JP3665412B2 - Concrete wall reinforcement - Google Patents

Concrete wall reinforcement Download PDF

Info

Publication number
JP3665412B2
JP3665412B2 JP09589296A JP9589296A JP3665412B2 JP 3665412 B2 JP3665412 B2 JP 3665412B2 JP 09589296 A JP09589296 A JP 09589296A JP 9589296 A JP9589296 A JP 9589296A JP 3665412 B2 JP3665412 B2 JP 3665412B2
Authority
JP
Japan
Prior art keywords
fiber reinforced
continuous fiber
concrete wall
shaft body
taper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09589296A
Other languages
Japanese (ja)
Other versions
JPH09268874A (en
Inventor
亮一 那珂
俊彦 吉住
道弥 林田
宏則 毎熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09589296A priority Critical patent/JP3665412B2/en
Publication of JPH09268874A publication Critical patent/JPH09268874A/en
Application granted granted Critical
Publication of JP3665412B2 publication Critical patent/JP3665412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シールド掘進機により切削できるトンネル掘進用立坑におけるシールド掘進機発進到達部の土留めコンクリート壁に使用するためのコンクリート壁用の筋材、コンクリート壁体、連続繊維補強軸体の継手構造、連続繊維補強軸体の接続方法に関する。
【0002】
【従来の技術】
図27には、トンネル掘削工事の基地となる位置に立坑1を築造し、この立坑1の底部にシールド掘進機2を据付けた状態が示されている。
【0003】
同図に示されるように、この立坑1は、立坑内の土の掘削等を終えた後、下床や側壁面に鉄筋を配し、その部分にコンクリートを打設して、周囲の土圧に耐え得るコンクリート壁体3を築造している。
【0004】
シールド掘進機2は、この立坑1内に設けられた受け台上で組立てられて、所定の位置に据付けられるように設けられる。前記コンクリート壁体3には、シールド掘進機2が推進する部位4は、このシールド掘進機2により取壊わされ易い構造に構成されており、例えば、この部位4におけるコンクリート壁体3の筋材として、鉄筋とほぼ同等の強度を有し、シールド掘進機2の掘削能力で容易に切削破壊できるカーボン繊維,ガラス繊維またはアラミド繊維のいずれかを樹脂に含浸してなる連続繊維補強材などが用いられる。
【0005】
前述のようなシールド掘進機のカッタービットで直接切削可能な土留壁体を提供する手段として、すでに特公平6−37830号公報,特開平5−302490号公報等に記載されているものが知られている。さらに、地下埋設物の輻輳化や周辺構造物との干渉の問題から、路下でこの土留壁体を組み立てることが必要な場合が増えてきており、その対策として、路下施工場所に搬入可能な短いコンクリート壁体を順次つなぐ方法、およびそのための構造体を提供するものとして、特開平6−81576号公報,特開平6−108779号公報,特開平6−137065号公報,特開平6−137066号公報等に記載されている構造体および、これらを連結する方法が発明され、その一部はすでに実用化されている。
【0006】
【発明が解決しようとする課題】
前記の土留壁体では、そのコンクリートを補強するための筋材が使用されるが、この筋材はカッタービットで直接切削が可能なよう軸方向の補強繊維に主として炭素繊維を用いた繊維強化樹脂(CFRP)等の連続繊維補強材でできた筋材がコンクリート補強筋材として使用されることがある。
炭素繊維は鉄筋に匹敵する高弾性率のCFRPを得やすく、かつ切削性にすぐれ、またガラス繊維のようにコンクリートのアルカリに侵される危険もないため、かかる目的に用いる繊維としては最も適したものである。
ただし、軸方向以外の繊維配向や、軸方向であっても補助的な機能を与える目的には、ガラス繊維,アラミド繊維を併用することが許容される。このように、たとえガラス繊維,アラミド繊維その他を併用していても、軸方向、すなわち引張方向の補強材の主構成が炭素繊維であるかぎり、CFRPである。
【0007】
CFRPでできた板状,管状,棒状,撚線等の引張補強材をつなぎあわせたり、端部を他の材料に接続して応力伝達を行うためには、これらの引張補強材の定着が必要である。しかも、この定着に用いる全ての材料は、シールド掘進機のカッタービットで切削可能で、且つCFRPの卓越した引張強度に見合う強度を有するもので構成されなければならない。加えて、立坑築造時の路下施工に適用する場合、当然複雑で熟練を要する作業工程を回避しなければ実用性にすぐれた施工方法になり得ない。
【0008】
従来、これらの引張補強材の継手施工には、流動性材料を用いて行うもの、FRP製のボルトで行うもの等がすでに開発され、それらの一部は実用化されているが、現場施工の際、前者においては充填の確認と養生時間内の仮止め工程等の、後者においてはボルトの締めつけトルク管理等の、煩雑で特段の注意を要する作業が伴っていた。さらには定着部の構造的ならびに施工上の制約から引張補強材の強度を十分発揮できないことが起こり易かった。
【0009】
本発明は、流動性材料やFRP製のボルトを一切用いずに、FRPの円筒状の補助部材のみを用いてCFRPの引張補強材を接続する方法で、接続作業に熟練が不要で施工の確実性が高いコンクリート壁用の筋材、コンクリート壁体、連続繊維補強軸体の継手構造、連続繊維補強軸体の接続方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明を適用したコンクリート壁用の筋材は、上述した課題を解決するため、上方に向かって拡大するテーパ部を有する上部膨出連結部と、下方に向かって拡大するテーパ部を有する下部膨出連結部とを上下部に具備している繊維強化樹脂からなる連続繊維補強軸体を上下に連接すると共に、かかる連接部を拘束部材を用いて離脱不能に拘束した構成とする。
また、本発明を適用したコンクリート壁用の筋材は、上述した課題を解決するため、上方に向かって拡幅する前記上部膨出連結部としての横断面円弧状拡幅部のテーパ面と、下方に向かって拡幅する前記下方膨出連結部としての横断面円弧状拡幅部のテーパ面をそれぞれ上下部に有している繊維強化樹脂からなる板状の連続繊維補強軸体を上下に連接すると共に、所定の間隔をおいて環状に配設し、前記上位と下位の横断面円弧状拡幅部のテーパ面同士を係合させ、この係合部を環状拘束部材を用いて離脱不能に拘束する構成とする。
また、本発明を適用したコンクリート壁用の筋材は、上述した課題を解決するため、上方に向かって拡径するテーパ外面を有する前記上部膨出連結部としての円錐状定着部と、下方に向かって拡径するテーパ外面を有する前記下部膨出連結部としての円錐状定着部をそれぞれ上下部に有している繊維強化樹脂からなる棒状の連続繊維補強軸体を、前記円錐状定着部の端面同士を当接させて上下に連接すると共に、前記上位と下位の円錐状定着部を中間部拡径テーパ孔を有する分割筒状拘束部材で包囲して一体に抱持した構成とする。
また、本発明を適用したコンクリート壁体は、上記連続繊維補強軸体からなる筋材を複数本配置してコンクリート中に埋設したことを特徴とする。
また、本発明を適用した連続繊維補強軸体の継手構造は、上方に向かって拡大するテーパ部を有する上部膨出連結部と、下方に向かって拡大するテーパ部を有する下部膨出連結部とを上下部に具備している繊維強化樹脂からなる連続繊維補強軸体が上下に連接されると共に、かかる連接部が拘束部材により離脱不能に拘束され、或いはかかる連接部が分割筒状拘束部材で包囲されて一体に抱持された構成を特徴とする。
また、本発明を適用した連続繊維補強軸体の接続方法は、上述した課題を解決するため、上方に向かって拡大するテーパ部を有する上部膨出連結部と、下方に向かって拡大するテーパ部を有する下部膨出連結部とを上下部に具備している繊維強化樹脂からなる連続繊維補強軸体を上下に連接すると共に、かかる連接部を環状拘束部材を用いて離脱不能に拘束することにより、被切削コンクリート壁用の筋材とする。
また、本発明を適用した連続繊維補強軸体の接続方法は、上述した課題を解決するため、上位に位置する繊維強化樹脂からなる板状の連続繊維補強軸体の下部に設けた、下方に向かって拡幅する前記下部膨出連結部としての横断面円弧状拡幅部のテーパ面と、下位に位置する繊維強化樹脂からなる板状の連続繊維補強軸体の上部に設けた上方に向かって拡幅する前記上部膨出連結部としての横断面円弧状拡幅部のテーパ面とを係合させ、この係合部を環状拘束部材を用いて離脱不能に拘束して被切削コンクリート壁用の筋材とする。
また、本発明を適用した連続繊維補強軸体の接続方法は、上述した課題を解決するため、上位に位置する繊維強化樹脂からなる棒状の連続繊維補強軸体の下部に設けた下方に向かって拡径するテーパ外面を有する前記下部膨出連結部としての円錐状定着部と、下位に位置する繊維強化樹脂からなる棒状の連続繊維補強軸体の上部に設けた上方に向かって拡径するテーパ外面を有する前記上部膨出連結部としての円錐状定着部のそれぞれの端面同士を当接させて上下に連接すると共に、前記上位と下位の円錐状定着部を中間部拡径テーパ孔を有する分割筒状拘束部材で包囲して一体に抱持して被切削コンクリート壁用の筋材とする。
【0011】
本発明によると、施工内空の限られた場所で、限られた長さの連続繊維補強軸体同士を長手方向に継ぎ足し、かつその継手部で引張強度を損なうことなしに、迅速に順次継ぎ足しながら筋材を構成できる。しかも、この筋材によって補強されたコンクリート壁体は、必要な強度を有し、かつシールド掘進機のカッタービットでの容易な切削が可能である。
【0012】
【発明の実施の形態】
以下、本発明を図を参照して説明する。
図1〜図9には、本発明の第1例が示されている。図1において、下方の鋼製立坑構成部材7の上端に設けられた鋼製支圧板6と、上方の鋼製立坑構成部材7aの下端に設けられた鋼製支圧板6aの間に複数のコンクリート壁単体8が積層配置され、繊維強化樹脂からなる連続繊維補強軸体10を上下方向に連結されてなる筋材11を用いて相互に、連結されて被破壊用のコンクリート壁体8aが構成されている。このコンクリート壁体8aは、図29に示したシールド工法の立坑1における鉄筋コンクリート壁体3の推進部位4に相当するものでシールド掘進機2により区域12が掘削破壊されるべく構成されている。
【0013】
次に本発明の主要素をなす連続繊維補強軸体10の継手構造を以下順に説明する。
炭素繊維強化樹脂からなる連続繊維補強軸体10は、その中間部13が所定の幅と長さを有し、かつその上下端にそれぞれ上方に向かって所定の傾斜角度で拡幅する横断面円弧状拡幅部14と、下方に向かって前記と同様所定の傾斜角度で拡幅する横断面円弧状拡幅部14aとを有している。
【0014】
また、前記の連続繊維補強軸体10は、所定の間隔をあけて環状配置に複数(図示例では3個)設けられ、かつこれらが上下に連接するように配設され、しかも、上位と下位に位置する各横断面円弧状拡幅部14,14aのそれぞれの両側のテーパ面15,15同士が係合するように連接される。
【0015】
また、このテーパ面15,15の係合状態を保持するため、拘束部材が用いられるもので、この拘束部材は図示例の場合、内筒16と外筒17が対をなして構成される。この内筒16は、上下に複数用いられ、最下端の内筒16のみは鋼材で構成してもよいが、他の内筒16はFRPである必要がある。また外筒17は図2に示されるようにプレキャスト製のコンクリート壁単体8に埋設されている。つまり、図示例の場合コンクリート壁単体8は、プレキャスト製であって、環状配置の複数の連続繊維補強軸体10を挿通するための中空孔18が形成されており、外筒17は、この中空孔18の上下端部の位置に埋設されている。
【0016】
つまり、前記内筒16と外筒17からなる拘束部材では、環状配置の複数の連続繊維補強軸体10のテーパ面15が互いに係合した上位と下位の横断面円弧状拡幅部14,14aの内側に、これと略同径の前記内筒16を配設し、外側に外筒17を嵌合することで、各横断面円弧状拡幅部14,14aは、内側又は外側のいずれもの方向の動きが拘束される。それに伴って、上位と下位の繊維補強軸体10の上下方向の引張り力に対しても、前記2つのテーパ面15が係合することで両補強軸体10が結合され、上下の複数の補強軸体10は一体化されて1本の筋材11となり、上下方向に力が伝達される。
【0017】
さらに説明すると、前記のとおりシールド掘進機により掘削破壊されるべき被破壊のコンクリート壁単体8以外はH形鋼を用いた鋼製立坑構成部材7,7aで構成されており、前記被破壊コンクリート壁単体8の上下周縁部に位置する前記鋼製立坑構成部材7,7aの上端縁と下端縁には、図3に示されるように鋼製支圧板6,6aが固着されている。
【0018】
下側の鋼製支圧板6上には、図3に示す2本の筋材11の下端を連結固定すべく、左右2組の固定部20が設けられている。この固定部20では、円孔21が開設されており、この円孔21の周囲に等角間隔をおいて、上端に上方に向かって拡幅する横断面円弧状拡幅部22を有する鋼製の軸体23の下端が溶接されている。
【0019】
前記の構成における各部材の施工順を説明すると、立坑内において、鋼製支圧板6の4隅部の吊り金具24に吊り下げロープ25の下端の吊り金具26を係合することで、ロープ25により鋼製立坑構成部材7を所定の高さに吊り下げ仮保持する。つづいて、鋼製支圧板6の上面に、連続繊維補強軸体10の長さと略同一寸法の高さを有するプレキャスト製の第1段目のコンクリート壁単体8を、その下端が当たるように吊り下す。
【0020】
このとき、コンクリート壁単体8の下端部に埋設された外筒17が環状配置の鋼製軸体23の外側に嵌合し、それによって鋼製軸体23が拘束され、拡径しない。
【0021】
次に、図2の状態で3本の連続繊維補強軸体10をコンクリート壁単体8の中空孔18を通して挿入し、その下端の横断面円弧状拡幅部14aのテーパ面15を、鋼製軸体23の横断面円弧状拡幅部22のテーパ面15に係合させ、この状態に仮保持させる。
【0022】
つづいて、環状配置の連続繊維補強軸体10の内側に内筒16を入れ、前記コンクリート壁単体8の下端の外筒17と対応する高さ位置まで下し、鋼製支圧板6の円孔21の端縁に係止させる。これにより、内筒16で連続繊維補強軸体10の内側への移動も拘束され、当該係合部の拘束はより確実となって上位と下位の連続繊維補強軸体10は一体化される。
【0023】
次に、図3に示すように、第1段目のコンクリート壁単体8の上に第2段目のコンクリート壁単体8を載置して、その中空孔18内に連続繊維補強軸体10を挿入し、前記の場合と全く同様にして上位と下位の連続繊維補強軸体10の下部と上部の横断面円弧状拡幅部14,14aの各テーパ面15同士を係合させ、その外側を第1段目のコンクリート壁単体8の上部に埋設した外筒17で拘束し、同じく内側を内筒16で拘束する。
【0024】
さらに、第2段目のコンクリート壁単体8の上には最上段のコンクリート壁単体8を載置し、その中空孔18に連続繊維補強軸体10を挿入し、第2段目のコンクリート壁単体8の上部に埋設した外筒17と、その内側の内筒16とで、前記と同様に上位と下位の連続繊維補強軸体10の下部と上部の横断面円弧状拡幅部14,14aを内外に拘束する。
【0025】
なお、第2段のコンクリート壁単体8の下部には外筒17は設けなくてよい。さらに、最上段のコンクリート壁単体8では、その内部に中空孔18が設けられているが、この中空孔18の上部と下部のいずれにも外筒17は設けられていない。
【0026】
一方、最上段のコンクリート壁単体8の上部は、前述したように本発明で構成される被破壊のコンクリート壁体8aの上部に位置するH形鋼からなる鋼製立坑構成部材7aの下端に鋼製支圧板6aが溶接されていて、この鋼製支圧板6aに引張力付与手段27が設けられ、この引張付与手段27により、上下段の各コンクリート壁単体8の中空孔18に挿入された上位と下位の連続繊維補強軸体10を連結して構成される筋材11に引張力を与えるように構成されている。
【0027】
引張力付与手段27の構成は、図3,図4,図6に示される。各図において、最上段のコンクリート壁単体8の中空孔18と対応した位置に円孔28を有する鋼製の外筒30が固着又は載置されており、この外筒30内に最上段のコンクリート壁単体8の中空孔18から突出する連続繊維補強軸体10の上端の上方に向かって拡幅する横断面円弧状拡幅部14が位置している。
【0028】
また、外筒30内の横断面円弧状拡幅部14の間には、外面に分割ねじ31を有する上部軸体32の下方に向かって拡幅する横断面円弧状拡幅部33が位置しており、上位と下位の各円弧状拡幅部14,33のテーパ面15同士が係合して、かつ外筒30により、外側への拡径が拘束されている。
【0029】
さらに、環状配置の上部軸体32の間隙には外周に分割ねじ31aを有するスペーサ34が配設されており、この上部軸体32とスペーサ34とによりリング形状が構成され、その内側に拘束部材である内筒16が挿入されている。上部軸体32の分割ねじ31とスペーサ34の分割ねじ31aが連結することにより環状ねじ31bが形成され、この環状ねじ31bに締結リング35の内ねじ36が螺合している。
【0030】
したがって、締結リング35の下端面を外筒30の上端面に当接した状態で、この締結リング35をその係合孔37に工具(図示せず)を係合して回動し締結することで、締結リング35の下端面→外筒30→鋼製支圧板6a→鋼製立坑構成部材7aの順に反力を取って、上部軸体32が上動され、上部軸体32と連続繊維補強軸体10のそれぞれの横断面円弧状拡幅部33,14のテーパ面15の係合を介して、その下部の連続繊維補強軸体10に引張力を与えることができる。それにより、第1段目と第2段目と、最上段の各コンクリート壁単体8の間を一体的に結合して、被破壊のコンクリート壁8aを構成できる。
【0031】
また、図9に示すように繊維強化樹脂からなる連続繊維補強軸体10の上下端の各横断面円弧状拡幅部14,14aには、その円弧方向に伸長する15cm以下の長さの金属繊維38または金属線材(図示せず)が埋設されることで補強されている。
【0032】
また、前記の構成において、環状配置の連続繊維補強軸体10と外筒17と内筒16の直径を大きくとれば、コンクリート壁単体8の中空孔18を活用し、これにトレミー管を通し、モルタル,コンクリート、またはグラウト等を流し込んで充填固化し、最終的に中実のコンクリート壁体を構成できる。
【0033】
また、プレキャスト製のコンクリート壁単体8がなく、繊維補強軸体10と外筒17と内筒16のみで前記と同様に立坑(掘削溝)内に上下に延伸していくことができ、その後、場所打ちコンクリートにより壁体を構築することもできる。
【0034】
さらに、プレキャストのコンクリート壁単体8の長さは、繊維補強軸体10の長さと一致させる必要はなく、これより短くてもよいもので、図10には本発明の第2例としてその例が示されている。勿論、この場合も繊維補強軸体10と異なる長さのコンクリート壁単体8を複数積層して壁体が構成される。図10〜図12の第2例において、他の連結構成は、第1例の場合と同じである。
【0035】
また、図10において、外筒17はプレキャストのコンクリート壁単体8の中空孔18の全長に設けられているが、これに限らず、図1〜図9の場合と同様中空孔18の上,中,下部の一部に設けてもよい。もっとも、図10のように中空孔18全長にわたって、あるいは横断面円弧状拡幅部14,14aの噛み合わせ部より長い範囲に外筒17を配置した場合には、中空孔18内部での継手の位置を、それぞれ任意にでき、あるいは継手の位置に許容範囲が生まれるので、全長組み立て後に連続繊維補強軸体10を緊張して遊びを無くし、ひいてはコンクリート壁単体8同士の目開きを防止するのに都合がよい。
【0036】
また、前記中空孔18に繊維補強軸体10を挿入し、上下に連結して構成される筋材11の本数は、1つのコンクリート壁単体8に何組配設しても構わない。例えば図16には、1つのコンクリートに4組の筋材11が配設された例が示されている。さらに、図14のように、鋼製支圧板6を円環状にし、更に図15に示すように、これに積層するプレキャストのコンクリート壁単体をも円筒状としたものは、柱列杭方式の土留壁に適用する場合に都合がよい。
【0037】
また、図13には、繊維補強軸体10の下端が連結される鋼製支圧板6が立坑を構成する鋼管40に設けられた例が示されている。
【0038】
図17〜図23には本発明の第3例が示されている。この例では、炭素繊維からなる連続繊維補強軸体10aは、その中間部41が所定径,所定長の軸状に構成され、その上下端に、それぞれ上方に向かって所定の傾斜角度で拡径する円錐状の定着部42と、下方に向かって所定の傾斜角度で拡径する円錐状の定着部42aとを有している。
【0039】
前記繊維補強軸体10aは、上下に連接するように配設され、しかも、上位と下位に位置する各円錐状定着部42,42aの端面同士を当接させ、この当接部を例えば中間部拡径テーパ孔43を有する2つ割の分割筒状拘束部材44で抱持させることにより各円錐状定着部42,42aを拘束し、上下方向に分離しないように連結できる。
【0040】
2つ割の分割筒状拘束部材44の拡開を拘束する手段として、図19〜図21に示すような外円筒45が用いられ、その外円筒45は、コンクリート壁単体8の中空孔18の上下端部に埋設されている。
【0041】
したがって、上下に連接した繊維補強軸体10aの継手部は、その上位と下位の円錐定着部42,42aの連接部を分割筒状拘束部材44で抱持して、一体化し、つぎにコンクリート壁単体8の中空部18に繊維補強軸体10aを挿入し、中空部18に埋設した外円筒45を分割筒状拘束部材44に嵌合することで、この分割筒状拘束部材44の拡径が拘束され、上下の繊維補強軸体10aは一体化されて筋材11aが構成される。
【0042】
前記繊維補強軸体10aにコンクリート壁単体8の中空部18を嵌合する際、図25,図27に示すように分割筒状拘束部材44の外径か下方が次第に拡径するようにテーパ面46を付形し、これに対応して図25に示すように外円筒45の内径を下方が次第に拡径するテーパ面47を付形し、また図27に示すように上下複数の環体48の内面を上方のものから下方のものが順次拡径するテーパ面47を付形してもよい。
【0043】
なお、筋材11aを構成する複数の繊維補強軸体10aの最下端は、図19,図20のように鋼製支圧板6の上面に固着された上方が拡径する円錐定着部49を有する鋼製軸体50に溶接で固着される。つまり、シールド掘進機により掘削破壊されるべき被破壊コンクリート壁8aの下縁を形成すべく鋼製立坑構成部材7の上端縁に前記鋼製支圧板6が固着され、これの上面に鋼製軸体50が固着されている。
【0044】
鋼製軸体50は、鋼製支圧板6の上面に形成されたプレキャスト製の第1段コンクリート壁単体8に埋設され、円錐定着部49はコンクリート壁上面から突出している。
【0045】
本発明の第3例における施工順を説明すると、立坑内において、第1段目のコンクリート壁単体8の横貫通孔51に棒材52を通して前記コンクリート壁単体8を建込み口に仮受けする。
【0046】
つぎに、上位の繊維補強軸体10aの下端の円錐定着部42aを下位の円錐定着部49上に突き合わせて、その両側から分割筒状拘束部材44で抱持し、弾性リング53で仮保持する。次に第2段目のプレキャストのコンクリート壁単体8を下げて、その外に外円筒45を嵌合する(なお、コンクリートの現場打ちの場合は、外円筒45のみをかぶせる)。
【0047】
つづいて、棒材52を横貫通孔51から脱嵌し、第1段目のコンクリート壁単体8を吊り降し、第2段目のコンクリート壁単体8の横貫通孔(図示せず)に前記の棒材52を通してこれを仮受けし、前記と同じ工程を繰返して繊維補強軸体10aとプレキャストのコンクリート壁単体8を順次立坑内に吊り下してコンクリート壁8aを構成できる。
【0048】
また、最上段のコンクリート壁単体8の上部は、本発明で構成される被破壊コンクリート壁体区域12の上部に位置するH形鋼からなる鋼製立坑構成部材7aの下端に鋼製支圧板6aが溶接されていて、この鋼製支圧板6aに引張力付与手段54が設けられている。そして、この引張力付与手段54により、上下段の各コンクリート壁単体8の中空孔18に挿入された上位と下位の繊維補強軸体10aを連結して構成される筋材11aに引張力を与えるようになされている。
【0049】
引張力付与手段54の構成は、図22に示される。同図において、最上段のコンクリート壁単体8の中空孔18と対応した位置に円孔55を有する鋼製支圧板6aの上面に、この円孔55と同心的に上方が拡径したテーパ孔56を有する締結ブロック57が載置され、この締結ブロック57の外周ねじ58と螺合する内ねじ59を有する締結筒体60が、鋼製支圧板6aの上面に位置している。
【0050】
したがって、締結筒体60の下端面を鋼製支圧板6aの上端面に当接した状態で、この締結筒体60を回して締結することで、鋼製支圧板6aに反力をとって、締結ブロック57を引上げ、さらにこの締結ブロック57と一体に拡径円錐定着部42を引上げ、継手部を介して上下に連結されている繊維補強軸体10aに張力を与えることができ、それにより、上下に積層されたコンクリート壁単体8の間を一体的に結合して、被破壊用のコンクリート壁単体8を構成できる。
【0051】
なお、コンクリート壁体8aの全長組み立て後に、繊維補強軸体10または10aを緊張して遊びを無くし、ひいてはコンクリート壁単体8同士の目開きを防止することを重視する場合は、あえてプレキャストのコンクリート壁単体8と外筒17または外円筒45とを一体化せずに、外筒17または外円筒45を繊維補強軸体10または10aの継手部にはめた後に、その上からプレキャストのコンクリート壁体を設置する工程とするのが好ましい。
【0052】
また、プレキャストのコンクリート壁単体8を伴う施工の場合、中空孔18に通している繊維補強軸体10aが根入れ側のコンクリート壁単体8および、鋼製立坑構成部材7の荷重を受けて中空孔18内を滑り落ちようとするが、繊維補強軸体10aの円錐定着部42,42aのテーパ面が分割筒状拘束部材44を押し開き、その外面が外円筒45の内面に圧着されるため外円筒45を前記中空孔18に連通してコンクリート壁単体8に埋設しておけば、繊維補強軸体10aは落下しない。このようにしてコンクリート壁8aを全長にわたって組立て一体化した後、上部鋼材7aを施工基面で固定すると、中途で仮保持したロープ25は不要になるので補助ワイヤー25aを引いて吊り金具26の爪を開き、ロープ25を撤去できる。
【0053】
前記の固定構造により、繊維補強軸体10aはコンクリート壁単体8と一体化し、断面の平面保持が確保できるが、その場合も、繊維補強軸体10aの緊張後に、中空孔18にモルタル,コンクリートまたはグラウト等を流し込んで充填固化し、内部の繊維補強軸体10aの付着を確保することも可能である。
【0054】
本発明において、前述のように、コンクリート壁単体8と、外筒17や外円筒45とが予めコンクリート打設時に一体化された構造にしておくと、繊維補強軸体10,10aの継手の接合が能率的になるばかりでなく、継手を含む繊維補強軸体10,10aとコンクリートとの付着が与えられて、部材断面の平面保持が確保されるので、アンボンドのポストテンションのような場合に比べて断面設計上有利である。とくに、コンクリートと繊維補強軸体10,10aまたは外筒との付着力を高めるために、繊維補強軸体10,10aや外筒のコンクリートに接する面に凹凸を設けた形状とすることも有効である。
【0055】
また、分割筒状拘束部材44の両端は、内径が小さくなっている分だけ肉厚になっている。一般に厚肉のFRPの成形硬化時には、昇温,徐冷時に温度分布に起因するクラックが生じやすいが、切削性に影響ない条件範囲で、金属の線材または繊維を使用することにより、厚肉部分の熱伝導率を高めて温度差の発生を防ぎ、クラックを発生させることなしに、所望の形状の分割筒状拘束部材44を形成できる。加えて、この分割筒状拘束部材44を合わせて形成した継手の端部の口元は、元来応力集中しやすい箇所であり、そこに切削性に影響ない条件範囲で金属のような靱性のある材料を配置することは、継手強度の向上の観点からも効果的である。
【0056】
また、繊維強化樹脂の分割筒状拘束部材44の内面に形成する中間部拡径テーパ孔43の円錐面は、分割筒状拘束部材44の軸方向の両端に向かって先がすぼまった形状である。一方、このような軸対称で且つ強度を要求されるFRPの場合、補強繊維の配向を高精度で制御しつつ製造することが肝要であり、これを満足するためには専ら、軸に装着した型を回転させながらそれに繊維を巻きつけていくフィラメントワインディングと呼ばれる方法を用いるのが好適である。この場合、型の周囲に成形された回転体は、中空部の両端がすぼまった形状のため、内部の型を抜くことができない。それゆえ、たとえば安価な木材等の材料で使い捨ての型を作り、成形体ごと縦に切断して、割り子の円筒を得る方法が最も簡便な方法である。
【0057】
【発明の効果】
以上説明したように本発明によると、立坑等施工内空の限られた場所で、限られた長さの連続繊維補強軸体を、その引張強度を継手部で損なうことなく、順次継ぎ足しながら筋材を容易に構成でき、しかも、流動性材料やFRP製のボルトを一切用いないでよく、接続作業に熟練が不要で、施工の確実性が高い。また、この筋材によって被破壊用のコンクリート壁体を構築でき、このようにして構築されたコンクリート壁体では、連続繊維補強軸体および、その継手部は連続繊維を中心とした切削可能な材料で構成されているため、シールド掘進機のカッタービットで容易に切削可能である。
【0058】
さらに、こうして構築されたコンクリート壁体の両端で、シールド掘進機の発進到達範囲から外れたところは、鋼製立坑構成物又は鉄筋コンクリート構造となるが、これらと本発明のコンクリート壁体との接合は、前者に固定される鋼製軸体と、後者に固定される繊維補強の軸体を連結することで円滑に行なわれる。
【図面の簡単な説明】
【図1】立坑におけるシールド掘進機推進部のコンクリート壁に本発明を実施した例を示す正面説明図。
【図2】本発明の第1例に係る繊維補強軸体の組立状態を示す分解斜視図である。
【図3】図2の組立時の状態を示す斜視説明図である。
【図4】図3の上部の引張力付与手段の分解斜視図である。
【図5】図3の下部の縦断面図である。
【図6】図3の上部の縦断面図である。
【図7】図6のA−A断面図である。
【図8】繊維補強軸体の継手部の展開説明図である。
【図9】繊維補強軸体の下部の横断面円弧状拡幅部の補強構造を示す斜視図である。
【図10】本発明の第2例に係る繊維補強軸体とコンクリート壁体の関係を示す斜視図である。
【図11】図10における上位と下位の繊維補強軸体の横断面円弧状拡幅部同士の係合状態を示す斜視図である。
【図12】図10における横断面円弧状拡幅部と内筒と外筒の関係を示す一部横断平面図である。
【図13】繊維補強軸体の下端を連結する鋼製軸体の一例の斜視図である。
【図14】図13の変形例の斜視図である。
【図15】図14に対応する上方の繊維補強軸の斜視図である。
【図16】コンクリート壁単体に4本の繊維補強軸体を配設した例として、その継手部を横断して示す平面図である。
【図17】本発明の第2例に係る繊維補強軸体の組立状態を示す分解斜視図である。
【図18】図17の下部の縦断面図である。
【図19】図18において、上部の横断面円弧状拡幅部の連結状態の縦断面図である。
【図20】図19において、上位のプレキャストコンクリート壁単体を積層した状態の縦断面図である。
【図21】図20において、さらに上部の横断面円弧状拡幅部の連結状態の縦断面図である。
【図22】図21において、上端部に引張力付与手段を取付けた状態の縦断面図である。
【図23】前記繊維補強軸体の継手部の縦断面図である。
【図24】図23のB−B断面図である。
【図25】前記繊維補強軸体の継手部の縦断面図である。
【図26】図25のC−C断面図である。
【図27】前記繊維補強軸体の継手部の縦断面図である。
【図28】図27のD−D断面図である。
【図29】従来例として立坑におけるシールド掘進機と、その推進部におけるコンクリート壁を示す側面説明図である。
【符号の説明】
1 立坑
2 シールド掘進機
3 鉄筋コンクリート壁体
4 推進部位
6 鋼製支圧板
7 鋼製立坑構成部材
8 コンクリート壁単体
8a コンクリート壁
10,10a 連続繊維補強軸体
11,11a 筋材
12 区域
13 中間部
14,14a 横断面円弧状拡幅部
15 テーパ面
16 内筒(環状拘束部材)
17 外筒(拘束部材)
18 中空孔
20 固定部
21 円孔
22 横断面円弧状拡幅部
23 鋼製軸体
24 吊り金具
25 吊り下げロープ
25a 補助ワイヤー
26 吊り金具
27 引張力付与手段
28 円孔
30 外筒
31 分割ねじ部
32 上部軸体
33 横断面円弧状拡幅部
34 スペーサ
35 締結リング
36 内ねじ
37 係合孔
38 金属繊維
40 鋼管
41 中間部
42,42a 円錐状定着部
43 中間部拡径テーパ孔
44 分割筒状拘束部材
45 外円筒(円環部材)
46 テーパ面
47 テーパ面
48 環体
49 円錐定着部
50 鋼製軸体
51 横貫通孔
52 棒材
53 弾性リング
54 引張力付与手段
55 円孔
56 テーパ孔
57 締結ブロック
58 外周ねじ
[0001]
BACKGROUND OF THE INVENTION
  The present invention is for use on a retaining concrete wall of a shield machine start reach in a tunnel digging shaft that can be cut by a shield machine.The present invention relates to a reinforcing material for a concrete wall, a concrete wall, a joint structure of continuous fiber reinforced shafts, and a connection method of continuous fiber reinforced shafts.
[0002]
[Prior art]
FIG. 27 shows a state in which the shaft 1 is built at a position to be a base for tunnel excavation work, and the shield machine 2 is installed at the bottom of the shaft 1.
[0003]
As shown in the figure, this shaft 1 is finished with excavation of the soil in the shaft, and then rebars are placed on the lower floor and side walls, and concrete is placed on that part, and the surrounding earth pressure is adjusted. A durable concrete wall 3 is built.
[0004]
The shield machine 2 is assembled on a cradle provided in the shaft 1 so as to be installed at a predetermined position. In the concrete wall 3, the part 4 that the shield machine 2 propels is configured to be easily demolished by the shield machine 2, for example, the reinforcing material of the concrete wall 3 in this part 4. For example, a continuous fiber reinforcement made by impregnating a resin with carbon fiber, glass fiber or aramid fiber, which has almost the same strength as a reinforcing bar and can be easily cut and destroyed by the excavating ability of the shield machine 2, is used. It is done.
[0005]
As means for providing a retaining wall body that can be directly cut with the cutter bit of the shield machine as described above, those already described in Japanese Patent Publication No. 6-37830, Japanese Patent Laid-Open No. 5-302490, etc. are known. ing. In addition, due to the congestion of underground buried objects and interference with surrounding structures, it is increasingly necessary to assemble this retaining wall under the road, and as a countermeasure, it can be carried into the road construction site. Japanese Patent Application Laid-Open No. 6-81576, Japanese Patent Application Laid-Open No. 6-107779, Japanese Patent Application Laid-Open No. 6-133706, Japanese Patent Application Laid-Open No. 6-137066, and the like. The structures described in the publications and the like and methods for connecting them have been invented, and some of them have already been put into practical use.
[0006]
[Problems to be solved by the invention]
In the above-mentioned retaining wall, a reinforcing material for reinforcing the concrete is used, and this reinforcing material is a fiber reinforced resin mainly using carbon fiber as an axial reinforcing fiber so that it can be directly cut with a cutter bit. A reinforcement made of continuous fiber reinforcement such as (CFRP) may be used as a concrete reinforcement reinforcement.
Carbon fiber is most suitable as a fiber for such purposes because it is easy to obtain CFRP with a high modulus of elasticity comparable to that of reinforcing steel, has excellent machinability, and has no danger of being attacked by concrete alkali like glass fiber. It is.
However, it is allowed to use glass fibers and aramid fibers in combination for fiber orientation other than the axial direction and for the purpose of providing an auxiliary function even in the axial direction. Thus, even if glass fiber, aramid fiber, or the like is used in combination, CFRP is used as long as the main component of the reinforcing material in the axial direction, that is, in the tensile direction is carbon fiber.
[0007]
It is necessary to fix these tensile reinforcement materials in order to connect plate reinforcements made of CFRP such as plates, tubes, rods, and stranded wires, or to transfer stress by connecting the ends to other materials. It is. In addition, all materials used for this fixing must be made of materials that can be cut with a cutter bit of a shield machine and have a strength that matches the outstanding tensile strength of CFRP. In addition, when applied to road construction at the time of shaft construction, the construction method cannot be excellent in practicality unless a complicated and skilled work process is avoided.
[0008]
Conventionally, joints of these tensile reinforcements have been developed using fluid materials and those made of FRP bolts, and some of them have been put into practical use. On the other hand, the former involved complicated work requiring special attention, such as confirmation of filling and a temporary fixing process within the curing time, and the latter, such as bolt tightening torque management. Furthermore, it was easy to happen that the strength of the tensile reinforcement material could not be fully exhibited due to structural and construction restrictions of the anchorage.
[0009]
  The present invention is a method of connecting a CFRP tensile reinforcement member using only an FRP cylindrical auxiliary member without using any flowable material or FRP bolts, and requires no skill in connection work and reliable construction. HighAn object of the present invention is to provide a reinforcing material for a concrete wall, a concrete wall, a joint structure of continuous fiber reinforced shafts, and a connection method of continuous fiber reinforced shafts.
[0010]
[Means for Solving the Problems]
  In order to solve the above-described problems, a reinforcing material for a concrete wall to which the present invention is applied has an upper bulging connection portion having a taper portion expanding upward and a lower swelling having a taper portion expanding downward. A continuous fiber reinforced shaft body made of a fiber reinforced resin having upper and lower portions connected to the upper and lower portions is connected to the upper and lower portions, and the connecting portion is restrained so as not to be detached using a restraining member.
  Moreover, the reinforcing material for concrete walls to which the present invention is applied widens upward in order to solve the above-described problems.As the upper bulging connection partThe taper surface of the arc-shaped widened portion in the cross section and the width is expanded downward.As the downward bulging connection partA plate-like continuous fiber reinforced shaft body made of fiber reinforced resin having a taper surface of a cross-section arc-shaped widened portion at the upper and lower portions, respectively, is connected to the upper and lower sides, and arranged annularly at a predetermined interval, The taper surfaces of the upper and lower cross-sectional arc-shaped widened portions are engaged with each other.RingIt is set as the structure restrained so that it cannot detach | leave using a restraint member.
  Moreover, the reinforcing material for concrete walls to which the present invention is applied has a tapered outer surface that expands upward in order to solve the above-described problems.As the upper bulging connection partIt has a conical fixing part and a tapered outer surface that expands downward.As the lower bulging connection partA rod-like continuous fiber reinforced shaft body made of fiber reinforced resin having conical fixing portions at the upper and lower portions thereof is connected to the upper and lower sides by bringing the end faces of the conical fixing portions into contact with each other, and the upper and lower portions. The conical fixing portion is surrounded by a divided cylindrical constraining member having an enlarged diameter tapered hole, and is integrally held.
  Moreover, the concrete wall body to which the present invention is applied is characterized in that a plurality of reinforcing bars composed of the continuous fiber reinforced shafts are arranged and embedded in the concrete.
Moreover, the joint structure of the continuous fiber reinforced shaft body to which the present invention is applied includes an upper bulging connection portion having a taper portion that expands upward, and a lower bulge connection portion having a taper portion that expands downward. The continuous fiber reinforced shafts made of fiber reinforced resin having the upper and lower portions are connected vertically, and the connected portions are restrained so as not to be detached by the restraining members, or the connecting portions are divided cylindrical restraining members. It is characterized by being surrounded and integrally held.
  Moreover, the connection method of the continuous fiber reinforcement shaft body to which this invention is applied WHEREIN: In order to solve the subject mentioned above, the upper bulging connection part which has a taper part which expands upwards, and the taper part which expands downwards A continuous fiber reinforced shaft body made of a fiber reinforced resin having a lower bulging connecting portion having upper and lower portions is connected vertically, and the connecting portion isRingBy using a restraining member to restrain it so as not to be detached, a reinforcing material for a concrete wall to be cut is obtained.
  Moreover, the connection method of the continuous fiber reinforcement shaft body which applied this invention is provided in the lower part of the lower part of the plate-like continuous fiber reinforcement shaft body which consists of fiber reinforcement resin located in order to solve the subject mentioned above. Widen towardAs the lower bulging connection partThe taper surface of the cross-section arc-shaped widened portion and the width widened upward provided on the upper part of the plate-like continuous fiber reinforced shaft body made of fiber reinforced resin located in the lower part.As the upper bulging connection partEngage the taper surface of the arc-shaped widened portion with the cross section, andRingA restraint member is used to restrain the material from being removed so as to be a reinforcing material for a concrete wall to be cut.
  Moreover, the connection method of the continuous fiber reinforcement shaft body to which this invention is applied toward the downward direction provided in the lower part of the rod-shaped continuous fiber reinforcement shaft body which consists of a fiber reinforced resin located in order, in order to solve the subject mentioned above. Has a tapered outer surface that expands in diameterAs the lower bulging connection partA conical fixing portion and a tapered outer surface that expands toward the upper side provided at the upper portion of a rod-like continuous fiber reinforced shaft body made of a fiber reinforced resin located in the lower part.As the upper bulging connection partThe end surfaces of the conical fixing portions are brought into contact with each other so as to be connected vertically, and the upper and lower conical fixing portions are surrounded by a divided cylindrical restraining member having an enlarged diameter taper hole in the middle so as to be integrally held. Hold it as a reinforcing material for the concrete wall to be cut.
[0011]
According to the present invention, continuous fiber reinforced shafts of a limited length are added in the longitudinal direction in a limited place in the construction space, and the connections are quickly and sequentially added without damaging the tensile strength at the joint. However, it is possible to configure the muscle material. Moreover, the concrete wall reinforced with the reinforcing bar has a required strength and can be easily cut with a cutter bit of a shield machine.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
  The present invention will be described below with reference to the drawings.
  1 to 9 show a first example of the present invention. In FIG. 1, a plurality of concrete is provided between a steel bearing plate 6 provided at the upper end of the lower steel shaft member 7 and a steel bearing plate 6a provided at the lower end of the upper steel shaft member 7a. A single wall 8 is laminated and a continuous fiber reinforced shaft 10 made of fiber reinforced resin is connected to each other using a reinforcing material 11 that is connected in the vertical direction to form a concrete wall 8a for destruction. ing. This concrete wall 8a isFIG.The area 12 corresponds to the propulsion part 4 of the reinforced concrete wall 3 in the vertical shaft 1 of the shield method shown in FIG.
[0013]
Next, the joint structure of the continuous fiber reinforced shaft body 10 constituting the main element of the present invention will be described in the following order.
The continuous fiber reinforced shaft body 10 made of carbon fiber reinforced resin has an arcuate cross section in which an intermediate portion 13 has a predetermined width and length, and widens at a predetermined inclination angle upward and downward at the upper and lower ends, respectively. It has a widened portion 14 and a cross-section arc-shaped widened portion 14a that widens downward at a predetermined inclination angle as described above.
[0014]
Further, the continuous fiber reinforced shaft body 10 is provided in a plurality (three in the illustrated example) in an annular arrangement with a predetermined interval, and is disposed so as to be connected in the vertical direction. The taper surfaces 15 and 15 on both sides of each of the arc-shaped widened portions 14 and 14a located in the cross section are connected so as to engage with each other.
[0015]
In addition, in order to maintain the engagement state of the tapered surfaces 15 and 15, a restraining member is used, and in the case of the illustrated example, the restraining member is constituted by a pair of an inner cylinder 16 and an outer cylinder 17. A plurality of inner cylinders 16 are used in the vertical direction, and only the innermost cylinder 16 at the lowermost end may be made of steel, but the other inner cylinders 16 need to be FRP. Further, the outer cylinder 17 is embedded in the precast concrete wall unit 8 as shown in FIG. That is, in the illustrated example, the single concrete wall 8 is made of precast, and has a hollow hole 18 through which a plurality of continuous fiber reinforced shafts 10 arranged in an annular shape are inserted. The holes 18 are embedded at the upper and lower end portions.
[0016]
That is, in the constraining member composed of the inner cylinder 16 and the outer cylinder 17, the upper and lower transverse cross-section arc-shaped widened portions 14 and 14a in which the tapered surfaces 15 of the plurality of continuous fiber reinforced shaft bodies 10 in the annular arrangement are engaged with each other. The inner cylinder 16 having the same diameter as the inner cylinder 16 is disposed on the inner side, and the outer cylinder 17 is fitted on the outer side. Movement is restrained. Along with this, both the reinforcing shafts 10 are coupled by the engagement of the two tapered surfaces 15 with respect to the tensile force in the vertical direction of the upper and lower fiber reinforced shafts 10, and a plurality of upper and lower reinforcements are coupled. The shaft body 10 is integrated into a single reinforcing material 11, and a force is transmitted in the vertical direction.
[0017]
More specifically, as described above, except for the concrete wall 8 to be destroyed to be excavated and destroyed by the shield machine, it is composed of steel shaft components 7 and 7a using H-shaped steel, As shown in FIG. 3, steel bearing plates 6 and 6a are fixed to the upper and lower edges of the steel shaft components 7 and 7a located at the upper and lower peripheral edges of the single body 8, respectively.
[0018]
On the lower steel bearing plate 6, two sets of right and left fixing portions 20 are provided to connect and fix the lower ends of the two reinforcing bars 11 shown in FIG. 3. In this fixing portion 20, a circular hole 21 is formed, and a steel shaft having a cross-sectional arc-shaped widened portion 22 that widens upward at the upper end with an equiangular interval around the circular hole 21. The lower end of the body 23 is welded.
[0019]
The construction order of each member in the above configuration will be described. The rope 25 is obtained by engaging the suspension fitting 26 at the lower end of the suspension rope 25 with the suspension fitting 24 at the four corners of the steel bearing plate 6 in the shaft. Thus, the steel shaft constituent member 7 is suspended and temporarily held at a predetermined height. Subsequently, the first-stage concrete wall 8 made of precast having a height substantially the same as the length of the continuous fiber reinforced shaft body 10 is suspended on the upper surface of the steel bearing plate 6 so that the lower end of the precast cast concrete wall 8 is in contact with the upper surface. I will give you.
[0020]
At this time, the outer cylinder 17 embedded in the lower end portion of the concrete wall unit 8 is fitted to the outer side of the annularly arranged steel shaft body 23, whereby the steel shaft body 23 is restrained and does not expand in diameter.
[0021]
Next, in the state of FIG. 2, three continuous fiber reinforced shafts 10 are inserted through the hollow holes 18 of the single concrete wall 8, and the tapered surface 15 of the cross-section arc-shaped widened portion 14a at the lower end thereof is replaced with a steel shaft. 23 is engaged with the tapered surface 15 of the arc-shaped widened portion 22 of the cross section, and is temporarily held in this state.
[0022]
Subsequently, the inner cylinder 16 is inserted inside the continuous fiber reinforced shaft body 10 in the annular arrangement, and is lowered to a height position corresponding to the outer cylinder 17 at the lower end of the concrete wall unit 8, and the circular hole of the steel bearing plate 6 21 is engaged with the end edge. Thereby, the inner cylinder 16 also restrains the movement of the continuous fiber reinforced shaft body 10 to the inside, and the restraint of the engaging portion becomes more reliable, and the upper and lower continuous fiber reinforced shaft bodies 10 are integrated.
[0023]
Next, as shown in FIG. 3, the second-stage concrete wall single body 8 is placed on the first-stage concrete wall single body 8, and the continuous fiber reinforced shaft body 10 is placed in the hollow hole 18. Insert and engage the tapered surfaces 15 of the upper and lower continuous fiber reinforced shaft bodies 10 at the lower and upper cross-section arc-shaped widened portions 14 and 14a in the same manner as described above, The outer cylinder 17 embedded in the upper part of the first-stage concrete wall unit 8 is constrained, and the inner side is similarly constrained by the inner cylinder 16.
[0024]
Further, the uppermost concrete wall 8 is placed on the second-stage concrete wall 8, and the continuous fiber reinforced shaft 10 is inserted into the hollow hole 18, so that the second-stage concrete wall alone is placed. The outer cylinder 17 embedded in the upper part of 8 and the inner cylinder 16 on the inner side thereof are arranged so that the upper and lower continuous fiber reinforced shaft bodies 10 and the upper and lower cross-section arc-shaped widened parts 14 and 14a of the upper and lower continuous fiber reinforcing shafts 10 and 14a To be restrained.
[0025]
In addition, the outer cylinder 17 does not need to be provided in the lower part of the second-stage concrete wall unit 8. Further, in the uppermost concrete wall unit 8, a hollow hole 18 is provided therein, but no outer cylinder 17 is provided in either the upper part or the lower part of the hollow hole 18.
[0026]
On the other hand, the upper part of the uppermost concrete wall unit 8 is steel at the lower end of the steel shaft constituent member 7a made of H-shaped steel located at the upper part of the concrete wall 8a to be destroyed constructed according to the present invention. The steel bearing pressure plate 6a is welded, and the steel bearing pressure plate 6a is provided with a tensile force imparting means 27. By this tension imparting means 27, the upper part inserted into the hollow holes 18 of the individual concrete wall units 8 at the upper and lower stages. And the lower continuous fiber reinforced shaft body 10 are connected to each other so as to give a tensile force to the reinforcing material 11.
[0027]
The configuration of the tensile force applying means 27 is shown in FIGS. In each figure, a steel outer cylinder 30 having a circular hole 28 is fixed or placed at a position corresponding to the hollow hole 18 of the uppermost concrete wall 8, and the uppermost concrete is placed in the outer cylinder 30. A cross-sectional arc-shaped widened portion 14 that widens toward the upper end of the continuous fiber reinforced shaft 10 protruding from the hollow hole 18 of the single wall 8 is located.
[0028]
Further, between the cross-section arc-shaped widened portion 14 in the outer cylinder 30 is located a cross-section arc-shaped widened portion 33 that widens toward the lower side of the upper shaft body 32 having the split screw 31 on the outer surface, The tapered surfaces 15 of the upper and lower arc-shaped widened portions 14 and 33 are engaged with each other, and the outer diameter is restricted by the outer cylinder 30.
[0029]
Further, a spacer 34 having a split screw 31a on the outer periphery is disposed in the gap between the annularly arranged upper shaft bodies 32. The upper shaft body 32 and the spacers 34 form a ring shape, and a restraining member is provided on the inside thereof. The inner cylinder 16 is inserted. An annular screw 31b is formed by connecting the divided screw 31 of the upper shaft body 32 and the divided screw 31a of the spacer 34, and the inner screw 36 of the fastening ring 35 is screwed to the annular screw 31b.
[0030]
Therefore, in a state where the lower end surface of the fastening ring 35 is in contact with the upper end surface of the outer cylinder 30, the fastening ring 35 is rotated and fastened by engaging a tool (not shown) with the engagement hole 37. Then, the reaction force is taken in the order of the lower end surface of the fastening ring 35 → the outer cylinder 30 → the steel bearing plate 6a → the steel shaft forming member 7a, and the upper shaft body 32 is moved upward to reinforce the upper shaft body 32 and the continuous fiber. A tensile force can be applied to the continuous fiber reinforced shaft body 10 at the lower part of the shaft body 10 through the engagement of the tapered surfaces 15 of the arc-shaped widened portions 33 and 14 of the respective cross sections of the shaft body 10. As a result, the first and second stages and the individual concrete walls 8 at the uppermost stage are integrally coupled to each other, and the concrete wall 8a to be destroyed can be configured.
[0031]
Further, as shown in FIG. 9, metal fibers having a length of 15 cm or less extending in the arc direction are provided on the respective arcuate widened portions 14, 14 a at the upper and lower ends of the continuous fiber reinforced shaft body 10 made of fiber reinforced resin. It is reinforced by embedding 38 or a metal wire (not shown).
[0032]
Further, in the above configuration, if the diameter of the continuous fiber reinforced shaft body 10 of the annular arrangement, the outer cylinder 17 and the inner cylinder 16 is increased, the hollow hole 18 of the concrete wall single body 8 is utilized, and a tremy tube is passed through this, Mortar, concrete, or grout can be poured and solidified to form a solid concrete wall.
[0033]
Further, there is no precast concrete wall 8 alone, and the fiber reinforced shaft body 10, the outer cylinder 17 and the inner cylinder 16 can be extended vertically into the shaft (excavation groove) in the same manner as described above. Walls can also be constructed from cast-in-place concrete.
[0034]
Further, the length of the single precast concrete wall 8 does not need to coincide with the length of the fiber reinforced shaft body 10, and may be shorter than that. FIG. 10 shows an example of the second example of the present invention. It is shown. Of course, also in this case, the wall body is configured by laminating a plurality of concrete wall single bodies 8 having a length different from that of the fiber reinforced shaft body 10. 10 to 12, other connection configurations are the same as those in the first example.
[0035]
In FIG. 10, the outer cylinder 17 is provided over the entire length of the hollow hole 18 of the precast concrete wall 8 alone, but is not limited thereto, and is similar to the case of FIGS. , May be provided in a part of the lower part. However, when the outer cylinder 17 is disposed over the entire length of the hollow hole 18 as shown in FIG. 10 or in a range longer than the meshed portion of the arc-shaped widened portions 14 and 14a, the position of the joint within the hollow hole 18 Can be arbitrarily selected, or an allowable range is created at the position of the joint. Therefore, it is convenient for the continuous fiber reinforced shaft body 10 to be tensioned after the full length assembly to eliminate play and to prevent the concrete walls 8 from opening each other. Is good.
[0036]
  Further, any number of the reinforcing bars 11 formed by inserting the fiber reinforced shaft body 10 into the hollow hole 18 and connecting them vertically can be arranged on one concrete wall 8. For exampleFIG.Shows an example in which four pairs of reinforcing bars 11 are arranged on one concrete. Further, as shown in FIG. 14, the steel bearing plate 6 is formed into an annular shape, and as shown in FIG. 15, a single precast concrete wall layered thereon is also formed into a cylindrical shape. Convenient when applied to walls.
[0037]
FIG. 13 shows an example in which the steel bearing plate 6 to which the lower end of the fiber reinforced shaft body 10 is connected is provided on the steel pipe 40 constituting the shaft.
[0038]
17 to 23 show a third example of the present invention. In this example, the continuous fiber reinforced shaft body 10a made of carbon fiber has an intermediate portion 41 configured in a shaft shape having a predetermined diameter and a predetermined length, and the upper and lower ends thereof are respectively expanded at a predetermined inclination angle upward. A conical fixing portion 42 and a conical fixing portion 42a whose diameter is increased downward at a predetermined inclination angle.
[0039]
The fiber reinforced shaft body 10a is disposed so as to be connected in the vertical direction, and the end surfaces of the conical fixing portions 42 and 42a positioned at the upper and lower positions are brought into contact with each other, and this contact portion is, for example, an intermediate portion. The conical fixing portions 42 and 42a are constrained by being held by the two divided cylindrical constraining members 44 having the enlarged diameter tapered holes 43, and can be connected so as not to be separated in the vertical direction.
[0040]
An outer cylinder 45 as shown in FIGS. 19 to 21 is used as a means for restraining the expansion of the split split cylindrical restraint member 44, and the outer cylinder 45 is formed of the hollow hole 18 of the concrete wall unit 8. It is embedded in the upper and lower ends.
[0041]
Therefore, the joint portion of the fiber reinforced shaft body 10a connected vertically is integrated by holding the connecting portions of the upper and lower conical fixing portions 42, 42a with the divided cylindrical restraining member 44, and then the concrete wall. By inserting the fiber reinforced shaft body 10 a into the hollow portion 18 of the single body 8 and fitting the outer cylinder 45 embedded in the hollow portion 18 into the divided cylindrical restraining member 44, the diameter of the divided cylindrical restraining member 44 can be increased. The upper and lower fiber reinforced shafts 10a are integrated to form the reinforcing material 11a.
[0042]
When the hollow portion 18 of the concrete wall 8 is fitted to the fiber reinforced shaft body 10a, the tapered surface is formed so that the outer diameter or the lower side of the divided cylindrical restraining member 44 is gradually expanded as shown in FIGS. Corresponding to this, a tapered surface 47 is formed which gradually expands the inner diameter of the outer cylinder 45 downward as shown in FIG. 25, and a plurality of upper and lower rings 48 as shown in FIG. A tapered surface 47 in which the diameter of the inner surface from the upper one to the lower one is gradually increased may be formed.
[0043]
Note that the lowermost ends of the plurality of fiber-reinforced shafts 10a constituting the reinforcing material 11a have a conical fixing portion 49 that is fixed to the upper surface of the steel bearing plate 6 and whose diameter is expanded as shown in FIGS. The steel shaft body 50 is fixed by welding. That is, the steel bearing plate 6 is fixed to the upper edge of the steel shaft constituting member 7 so as to form the lower edge of the concrete wall 8a to be destroyed by the shield machine, and the steel shaft is attached to the upper surface thereof. The body 50 is fixed.
[0044]
The steel shaft body 50 is embedded in the precast first-stage concrete wall unit 8 formed on the upper surface of the steel bearing plate 6, and the conical fixing portion 49 protrudes from the upper surface of the concrete wall.
[0045]
The construction sequence in the third example of the present invention will be described. In the shaft, the concrete wall unit 8 is provisionally received at the erection port through the bar 52 in the horizontal through hole 51 of the first-stage concrete wall unit 8.
[0046]
Next, the conical fixing portion 42a at the lower end of the upper fiber-reinforced shaft 10a is butted against the lower conical fixing portion 49, and is held by the split cylindrical restraining member 44 from both sides and temporarily held by the elastic ring 53. . Next, the single-stage precast concrete wall 8 in the second stage is lowered, and the outer cylinder 45 is fitted outside the concrete wall (in addition, in the case of concrete on-site hitting, only the outer cylinder 45 is covered).
[0047]
Subsequently, the bar member 52 is detached from the horizontal through hole 51, the first-stage concrete wall unit 8 is suspended, and the second-stage concrete wall unit 8 is inserted into the horizontal through-hole (not shown). This is provisionally received through the bar 52, and the same steps as described above are repeated to suspend the fiber-reinforced shaft body 10a and the precast concrete wall unit 8 sequentially in the shaft, thereby forming the concrete wall 8a.
[0048]
Moreover, the upper part of the uppermost concrete wall unit 8 is provided with a steel bearing plate 6a at the lower end of a steel shaft constituent member 7a made of H-shaped steel located at the upper part of the destructible concrete wall section 12 constructed according to the present invention. Are welded, and a tensile force applying means 54 is provided on the steel bearing plate 6a. The tensile force applying means 54 applies a tensile force to the reinforcing material 11a formed by connecting the upper and lower fiber reinforced shafts 10a inserted in the hollow holes 18 of the individual concrete walls 8 on the upper and lower stages. It is made like that.
[0049]
The configuration of the tensile force applying means 54 is shown in FIG. In the figure, a tapered hole 56 concentrically with the circular hole 55 is formed on the upper surface of a steel bearing plate 6a having a circular hole 55 at a position corresponding to the hollow hole 18 of the uppermost concrete wall 8 alone. The fastening cylinder 57 having the inner screw 59 screwed with the outer peripheral screw 58 of the fastening block 57 is positioned on the upper surface of the steel bearing plate 6a.
[0050]
Therefore, in a state where the lower end surface of the fastening cylinder 60 is in contact with the upper end surface of the steel bearing pressure plate 6a, the fastening cylinder 60 is turned and fastened, thereby taking a reaction force on the steel bearing pressure plate 6a. The fastening block 57 is pulled up, and the diameter-enlarged cone fixing portion 42 is pulled up integrally with the fastening block 57, so that tension can be applied to the fiber reinforced shaft body 10a connected up and down via the joint portion. The concrete wall unit 8 for destruction can be configured by integrally connecting the concrete wall units 8 stacked one above the other.
[0051]
  In addition, after emphasizing the full length of the concrete wall 8a, if it is important to tension the fiber reinforced shaft 10 or 10a to eliminate play and thereby prevent the concrete walls 8 from opening, the precast concrete wall Single 8Outer cylinder 17 or outer cylinder 45Without integratingOuter cylinder 17 or outer cylinder 45It is preferable to set it as the process of installing a precast concrete wall body from the top after attaching to the joint part of the fiber reinforced shaft 10 or 10a.
[0052]
Further, in the case of the construction with the precast concrete wall 8, the fiber reinforced shaft body 10 a passing through the hollow hole 18 receives the load of the concrete wall 8 on the laying side and the steel shaft structural member 7 to receive the hollow hole 18, but the tapered surfaces of the conical fixing portions 42 and 42 a of the fiber reinforced shaft 10 a push open the split cylindrical restraint member 44, and the outer surface thereof is pressed against the inner surface of the outer cylinder 45. If the cylinder 45 communicates with the hollow hole 18 and is embedded in the concrete wall unit 8, the fiber reinforced shaft body 10 a does not fall. After the concrete wall 8a is assembled and integrated over the entire length in this way, when the upper steel member 7a is fixed on the construction base surface, the rope 25 temporarily held halfway becomes unnecessary, so the auxiliary wire 25a is pulled and the claws of the hanging bracket 26 are pulled. And the rope 25 can be removed.
[0053]
With the above-described fixing structure, the fiber reinforced shaft body 10a can be integrated with the concrete wall unit 8 and the cross-section plane can be maintained. In this case as well, after the fiber reinforced shaft body 10a is tensioned, mortar, concrete or It is also possible to inject a grout or the like to solidify and secure adhesion of the internal fiber-reinforced shaft body 10a.
[0054]
In the present invention, as described above, when the concrete wall unit 8 and the outer cylinder 17 and the outer cylinder 45 are integrated in advance when the concrete is placed, the joints of the fiber-reinforced shaft bodies 10 and 10a are joined. In addition to being efficient, the fiber-reinforced shafts 10 and 10a including the joints are attached to the concrete and the cross-section of the member is kept flat, so that compared to the case of unbonded post tension. This is advantageous in terms of cross-sectional design. In particular, in order to increase the adhesion between the concrete and the fiber reinforced shafts 10, 10a or the outer cylinder, it is also effective to form a concavo-convex shape on the surface of the fiber reinforced shafts 10, 10a or the outer cylinder in contact with the concrete. is there.
[0055]
Further, both ends of the divided cylindrical restraining member 44 are thickened as the inner diameter is reduced. In general, when molding and hardening thick FRP, cracks due to temperature distribution are likely to occur during temperature rise and slow cooling, but by using a metal wire or fiber within the range of conditions that do not affect the machinability, The divided cylindrical restraining member 44 having a desired shape can be formed without increasing the thermal conductivity of the material to prevent the occurrence of a temperature difference and without generating cracks. In addition, the mouth of the end portion of the joint formed by combining the divided cylindrical restraining members 44 is originally a place where stress is likely to concentrate, and has a toughness like metal in a condition range that does not affect the machinability. Arranging the material is also effective from the viewpoint of improving joint strength.
[0056]
Further, the conical surface of the intermediate-diameter enlarged taper hole 43 formed on the inner surface of the fiber-reinforced resin split cylindrical restraint member 44 has a shape that is tapered toward both ends in the axial direction of the split cylindrical restraint member 44. It is. On the other hand, in the case of such an FRP that is axisymmetric and requires strength, it is essential to manufacture the reinforcing fiber while controlling the orientation of the reinforcing fiber with high precision, and in order to satisfy this, it is exclusively attached to the shaft. It is preferable to use a method called filament winding in which fibers are wound around a mold while it is rotated. In this case, the rotary body molded around the mold cannot be pulled out because the both ends of the hollow portion are recessed. Therefore, for example, the simplest method is to make a disposable mold using an inexpensive material such as wood, and cut the entire molded body vertically to obtain a split cylinder.
[0057]
【The invention's effect】
As described above, according to the present invention, a continuous fiber reinforced shaft body of a limited length is limited in a limited space in the interior of a shaft such as a shaft, while the tensile strength is not lost in the joint portion, and the muscle is continuously added. The material can be easily configured, and it is not necessary to use any flowable material or FRP bolts. The connection work does not require skill, and the construction is highly reliable. Moreover, a concrete wall body to be destroyed can be constructed by this reinforcing material, and in the concrete wall body constructed in this way, a continuous fiber reinforced shaft body and a joint portion thereof can be cut with a continuous fiber as a centerable material. Therefore, it can be easily cut with a cutter bit of a shield machine.
[0058]
Furthermore, at the both ends of the concrete wall constructed in this way, where it is outside the reach of the shield machine, it becomes a steel shaft structure or reinforced concrete structure, but the connection between these and the concrete wall of the present invention is The steel shaft body fixed to the former and the fiber reinforced shaft body fixed to the latter are connected smoothly.
[Brief description of the drawings]
FIG. 1 is an explanatory front view showing an example in which the present invention is applied to a concrete wall of a shield machine propulsion unit in a vertical shaft.
FIG. 2 is an exploded perspective view showing an assembled state of the fiber-reinforced shaft body according to the first example of the present invention.
3 is a perspective explanatory view showing a state at the time of assembly of FIG. 2; FIG.
4 is an exploded perspective view of an upper tensile force applying unit in FIG. 3;
FIG. 5 is a vertical sectional view of the lower part of FIG. 3;
6 is a vertical sectional view of the upper part of FIG. 3. FIG.
7 is a cross-sectional view taken along the line AA in FIG.
FIG. 8 is a development explanatory view of a joint portion of a fiber-reinforced shaft body.
FIG. 9 is a perspective view showing a reinforcing structure of a cross-section arc-shaped widened portion at the bottom of the fiber-reinforced shaft body.
FIG. 10 is a perspective view showing a relationship between a fiber-reinforced shaft body and a concrete wall body according to a second example of the present invention.
11 is a perspective view showing an engagement state between the arc-shaped widened portions in the cross-section of the upper and lower fiber-reinforced shaft bodies in FIG.
12 is a partially cross-sectional plan view showing the relationship between the cross-sectional arc-shaped widened portion, the inner cylinder, and the outer cylinder in FIG. 10;
FIG. 13 is a perspective view of an example of a steel shaft body that connects lower ends of fiber reinforced shaft bodies.
FIG. 14 is a perspective view of a modification of FIG.
FIG. 15 is a perspective view of an upper fiber reinforced shaft corresponding to FIG. 14;
FIG. 16 is a plan view crossing the joint portion as an example in which four fiber reinforced shafts are disposed on a single concrete wall.
FIG. 17 is an exploded perspective view showing an assembled state of the fiber-reinforced shaft body according to the second example of the present invention.
18 is a vertical sectional view of the lower part of FIG.
FIG. 19 is a longitudinal sectional view of a connected state of an arcuate widened portion in the upper cross section in FIG.
FIG. 20 is a longitudinal sectional view showing a state in which a single upper precast concrete wall is stacked in FIG. 19;
FIG. 21 is a longitudinal sectional view of the connected state of the arcuate widened portion in the upper cross section in FIG.
FIG. 22 is a longitudinal sectional view of FIG. 21 with a tensile force applying means attached to the upper end.
FIG. 23 is a longitudinal sectional view of a joint portion of the fiber-reinforced shaft body.
24 is a cross-sectional view taken along the line BB in FIG.
FIG. 25 is a longitudinal sectional view of a joint portion of the fiber-reinforced shaft body.
26 is a cross-sectional view taken along the line CC in FIG. 25. FIG.
FIG. 27 is a longitudinal sectional view of a joint portion of the fiber-reinforced shaft body.
28 is a cross-sectional view taken along the line DD of FIG.
FIG. 29 is a side view illustrating a shield machine in a vertical shaft and a concrete wall in a propulsion unit as a conventional example.
[Explanation of symbols]
  1 shaft
  2 shield machine
  3 Reinforced concrete wall
  4 propulsion parts
  6 Steel bearing plate
  7 Steel shaft components
  8 Concrete wall alone
  8a concrete wall
  10, 10a Continuous fiber reinforced shaft
  11, 11a Muscle material
  12 areas
  13 Middle part
  14, 14a Wide cross-section arc-shaped widened portion
  15 Tapered surface
  16 Inner cylinder (annular restraint member)
  17 Outer cylinder (restraint member)
  18 Hollow hole
  20 Fixed part
  21 round hole
  22 Cross-section arc-shaped widened part
  23 Steel shaft
  24 Hanging bracket
  25 Hanging rope
  25a Auxiliary wire
  26 Hanging bracket
  27 Tensile force imparting means
  28 hole
  30 outer cylinder
  31 Split screw
  32 Upper shaft
  33 Cross-section arc-shaped widened part
  34 Spacer
  35 Fastening ring
  36 Internal thread
  37 engagement hole
  38 Metal fiber
  40 steel pipes
  41 Middle part
  42, 42a Conical fixing part
  43 Middle diameter enlarged taper hole
  44 Divided cylindrical restraint member
45 Outer cylinder (ring member)
  46 Tapered surface
  47 Tapered surface
  48 ring
  49 Conical anchorage
  50 Steel shaft
  51 Horizontal through hole
  52 Bar
  53 Elastic Ring
  54 Tensile force imparting means
  55 hole
  56 Tapered hole
  57 Fastening block
  58 External thread

Claims (17)

上方に向かって拡大するテーパ部を有する上部膨出連結部と、下方に向かって拡大するテーパ部を有する下部膨出連結部とを上下部に具備している繊維強化樹脂からなる連続繊維補強軸体を上下に連接すると共に、かかる連接部を拘束部材を用いて離脱不能に拘束した構成を特徴とするコンクリート壁用の筋材。  A continuous fiber reinforced shaft made of a fiber reinforced resin having an upper bulging connecting portion having a taper portion expanding upward and a lower bulging connecting portion having a taper portion expanding downward at the upper and lower portions. A reinforcing material for a concrete wall characterized in that the body is connected up and down and the connecting part is restrained so as not to be detached using a restraining member. 上方に向かって拡幅する前記上部膨出連結部としての横断面円弧状拡幅部のテーパ面と、下方に向かって拡幅する前記下部膨出連結部としての横断面円弧状拡幅部のテーパ面をそれぞれ上下部に有している繊維強化樹脂からなる板状の連続繊維補強軸体を上下に連接すると共に、所定の間隔をおいて環状に配設し、前記上位と下位の横断面円弧状拡幅部のテーパ面同士を係合させ、この係合部を環状拘束部材を用いて離脱不能に拘束する構成を特徴とする請求項1記載のコンクリート壁用の筋材。The taper surface of the cross-sectional arc-shaped widened portion as the upper bulge connecting portion widened upward, and the taper surface of the cross-sectional arc-shaped widened portion as the lower bulged connecting portion widened downward The plate-like continuous fiber reinforced shafts made of fiber reinforced resin at the upper and lower portions are connected vertically and arranged annularly at a predetermined interval, and the upper and lower cross-sectional arc-shaped widened portions The reinforcing material for a concrete wall according to claim 1, wherein the tapered surfaces are engaged with each other, and the engaging portion is restrained so as not to be detached by using an annular restraining member. 前記横断面円弧状拡幅部に、円弧方向に伸長する15cm以下の長さの金属繊維または金属線材を埋設したことを特徴とする請求項2記載のコンクリート壁用の筋材。  The reinforcing material for a concrete wall according to claim 2, wherein a metal fiber or a metal wire having a length of 15 cm or less extending in the arc direction is embedded in the cross-section arc-shaped widened portion. 上方に向かって拡径するテーパ外面を有する前記上部膨出連結部としての円錐状定着部と、下方に向かって拡径するテーパ外面を有する前記下部膨出連結部としての円錐状定着部をそれぞれ上下部に有している繊維強化樹脂からなる棒状の連続繊維補強軸体を、前記円錐状定着部の端面同士を当接させて上下に連接すると共に、前記上位と下位の円錐状定着部を中間部拡径テーパ孔を有する分割筒状拘束部材で包囲して一体に抱持した構成を特徴とする請求項1記載のコンクリート壁用の筋材。 A conical fixing portion as the upper bulging connection portion having a tapered outer surface that expands in the upward direction, and a conical fixing portion as the lower bulging connection portion having a tapered outer surface that expands in the downward direction, respectively. The rod-like continuous fiber reinforced shafts made of fiber reinforced resin at the upper and lower portions are connected vertically with the end faces of the conical fixing portions in contact with each other, and the upper and lower conical fixing portions are The reinforcing material for a concrete wall according to claim 1, wherein the reinforcing member is surrounded by a divided cylindrical constraining member having an intermediate-diameter enlarged taper hole and integrally held. 前記分割筒状拘束部材は、これに嵌合される円環部材によって拘束されることを特徴とする請求項4記載のコンクリート壁用の筋材。  The reinforcing material for a concrete wall according to claim 4, wherein the divided cylindrical constraining member is constrained by an annular member fitted therein. 前記分割筒状拘束部材に、円周方向に伸長する15cm以下の長さの金属繊維または金属線材を埋設したことを特徴とする請求項4記載のコンクリート壁用の筋材。  The reinforcing material for a concrete wall according to claim 4, wherein a metal fiber or a metal wire having a length of 15 cm or less extending in the circumferential direction is embedded in the divided cylindrical restraining member. 請求項1、2、4の何れかに記載の連続繊維補強軸体からなる筋材を複数本配置してコンクリート中に埋設したことを特徴とするコンクリート壁体。  A concrete wall comprising a plurality of reinforcing bars comprising the continuous fiber reinforced shaft according to any one of claims 1, 2, and 4 and embedded in concrete. 前記複数本配置された筋材をさらに緊張してコンクリート中に埋設したことを特徴とする請求項7記載のコンクリート壁体。  The concrete wall according to claim 7, wherein the plurality of reinforcing bars are further tensioned and embedded in concrete. 上方に向かって拡大するテーパ部を有する上部膨出連結部と、下方に向かって拡大するテーパ部を有する下部膨出連結部とを上下部に具備している繊維強化樹脂からなる連続繊維補強軸体が上下に連接されると共に、かかる連接部が拘束部材により離脱不能に拘束された構成を特徴とする連続繊維補強軸体の継手構造。  A continuous fiber reinforced shaft made of a fiber reinforced resin having an upper bulging connecting portion having a taper portion expanding upward and a lower bulging connecting portion having a taper portion expanding downward at the upper and lower portions. A joint structure of a continuous fiber reinforced shaft body, characterized in that the body is connected vertically and the connecting part is restrained by a restraining member so as not to be detached. 上位に位置する繊維強化樹脂からなる板状の連続繊維補強軸体の下部に設けられた、下方に向かって拡幅する前記下部膨出連結部としての横断面円弧状拡幅部のテーパ面と、下位に位置する繊維強化樹脂からなる板状の連続繊維補強軸体の上部に設けられた上方に向かって拡幅する前記上部膨出連結部としての横断面円弧状拡幅部のテーパ面とが係合され、この係合部が環状拘束部材により離脱不能に拘束された構成を特徴とする請求項9記載の連続繊維補強軸体の継手構造。The taper surface of the cross-section arc-shaped widened portion as the lower bulge connecting portion , which is provided at the lower portion of the plate-like continuous fiber reinforced shaft body made of fiber reinforced resin located at the upper portion and widens downward, and the lower portion The taper surface of the cross-section arc-shaped widened portion as the upper bulging connecting portion that widens upward is provided at the upper portion of the plate-like continuous fiber reinforced shaft body made of fiber reinforced resin positioned at The joint structure of the continuous fiber reinforced shaft body according to claim 9, wherein the engaging portion is restrained by an annular restraining member so as not to be detached. 上位に位置する繊維強化樹脂からなる棒状の連続繊維補強軸体の下部に設けられた下方に向かって拡径するテーパ外面を有する前記下部膨出連結部としての円錐状定着部と、下位に位置する繊維強化樹脂からなる棒状の連続繊維補強軸体の上部に設けられた上方に向かって拡径するテーパ外面を有する前記上部膨出連結部としての円錐状定着部のそれぞれの端面同士が当接されて上下に連接されると共に、前記上位と下位の円錐状定着部が中間部拡径テーパ孔を有する分割筒状拘束部材で包囲されて一体に抱持された構成を特徴とする請求項9記載の連続繊維補強軸体の継手構造。 A conical fixing portion as the lower bulging connecting portion having a tapered outer surface that expands downwardly and is provided at the lower portion of a rod-like continuous fiber reinforced shaft body made of a fiber reinforced resin positioned at the upper position, and positioned at a lower position The end surfaces of the conical fixing portion as the upper bulging connecting portion having a tapered outer surface whose diameter is expanded upward provided at the upper portion of a rod-like continuous fiber reinforced shaft body made of a fiber reinforced resin is in contact with each other. The upper and lower conical fixing portions are surrounded by a divided cylindrical restraining member having an intermediate-diameter enlarged taper hole and integrally held by the upper and lower conical fixing portions. The joint structure of the described continuous fiber reinforced shaft body. 上方に向かって拡大するテーパ部を有する上部膨出連結部と、下方に向かって拡大するテーパ部を有する下部膨出連結部とを上下部に具備している繊維強化樹脂からなる連続繊維補強軸体を上下に連接すると共に、かかる連接部を拘束部材を用いて離脱不能に拘束することにより、被切削コンクリート壁用の筋材とすることを特徴とする連続繊維補強軸体の接続方法。  A continuous fiber reinforced shaft made of a fiber reinforced resin having an upper bulging connecting portion having a taper portion expanding upward and a lower bulging connecting portion having a taper portion expanding downward at the upper and lower portions. A method for connecting continuous fiber reinforced shafts, characterized by connecting the bodies up and down and restraining the joints so as not to be detached using a restraining member, thereby forming a reinforcing material for a concrete wall to be cut. 上位に位置する繊維強化樹脂からなる板状の連続繊維補強軸体の下部に設けた、下方に向かって拡幅する前記下部膨出連結部としての横断面円弧状拡幅部のテーパ面と、下位に位置する繊維強化樹脂からなる板状の連続繊維補強軸体の上部に設けた上方に向かって拡幅する前記上部膨出連結部としての横断面円弧状拡幅部のテーパ面とを係合させ、この係合部を環状拘束部材を用いて離脱不能に拘束して被切削コンクリート壁用の筋材とすることを特徴とする請求項12記載の連続繊維補強軸体の接続方法。The taper surface of the cross-section arc-shaped widened portion as the lower bulging connecting portion, which widens downward, provided at the lower portion of a plate-like continuous fiber reinforced shaft body made of fiber reinforced resin located at the upper position, The upper surface of the plate-like continuous fiber reinforced shaft made of fiber reinforced resin is engaged with the taper surface of the cross-section arc-shaped widened portion as the upper bulging connecting portion that widens upward. The connecting method of a continuous fiber reinforced shaft body according to claim 12, wherein the engaging portion is restrained so as not to be detached by using an annular restraining member to form a reinforcing material for a concrete wall to be cut. 前記横断面円弧状拡幅部に、円弧方向に伸長する15cm以下の長さの金属繊維または金属線材を埋設すること特徴とする請求項13記載の連続繊維補強軸体の接続方法。  14. The continuous fiber reinforced shaft connecting method according to claim 13, wherein a metal fiber or a metal wire having a length of 15 cm or less extending in the arc direction is embedded in the cross-section arc-shaped widened portion. 上位に位置する繊維強化樹脂からなる棒状の連続繊維補強軸体の下部に設けた下方に向かって拡径するテーパ外面を有する前記下部膨出連結部としての円錐状定着部と、下位に位置する繊維強化樹脂からなる棒状の連続繊維補強軸体の上部に設けた上方に向かって拡径するテーパ外面を有する前記上部膨出連結部としての円錐状定着部のそれぞれの端面同士を当接させて上下に連接すると共に、前記上位と下位の円錐状定着部を中間部拡径テーパ孔を有する分割筒状拘束部材で包囲して一体に抱持して被切削コンクリート壁用の筋材とすることを特徴とする請求項12記載の連続繊維補強軸体の接続方法。 A conical fixing portion serving as a lower bulging connecting portion having a tapered outer surface that expands downwardly and is provided at a lower portion of a rod-like continuous fiber reinforced shaft body made of a fiber reinforced resin located at an upper position, and positioned at a lower position. The respective end surfaces of the conical fixing portion serving as the upper bulging connecting portion having a tapered outer surface having a diameter increasing upward provided at the upper portion of a rod-like continuous fiber reinforced shaft body made of fiber reinforced resin are brought into contact with each other. The upper and lower conical fixing portions are connected vertically and surrounded by a divided cylindrical constraining member having an intermediate-diameter enlarged taper hole, and are integrally held to form a reinforcing material for a concrete wall to be cut. The connection method of the continuous fiber reinforcement shaft body of Claim 12 characterized by these. 前記分割筒状拘束部材を、これに嵌合される円環部材によって拘束することを特徴とする請求項15記載の連続繊維補強軸体の接続方法。  The method for connecting continuous fiber reinforced shafts according to claim 15, wherein the split cylindrical restraint member is restrained by an annular member fitted thereto. 前記分割筒状拘束部材に、円周方向に伸長する15cm以下の長さの金属繊維または金属線材を埋設したことを特徴とする請求項15記載の連続繊維補強軸体の接続方法。  16. The method for connecting continuous fiber reinforced shafts according to claim 15, wherein metal fibers or metal wires having a length of 15 cm or less extending in the circumferential direction are embedded in the divided cylindrical restraining members.
JP09589296A 1996-03-27 1996-03-27 Concrete wall reinforcement Expired - Fee Related JP3665412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09589296A JP3665412B2 (en) 1996-03-27 1996-03-27 Concrete wall reinforcement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09589296A JP3665412B2 (en) 1996-03-27 1996-03-27 Concrete wall reinforcement

Publications (2)

Publication Number Publication Date
JPH09268874A JPH09268874A (en) 1997-10-14
JP3665412B2 true JP3665412B2 (en) 2005-06-29

Family

ID=14149970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09589296A Expired - Fee Related JP3665412B2 (en) 1996-03-27 1996-03-27 Concrete wall reinforcement

Country Status (1)

Country Link
JP (1) JP3665412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302939A (en) * 2001-04-10 2002-10-18 Ohbayashi Corp Spacer for joint part in continuous underground wall

Also Published As

Publication number Publication date
JPH09268874A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
KR101056027B1 (en) Combined structure of edge prestressed concrete composite pile with tension member and expansion foundation
JP2004285738A (en) Box girder bridge structure and method of constructing the same
JP2001098514A (en) Method for constructing arch rib of concrete arch bridge
JP3554299B2 (en) Composite segment in pipe burial method
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JPH07292783A (en) Connective structure of prestressed concrete members
KR102269141B1 (en) Deck plate wall installation method using underground pavement
JP3665412B2 (en) Concrete wall reinforcement
JP4017766B2 (en) Hollow cylindrical body and its construction method
WO2002016701A1 (en) Reinforcement structure for a foundation pile
JP3802996B2 (en) Construction method of flat slabs using steel pipe concrete columns
JPH1018424A (en) Root wrapping reinforcing structure of column base of steel post or the like
JP3798414B2 (en) Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same
JP3251698B2 (en) Tunnel lining element and tunnel construction method using the same
JP2004263501A (en) Beam-column joint structural body
JP6088883B2 (en) Connection method and connection structure of fiber reinforced pile material for shield excavation
JP3656437B2 (en) Soil cement composite wall and its construction method
JPS6017449Y2 (en) Rebar cage
JPH0996194A (en) Structure of support wall and construction method therefor
JP3659058B2 (en) Yamadome method with low strength underground wall
JP3665421B2 (en) Continuous fiber reinforcement for concrete walls to be cut
JP3579815B2 (en) Repair method for hollow foundation pile
JPH08218395A (en) Joint structure of pile-column foundation
JP3427208B2 (en) Concrete structure
JPH116162A (en) Construction method for reinforced concrete underground external wall

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050401

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees