割ノードに接続された第2のダイオードとを設けている。
【0018】
本発明によれば、以上のように負帰還増幅器を構成したので、次のような作用が得られる。
【0019】
負帰還増幅器の入力端子に入力された入力信号は、増幅器と帰還抵抗によってトランスインピーダンス型の増幅が行われる。この時、帰還抵抗中に設けられた分割ノードと第1及び第2の電源端子の間には、第1及び第2のダイオードが接続されているが、分割された第1の抵抗の成分によって入力容量の増加は少なく、周波数帯域の減少は僅かである。一方、入力端子にESDが印加されると、これらの第1または第2のダイオードがオン状態となり、電流はダイオードを介して第1または第2の電源端子に流れる。これにより、増幅器はESDから保護される。
【0020】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の第1の実施形態を示す負帰還増幅器の構成図である。
この負帰還増幅器は、高速光ファイバ通信システムにおいて、光信号を電気信号に変換して増幅する入力用の増幅器で、光信号Linの強度に応じて導通状態が変化するフォトダイオード等の光電変換素子9からの電流信号が入力される入力端子11を有している。入力端子11には、HEMTで構成された保護対象の増幅器(AMP)12が接続され、この増幅器12の出力側は出力端子13に接続されている。増幅器12には、プラス側の電源端子14から電源電圧VDDが与えられ、マイナス側の電源端子15から電源電圧VSSが与えられるようになっている。
【0021】
また、入力端子11と出力端子13の間には、抵抗16a,16bを直列接続した帰還抵抗16が接続されている。抵抗16a,16bの一端は、それぞれ入力端子11と出力端子13に接続され、この抵抗16a,16bの接続点がノードN1となっている。
【0022】
更に、ノードN1には保護用のダイオード17,18のカソードが接続され、これらのダイオード17,18のアノードは、それぞれ電源端子14,15に接続されている。これらのダイオード17,18は、増幅器12と同一プロセスで形成されるバイアス調整用のダイオード(HEMTのゲート長を長くし、ソースとドレインを短絡配線させた構造のショットキー・ダイオード)を、ESD保護用のダイオードとして、通常の入力信号に対してオフ状態となるように複数個直列に接続したものである。
【0023】
例えば、この負帰還増幅器を5Vの単一電源で駆動し、入力の中心バイアス電圧を2Vとするように設計した場合、ダイオード素子1個の順方向の導通開始電圧は0.5V程度であるので、ダイオード17,18は、それぞれ7個、5個のダイオード素子を直列接続して構成する。
【0024】
このように本実施形態においては、複数個直列に接続されたダイオード素子によってノードN1と電源端子の間に接続されるダイオード17,18を構成することにより、通常動作時にはオフ状態となり、ESDに対してはオン状態となるESD保護用ダイオードを実現している。
【0025】
このような負帰還増幅器おける増幅動作は、従来と同様であり、光電変換素子9から入力端子11に入力された電流信号は、帰還抵抗16を流れることによって電圧に変換され、更に、増幅器12とこの帰還抵抗16による帰還増幅回路で増幅され、出力端子13に増幅された信号が出力される。なお、ESD保護用のダイオード17,18は、抵抗16aを介して入力端子11に接続されているので、これらのダイオード17,18による入力容量の増加は、入力端子11と電源端子14,15の間に直接接続した場合に比べて低減される。
【0026】
一方、入力端子11に負極性のESD(例えば、−400V)が印加されると、保護用のダイオード17または18がオン状態となり、電源端子14または15から、このダイオード17,18及び抵抗16aを介して入力端子11に電流が流れる。これにより、増幅器12の入力側に印加されるESD電圧は低減される。一般に、増幅器12の入力段に使用されるHEMTは、負極性の高電圧に対する耐圧が低く、正極性の高電圧に対する耐圧は高い。従って、このようなダイオード17,18により、負極性のESDに対する耐圧を高くすることができる。
【0027】
ESD耐圧を高くするためには抵抗16aの値を小さくすることが有効であるが、この抵抗16aの値を小さくするとダイオード17,18によって入力容量が大きくなり、周波数帯域は狭くなる。従って、所望のESD耐圧と周波数帯域の兼ね合いによって、抵抗16aの値を決定する必要がある。
【0028】
図3は、図1における抵抗16aの値を変化させたときの周波数帯域とESD耐圧のシミュレーション結果を示すグラフである。なお、増幅度が低周波に対する最大増幅度よりも3dB低下する周波数を、周波数帯域としている。
【0029】
このシミュレーションでは、増幅器12として、GaAs/AlGaAs系のHEMT素子を使用し、そのゲート幅は100μm、及びゲート長は0.1μmとしている。また、保護用のダイオード17,18は、同じくGaAs/AlGaAs系のもので、ショットキー電極(ダイオードのアノード電極、即ち、HEMTのゲート電極に相当する)が、30μm×2μmのものを直列に接続して構成している。図3には、帰還抵抗16の全体の抵抗値Rfを一定(350Ω)として、入力端子11側の抵抗16aの抵抗値Raを0Ω〜150Ωの間で変化させた場合の特性を示している。
【0030】
この図3に示すように、抵抗値Raを100Ω以下にすることにより、数百V以上のESD耐圧が得られ、静電保護回路としての機能をほぼ果たすことができると考えられる。一方、抵抗値Raの下限は所望の周波数帯域によって決定されるが、10Ωであれば8.5GHzの周波数帯域が得られるので、抵抗値Raの適切な範囲としては、10〜100Ω程度と考えられる。
【0031】
以上のように、この第1の実施形態の負帰還増幅器は、帰還抵抗16の途中のノードN1と電源端子14,15との間に保護用のダイオード17,18を接続しているので、周波数帯域をほとんど減少させずに、効果的に負極性のESDに対する保護ができるという利点がある。
【0032】
(第2の実施形態)
図4は、本発明の第2の実施形態を示す負帰還増幅器の構成図であり、図1中の要素と共通の要素には共通の符号が付されている。
【0033】
この負帰還増幅器では、図1の負帰還増幅器の保護用のダイオード17,18に加えて、極性を逆にした保護用のダイオード19,20を設けている。ダイオード19,20のアノードはノードN1に接続され、カソードがそれぞれ電源端子14,15に接続されている。これらのダイオード19,20は、ダイオード17,18と同様に、増幅器12と同一プロセスで形成されるHEMTのソースとドレインを短絡配線したショットキー・ダイオードを、通常の入力信号に対してオフ状態となるように複数個直列に接続したものである。
【0034】
この負帰還増幅器における増幅動作は、図1の第1の実施形態と同様である。一方、入力端子11に負極性のESDが印加される場合には、第1の実施形態と同様に、ダイオード17または18がオン状態となり、電源端子14または15からダイオード17または18、及び抵抗16aを介して入力端子11に電荷が流れる。また、ESDが正極性の場合には、ダイオード19または20がオン状態となり、入力端子11から抵抗16a及びダイオード19または20を介して電源端子14または15に電荷が流れる。これにより、増幅器12の入力側に印加されるWSDは低減される。
【0035】
以上のように、この第2の実施形態の負帰還増幅器は、帰還抵抗16の途中のノードN1と電源端子14,15との間に4組の保護用のダイオード17〜20を接続しているので、第1の実施形態の利点に加えて、加わるESDの極性に拘らず、確実に保護ができるという利点がある。
【0036】
(第3の実施形態)
図5は、本発明の第3の実施形態を示す負帰還増幅器の構成図であり、図1中の要素と共通の要素には共通の符号が付されている。
【0037】
この負帰還増幅器では、図1の保護用のダイオード17,18に代えて、若干構成の異なる保護用のダイオード17A,18A,21を設けている。即ち、ダイオード17A,18AのカソードはノードN2に接続され、これらのダイオード17A,18Aのアノードがそれぞれ電源端子14,15に接続されている。更に、ノードN2にはダイオード21のアノードが接続され、このダイオード21のカソードがノードN1に接続されている。
【0038】
この負帰還増幅器における増幅動作とESD保護動作は、図1の第1の実施形態と同様である。本実施形態においては、複数個直列に接続されたダイオード素子によってノードN2と電源端子の間に接続されるダイオード17A,18Aを構成し、これらのダイオード17A,18AとノードN2,N1間に接続されるダイオード21により、通常動作時にはオフ状態となり、ESDに対してはオン状態となるESD保護用ダイオードを実現している。
【0039】
以上のように、この第3の実施形態の負帰還増幅器は、ダイオード17A,18Aの両方に直列となるように接続された共通のダイオード21を有している。これにより、例えば図1のダイオード17,18が、それぞれ7個及び5個のダイオード素子を直列に接続したものであれば、図5のダイオード17A,18Aは、それぞれ6個及び4個のダイオード素子を直列に接続すれば良い。これにより、必要な保護用のダイオード素子の数を削減し、かつ第1の実施形態と同様の利点が得られる。
【0040】
(第4の実施形態)
図6は、本発明の第4の実施形態を示す負帰還増幅器の構成図であり、図4中の要素と共通の要素には共通の符号が付されている。
【0041】
この負帰還増幅器では、帰還抵抗16を3個の抵抗16x,16y,16zで構成している。抵抗16xは入力端子11とノードN11の間に接続され、抵抗16yはノードN11,N12間に接続され、抵抗16zはノードN12と出力端子13の間に接続されている。なお、抵抗16xの抵抗値は10〜100Ω、抵抗16yの抵抗値は0〜100Ω、また3個の抵抗16x,16y,16zの合計は350Ω程度である。
【0042】
ノードN11には、保護用のダイオード17,18のカソードが接続され、ノードN12には、保護用のダイオード19,20のアノードが接続されている。その他の構成は、図4と同様である。
【0043】
この負帰還増幅器における増幅動作は、図4の第2の実施形態と同様である。一方、入力端子11に負極性のESDが印加される場合には、第4の実施形態と同様に、ダイオード17または18がオン状態となり、電源端子14または15からダイオード17または18及び抵抗16xを介して入力端子11に電流が流れる。また、ESDが正極性の場合には、ダイオード19または20がオン状態となり、入力端子11から抵抗16x,16y及びダイオード19または20を介して電源端子14または15に電流が流れる。これにより、増幅器12の入力側に印加されるESDは低減される。
【0044】
この時、入力端子11に印加される正負のESD電圧の絶対値が同じ場合、入力端子11とノードN11,N12間の抵抗値の相違により、増幅器12の入力側に印加される正極性のESD耐圧は、負極性のESD耐圧よりも大きくなる。しかしながら、前述したように、増幅器12の入力段に使用されるHEMTは、正極性の高電圧に対する耐圧が負極性の高電圧に対する耐圧よりも高いので、抵抗16yの抵抗値を適切に設定することにより、正負で同等の耐圧を持たせることができる。
【0045】
一方、ダイオード19,20の入力容量に対する影響は、抵抗16yが追加されたことによって図4よりも小さくなり、周波数帯域の減少を更に軽減することができる。
【0046】
以上のように、この第4の実施形態の負帰還増幅器は、帰還抵抗16を3分割し、入力端子11に近いノードN11に保護用のダイオード17,18のカソードを接続し、この入力端子11から遠いノードN12に保護用のダイオード19,20のアノードを接続している。これにより、第2の実施形態と同様に入力されるESD電圧の極性に拘らず、確実に保護ができるという利点に加えて、第2の実施形態よりも周波数帯域の減少を軽減することができるという利点がある。
【0047】
(第5の実施形態)
図7は、本発明の第5の実施形態を示す負帰還増幅器の構成図であり、図6中の要素と共通の要素には共通の符号が付されている。
【0048】
この負帰還増幅器では、図6のダイオード17,18に代えて、図5と同様の構成の保護用のダイオード17A,18A,21を設けると共に、ダイオード19,20に代えて、保護用のダイオード19A,20A,22を設けている。即ち、ダイオード17A,18AのカソードはノードN13に接続され、これらのダイオード17A,18Aのアノードがそれぞれ電源端子14,15に接続されている。更に、ノードN13にはダイオード21のアノードが接続され、このダイオード21のカソードがノードN11に接続されている。
【0049】
また、ダイオード19A,20AのアノードはノードN14に接続され、これらのダイオード19A,20Aのカソードがそれぞれ電源端子14,15に接続されている。更に、ノードN14にはダイオード22のカソードが接続され、このダイオード22のアノードがノードN12に接続されている。その他の構成は、図6と同様である。
【0050】
この負帰還増幅器における増幅動作は、図6の第4の実施形態と同様である。また、入力端子11にESD電圧が印加されたときの動作も、図6の第4の実施形態とほぼ同様である。但し、ダイオード17A,18Aに流れる電流は、共通のダイオード21を介して流れ、ダイオード19A,20Aに流れる電流は、共通のダイオード22を介して流れる。
【0051】
以上のように、この第5の実施形態の負帰還増幅器は、ダイオード17A,18Aの両方に直列となるように接続された共通のダイオード21と、ダイオード19A,20Aの両方に直列となるように接続された共通のダイオード22を有している。従って、第3の実施形態と同様に、必要な保護用のダイオード素子の数を削減することができると共に、第4の実施形態と同様の利点が得られる。
【0052】
なお、本発明は、上記実施形態に限定されず、種々の変形が可能である。この変形例としては、例えば、次のようなものがある。
【0053】
(a) 帰還抵抗16や、これを構成する抵抗16a,16b等の抵抗値は、例示した値に限定されない。
【0054】
(b) 直列に接続された保護用のダイオード17,18等の数は、例示したものに限定されない。電源電圧や増幅器12の入力動作点のバイアス電圧等に応じて、通常の入力信号のレベルではオン状態とならないように、適切な数のダイオード素子を使用する必要がある。
【0055】
(c) 光信号を電気信号に変換して増幅する入力用の増幅器について説明したが、帰還抵抗を有する負帰還増幅器であれば、どのようなものに対しても同様に適用可能である。
【0056】
(d) 図6及び図7では、増幅器12の入力段のHEMTが負極性のESDに対して弱いことを前提にして、保護用のダイオード17〜20等の極性を設定しているが、増幅器12の入力段の特性によっては、保護用のダイオード17〜20等の極性を逆にする場合も考えられる。
【0057】
【発明の効果】
以上詳細に説明したように、本発明によれば、帰還抵抗の中間に分割ノードを設け、この分割ノードと第1及び第2の電源端子との間に、それぞれ第1及び第2の保護用のダイオードを設けている。これにより、保護用のダイオードによる入力容量の増加が抑制され、周波数帯域の減少を少なくすることができる。また、入力端子に印加されるESDは、保護用のダイオードを介して電源端子にバイパスされ、増幅器が効果的に保護される。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す負帰還増幅器の構成図である。
【図2】従来の増幅器における静電保護回路の説明図である。
【図3】図1における抵抗16aの値を変化させたときの周波数帯域とESD耐圧のシミュレーション結果を示すグラフである。
【図4】本発明の第2の実施形態を示す負帰還増幅器の構成図である。
【図5】本発明の第3の実施形態を示す負帰還増幅器の構成図である。
【図6】本発明の第4の実施形態を示す負帰還増幅器の構成図である。
【図7】本発明の第5の実施形態を示す負帰還増幅器の構成図である。
【符号の説明】
11 入力端子
12 増幅器
13 出力端子
14,15 電源端子
16 帰還抵抗
17〜22 ダイオード

Claims (10)

  1. 第1及び第2の電源端子から電源が供給される増幅器の出力端子と入力端子の間に帰還抵抗を接続した負帰還増幅器において、
    前記帰還抵抗を前記入力端子側の第1の抵抗と前記出力端子側の第2の抵抗に分割する分割ノードを設けると共に、
    第1電極が前記第1の電源端子に接続され、第2電極が前記分割ノードに接続された第1のダイオードと、
    第1電極が前記第2の電源端子に接続され、第2電極が前記分割ノードに接続された第2のダイオードとを、
    設けたことを特徴とする負帰還増幅器。
  2. 第2電極が前記第1の電源端子に接続され、第1電極が前記分割ノードに接続された第3のダイオードと、
    第2電極が前記第2の電源端子に接続され、第1電極が前記分割ノードに接続された第4のダイオードとを、
    設けたことを特徴とする請求項1記載の負帰還増幅器。
  3. 第1及び第2の電源端子から電源が供給される増幅器の出力端子と入力端子の間に帰還抵抗を接続した負帰還増幅器において、
    前記帰還抵抗を前記入力端子側から前記出力端子側に順次第1、第2及び第3の抵抗に分割する第1及び第2の分割ノードを設けると共に、
    第1電極が前記第1の電源端子に接続され、第2電極が前記第1の分割ノードに接続された第1のダイオードと、
    第1電極が前記第2の電源端子に接続され、第2電極が前記第1の分割ノードに接続された第2のダイオードと、
    第2電極が前記第1の電源端子に接続され、第1電極が前記第2の分割ノードに接続された第3のダイオードと、
    第2電極が前記第2の電源端子に接続され、第1電極が前記第2の分割ノードに接続された第4のダイオードとを、
    設けたことを特徴とする負帰還増幅器。
  4. 前記電源端子および前記分割ノード間に接続されるダイオードは、複数の素子を直列に接続して構成されていることを特徴とする請求項1乃至3のいずれか1項に記載の負帰還増幅器。
  5. 第1及び第2の電源端子から電源が供給される増幅器の出力端子と入力端子の間に帰還抵抗を接続した負帰還増幅器において、
    前記帰還抵抗を前記入力端子側の第1の抵抗と前記出力端子側の第2の抵抗に分割する分割ノードを設けると共に、
    第1電極が前記第1の電源端子に接続され、第2電極が接続ノードに接続された第1のダイオードと、
    第1電極が前記第2の電源端子に接続され、第2電極が前記接続ノードに接続された第2のダイオードと、
    第1電極が前記接続ノードに接続され、第2電極が前記分割ノードに接続された第3のダイオードとを、
    設けたことを特徴とする負帰還増幅器。
  6. 第1及び第2の電源端子から電源が供給される増幅器の出力端子と入力端子の間に帰還抵抗を接続した負帰還増幅器において、
    前記帰還抵抗を前記入力端子側から前記出力端子側に順次第1、第2及び第3の抵抗に分割する第1及び第2の分割ノードを設けると共に、
    第1電極が前記第1の電源端子に接続され、第2電極が第1の接続ノードに接続された第1のダイオードと、
    第1電極が前記第2の電源端子に接続され、第2電極が前記第1の接続ノードに接続された第2のダイオードと、
    第1電極が前記第1の接続ノードに接続され、第2電極が前記第1の分割ノードに接続された第3のダイオードと、
    第2電極が前記第1の電源端子に接続され、第1電極が第2の接続ノードに接続された第4のダイオードと、
    第2電極が前記第2の電源端子に接続され、第1電極が前記第2の接続ノードに接続された第5のダイオードと、
    第2電極が前記第2の接続ノードに接続され、第1電極が前記第2の分割ノードに接続された第6のダイオードとを、
    設けたことを特徴とする負帰還増幅器。
  7. 前記電源端子及び前記接続ノード間に接続されるダイオードは、複数の素子を直列に接続して構成されていることを特徴とする請求項5または6記載の負帰還増幅器。
  8. 前記各ダイオードの第1電極はアノードであり、第2電極はカソードであることを特徴とする請求項1乃至7のいずれか1項に記載の負帰還増幅器。
  9. 前記増幅器を高電子移動度トランジスタで構成すると共に、前記各ダイオードを該増幅器と同一プロセスで形成されたショットキー・ダイオードで構成したことを特徴とする請求項1乃至8のいずれか1項に記載の負帰還増幅器。
  10. 前記第1の抵抗の抵抗値は、10〜100Ωであることを特徴とする請求項1乃至9のいずれか1項に記載の負帰還増幅器。
JP2003009085A 2003-01-17 2003-01-17 負帰還増幅器 Expired - Lifetime JP3667320B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003009085A JP3667320B2 (ja) 2003-01-17 2003-01-17 負帰還増幅器
US10/618,601 US6900698B2 (en) 2003-01-17 2003-07-15 Negative feedback amplifier with electrostatic discharge protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009085A JP3667320B2 (ja) 2003-01-17 2003-01-17 負帰還増幅器

Publications (2)

Publication Number Publication Date
JP2004222101A JP2004222101A (ja) 2004-08-05
JP3667320B2 true JP3667320B2 (ja) 2005-07-06

Family

ID=32709188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009085A Expired - Lifetime JP3667320B2 (ja) 2003-01-17 2003-01-17 負帰還増幅器

Country Status (2)

Country Link
US (1) US6900698B2 (ja)
JP (1) JP3667320B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI260795B (en) * 2004-03-22 2006-08-21 South Epitaxy Corp Flip chip type- light emitting diode package
US7522395B1 (en) * 2005-02-22 2009-04-21 Integrated Device Technology, Inc. Electrostatic discharge and electrical overstress protection circuit
KR100690772B1 (ko) * 2005-03-23 2007-03-09 엘지전자 주식회사 휴대단말기의 전력증폭기 전원부 보호장치 및 방법
US7564663B2 (en) * 2005-05-26 2009-07-21 Agilent Technologies, Inc. Active limiter with integrated sensor
KR100948520B1 (ko) 2006-08-30 2010-03-23 삼성전자주식회사 정전기 특성을 개선한 증폭기
US7924090B2 (en) * 2006-10-31 2011-04-12 Panasonic Corporation Amplifying device
US7978449B2 (en) * 2007-11-30 2011-07-12 National Semiconductor Corporation Integrated electrostatic discharge (ESD) protection circuitry for signal electrode
JP5772532B2 (ja) * 2011-11-16 2015-09-02 富士通株式会社 増幅回路および受光回路
JP5431509B2 (ja) * 2012-02-02 2014-03-05 日本電信電話株式会社 トランスインピーダンスアンプおよびトランスインピーダンスアンプ接続回路
EP2634917B1 (en) * 2012-02-28 2015-04-08 ST-Ericsson SA Protection module for RF-amplifier
US8680926B2 (en) * 2012-05-01 2014-03-25 Invensense, Inc. Amplification circuit comprising input signal limiting network
JP6063160B2 (ja) * 2012-07-20 2017-01-18 株式会社堀場製作所 放射線検出器
KR20160060505A (ko) * 2014-11-20 2016-05-30 삼성전자주식회사 광계수 검출 장치 및 방법, 방사선 촬영 장치
US10511270B2 (en) * 2017-04-11 2019-12-17 Skyworks Solutions, Inc. Apparatus and methods for overload protection of radio frequency amplifiers
US10578800B2 (en) * 2017-06-06 2020-03-03 Sifotonics Technologies Co., Ltd. Silicon photonic integrated circuit with electrostatic discharge protection mechanism for static electric shocks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162922A (ja) 1987-12-18 1989-06-27 Nec Corp 表示ウィンドウ管理方式
JPH08162858A (ja) 1994-12-09 1996-06-21 Oki Lsi Technol Kansai:Kk 光受信回路
US6204715B1 (en) * 1999-02-26 2001-03-20 General Motors Corporation Signal amplifying circuit
JP4446520B2 (ja) 1999-10-08 2010-04-07 Okiセミコンダクタ株式会社 静電保護回路
US6894567B2 (en) * 2001-12-04 2005-05-17 Koninklijke Philips Electronics N.V. ESD protection circuit for use in RF CMOS IC design

Also Published As

Publication number Publication date
US20040140849A1 (en) 2004-07-22
JP2004222101A (ja) 2004-08-05
US6900698B2 (en) 2005-05-31

Similar Documents

Publication Publication Date Title
JP3667320B2 (ja) 負帰還増幅器
KR100353295B1 (ko) 동적 보상 증폭기 및 그 방법
EP2033314B1 (en) Differential amplifier with over-voltage protection and method
KR101089876B1 (ko) 차동 전력 증폭기용 적응형 바이어스 회로 및 이를 포함하는 전력 증폭 시스템
US20070139094A1 (en) High-frequency switching device and semiconductor
US7233466B2 (en) Input protection circuit
US20080285195A1 (en) Integrated circuit with protection against electrostatic damage
US7825734B2 (en) Amplifier having an output protection, in particular operational amplifier for audio application
JP2005501459A5 (ja)
JP4712061B2 (ja) トランスインピーダンスアンプ接続回路
WO2019208371A1 (ja) 増幅回路
US6573784B2 (en) Low power wide bandwidth programmable gain CDS amplifier/instrumentation amplifier
KR20030044444A (ko) 차동 선형 증폭기
JP4446520B2 (ja) 静電保護回路
EP2573937B1 (en) Power amplifier module having bias circuit
KR101891619B1 (ko) 질화갈륨 집적회로 증폭기의 선형화 바이어스 회로 기술
JP2013223116A (ja) 歪み補償回路及び増幅器
US4426626A (en) Signal switching circuit
KR20150127867A (ko) 공통 모드 피드백의 비정상 동작을 회복시키기 위한 아날로그 증폭기
EP1124326A1 (en) An operational amplifier with high gain and sysmmetrical output-current capabilty
JPS6276304A (ja) 高速光受信器のためのモノリシックic用増幅回路
JP4803747B2 (ja) 半導体集積回路
KR102593564B1 (ko) 전력 증폭기
JP4247090B2 (ja) 増幅回路
CN112088488A (zh) 放大器电路

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Ref document number: 3667320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term