JP3656437B2 - Soil cement composite wall and its construction method - Google Patents

Soil cement composite wall and its construction method Download PDF

Info

Publication number
JP3656437B2
JP3656437B2 JP30312698A JP30312698A JP3656437B2 JP 3656437 B2 JP3656437 B2 JP 3656437B2 JP 30312698 A JP30312698 A JP 30312698A JP 30312698 A JP30312698 A JP 30312698A JP 3656437 B2 JP3656437 B2 JP 3656437B2
Authority
JP
Japan
Prior art keywords
soil cement
steel material
wall
core
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30312698A
Other languages
Japanese (ja)
Other versions
JP2000129668A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP30312698A priority Critical patent/JP3656437B2/en
Publication of JP2000129668A publication Critical patent/JP2000129668A/en
Application granted granted Critical
Publication of JP3656437B2 publication Critical patent/JP3656437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ソイルセメント合成壁及びその施工法に関し、特に、逆打ち工法や新地下工法にも対応できるように、地中連続壁のように建物外周部の軸力に対して杭としての機能を持つソイルセメント合成壁及びその施工法に関する。
【0002】
【従来の技術】
大掛かりな機械設備と多くの人工を掛けて施工される地中連続壁は、支持杭、土水圧に対する山留め壁・止水壁、面内せん断力を処理する耐震壁及び後打ち躯体と一体化して面内及び面外力に抵抗できる合成壁として多彩な機能を発揮している。
このため、大規模な地下構造物や逆打ち工法などの特殊な工法を採用する現場等では計画段階では連続地中壁を検討する機会があるものの、連続地中壁はコストが高いことから、上記の機能を完全に発揮させる必要のない現場等ではコストの面からその採用が断念され、最終的にローコストなソイルセメント止水壁を採用することが多くなっている。
【0003】
ソイルセメント止水壁は、多軸掘削機でセメントミルクを注入しながら所定の深度まで地盤を掘削混練し、オーガーの引き上げ後にH鋼等の芯材を建て込み、硬化することで止水性の高い山留め壁を構築できる工法である。しかし、この工法は、仮設の山留め工法として位置付けられているために、本体構造のように管理が十分に行われる体制がとられていないことから、十分な品質や精度が確保されていない一面が見られた。
【0004】
特に、芯材については、一般的に一本の芯材を自重で掘削孔に挿入していたために、その位置や方向が正確に設置されていない場合が多く、地下工事の進展に伴って掘削を進めると本来等間隔で整列しているべき芯材が、位置のずれやねじれのために、バラバラに現出してくることもあり、本体構造の後打ち躯体に山留め壁が食い込んだり、芯材間隔の大きな箇所にクラックが発生して漏水が生じてしまう場合もあった。
【0005】
又、近年工期短縮や施工時の作業スペースを確保するために、逆打ち工法や新地下工法を採用する事例も増えてきているが、地下階の外壁側軸力(重量)は山留め壁で受けて構真柱を省略するのが合理的であるにも関わらず、ソイルセメント止水壁は元来山留め壁として水平力の土水圧より想定しておらず、鉛直方向の力になる地下躯体の荷重を処理する工法にはなっていなかったために、これらの工法に採用することができず、コストの高い他の工法を採用せざるを得ない状況にあった。
【0006】
ソイルセメント柱列の芯材にブラケットを溶接して本設梁を結合する手段も試みられてきた。
この手段は、図11に示すように地下階の施工時に芯材30のフランジ面31をはつり出し、芯材のフランジ面31にブラケット32を溶接してブラケットに外壁面と平行な通し梁33を取り付け、この梁にソイルセメント柱列に直交する本設梁34を受けさせるものである。
しかし、この手段は以下のような問題点を抱えており、期待通りの結果は得られなかった。
▲1▼ブラケットの現場溶接は、上フランジに大きな引っ張り力を生じさせる突き合わせ溶接であるから、溶接部の信頼性と施工時の安全性に問題点が残る。
▲2▼芯材からのブラケットや上記通し梁の敷設が必要であり、これらを本体構造の中に設けられるために、部品点数が増加し本設梁の主筋や地下外壁の壁筋と干渉する。
【0007】
【発明が解決しようとする課題】
本発明は、上記の問題点に鑑みてその改善を図ったものであり、ソイルセメント止水壁の複数のH鋼芯材を一体の組立鋼材とすることで後打ち躯体の受け材として一体化させ、連続地中壁と同様に面内及び面外力に抵抗できるソイルセメント合成壁及びその施工法をローコストで提供することを目的にしている。
【0008】
【課題を解決するための手段】
本発明によるソイルセメント合成壁は、複数の芯材を一体にした組立鋼材をソイルセメント柱列の芯材として配置し、組立鋼材に設けたガセットプレートと本設梁とを結合して本体構造の躯体コンクリートを打設して構成することを特徴としており、面内及び面外力に抵抗できるように支持杭、土水圧に対する山留め壁・止水壁、面内せん断力を処理する耐震壁及び後打ち躯体と一体化して面内及び面外力に抵抗できる多彩な機能を発揮している。
【0009】
具体的には、組立鋼材を複数のH鋼芯材をH鋼のフランジ間に所定間隔で渡したチャンネル鋼材によって一体化して、芯材の位置設定と施工精度を向上させると共に本体構造のプラン変更や施工の自由度を図っている。
【0010】
又、本発明によるソイルセメント合成壁の施工法は、連続した複数のソイルセメント柱列孔を掘削し、セメントミルクと掘削土とを混練させた柱列孔内に複数の芯材を一体にした組立鋼材を吊り込み、所定の位置に保持しながらソイルセメントを硬化させてソイルセメント止水壁を構成し、止水壁内側の地盤掘削に沿って組立鋼材の内側表面をはつり出し、次いで組立鋼材の内側表面にガセットプレートを敷設して、ガセットプレートに本設梁を結合し、しかる後に組立鋼材及び梁に型枠を配置してコンクリートを打設することを特徴としており、芯材の一体化によって組立鋼材の保持と掘削孔への吊り下げを円滑にし、ガセットプレートをチャンネル鋼材のウェブ面に敷設して本体構造物を施工する際の自由度の向上を図っている。
【0011】
【発明の実施の形態】
本発明によるソイルセメント合成壁は、ソイルセメント柱列の芯材として複数の芯材を一体にした組立鋼材を配置してソイルセメント止水壁を構築し、内側表面をはつり出した組立鋼材にガセットプレートを敷設して本設梁と結合した後に、躯体コンクリートを打設して構成されている。従って本発明によるソイルセメント合成壁は、山留め壁として水平方向の土水圧を受けると同時に、支持杭として建物外周部に生じる鉛直方向の軸力を負担して、止水壁の面内及び面外力に抵抗できるものである。
【0012】
本発明によるソイルセメント合成壁及びその施工法を図面に基づいて以下に説明する。
図1は、本発明によるソイルセメント合成壁の躯体コンクリートを打設する以前の側断面図である。 図において、1はソイルセメント柱列、2はソイルセメント柱列の外側の地盤、3は内側の掘削された地盤である。ソイルセメント柱列1には、芯材として複数の芯材を一体にした組立鋼材4を配置してあり、芯材間に配備されたチャンネル鋼材5は芯材同士を結合すると共にそのウェブ面にはガセットプレート6を溶接によって敷設してある。又、チャンネル鋼材5に呼応する位置に平鋼7が補強用に溶接されており各芯材間の一体化を強力にしている。ガセットプレート6は、本体構造の本設梁8を受けて結合しており、以後は図示を省略しているが、通常の施工手順に従って本体構造用の躯体コンクリートが打設され、ソイルセメント柱列は、本体構造と一体の合成壁として構築される。
【0013】
ソイルセメント柱列1は、連続地中壁に相当する鉛直方向の軸力を負担するために、複数の芯材を一体にした組立鋼材を採用すると共に、先端部にも対策を講じている。
掘削孔の先端9は、孔壁の周面摩擦抵抗をも考慮して、建物外周部の重量を支持するのに十分な強度を持つ地盤まで掘削して支持基盤10にしている。掘削孔の先端9から芯材の先端までは杭根固め部11として構成し、ソイルセメントの強度を20kg/cm2 以上にしており、芯材埋込部12は芯材の先端から掘削孔径の2倍以上の係合深さを保って構成しソイルセメントの強度も20kg/cm2 以上にしている。このため、芯材の先端が掘削孔の先端付近にまで到達している場合には、両部の兼用も当然に成し得ることである。
【0014】
又、芯材の先端付近にある芯材埋込部12では、埋め込み長さが小さくとも鋼材とソイルセメントとの付着強度を確保するために、スタッドジベルやウィングプレートを使用している。
さらに、組立鋼材4とガセットプレート6との採用は、従来工法の問題点を改善するものであり、部品数の減少と現場工事の効率化を図っているものであるから、施工性の向上と安全性の確保が可能になっている。
【0015】
図2、3は、図1におけるイ−イ矢視及びロ−ロ矢視の断面図である。
図2において、ソイルセメント柱列1は、内側地盤3の掘削と共に内側を削り取られてはつり面13として露出するが、この際に芯材14のフランジ面15とチャンネル鋼材5のウェブ面16ははつりとられて溶接加工やコンクリート打ちに適合するように清掃されている。
チャンネル鋼材5のウェブ面16は、図示のように上下の幅には制限を受けるが、水平方向にはガセットプレート6を敷設する際に支障になるような部材が全く存在しないから、水平方向の任意の位置にガセットプレートを敷設可能である。
このため、本体構造のプランに沿って本設梁を配置するのに、芯材14の位置に多少のズレが生じたとしてもガセットプレートを所定の位置に容易に取付固定させて対応することが可能であり、敷設後のガセットプレートと本設梁とを簡潔に接合させることが出来る。
【0016】
図3は、組立鋼材の配置状態を示す断面図である。
3軸掘削機で施工したソイルセメント柱列孔には、3つの芯材14を一体にした組立鋼材4が配置されており、各芯材間にはチャンネル鋼材5と平鋼7が所定の間隔で溶接されている。
ソイルセメント柱列1の構築後に組立鋼材4の内面ははつり出されて露出しており、鋼材に対する機械加工がし易いように清掃される。
チャンネル鋼材5のウェブ面16には所定の位置にガセットプレート6が溶接されており、本設梁8が結合されている。
【0017】
ところで、山留め応力は一般的に下部の方が大きく上部の方は減少していることは周知である。従って、上部の支持力を下部に対して小さくすることが当然に意識されてきたところであるが、従来のソイルセメント柱列ではそれぞれ単独の芯材を配置していたために、芯材を中間部において変更を加えることは不可能であり、止むおえずに全体的に同じ大きさの部材を使用していた。
上記実施の形態でも、従来の方針を踏襲する形で組立鋼材を構成する芯材の長さを全て同じものとして記述してきたが、本発明によれば複数の芯材を互いに一体化しているために短い芯材が存在してもこれを中間部において他の芯材が支えられるので、3個の芯材の中で中間に配置されている芯材を上方部が欠如した状態で構成して支持する応力に合わせて芯材の長さを選択することが可能になっており、コスト面で大きく貢献するものである。
【0018】
上記実施の形態では、地下構造部分で本体構造と一体化する状態を説明してきたが、ソイルセメント合成壁を構成している芯材をあらかじめ地表上に延長する長さに設定しておいて、本体構造の地上部と一体に結合することも可能である。
図4は、本発明によるソイルセメント合成壁と本体構造地上部の躯体とを一体化した実施の形態を示しており、図4(a)は一部を欠如した平面図、図4(b)は図4(a)イーイ矢視の断面図である。
【0019】
図4(a)には、組立鋼材の芯材頂部18が、ソイルセメント合成壁20の上端から地表上に露出させてあり、芯材頂部間には本体構造のRC構造の外周梁21を配置して一体に結合している状態を示している。組立鋼材の上部芯材にはあらかじめジベルスタッド等を植設してあり、躯体の重量を受けるのに効力を発揮している。
図4(b)に見られるように、外周梁21の施工は、ソイルセメント合成壁20の施工後に、組立鋼材4の外側にある芯材間にRC構造の外周梁21を掛け渡し溶接付けによって一体に接合するもので、ガセットプレートや水平方向の鋼材を省略することが可能になり、コスト的に有利である。
【0020】
図5〜10は、本発明によるソイルセメント合成壁の施工法を説明するための各行程における状態図である。
図5には、施工前に地組みされて一体化した組立鋼材を示している。
図示のように、組立鋼材4は、H鋼から成る3本の単独芯材14が、ソイルセメント柱列掘削孔のピッチに合わせた間隔をとって配置され、芯材間には本設梁の敷設予定間隔に合わせてチャンネル鋼材5が溶接付けされており、本設梁と無関係の部分には組立鋼材4の強度を確保するために平鋼7を各芯材に渡ってフランジ面の所定の位置に取り付けられて一体に構成されている。以上のように、組立鋼材4は芯材相互間を互いに緊密に一体化しているので、芯材14が単独の場合と異なって施工時やソイルセメント止水壁の設置位置でバラバラに乱れたり、回転して収まりを乱すことがなく、施工効率を向上させると共に施工精度の向上を図ることが出来る。
なお、各芯材14には、上述のように芯材埋込部12や頂部18でのコンクリートとの結合を強化するためや外周部の組立用に、スタッドジベル等の補強部材あるいは組立用の鉄筋が適宜配置、植設されている。
【0021】
図6は、図5で示した組立鋼材の製造過程を示している。図6(a)は図5のイーイ矢視図、図6(b)は図7(a)のイーイ矢視図である。
組立鋼材4の地組みは、図6(a)に見られるように、横に長く設置されている作業架台22の上にH鋼の芯材14を所定の間隔で配置する。次いで、各芯材14の間にチャンネル鋼材5を渡してH鋼芯材のフランジ23及びウェブ24に隅肉溶接するが、この際にチャンネル鋼材5のウェブ面16はH鋼芯材のフランジ面15に合わせてある。
図6(b)の断面図で示すように、チャンネル鋼材5を溶接したフランジ23と反対のフランジ23には、チャンネル鋼材5と対応する位置に芯材の全部に渡らせて平鋼7を溶接付けしている。
【0022】
図7は、ソイルセメント柱列の掘削孔に組立鋼材を吊り下ろす状態図である。ソイルセメント止水壁1を構築する地盤に、連続した複数のソイルセメント柱列孔25を掘削してから、別途に地組みされた組立鋼材4をクローラクレーン等で吊り上げて掘削孔25内に吊り下げて行く。 掘削孔25は、ソイルセメント掘削機を用いて、前述の通りソイルセメント合成壁の軸力を支えるのに十分な強度を有する支持層の深さまで掘削しているので、掘削孔の施工能率が高く、掘削時の内圧は保持されて排土が少なく経済的である。
又、組立鋼材4は、十分に一体化されて掘削孔内に建て込まれるので、掘削孔25内への吊り下げは円滑で、埋設精度も高度に維持できる。
なお、組立鋼材4に連結する芯材14は、ソイルセメント掘削機の掘削軸数に合わせる必要がなく、本体構造体の外壁形状や組立鋼材の揚重計画から芯材の連結数や連結配置形状を設定することが出来る。
【0023】
図8は、ソイルセメント止水壁が構築された後のはつり面を示す立面図(a)と断面図(b)である。
ソイルセメント止水壁1が構築されると、止水壁内側の地盤3が掘削されるが、この掘削に沿って組立鋼材4の内側表面をも同時にはつり出しを行い、各芯材の本体構造側のフランジ面15とチャンネル鋼材の内側ウェブ面16が露出されて、以降の工事のために両面の表面清掃が行われる。
【0024】
ソイルセメント止水壁の芯材先端が埋め込まれている付近では、ソイルセメントの強度が確保されているので、芯材からの応力が円滑にソイルセメント柱列に伝達されると共に、芯材の先端下部に生じる壁の引張り割裂破壊が防止されている。
又、掘削孔先端部のソイルセメント強度が確保されているので、ソイルセメント合成壁の軸力が円滑に支持地盤に伝達され、連続地中壁と同様の支持力を維持している。
さらに、チャンネル鋼材5は露出されているウェブ面16と反対側の部材面をソイルセメント内に埋設させているので、芯材を含む組立鋼材の回転や曲げねじれ座屈に対しても高い安全率を確保している。
【0025】
図9は、組立鋼材への施工状態を示す立面図(a)と断面図(b)である。
図に示すガセットプレート6は、地下構築時に本体構造の梁の位置に対応させて、チャンネル鋼材5の表面上で水平方向の所定の位置に現場溶接で取り付けてある。
組立鋼材4の施工精度は、機械的に管理し易いことから水平方向よりも鉛直方向の方が大幅に高いものであり、敷設されるガセットプレート6の位置はチャンネル鋼材5の表面16からほとんど外れることなく納めることができる。
【0026】
又、ガセットプレート6を芯材14の位置と無関係にチャンネル鋼材5の任意の位置に敷設できることは、本体構造における梁位置の変更にも容易に対応できるもので工事全体の自由度が向上して施工行程において工期の短縮を図れるものである。
さらに、ガセットプレート6の溶接は隅肉溶接で行われることから、現場溶接に対する信頼性と施工時の安全性を向上させることが可能であり、工事全体の品質確保が達成されるものである。
【0027】
図10は、ソイルセメント合成壁の断面図である。
ソイルセメント合成壁20を逆打ち工法で施工する場合には、地盤3を掘削して各芯材のフランジ面及びチャンネル鋼材の内側ウェブ面をはつり出してから、止水壁の組立鋼材に敷設したガセットプレートに本設梁を固定し、次いでスラブ、柱、外壁の配筋及び型枠を施工し躯体コンクリートの打設を行うことで地下構造物の外周部として構築される。
従って、構築後のソイルセメント合成壁20の内側には地下構造物の外壁26が構成され、組立鋼材のガセットプレートに受けられた梁27は地下構造物の梁として各地下階のスラブ28を支持している。
以上の説明から明らかなように、本発明によるソイルセメント合成壁は、支持杭としての機能を備え、土水圧に対する山留め壁・止水壁として働くと同時に、面内せん断力を処理する耐震壁として後打ち躯体と一体化して面内及び面外力に抵抗でき、逆打ち工法、新地下工法にも採用できるものである。
【0028】
以上、本発明を各種の実施の形態に基づいて詳細に説明してきたが、本発明によるソイルセメント合成壁とその施工法は、複数の芯材を一体にした組立鋼材をソイルセメント柱列の芯材として配置し、組立鋼材に設けたガセットプレートと本設梁とを結合して本体構造の躯体コンクリートを打設して構成することを特徴としているものであるから、本発明は上記実施の形態に何ら限定されるものでなく、本発明の上記の趣旨を逸脱しない範囲において種々の変更が可能であることは当然である。
【0029】
【発明の効果】
本発明によるソイルセメント合成壁は、複数の芯材を一体にした組立鋼材をソイルセメント柱列の芯材として配置し、組立鋼材に設けたガセットプレートと本設梁とを結合して本体構造の躯体コンクリートを打設して構成することを特徴としており、連続地中壁並に支持杭、土水圧に対する山留め壁・止水壁及び後打ち躯体と一体化して面内せん断力を処理する耐震壁として機能し、面内及び面外力に抵抗できる多彩な機能を圧倒的な安さで施工でき、逆打ち工法、新地下工法にも構真柱を省略して採用できる効果を発揮している。
【0030】
又、組立鋼材が一体化していることで、掘削構内で芯材がバラバラになることを防止して地下躯体への食い込みを阻止し、芯材間隔を均等に保持してクラックや漏水の防止を図り、チャンネル鋼材とソイルセメントとの結合を密にして芯材の回転や座屈を抑制する効果を奏している。
【0031】
本発明によるソイルセメント合成壁の施工法は、連続した複数のソイルセメント柱列孔を掘削し、セメントミルクと掘削土とを混練させた柱列孔内に複数の芯材を一体にした組立鋼材を吊り込み、所定の位置に保持しながらソイルセメントを硬化させてソイルセメント止水壁を構成し、止水壁内側の地盤掘削に沿って組立鋼材の内側表面をはつり出し、次いで組立鋼材の内側表面にガセットプレートを敷設して、ガセットプレートに本設梁を結合し、しかる後に組立鋼材及び梁に型枠を配置してコンクリートを打設することを特徴としているので、掘削機の施工効率が高く杭の沈下量を小さくでき、掘削孔内への建て込み精度を高くして地下工事段階での躯体精度を向上できる効果を奏している。又、排土がほとんどないので経済的であり、地球環境に優しい効果を奏することが出来る。
【図面の簡単な説明】
【図1】本発明によるソイルセメント合成壁の側断面図
【図2】ソイルセメント止水壁の断面図
【図3】ソイルセメント止水壁の断面図
【図4】本発明によるソイルセメント合成壁の実施の形態図
【図5】本発明に採用する組立鋼材の地組み図
【図6】本発明に採用する組立鋼材の地組み工程図
【図7】組立鋼材の掘削孔への吊り込み工程図
【図8】ソイルセメント止水壁のはつり工程図
【図9】ガセットプレートの敷設工程図
【図10】本体構造合成壁の断面図
【図11】従来のソイルセメント止水壁に対する合成壁の施工図
【符号の説明】
1 ソイルセメント柱列(ソイルセメント合成壁)
2 ソイルセメント合成壁の外側地盤
3 ソイルセメント合成壁の内側掘削地盤
4 組立鋼材
5 チャンネル鋼材
6 ガセットプレート
7 平鋼
8 本設梁
9 掘削孔の先端
10 支持基盤
11 杭根固め部
12 芯材埋込部
13 はつり面
14 H鋼製の芯材
15 フランジ面
16 ウェブ面
18 芯材頂部
20 ソイルセメント合成壁
21 外周梁
22 作業架台
23 H鋼芯材のフランジ
24 H鋼芯材のウェブ
25 掘削孔
26 地下構造物の外壁
27 地下構造物の梁
28 スラブ
30 芯材
31 芯材のフランジ面
32 ブラケット
33 通し梁
34 本設梁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite soil cement wall and its construction method, and in particular, functions as a pile against the axial force of the outer periphery of a building, such as an underground continuous wall, so that it can also be applied to the reverse casting method and the new underground construction method. The present invention relates to a composite soil cement wall and its construction method.
[0002]
[Prior art]
The underground continuous wall constructed with large-scale mechanical equipment and many artificial pieces is integrated with the supporting pile, the retaining wall against the earth water pressure, the water blocking wall, the seismic wall that handles the in-plane shear force, and the post-casting frame. It exhibits various functions as a synthetic wall that can resist in-plane and out-of-plane forces.
For this reason, although there is an opportunity to examine the continuous underground wall at the planning stage at sites that employ special construction methods such as large-scale underground structures and reverse driving methods, the cost of continuous underground walls is high, In the field where it is not necessary to fully exhibit the above functions, the adoption is abandoned from the viewpoint of cost, and finally, a low-cost soil cement water blocking wall is often used.
[0003]
Soil cement water barrier wall has high water-stopping performance by excavating and kneading the ground to a predetermined depth while injecting cement milk with a multi-axis excavator, building a core material such as H steel after hardening the auger, and hardening it It is a construction method that can construct a retaining wall. However, since this method is positioned as a temporary mountain-clamping method, there is not a system in which management is sufficiently performed like the main body structure, so there is one aspect where sufficient quality and accuracy are not ensured. It was seen.
[0004]
In particular, for core materials, since a single core material is generally inserted into the excavation hole by its own weight, its position and direction are often not set correctly, and excavation is progressing as underground work progresses. The core material, which should be aligned at regular intervals, may appear apart due to misalignment or twisting, and the retaining wall may bite into the rear structure of the main body structure. In some cases, cracks occurred at large intervals, resulting in water leakage.
[0005]
In recent years, in order to shorten the work period and to secure a working space for construction, there are increasing cases of using the back-strike method and the new underground construction method, but the axial force (weight) of the outer wall of the basement is received by the retaining wall. Although it is reasonable to omit the structural pillars, the soil cement water barrier is not originally assumed as a mountain retaining wall from the earth force of horizontal force. Since it was not a construction method for treating the load, it could not be adopted for these construction methods, and another costly construction method had to be adopted.
[0006]
Attempts have also been made to join the main beam by welding a bracket to the core of the soil cement column.
As shown in FIG. 11, this means hangs out the flange surface 31 of the core material 30 during construction of the basement floor, welds the bracket 32 to the flange surface 31 of the core material, and passes the through beam 33 parallel to the outer wall surface to the bracket. Attach this beam to receive the main beam 34 orthogonal to the soil cement column.
However, this method has the following problems, and the expected result cannot be obtained.
(1) On-site welding of the bracket is butt welding that generates a large pulling force on the upper flange, so that problems remain in the reliability of the welded portion and the safety during construction.
(2) It is necessary to lay the bracket from the core material and the above-mentioned through beam. Since these are installed in the main body structure, the number of parts increases and interferes with the main beam of the main beam and the wall of the underground outer wall. .
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and has been improved, and is integrated as a receiving material for a post-casting body by using a plurality of H steel cores of a soil cement water blocking wall as an integrated steel assembly. The purpose of the present invention is to provide a low-cost soil cement composite wall that can resist in-plane and out-of-plane forces as well as a continuous underground wall.
[0008]
[Means for Solving the Problems]
The soil cement composite wall according to the present invention has an assembly steel material in which a plurality of core materials are integrated as a core material of a soil cement column array, and a gusset plate provided on the assembly steel material and a main beam are coupled to each other. It is characterized by being constructed by placing concrete in the frame. Support piles, mountain retaining walls and water blocking walls against earth and water pressure, seismic walls that handle in-plane shear forces, and post-casting to resist in-plane and out-of-plane forces. It is integrated with the housing and exhibits various functions that can resist in-plane and out-of-plane forces.
[0009]
Specifically, the assembly steel material is integrated with a channel steel material in which a plurality of H steel core materials are passed between H steel flanges at a predetermined interval, thereby improving the position setting and construction accuracy of the core material and changing the plan of the main body structure. And freedom of construction.
[0010]
In addition, the method for constructing a soil cement composite wall according to the present invention excavates a plurality of continuous soil cement column holes, and integrates a plurality of core members into the column hole formed by mixing cement milk and excavated soil. The assembled steel material is suspended, and the soil cement is hardened while holding it in place to form a soil cement water barrier wall. It is characterized by laying a gusset plate on the inner surface of the steel plate, connecting the main beam to the gusset plate, and then placing concrete on the assembled steel and the beam, and putting the concrete together. As a result, the assembly steel material can be smoothly held and suspended from the excavation hole, and the gusset plate is laid on the web surface of the channel steel material to improve the flexibility in constructing the main body structure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The soil cement composite wall according to the present invention is constructed by arranging an assembled steel material in which a plurality of core materials are integrated as a core material of a soil cement column array, constructing a soil cement water blocking wall, and gusseting the assembled steel material protruding the inner surface. After laying the plate and joining it with the main beam, it is constructed by placing concrete frame. Therefore, the soil cement composite wall according to the present invention receives horizontal soil pressure as a retaining wall, and at the same time bears the vertical axial force generated at the outer periphery of the building as a support pile, so that the in-plane and out-of-plane forces of the waterproof wall Can resist.
[0012]
A soil cement composite wall and its construction method according to the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional side view of a soil cement composite wall according to the present invention prior to placing concrete. In the figure, 1 is a soil cement column array, 2 is the ground outside the soil cement column, and 3 is an excavated ground inside. In the soil cement column 1, an assembled steel material 4 in which a plurality of core materials are integrated as a core material is arranged, and a channel steel material 5 arranged between the core materials joins the core materials to each other on the web surface. The gusset plate 6 is laid by welding. Further, a flat bar 7 is welded for reinforcement at a position corresponding to the channel steel 5 to strengthen the integration between the cores. The gusset plate 6 is joined by receiving the main beam 8 of the main body structure and is not shown in the drawings, but the concrete for the main body structure is cast in accordance with a normal construction procedure, and the soil cement column Is constructed as a synthetic wall integral with the body structure.
[0013]
In order to bear the axial force in the vertical direction corresponding to the continuous underground wall, the soil cement column 1 employs an assembled steel material in which a plurality of core materials are integrated, and measures are also taken at the tip.
The tip 9 of the excavation hole is excavated to the ground having sufficient strength to support the weight of the outer peripheral portion of the building in consideration of the peripheral surface frictional resistance of the hole wall to form the support base 10. From the tip 9 of the excavation hole to the tip of the core material is configured as a pile root consolidation portion 11, the strength of the soil cement is 20 kg / cm 2 or more, and the core material embedding portion 12 has a diameter of the excavation hole of 2 from the tip of the core material. The structure is maintained with a double engagement depth or more, and the strength of the soil cement is also 20 kg / cm 2 or more. For this reason, when the front-end | tip of a core material has reached even the front-end | tip vicinity of a digging hole, it is natural that both parts can be combined.
[0014]
Moreover, in the core material embedding part 12 near the front end of the core material, a stud diver or a wing plate is used in order to secure the adhesion strength between the steel material and the soil cement even if the embedding length is small.
Furthermore, the use of the assembled steel material 4 and the gusset plate 6 improves the problems of the conventional method, and reduces the number of parts and increases the efficiency of on-site construction. Safety can be ensured.
[0015]
2 and 3 are cross-sectional views taken along the lines II and Rolo in FIG.
In FIG. 2, the soil cement column 1 is scraped and exposed as a suspended surface 13 along with excavation of the inner ground 3. At this time, the flange surface 15 of the core material 14 and the web surface 16 of the channel steel material 5 are suspended. It is taken and cleaned to suit welding and concrete casting.
The web surface 16 of the channel steel material 5 is limited in the vertical width as shown in the figure, but since there is no member that hinders the gusset plate 6 in the horizontal direction, Gusset plates can be laid at any position.
For this reason, when the main beam is arranged along the plan of the main body structure, it is possible to easily fix and fix the gusset plate at a predetermined position even if a slight deviation occurs in the position of the core member 14. It is possible, and the gusset plate after laying and the main beam can be simply joined.
[0016]
FIG. 3 is a sectional view showing an arrangement state of the assembled steel materials.
An assembly steel material 4 in which three core materials 14 are integrated is arranged in a soil cement column row hole constructed by a three-axis excavator, and a channel steel material 5 and a flat steel 7 are arranged at predetermined intervals between the core materials. It is welded with.
After the construction of the soil cement column 1, the inner surface of the assembled steel material 4 is exposed and exposed so that it can be easily machined.
A gusset plate 6 is welded to a web surface 16 of the channel steel material 5 at a predetermined position, and a main beam 8 is coupled thereto.
[0017]
By the way, it is well known that the mountain retaining stress is generally larger in the lower portion and decreased in the upper portion. Accordingly, it has been naturally recognized that the upper supporting force is made smaller with respect to the lower portion. However, in the conventional soil cement column row, a single core member is arranged, so that the core member is placed in the middle portion. It was impossible to make changes, and members of the same size were used without stopping.
Even in the above-described embodiment, the lengths of the core materials constituting the assembled steel material have been described as being the same in accordance with the conventional policy, but according to the present invention, a plurality of core materials are integrated with each other. Even if there is a short core material, other core materials are supported in the middle part, so the core material arranged in the middle of the three core materials is configured with the upper part missing. The length of the core material can be selected according to the stress to be supported, which greatly contributes to cost.
[0018]
In the above embodiment, the state of being integrated with the main body structure in the underground structure portion has been described, but the core material constituting the soil cement composite wall is set in advance to a length extending on the ground surface, It is also possible to couple together with the ground part of the main body structure.
FIG. 4 shows an embodiment in which the soil cement synthetic wall according to the present invention and the frame of the main structure are integrated, and FIG. 4 (a) is a plan view with a part missing, FIG. 4 (b). FIG. 4A is a cross-sectional view taken along the arrow II.
[0019]
In FIG. 4A, the core top 18 of the assembled steel material is exposed on the ground surface from the upper end of the soil cement composite wall 20, and the outer peripheral beam 21 of the RC structure of the main body structure is disposed between the core tops. Thus, a state where they are integrally coupled is shown. A gibber stud or the like is previously planted in the upper core material of the assembled steel material, which is effective for receiving the weight of the frame.
As shown in FIG. 4B, the construction of the outer peripheral beam 21 is performed by welding the outer peripheral beam 21 of the RC structure between the core materials outside the assembled steel material 4 after the construction of the soil cement composite wall 20. Since these are joined together, gusset plates and horizontal steel materials can be omitted, which is advantageous in terms of cost.
[0020]
FIGS. 5-10 is a state diagram in each process for demonstrating the construction method of the soil cement composite wall by this invention.
FIG. 5 shows an assembled steel material that is assembled and integrated before construction.
As shown in the drawing, the assembled steel material 4 is composed of three single cores 14 made of H steel arranged at intervals corresponding to the pitch of the soil cement pillar row drilling holes, and between the cores, the main beams are arranged. The channel steel material 5 is welded in accordance with the planned laying interval, and the flat steel 7 is spread over each core material to a predetermined portion of the flange surface in order to ensure the strength of the assembled steel material 4 at a portion unrelated to the main beam. It is attached to a position and is configured integrally. As described above, the assembled steel material 4 is closely integrated with each other between the core materials, so that the core material 14 is disturbed apart at the time of construction or at the installation position of the soil cement water blocking wall, unlike the case where the core material 14 is alone. Without rotating and disturbing the fit, the construction efficiency can be improved and the construction accuracy can be improved.
As described above, each core member 14 is provided with a reinforcing member such as a stud dibel or an assembly member for reinforcing the bonding with the concrete at the core member embedded portion 12 or the top portion 18 or for assembling the outer peripheral portion. Reinforcing bars are properly arranged and planted.
[0021]
FIG. 6 shows a manufacturing process of the assembled steel material shown in FIG. 6A is a view as seen from the arrow of FIG. 5, and FIG. 6B is a view as seen from the arrow of FIG. 7A.
As shown in FIG. 6 (a), the ground structure of the assembled steel material 4 has the H steel core material 14 arranged at a predetermined interval on a work stand 22 that is installed long horizontally. Next, the channel steel material 5 is passed between the core materials 14 and fillet welded to the flange 23 and the web 24 of the H steel core material. At this time, the web surface 16 of the channel steel material 5 is the flange surface of the H steel core material. It is set to 15.
As shown in the cross-sectional view of FIG. 6B, the flat steel 7 is welded to the flange 23 opposite to the flange 23 to which the channel steel material 5 is welded so as to cover the entire core material at a position corresponding to the channel steel material 5. It is attached.
[0022]
FIG. 7 is a state diagram in which the assembled steel material is suspended in the excavation hole of the soil cement column array. A plurality of continuous soil cement columnar holes 25 are excavated on the ground for constructing the soil cement water blocking wall 1, and then the separately assembled assembly steel material 4 is lifted by a crawler crane or the like and suspended in the excavation holes 25. Go down. Since the excavation hole 25 is excavated to the depth of the support layer having sufficient strength to support the axial force of the soil cement composite wall using the soil cement excavator as described above, the construction efficiency of the excavation hole is high. The internal pressure during excavation is maintained, so there is little earth removal and it is economical.
Further, since the assembled steel material 4 is sufficiently integrated and built in the excavation hole, the suspension into the excavation hole 25 is smooth and the embedment accuracy can be maintained at a high level.
The core material 14 to be connected to the assembled steel material 4 does not need to match the number of drilling shafts of the soil cement excavator, and the number of core materials to be connected and the connection arrangement shape are determined based on the outer wall shape of the main body structure and the weight plan of the assembled steel material. Can be set.
[0023]
FIG. 8 is an elevation view (a) and a cross-sectional view (b) showing a suspended surface after the soil cement water blocking wall is constructed.
When the soil cement water blocking wall 1 is constructed, the ground 3 inside the water blocking wall is excavated, and along this excavation, the inner surface of the assembled steel material 4 is simultaneously lifted, and the main body structure of each core material The flange surface 15 on the side and the inner web surface 16 of the channel steel material are exposed, and surface cleaning on both sides is performed for subsequent construction.
[0024]
Since the strength of the soil cement is secured in the vicinity where the tip of the core material of the soil cement water blocking wall is embedded, the stress from the core material is smoothly transmitted to the soil cement column, and the tip of the core material The tensile split fracture of the wall occurring in the lower part is prevented.
Moreover, since the soil cement strength at the tip of the excavation hole is secured, the axial force of the soil cement composite wall is smoothly transmitted to the support ground, and the same support force as that of the continuous underground wall is maintained.
Further, since the channel steel material 5 has the member surface opposite to the exposed web surface 16 embedded in the soil cement, a high safety factor against rotation and bending torsional buckling of the assembled steel material including the core material. Is secured.
[0025]
FIG. 9 is an elevation view (a) and a cross-sectional view (b) showing a construction state of the assembled steel material.
The gusset plate 6 shown in the drawing is attached to a predetermined position in the horizontal direction on the surface of the channel steel material 5 by field welding so as to correspond to the position of the beam of the main body structure at the time of underground construction.
The construction accuracy of the assembled steel material 4 is significantly higher in the vertical direction than in the horizontal direction because it is easy to manage mechanically, and the position of the gusset plate 6 to be laid is almost deviated from the surface 16 of the channel steel material 5. Can be paid without.
[0026]
In addition, the fact that the gusset plate 6 can be laid at an arbitrary position of the channel steel material 5 regardless of the position of the core material 14 can easily cope with the change of the beam position in the main body structure, and the degree of freedom of the entire construction is improved. The construction period can be shortened in the construction process.
Furthermore, since welding of the gusset plate 6 is performed by fillet welding, it is possible to improve the reliability of on-site welding and the safety during construction, and the quality of the entire construction can be ensured.
[0027]
FIG. 10 is a cross-sectional view of a soil cement composite wall.
When the soil cement composite wall 20 is constructed by the reverse casting method, the ground 3 is excavated to squeeze out the flange surface of each core material and the inner web surface of the channel steel material, and then laid on the assembled steel material of the water stop wall. The main beam is fixed to the gusset plate, and then the slab, pillar, outer wall reinforcement and formwork are constructed, and the concrete is placed to construct the outer periphery of the underground structure.
Accordingly, the outer wall 26 of the underground structure is formed inside the soil cement composite wall 20 after construction, and the beam 27 received by the gusset plate of the assembled steel material supports the slab 28 of each underground floor as a beam of the underground structure. doing.
As is clear from the above explanation, the soil cement composite wall according to the present invention has a function as a support pile, and acts as a retaining wall / water blocking wall against soil water pressure, and at the same time as a seismic wall that processes in-plane shear force. It can be integrated with the post-casting frame to resist in-plane and out-of-plane forces, and can also be used for reverse casting methods and new underground construction methods.
[0028]
As described above, the present invention has been described in detail based on various embodiments. However, the soil cement composite wall according to the present invention and the construction method thereof are obtained by combining an assembled steel material in which a plurality of core materials are integrated into a core of a soil cement column. The present invention is characterized in that it is configured by placing a reinforced concrete of a main body structure by connecting a gusset plate provided on an assembled steel material and a main beam and placing the reinforced concrete. Of course, the present invention is not limited to this, and various modifications can be made without departing from the spirit of the present invention.
[0029]
【The invention's effect】
The soil cement composite wall according to the present invention has an assembly steel material in which a plurality of core materials are integrated as a core material of a soil cement column array, and a gusset plate provided on the assembly steel material and a main beam are coupled to each other. A seismic wall that is constructed by placing concrete in the form of concrete, and is integrated with support piles as well as continuous underground walls, mountain retaining walls and water-stop walls against soil water pressure, and post-casting frames. It is possible to construct a variety of functions that can resist in-plane and out-of-plane forces at an overwhelmingly low cost, and demonstrates the effect that it can be adopted without using the true pillars in the reverse driving method and the new underground method.
[0030]
In addition, the integrated steel material prevents the core material from falling apart in the excavation premises, prevents biting into the underground structure, and keeps the core material spacing even to prevent cracks and water leakage. As a result, the bonding between the channel steel material and the soil cement is made dense, and the effect of suppressing the rotation and buckling of the core material is achieved.
[0031]
The construction method of the soil cement composite wall according to the present invention is an assembled steel material obtained by excavating a plurality of continuous soil cement column holes and integrating a plurality of core members into a column hole formed by mixing cement milk and excavated soil. The soil cement is hardened while holding it in place and the soil cement water barrier wall is constructed, and the inner surface of the assembled steel material is lifted along the ground excavation inside the water barrier wall, and then the inner surface of the assembled steel material It is characterized by laying a gusset plate on the surface, connecting the main beam to the gusset plate, and then placing concrete on the assembled steel and the beam, so that the construction efficiency of the excavator is improved It has the effect that the pile subsidence amount can be made high and the accuracy of building in the excavation hole can be increased to improve the frame accuracy at the underground construction stage. Moreover, since there is almost no earth removal, it is economical and can produce an effect friendly to the global environment.
[Brief description of the drawings]
FIG. 1 is a sectional side view of a soil cement wall according to the present invention. FIG. 2 is a sectional view of a soil cement wall. FIG. 3 is a sectional view of a soil cement water wall. FIG. 5 is a ground drawing of an assembled steel material employed in the present invention. FIG. 6 is a grounding process diagram of an assembled steel material employed in the present invention. FIG. 7 is a process of suspending the assembled steel material in a drilling hole. [Fig. 8] Fig. 9 is a drawing of the process of suspending the soil cement water barrier. [Fig. 9] is a drawing of the process of laying the gusset plate. [Fig. Construction drawing [Explanation of symbols]
1 Soil cement column (soil cement composite wall)
2 Outside ground of soil cement composite wall 3 Inside excavation ground of soil cement composite wall 4 Assembly steel material 5 Channel steel material 6 Gusset plate 7 Flat steel 8 Main beam 9 Tip of excavation hole 10 Support base 11 Pile consolidation part 12 Core material filling Insert part 13 Hanging surface 14 Steel core material 15 Flange surface 16 Web surface 18 Core material top portion 20 Soil cement composite wall 21 Peripheral beam 22 Work base 23 H Steel core flange 24 H Steel core web 25 Drilling hole 26 Outer Wall of Underground Structure 27 Beam of Underground Structure 28 Slab 30 Core Material 31 Flange Surface 32 of Core Material Bracket 33 Through Beam 34 Main Beam

Claims (3)

複数の芯材を一体にした組立鋼材をソイルセメント柱列の芯材として配置し、該組立鋼材に設けたガセットプレートと本設梁とを結合して本体構造の躯体コンクリートを打設して成るソイルセメント合成壁。An assembly steel material in which a plurality of core materials are integrated is arranged as a core material of a soil cement column array, and a reinforced concrete of a main body structure is placed by connecting a gusset plate provided on the assembly steel material and a main beam. Soil cement composite wall. 組立鋼材が、複数のH鋼芯材を該H鋼のフランジ間に所定間隔で渡したチャンネル鋼材によって一体にされていることを特徴とする請求項1に記載のソイルセメント合成壁。2. The soil cement synthetic wall according to claim 1, wherein the assembled steel material is integrated by a channel steel material in which a plurality of H steel core materials are passed between the flanges of the H steel at a predetermined interval. 連続した複数のソイルセメント柱列孔を掘削し、セメントミルクと掘削土とを混練させた該柱列孔内に複数の芯材を一体にした組立鋼材を吊り込み、所定の位置に保持しながらソイルセメントを硬化させてソイルセメント止水壁を構成し、該止水壁内側の地盤掘削に沿って組立鋼材の内側表面をはつり出し、次いで該組立鋼材の内側表面にガセットプレートを敷設し、該ガセットプレートに本設梁を結合して後に、組立鋼材及び梁に型枠を配置してコンクリートを打設することを特徴とするソイルセメント合成壁の施工法。While excavating a plurality of continuous soil cement column holes and assembling a steel assembly in which a plurality of core materials are integrated into the column hole obtained by kneading cement milk and excavated soil, The soil cement is hardened to form a soil cement water stop wall, the inner surface of the assembled steel material is suspended along the ground excavation inside the water stop wall, and then a gusset plate is laid on the inner surface of the assembled steel material, after by combining the設梁the gusset plates, construction methods features and to Luso yl cement synthesis walls that concrete is cast by placing a mold to assemble steel and beams.
JP30312698A 1998-10-26 1998-10-26 Soil cement composite wall and its construction method Expired - Lifetime JP3656437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30312698A JP3656437B2 (en) 1998-10-26 1998-10-26 Soil cement composite wall and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30312698A JP3656437B2 (en) 1998-10-26 1998-10-26 Soil cement composite wall and its construction method

Publications (2)

Publication Number Publication Date
JP2000129668A JP2000129668A (en) 2000-05-09
JP3656437B2 true JP3656437B2 (en) 2005-06-08

Family

ID=17917203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30312698A Expired - Lifetime JP3656437B2 (en) 1998-10-26 1998-10-26 Soil cement composite wall and its construction method

Country Status (1)

Country Link
JP (1) JP3656437B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830589B2 (en) * 2006-04-03 2011-12-07 株式会社大林組 Core material, soil cement wall, soil cement wall pile, method of building soil cement wall
JP4961806B2 (en) * 2006-04-03 2012-06-27 株式会社大林組 Soil cement wall, foundation structure
JP2007297834A (en) * 2006-04-28 2007-11-15 Ohbayashi Corp Core material, soil cement wall, soil cement wall pile, soil cement structure, and substructure
JP5151078B2 (en) * 2006-06-26 2013-02-27 株式会社大林組 Core material, underground continuous wall, soil cement wall, underground wall pile, soil cement wall pile, cast-in-place concrete pile
JP5066854B2 (en) * 2006-06-26 2012-11-07 株式会社大林組 Construction method of underground structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146396B2 (en) * 1993-03-25 2001-03-12 株式会社竹中工務店 Construction method of composite underground structure using soil cement column wall
JPH07109096B2 (en) * 1993-11-30 1995-11-22 建技開発株式会社 Impermeable method for underground wall

Also Published As

Publication number Publication date
JP2000129668A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
KR100910576B1 (en) Embedded anchor and composite retaining wall construction method
CN109235490B (en) Retaining wall and construction method thereof
KR20200124949A (en) Anchor Tension way sheathing structure and sheathing method of construction
JP4069509B2 (en) Construction method of reverse struts in the outer periphery of underground excavation space
KR101210368B1 (en) Uniting Method of Temporary earth wall with basement exterior Wall using Couplers and Bolts.
JP2004263467A (en) Reconstruction method using existing underground structure
JP3656437B2 (en) Soil cement composite wall and its construction method
JP5480744B2 (en) Foundation for structure and its construction method
JP5280150B2 (en) Yamadome retaining wall and method of forming Yamadome retaining wall
JP3641783B2 (en) Rigidity suppression steel pipe pile head rigid binding material
KR20100110927A (en) Post tension tunnel method
KR100673475B1 (en) PC girder member for base frame frame, assembly structure and method of construction
JP3963326B2 (en) Seismic reinforcement structure for bridge pier and its construction method
JP7275844B2 (en) WALL-LIKE STRUCTURE AND METHOD OF CONSTRUCTING WALL-LIKE STRUCTURE
JPH1077644A (en) Earthquake resisting pile foundation construction method
JP5480745B2 (en) Reinforcement method for existing foundations for structures
JPH0996194A (en) Support wall structure and construction method
KR20090042395A (en) Retaining Wall and Construction Method
KR101047257B1 (en) Construction method of earth wall using composite sheet pile
US20060177279A1 (en) Reinforcing wall in a deep excavation site
JPH0996198A (en) PS anchor fixing method and anchor fixing member used therefor
JP3904882B2 (en) Foundation structure that supports the structure on the existing roadbed and its construction method
JP4589506B2 (en) Pre-installation method of large steel columns for constructing buildings with superstructure structure by the reverse driving method
KR101285987B1 (en) Improved composite roof tunnel method for civil engineering, road, railroad, complex, water resources, structure, harbor, water supply and sewage
JP5548146B2 (en) Segmented joint structure and underground structure

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

EXPY Cancellation because of completion of term