JP3798414B2 - Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same - Google Patents

Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same Download PDF

Info

Publication number
JP3798414B2
JP3798414B2 JP2004336837A JP2004336837A JP3798414B2 JP 3798414 B2 JP3798414 B2 JP 3798414B2 JP 2004336837 A JP2004336837 A JP 2004336837A JP 2004336837 A JP2004336837 A JP 2004336837A JP 3798414 B2 JP3798414 B2 JP 3798414B2
Authority
JP
Japan
Prior art keywords
hollow
cut
concrete
concrete wall
continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004336837A
Other languages
Japanese (ja)
Other versions
JP2005120825A (en
Inventor
亮一 那珂
道弥 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004336837A priority Critical patent/JP3798414B2/en
Publication of JP2005120825A publication Critical patent/JP2005120825A/en
Application granted granted Critical
Publication of JP3798414B2 publication Critical patent/JP3798414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、シールド掘進機により切削できるトンネル掘進用立坑におけるシールド掘進機発進到達部の土留めコンクリート壁に使用するための被切削コンクリート壁用の連続繊維補強部材と、これを用いた被切削コンクリート壁の施工方法に関する。   The present invention relates to a continuous fiber reinforced member for a concrete wall to be cut for use as a retaining concrete wall in a shield tunneling machine start reaching part in a tunnel tunneling shaft that can be cut by a shield tunneling machine, and to-be-cut concrete using the same It is related with the construction method of the wall.

図32には、鉄筋44やH形鋼45で補強された土留壁46において、人力作業により切削形成された開口部47をシールド掘進機2が推進している状態が示されている。図33には、CFRPの連続繊維補強部材からなる引張補強材48を予めプレキャストコンクリート51内に配置して、これを切削可能な土留壁49とした従来の例が示されている。
図32の一般例では、シールド掘進機2が鉄筋44もしくはH形鋼44を直接切削できないため、土留壁46の背後に地盤改良50を施した後に、一旦構築した土留壁46のはつり作業を人力で行なってから、その開口部47に掘進機2を据えるという手間のかかる方法をとらざるを得なかった。
図33の例では、プレキャストコンクリート内に連続繊維補強部材48が配置されてなる切削可能な土留壁49であり、条件によって地山側に配置された連続繊維の引張補強材48が、シールド掘進機2のカッタービットで切断されたとき、被り部分の残されたプレキャストコンクリート51が大きな塊に割れて、周囲の脆弱な場所打ちモルタル(又はコンクリート)52と共に、背面地山側に食い込んでしまう等の可能性が残っていた。
図31によって従来例をさらに説明すると、同図には、トンネル掘削工事の基地となる位置に立坑1を築造し、この立坑1の底部にシールド掘進機2を据付けた状態が示されている。
FIG. 32 shows a state where the shield machine 2 is propelling the opening 47 cut and formed by manual work on the retaining wall 46 reinforced by the reinforcing bars 44 and the H-shaped steel 45. FIG. 33 shows a conventional example in which a tensile reinforcing material 48 made of a CFRP continuous fiber reinforcing member is arranged in advance in a precast concrete 51 and used as a cut retaining wall 49.
In the general example of FIG. 32, since the shield machine 2 cannot directly cut the reinforcing bar 44 or the H-shaped steel 44, after the ground improvement 50 is applied behind the retaining wall 46, the suspended work of the retaining wall 46 once constructed is manually performed. After that, the laborious method of setting the excavator 2 in the opening 47 was unavoidable.
In the example of FIG. 33, the continuous fiber reinforcing member 48 is disposed in the precast concrete and is a cutable earth retaining wall 49, and the continuous fiber tensile reinforcing material 48 disposed on the natural ground side depending on conditions is used for the shield machine 2. When the precast concrete 51 with the covered part is broken into large lumps and cut into the back ground, together with the surrounding weak cast-in mortar (or concrete) 52, etc. Was left.
The conventional example will be further described with reference to FIG. 31. FIG. 31 shows a state in which the shaft 1 is built at a position to be a base for tunnel excavation work, and the shield machine 2 is installed at the bottom of the shaft 1.

同図に示されるように、この立坑1の構築に際しては、環状の掘削溝を掘削した後、この掘削溝の下床や側壁面に鉄筋を配し、その部分にコンクリートを打設して、周囲の土圧に耐え得るコンクリート壁体3を築造している。   As shown in the figure, when this shaft 1 is constructed, after excavating an annular excavation groove, reinforcing bars are placed on the lower floor and side walls of the excavation groove, and concrete is placed in that part, A concrete wall 3 that can withstand the earth pressure is constructed.

シールド掘進機2は、この立坑1内に設けられた受け台上で組立てられて、所定の位置に据付けられるように設けられる。前記コンクリート壁体3には、シールド掘進機3が推進する部位4は、このシールド掘進機2により取壊わされ易い構造に構成されており、例えば、この部位4におけるコンクリート壁体3の筋材として、鉄筋とほぼ同等の強度を有し、シールド掘進機2の掘削能力で容易に切削破壊できるカーボン繊維,ガラス繊維またはアラミド繊維のいずれかを樹脂に含浸してなる連続繊維補強部材などが用いられる。   The shield machine 2 is assembled on a cradle provided in the shaft 1 so as to be installed at a predetermined position. In the concrete wall 3, the part 4 that the shield machine 3 propels is configured to be easily demolished by the shield machine 2, for example, the streaks of the concrete wall 3 in this part 4. For example, a continuous fiber reinforcing member formed by impregnating a resin with carbon fiber, glass fiber, or aramid fiber, which has almost the same strength as a reinforcing bar and can be easily cut and broken by the excavating ability of the shield machine 2 is used. It is done.

前述のようなシールド掘進機のカッタービットで直接切削可能な土留壁体を提供する手段として、すでに特許文献1,特許文献2等に記載されているものが知られている。さらに、地下埋設物の輻輳化や周辺構造物との干渉の問題から、路下でこの土留壁体を組み立てることが必要な場合が増えてきており、その対策として、路下施工場所に搬入可能な短いコンクリート壁体を順次つなぐ方法、およびそのための構造体を提供するものとして、特開平6−81576号公報,特開平6−108779号公報,特開平6−137065号公報,特開平6−137066号公報等に記載されている構造体および、これらを連結する方法が発明され、その一部はすでに実用化されている。
特公平6−37830号公報 特開平5−302490号公報
As means for providing a retaining wall body that can be directly cut with a cutter bit of a shield machine as described above, those already described in Patent Document 1, Patent Document 2, and the like are known. In addition, due to the congestion of underground buried objects and interference with surrounding structures, it is increasingly necessary to assemble this retaining wall under the road, and as a countermeasure, it can be carried into the road construction site. Japanese Patent Application Laid-Open No. 6-81576, Japanese Patent Application Laid-Open No. 6-108657, Japanese Patent Application Laid-Open No. 6-133706, and Japanese Patent Application Laid-Open No. 6-137066 are provided as a method for sequentially connecting short concrete walls, and a structure therefor. The structures described in the publications and the like and methods for connecting them have been invented, and some of them have already been put into practical use.
Japanese Patent Publication No. 6-37830 JP-A-5-302490

前記の土留壁体では、そのコンクリートを補強するための筋材が使用されるが前述のとおり、シールド掘進機2の推進部位4における筋材はカッタービットで直接切削が可能なよう軸方向の補強繊維に主として炭素繊維を用いた繊維強化樹脂(CFRP)等の連続繊維補強部材でできた筋材がコンクリート補強筋材として使用されることがある。   In the above-mentioned earth retaining wall body, a reinforcing material for reinforcing the concrete is used. As described above, the reinforcing material in the propulsion part 4 of the shield machine 2 is reinforced in the axial direction so that it can be directly cut with a cutter bit. In some cases, a reinforcing material made of a continuous fiber reinforcing member such as a fiber reinforced resin (CFRP) using mainly carbon fiber as a fiber is used as a concrete reinforcing reinforcing material.

炭素繊維は鉄筋に匹敵する高弾性率のCFRPを得やすく、かつ切削性にすぐれ、またガラス繊維のようにコンクリートのアルカリに侵される危険もないため、かかる目的に用いる繊維としては最も適したものである。   Carbon fiber is most suitable as a fiber for such purposes because it is easy to obtain CFRP with a high modulus of elasticity comparable to that of reinforcing steel, has excellent machinability, and has no danger of being attacked by concrete alkali like glass fiber. It is.

ただし、軸方向以外の繊維配向や、軸方向であっても補助的な機能を与える目的には、ガラス繊維,アラミド繊維を併用することが許容される。このように、たとえガラス繊維,アラミド繊維その他を併用していても、軸方向、すなわち引張方向の補強材の主構成が炭素繊維であるかぎり、CFRPである。   However, it is allowed to use glass fibers and aramid fibers in combination for the purpose of providing an auxiliary function even in the fiber orientation other than the axial direction and in the axial direction. Thus, even if glass fiber, aramid fiber, or the like is used in combination, CFRP is used as long as the main component of the reinforcing material in the axial direction, that is, in the tensile direction is carbon fiber.

CFRPでできた板状,管状,棒状,撚線等の引張補強材をつなぎあわせたり、端部を他の材料に接続して応力伝達を行うためには、これらの引張補強材の定着が必要である。しかも、この定着に用いる全ての材料は、シールド掘進機のカッタービットで切削可能で、且つCFRPの卓越した引張強度に見合う強度を有するもので構成されなければならない。加えて、立坑築造時の路下施工に適用する場合、当然複雑で熟練を要する作業工程を回避しなければ実用性にすぐれた施工方法になり得ない。   It is necessary to fix these tensile reinforcement materials in order to connect plate reinforcements made of CFRP such as plates, tubes, rods, and stranded wires, or to transfer stress by connecting the ends to other materials. It is. In addition, all materials used for this fixing must be made of materials that can be cut with a cutter bit of a shield machine and have a strength that matches the outstanding tensile strength of CFRP. In addition, when applied to road construction at the time of shaft construction, the construction method cannot be excellent in practicality unless a complicated and skilled work process is avoided.

従来、これらの引張補強材の継手施工には、流動性材料を用いて行うもの、FRP製のボルトで行うもの等がすでに開発され、それらの一部は実用化されているが、現場施工の際、前者においては充填の確認と養生時間内の仮止め工程等の、後者においてはボルトの締めつけトルク管理等の、煩雑で特段の注意を要する作業が伴っていた。   Conventionally, joints of these tensile reinforcements have been developed using fluid materials and those made of FRP bolts, and some of them have been put into practical use. On the other hand, the former involved complicated work requiring special attention, such as confirmation of filling and a temporary fixing process within the curing time, and the latter, such as bolt tightening torque management.

さらには定着部の構造的ならびに施工上の制約から引張補強材の強度を十分発揮できないことが起こり易かった。   Furthermore, it was easy to happen that the strength of the tensile reinforcement material could not be fully exhibited due to structural and construction restrictions of the anchorage.

一方、ウェブとフランジの接合部において、H形断面に平行な繊維配向を実現するには、プリプレグを手作業で貼り合わせて積層していく方法しかなく、著しく生産性が低いために実用性の極めて乏しいものであった。   On the other hand, in order to realize the fiber orientation parallel to the H-shaped cross section at the joint between the web and the flange, there is only a method of laminating the prepregs by hand, and the practicality is low because the productivity is remarkably low. It was extremely scarce.

本発明は、前記の諸問題を解決した被切削コンクリート壁用の連続繊維補強部材と、これを用いた被切削コンクリート壁の施工方法を提供することを目的とする。   An object of this invention is to provide the construction method of the to-be-cut concrete wall using the continuous fiber reinforcement member for the to-be-cut concrete wall which solved the said various problems.

本発明を適用した被切削コンクリート壁用の連続繊維補強部材は、上述した課題を解決するために、下方に向って拡径する横断面が中空の筒体からなり、この中空筒体は炭素繊維を主とした繊維強化樹脂からなることを特徴とする。
また、本発明を適用した連続繊維補強部材による被切削コンクリート壁の施工方法は、泥水が満たされた掘削溝内において、吊下げ支持された鋼製立坑構成部材を仮受部材として、この仮受部材上に横断面が中空で、下方に向って拡径しており、かつ炭素繊維を主とした繊維強化樹脂から形成される複数の中空筒体を、そのテーパ部を介して多段に積載しながら順次掘削溝内に吊り下して、各中空筒体が非脱抜的に嵌合された中空連続筋体を形成し、この中空連続筋体の中空部にトレミー管を介してコンクリートまたはモルタルを充填する被切削コンクリート壁の施工方法であって、このコンクリートまたはモルタルと、中空連続筋体外の泥水との比重差により各中空筒体の内側から外側に働く圧力で、上下の中空筒体のテーパ重合部の摩擦結合が増大されることを特徴とする。
本発明によると、施工内空の限られた場所で、限られた長さの連続繊維補強部材を長手方向に継ぎ足し、かつその継手部で引張強度を損なうことなしに、迅速に順次継ぎ足しながら長尺の中空連続筋体又は長尺の補強筋体を構成できる。しかも、この筋体によって補強されたコンクリート壁体は、必要な強度を有し、かつシールド掘進機のカッタービットでの容易な切削が可能である。
In order to solve the above-mentioned problems, a continuous fiber reinforcing member for a concrete wall to be cut to which the present invention is applied is composed of a hollow cylinder whose cross section expands downward, and the hollow cylinder is made of carbon fiber. It is characterized by comprising a fiber reinforced resin mainly composed of
In addition, the method for constructing a concrete wall to be cut by the continuous fiber reinforcing member to which the present invention is applied is a temporary support member that uses a steel shaft component member suspended and supported in an excavation groove filled with muddy water. A plurality of hollow cylinders made of fiber reinforced resin mainly composed of carbon fibers are stacked in multiple stages through the taper portion, with a hollow cross section on the member and expanding in the downward direction. Then, each hollow cylinder is suspended in the excavation groove in order to form a hollow continuous muscle that is non-removably fitted, and concrete or mortar is connected to the hollow portion of the hollow continuous muscle via a tremy tube. The construction method of the concrete wall to be cut is filled with the pressure of the upper and lower hollow cylinders by the pressure acting from the inside to the outside of each hollow cylinder due to the difference in specific gravity between this concrete or mortar and the muddy water outside the hollow continuous muscle. Friction of taper overlap Wherein the engagement is increased.
According to the present invention, a continuous fiber reinforcing member of a limited length is added in the longitudinal direction in a limited place in the construction space, and the length is increased while sequentially adding without damaging the tensile strength at the joint. A long hollow continuous muscle body or a long reinforcing muscle body can be formed. Moreover, the concrete wall reinforced by the streaks has the necessary strength and can be easily cut with the cutter bit of the shield machine.

本発明によると、施工内空の限られた場所でも、限られた長さの連続繊維補強部材を、その引張強度を継手部で損なうことなしに順次つなぎながら、これによって補強されたコンクリート壁体を構築できる。このようにして構築したコンクリート壁体は、連続繊維補強部材およびその継手はすべてCFRPを中心とした切削可能な材料で構成されているため、シールド掘進機のカッタービットで容易に切削可能である。さらに、こうして構築したコンクリート壁体の両端で、シールド掘進機の発進到達範囲から外れたところは、鋼構造物または鉄筋コンクリート構造になるが、本発明のコンクリート壁体と鋼構造物または鉄筋コンクリート構造との接合も、鋼構造物に設けられた支承部材や係合部材または、添接板やボルト,ナット等により、容易かつ強固に行なうことができる。   According to the present invention, a continuous wall reinforcing member having a limited length is connected even in a limited space in the construction space, and is continuously reinforced without damaging the tensile strength of the joint portion. Can be built. The concrete wall constructed in this way can be easily cut with a cutter bit of a shield machine because the continuous fiber reinforcing member and its joint are all made of a material that can be cut with CFRP as the center. Furthermore, at the both ends of the concrete wall constructed in this way, the place deviated from the start reach of the shield machine is a steel structure or a reinforced concrete structure, but the concrete wall of the present invention and the steel structure or the reinforced concrete structure Joining can also be easily and firmly performed by a support member, an engaging member, an attachment plate, a bolt, a nut, or the like provided in the steel structure.

以下、本発明を図を参照して説明する。
図1〜図9には、本発明の第1例が示されている。各図において、H形鋼からなる下方の鋼製立坑構成部材7の上端に設けられた鋼製支承部材6と、上方の鋼製立坑構成部材7aの下端に設けられた鋼製係合部材6aの間に本発明に係る被切削コンクリート壁体8が配設されている。
The present invention will be described below with reference to the drawings.
1 to 9 show a first example of the present invention. In each figure, a steel bearing member 6 provided at the upper end of the lower steel shaft constituent member 7 made of H-shaped steel and a steel engaging member 6a provided at the lower end of the upper steel shaft constituent member 7a. A concrete wall 8 to be cut according to the present invention is disposed between the two.

このコンクリート壁体8は、下方に向って拡径する横断面が中空の複数の筒体9が、テーパ部10を介して上下方向に多段に積載されてかつ、テーパ部10に作用する摩擦力で引張力に対して非脱抜的に嵌合されて構成された中空連続筋体11の内外にモルタル又はコンクリートを充填して構成されている。   The concrete wall 8 has a plurality of cylindrical bodies 9 having a hollow cross section that expands in the downward direction and is stacked in multiple stages in the vertical direction via the tapered portion 10, and the frictional force acting on the tapered portion 10. The inside and outside of the hollow continuous muscle body 11 that is configured to be non-removably fitted to the tensile force is filled with mortar or concrete.

このコンクリート壁体8は、図31に示したシールド工法の立坑1における鉄筋コンクリート壁体3の推進部位4に相当するもので、図1においてシールド掘進機2により範囲12が切削されることで、シールド掘進機2はこの範囲12を通って推進する。   This concrete wall 8 corresponds to the propulsion part 4 of the reinforced concrete wall 3 in the vertical shaft 1 of the shield method shown in FIG. 31, and the area 12 is cut by the shield machine 2 in FIG. The excavator 2 propels through this range 12.

さらに詳しく説明すると、第1例では、中空連続筋体11を構成する中空筒体9は、炭素繊維を主として連続繊維強化樹脂(CFRP)から構成され、その横断面は、各図に示されるように、先端部に円弧状部13を有する略矩形状であり、テーパ部10のテーパ角θは、複数の中空筒体9を施工現場で積み重ねたとき、そのテーパ部の重ね合わせ長さを十分長くとれ、前記テーパ部分に働く大きな摩擦力の効果により、引張側に位置する中空筒体9が他側から抜け出すことがないように重ね合わせができるテーパ角(例えばtan θ=0.002〜0.05程度の範囲)が好適である。   More specifically, in the first example, the hollow cylindrical body 9 constituting the hollow continuous muscle 11 is composed of carbon fiber mainly from continuous fiber reinforced resin (CFRP), and the cross section thereof is shown in each drawing. Further, the taper angle θ of the taper portion 10 is sufficient when the plurality of hollow cylinders 9 are stacked at the construction site. The taper angle (for example, tan θ = 0.002 to 0) that can be overlapped so that the hollow cylinder 9 positioned on the tension side does not come out from the other side due to the effect of a large frictional force acting on the taper portion. .About.05) is preferred.

前記のテーパ部10は、略矩形横断面の中空筒体の少なくとも対向する2つの壁の内外面に形成するもので、好ましくは、4つの各壁の内外面にこのテーパ部10を形成することで、上下の中空筒体9の嵌合は、強力かつ確実となる。なお、10aはテーパー外面であり、10bはテーパー内面である。この例の場合は、中空筒体9の横断面の肉厚が一定の状態で、上端部から下端部に向かって相似形で拡大(拡径)している。   The tapered portion 10 is formed on the inner and outer surfaces of at least two opposing walls of the hollow cylinder having a substantially rectangular cross section, and preferably, the tapered portion 10 is formed on the inner and outer surfaces of each of the four walls. Thus, the fitting of the upper and lower hollow cylinders 9 is strong and reliable. In addition, 10a is a taper outer surface and 10b is a taper inner surface. In the case of this example, the hollow cylinder 9 is expanded (expanded in diameter) in a similar shape from the upper end to the lower end while the thickness of the cross section of the hollow cylinder 9 is constant.

また、図10,図13,図14には中空筒体の横断面がそれぞれ異なる変形例が示されており、図10の中空筒体9aでは、先端部が鋭角状部14とされた略矩形状であり、図13の中空筒体9bでは、横断面円形状部15を有した構成であり、図14では中空筒体9cの4辺が平面状の矩形状16である。なお、CFRP中空筒体9の横断面形状は、中空であれば、前記形状のほか、楕円形または、隅角部に丸みをつけた多角形もしくはこれらの組合わせ形状としてもよい。   10, 13, and 14 show modified examples in which the cross-sections of the hollow cylinders are different from each other. In the hollow cylinder 9 a of FIG. 10, a substantially rectangular shape in which the tip part is an acute angle part 14 is shown. The hollow cylinder 9b in FIG. 13 has a configuration having a circular section 15 in cross section, and in FIG. 14, the hollow cylinder 9c has a flat rectangular shape 16 on four sides. The cross-sectional shape of the CFRP hollow cylinder 9 may be an ellipse, a polygon with rounded corners, or a combination thereof as long as it is hollow.

前記各中空筒体9,9a,9b,9cがそれぞれ図7,図10,図13,図14に示されるように、各テーパ部10を重ね合わせることで上下に多段に積み重ねて長尺の中空連続筋体11が構成される。このとき、中空連続筋体11のテーパ重合部の一側に曲げモーメントに伴なう引張力が働いたとき、テーパ重合部の他側に前記引張力と等しい圧縮力が働くので、前記テーパ角θがある程度小さく、テーパ部重ね合わせ長さがある程度確保されており、且つ、中空筒体9,9a,…の内外がコンクリート,モルタル等の固化体で拘束されていれば、一旦形成された重ね合わせの中空筒体9が抜け出すことはない。   As shown in FIGS. 7, 10, 13, and 14, the hollow cylindrical bodies 9, 9a, 9b, and 9c are stacked in multiple stages vertically by overlapping the taper portions 10, and are long and hollow. A continuous muscle body 11 is formed. At this time, when a tensile force accompanying a bending moment is applied to one side of the taper overlapping portion of the hollow continuous muscle 11, a compressive force equal to the tensile force is applied to the other side of the taper overlapping portion. If θ is somewhat small, the taper overlap length is secured to some extent, and the inside and outside of the hollow cylinders 9, 9a,... are constrained by a solidified body such as concrete or mortar, the overlap once formed The combined hollow cylinder 9 does not come out.

前述のような中空筒体9,9a,…のテーパ部による嵌め合わせ構造による中空連続筋体11は、とくに軸力が働く立坑土留め壁の筋材に使用するうえで有利である。また、前記中空筒体9,9a,…のテーパ部重ね合わせ面以外の面に凹凸(図示せず)を付形することで、後述のように中空筒体9,9a,…の内外に位置するコンクリート,モルタル等の固化体との合成構造とすることもできる。   The hollow continuous reinforcement 11 having a fitting structure with the tapered portions of the hollow cylinders 9, 9a,... As described above is particularly advantageous when used as a reinforcing material for a shaft retaining wall where axial force is applied. Further, by forming irregularities (not shown) on the surfaces other than the tapered surface overlapping surface of the hollow cylinders 9, 9a,..., The hollow cylinders 9, 9a,. It can also be a composite structure with solidified material such as concrete or mortar.

前述のように、複数の中空筒体9を多段に積載して構成される中空連続筋体11の上下端部において、これらと連接する部位のH形鋼からなる鋼製立坑構成部材7,7aの下端縁と上端縁には、前述のとおり図1に示されるように中空筒体9と略同一のテーパ部断面形状の鋼製支承部材6と鋼製係合部材6aが固着されている。   As described above, the steel shaft constituent members 7 and 7a made of H-shaped steel of the portion connected to the upper and lower ends of the hollow continuous reinforcing bars 11 formed by stacking a plurality of hollow cylindrical bodies 9 in multiple stages. As shown in FIG. 1, the steel support member 6 and the steel engagement member 6 a having the same taper cross-sectional shape as that of the hollow cylindrical body 9 are fixed to the lower end edge and the upper end edge.

本発明のコンクリート壁の補強方法を実施する工程を図2〜図4を参照して説明する。
泥水が満たされた掘削溝17内において、鋼製立坑構成部材7の上端部に設けられたブラケット18の吊り金具20に、吊り下げロープ21の下端の吊り金具22を係合することで、このロープ21により鋼製立坑構成部材7を所定の高さに吊り下げ仮保持する。つづいて、鋼製支承部材6が仮受部材となって、この鋼製支承部材6の外側に下側が拡径するテーパ部10を有し、炭素繊維を主とした繊維強化樹脂から構成されている中空筒体9が上方から嵌合され。その状態に保持される。
A process for carrying out the concrete wall reinforcing method of the present invention will be described with reference to FIGS.
In the excavation groove 17 filled with muddy water, this is achieved by engaging the suspension fitting 22 at the lower end of the suspension rope 21 with the suspension fitting 20 of the bracket 18 provided at the upper end of the steel shaft component 7. The steel shaft member 7 is suspended and temporarily held at a predetermined height by the rope 21. Subsequently, the steel support member 6 becomes a temporary support member, and has a tapered portion 10 whose lower side is expanded on the outside of the steel support member 6 and is made of a fiber reinforced resin mainly made of carbon fiber. The hollow cylinder 9 is fitted from above. It is held in that state.

前記中空筒体9の上には、さらに次の中空筒体9が嵌合され、それと対応して、鋼製立坑構成部材7を掘削溝17の下方に順次降しながら、一方では、前記の中空筒体9を順次継ぎ足して図1に示す被破砕コンクリート壁用中空連続筋体11を構成すべく、必要個数だけ上下に多段積層される。この中空連続筋体11の列は図1に示されるように複数並設される。   On the hollow cylinder 9, the next hollow cylinder 9 is further fitted. Correspondingly, while the steel shaft constituent members 7 are sequentially lowered below the excavation grooves 17, In order to form the hollow continuous reinforcing body 11 for a concrete wall to be crushed as shown in FIG. As shown in FIG. 1, a plurality of rows of the hollow continuous muscle bodies 11 are arranged side by side.

図3に示すように、前記中空連続筋体11が所定の長さに構築された後、この中空連続筋体11の内部に上方からトレミー管23を挿入し、トレミー管23の先端から中空連続筋体11の内部空間にコンクリートまたはモルタル24を充填する。   As shown in FIG. 3, after the hollow continuous muscle body 11 is constructed to a predetermined length, a tremy tube 23 is inserted into the hollow continuous muscle body 11 from above, and the hollow continuous muscle body 11 is continuously hollow from the tip of the tremy tube 23. Concrete or mortar 24 is filled into the internal space of the muscular body 11.

そして、中空連続筋体11は、泥水25が満たされた掘削溝17内に構築されているので、この中空連続筋体11の外側の泥水をコンクリートまたはモルタルに置換するより前に、前記トレミー管23により中空連続筋体11内の中空部に前記コンクリートまたはモルタル24を充填することで、中空筒体9の外部の泥水25と、中空部内のコンクリートまたはモルタル24との比重差により、中空筒体9のテーパ重ね合わせ部には、中空筒体9の内側から外側に向かう圧力が働く。この圧力が重ね合わせ部のテーパ部分の摩擦力をより大きくするように働くために好都合である。また、鋼製支承部材6の底面に泥水排出孔43が設けられているので、この泥水排出孔43から空気を逃がすことでコンクリートまたはモルタル24は中空筒体9内にスムーズに充填される。   And since the hollow continuous muscle 11 is constructed in the excavation groove 17 filled with the mud water 25, before replacing the mud outside the hollow continuous muscle 11 with concrete or mortar, the tremy tube The hollow cylindrical body is filled with the concrete or mortar 24 in the hollow continuous muscle body 11 by the difference in specific gravity between the muddy water 25 outside the hollow cylindrical body 9 and the concrete or mortar 24 in the hollow part. In the taper overlapping portion 9, a pressure from the inner side to the outer side of the hollow cylinder 9 acts. This pressure is advantageous because it works to increase the frictional force of the taper portion of the overlapping portion. Further, since the muddy water discharge hole 43 is provided on the bottom surface of the steel support member 6, the concrete or the mortar 24 is smoothly filled into the hollow cylindrical body 9 by letting air escape from the muddy water discharge hole 43.

前記のように中空連続筋体11内にコンクリートまたはモルタル24を充填した後、トレミー管23を引上げ、図4に示すように、中空筒体9の外側の泥水25をコンクリートまたはモルタル42と置換することで、中空連続筋体11で補強された被切削用のコンクリートまたはモルタル等のコンクリート壁体8が構成でき、このコンクリート壁体8が土留壁となり、この土留壁で囲まれた内側を掘削することで、トンネル掘削工事の基地となる立坑1が築造される。   After filling the hollow continuous muscle 11 with concrete or mortar 24 as described above, the tremy tube 23 is pulled up, and the mud water 25 outside the hollow cylinder 9 is replaced with concrete or mortar 42 as shown in FIG. Thus, a concrete wall 8 such as concrete for cutting or mortar reinforced by the hollow continuous muscle 11 can be configured, and the concrete wall 8 becomes a retaining wall, and the inside surrounded by the retaining wall is excavated. As a result, the shaft 1 as a base for the tunnel excavation work is constructed.

図8,図9,図11,図12には、前記の立坑1内に据付けられたシールド掘進機2が、切削用コンクリート壁体8を切削して推進する工程が示されている。図8,図9においては、切削用コンクリート壁8が中空筒体9で構成されている例であり、この場合、シールド掘進機2の推進に伴ないカッタービット2aにより中空筒体9の内端側から順次切削されてゆき、最後にこの中空筒体9を多段積層して構成される中空連続筋体11が切削されてコンクリート壁体8に開口が形成され、この開口を通してシールド掘進機2が発進していく。   8, 9, 11, and 12 show a process in which the shield machine 2 installed in the vertical shaft 1 cuts and propels the cutting concrete wall 8. 8 and 9 are examples in which the cutting concrete wall 8 is constituted by a hollow cylinder 9, and in this case, the inner end of the hollow cylinder 9 by the cutter bit 2 a accompanying the propulsion of the shield machine 2. The hollow continuous streaks 11 formed by laminating the hollow cylinders 9 in layers are cut sequentially, and an opening is formed in the concrete wall 8 through which the shield machine 2 is opened. Start off.

シールド掘進機2のカッタービット2aにより、中空筒体9,9aが図8から図9、図11から図12のように順次切削されるとき、最後まで残る側、つまり、中空筒体9の先端側の形状が図9のように円弧状部13であるか、または図12のように鋭角状部14であり、中空筒体9,9aのCFRPの先端面がシールド掘進機2のカッタービット2aの切削平面と平行にならないようにされるが、これらはより望ましい形状の例として示されているのであり、それは次の理由による。   When the hollow cylinders 9, 9 a are sequentially cut as shown in FIGS. 8 to 9 and FIGS. 11 to 12 by the cutter bit 2 a of the shield machine 2, the side that remains to the end, that is, the tip of the hollow cylinder 9 9 is an arcuate portion 13 as shown in FIG. 9 or an acute-angled portion 14 as shown in FIG. 12, and the front end surface of the CFRP of the hollow cylinders 9 and 9a is a cutter bit 2a of the shield machine 2 However, these are shown as examples of more desirable shapes for the following reasons.

つまり、シールド掘進機2のカッタービット2aである程度強度をもった被切削コンクリート壁体8を切削していくと、切削完了に近づいたとき、中空筒体9,9aの残存部分が、地山あるいは場所打ちで固化されたモルタルまたはコンクリート等の固化体から剥離して、大きな塊のまま脱落する危険が増大する。この点に関し、中空筒体9の前記円弧状部13や鋭角状部14の形状とすることでこのような不具合点を回避して、切削しようとするコンクリート壁体8を最後まで地山あるいは場所打ちで固化されたモルタル等の固化体に付着させた状態を保つことによって、中空筒体9,9aを小切りに切削可能とするうえで好都合である。   That is, when the concrete wall 8 to be cut having a certain degree of strength is cut with the cutter bit 2a of the shield machine 2, when the cutting is close to completion, the remaining portions of the hollow cylinders 9 and 9a There is an increased risk of peeling off from a solidified body such as mortar or concrete solidified in place and falling off as a large lump. In this regard, the shape of the arc-shaped portion 13 or the acute-angled portion 14 of the hollow cylindrical body 9 avoids such inconveniences, and the concrete wall 8 to be cut to the ground or place to the end. Maintaining the state of adhering to a solidified body such as mortar solidified by punching is advantageous for enabling the hollow cylindrical bodies 9 and 9a to be cut into small pieces.

なお、中空筒体がシールド掘進機で切削される際、最後まで残る側の横断面形状を、前記のほか、楕円,半円,多角形等のいずれか、もしくは、これらの組合わせ形状でもよい。   In addition, when the hollow cylinder is cut by the shield machine, the cross-sectional shape on the side that remains until the end may be any one of ellipses, semicircles, polygons, etc., or a combination thereof. .

勿論、本発明は、前記の構造に限定されず、図14に示される中空筒体9cのように先端部がシールド掘進機の面板に平行な平面状であっても、この中空筒体9cを多数積層して上下方向に長尺の中空連続筋体11を簡易な施工手段で構成できるという特長を有する点で従来例に比べ格段の効果を達成できる。   Of course, the present invention is not limited to the above-described structure, and even if the distal end portion is a flat shape parallel to the face plate of the shield machine as in the hollow tube 9c shown in FIG. A remarkable effect can be achieved compared to the conventional example in that it has a feature that a large number of laminated hollow continuous muscle bodies 11 can be configured by simple construction means by stacking a large number of them.

図15〜図23は本発明の参考第1例を示し、図24〜図30は本発明の参考第2例を示す。この参考第1例と参考第2例が、図1〜14に示す第1例と相違する構成は、第1例では、炭素繊維を主とした繊維強化樹脂から構成されており、下方に向って拡径する横断面が中空筒体9によって被切削コンクリート壁用の連続繊維補強部材を構成しているのに対し、参考第1例と参考第2例では、炭素繊維を主とした繊維強化樹脂から構成された中空筒状部材を縦方向に2分割し、この分割部材の背中部(ウェブ)同士を繊維強化ボルトと溶接板または接着剤等からなる切断可能接合手段を用いて接合して連続繊維補強部材を構成する点である。   15 to 23 show a first reference example of the present invention, and FIGS. 24 to 30 show a second reference example of the present invention. The first example and the second reference example are different from the first example shown in FIGS. 1 to 14 in the first example. In the first example, the first example and the second reference example are made of a fiber reinforced resin mainly composed of carbon fibers. In contrast to the first and second reference examples, the fiber reinforcement mainly composed of carbon fibers is used for the continuous fiber reinforcing member for the concrete wall to be cut by the hollow cylinder 9 having a cross section that expands in diameter. A hollow cylindrical member made of resin is divided into two in the longitudinal direction, and the back portions (webs) of the divided members are joined together using a severable joining means comprising a fiber reinforced bolt and a welded plate or an adhesive. It is a point which comprises a continuous fiber reinforcement member.

図15〜図23によって、参考第1例を説明すると、参考第1例では図18に示すように断面が中空,多角形であり、かつ隅角部に丸みを付した形状の炭素繊維を主とした繊維強化樹脂からなる連続繊維補強部材としての中空筒状部材26をフィラメントワインディング(以下FWと称す)で製作する。図18において、中空筒状部材26における炭素繊維の配向は矢印で示されている。   The reference first example will be described with reference to FIGS. 15 to 23. In the first reference example, as shown in FIG. 18, a carbon fiber having a hollow cross section, a polygonal shape and rounded corners is mainly used. A hollow tubular member 26 as a continuous fiber reinforcing member made of the above-described fiber reinforced resin is manufactured by filament winding (hereinafter referred to as FW). In FIG. 18, the orientation of the carbon fibers in the hollow cylindrical member 26 is indicated by arrows.

次に、前記中空筒状部材26を図19に示すように縦に2分割して、コ字形の2つの分割部材26aを構成する。つぎに、図20に示すようにコ字形の分割部材26aをウェブ(背中部)27を合わせ、この背中合わせ部を貫通する繊維強化樹脂製ボルト28とナット29で再結合することで、左右対称の断面を有する炭素繊維を主とした連続繊維補強部材30を構成する。なお、前記分割部材26aのウェブ27を結合する手段としては、前記繊維強化樹脂製ボルト28とナット29のほか、接着剤でもよいし、あるいは、これらボルト,ナットと接着剤との併用でもよい。   Next, as shown in FIG. 19, the hollow tubular member 26 is vertically divided into two to form two U-shaped divided members 26a. Next, as shown in FIG. 20, the U-shaped split member 26 a is aligned with the web (back portion) 27, and is recombined with a fiber reinforced resin bolt 28 and a nut 29 penetrating the back-to-back portion. A continuous fiber reinforcing member 30 mainly composed of carbon fibers having a cross section is configured. In addition, as means for connecting the web 27 of the divided member 26a, an adhesive may be used in addition to the fiber reinforced resin bolt 28 and the nut 29, or a combination of these bolt, nut and adhesive may be used.

前記の炭素繊維を主とした連続繊維補強部材30が十分に長尺であれば、この補強部材単体を補強筋体として被切削コンクリート壁体8用に使用できるが、前記連続繊維補強部材30が短尺の場合は、これを図15に示すように長手方向に結合して長尺補強筋体31を構成する。また、この結合手段は、長尺補強筋体31の上下端部と上下の鋼製立坑構成部材7,7aとの結合にも用いられる。   If the continuous fiber reinforcing member 30 mainly composed of the carbon fiber is sufficiently long, the reinforcing member alone can be used as a reinforcing reinforcing body for the concrete wall 8 to be cut. In the case of a short length, this is coupled in the longitudinal direction as shown in FIG. This coupling means is also used for coupling the upper and lower ends of the long reinforcing bar 31 and the upper and lower steel shaft components 7 and 7a.

その結合手段の例が図22,図23に示されている。同図の場合は上位と下位の連続繊維補強部材30の端縁部32同士を突き合わせ、この端縁部32をまたがって伸びる添接板33を各補強部材30のウェブ27とフランジ部34を両側から挟むように当てがい、このウェブ27及びフランジ部34と添接板33の各ボルト孔35に繊維強化樹脂製ボルト28を挿通し、ナット29を締結することで、上位と下位の連続繊維補強部材30が結合されている。   Examples of the coupling means are shown in FIGS. In the case of the figure, the end edges 32 of the upper and lower continuous fiber reinforcing members 30 are butted together, and the attachment plate 33 extending across the end edges 32 is attached to the web 27 and the flange 34 of each reinforcing member 30 on both sides. The upper and lower continuous fiber reinforcements are made by inserting fiber reinforced resin bolts 28 into the bolt holes 35 of the web 27 and flange part 34 and the attachment plate 33 and fastening the nuts 29. Member 30 is coupled.

参考第1例の各連続繊維補強部材30は、図15に示すように被切削コンクリート壁体8内に長尺補強筋体31として埋設され、かつ図16,図17に示すようにシールド掘進機2のカッタービット2aで切削されることで、このコンクリート壁体8にシールド掘進機2が通過できる開口が切削形成される。   Each continuous fiber reinforcing member 30 in the first reference example is embedded as a long reinforcing bar 31 in the concrete wall 8 to be cut as shown in FIG. 15, and a shield machine as shown in FIGS. By cutting with the cutter bit 2 a of 2, an opening through which the shield machine 2 can pass is cut and formed in the concrete wall body 8.

次に図20〜図26に示す参考第2例を説明する。この参考第2例では、図27に示すように中空筒状部材36の断面形状が、参考第1例のそれと異なっており、その他の構成及び製作工程は参考第1例と同じであるので、それと同一要素には同一符号を付して重複説明を省略し、相違する点のみを説明する。   Next, a second reference example shown in FIGS. 20 to 26 will be described. In this reference second example, as shown in FIG. 27, the cross-sectional shape of the hollow cylindrical member 36 is different from that of the reference first example, and other configurations and manufacturing processes are the same as those of the reference first example. The same reference numerals are given to the same elements, and the duplicate description is omitted, and only the differences will be described.

参考第2例では、中空筒状部材36の先端部が円弧状部37となった略矩形断面形状である構成が、参考第1例の中空筒状部材26の先端部が平面状の矩形断面形状である構成と相違している。したがって、参考第2例の中空筒状部材36を縦方向に2分割してできる分割部材36aのウェブ38同士を突き合わせボルト孔35に繊維強化樹脂製ボルト28を挿通しナット29を締結し、再結合して構成される連続繊維補強部材40の断面形状が参考第1例に係る連続繊維補強部材30と若干相違する。   In the second reference example, the configuration having a substantially rectangular cross-sectional shape in which the tip of the hollow cylindrical member 36 is an arc-shaped portion 37 is a rectangular cross-section in which the tip of the hollow cylindrical member 26 of the first reference example is a planar shape. The configuration is different from the configuration. Accordingly, the webs 38 of the divided member 36a formed by dividing the hollow cylindrical member 36 of the second reference example in the longitudinal direction are butted against each other, the fiber reinforced resin bolt 28 is inserted into the bolt hole 35, the nut 29 is fastened, The cross-sectional shape of the continuous fiber reinforcing member 40 formed by joining is slightly different from the continuous fiber reinforcing member 30 according to the first reference example.

参考第2例の連続繊維補強部材40も、図24に示すように被切削コンクリート壁体8内に長尺補強筋体41として埋設され、かつ図25,図26に示すようにシールド掘進機2のカッタービット2aで切削される。このとき、ある程度強度をもった被切削コンクリート壁体8のカッタービット2aによる切削完了に近づいたときの連続繊維補強部材40の残存部分の形状が、参考第2例では、参考第1例と異なっている。   The continuous fiber reinforcing member 40 of the second reference example is also embedded as a long reinforcing bar 41 in the concrete wall 8 to be cut as shown in FIG. 24, and the shield machine 2 as shown in FIGS. The cutter bit 2a is used for cutting. At this time, the shape of the remaining portion of the continuous fiber reinforcing member 40 when the concrete wall 8 to be cut having a certain degree of strength approaches the completion of cutting by the cutter bit 2a is different from the first reference example in the second reference example. ing.

この相違は、本発明の第1例において図9と図14の場合の差異について説明したのと同じ原理が成り立つ。すなわち、図17に示されるように、フラットなフランジ34を有する参考第1例よりも図26に示されるように円弧状のフランジ39を有する参考第2例の場合の方が連続繊維補強部材の残存部分が少ないので、シールド掘進機2によりコンクリート壁体8の開口が開削されたとき、前記残存部分がコンクリート壁体を構成するモルタルやコンクリート等の固化体から剥離して、大きな塊のまま脱落する危険性が少ない。しかし、参考第1例の構成によっても、従来例に比べて格段の効果を達成できることは明らかである。   This difference is based on the same principle described in the first example of the present invention with respect to the difference between FIGS. That is, as shown in FIG. 17, in the case of the second reference example having the arc-shaped flange 39 as shown in FIG. 26, the continuous fiber reinforced member is better than the first reference example having the flat flange 34. Since the remaining portion is small, when the opening of the concrete wall 8 is cut by the shield machine 2, the remaining portion peels off from the solidified body such as mortar or concrete constituting the concrete wall and falls off as a large lump. There is little risk to do. However, it is clear that the configuration of the first reference example can achieve a remarkable effect as compared with the conventional example.

本発明が、参考第1例、参考第2例のように連続繊維補強部材30,40を構成する理由は次のとおりである。   The reason why the present invention constitutes the continuous fiber reinforcing members 30 and 40 as in the first reference example and the second reference example is as follows.

シールド掘進機の発進・到達用立坑の土留壁では、従来補強筋としてH形鋼が使用される場合が多く、これとの関係で、シールド掘進機が発進・到達する際、そのカッタービットで切削される範囲、つまり、前記のカッタービットで切削される範囲の土留壁の補強筋体も、土留壁として十分な耐力を有し、かつ切削可能な材料のみで構成されるものであればH形鋼と同一の断面構造のものが、添接板で容易に接合できることから好ましい。   In the retaining wall of the shaft for starting and reaching the shield machine, H-shaped steel is often used as a reinforcing bar in the past, and in this connection, when the shield machine is started and reached, cutting is performed with the cutter bit. If the reinforcing bar body of the retaining wall in the range to be cut, that is, the range to be cut by the cutter bit, has sufficient strength as the retaining wall and is composed only of a material that can be cut, it is H-shaped. A steel having the same cross-sectional structure as that of steel is preferable because it can be easily joined with an attachment plate.

このことから、被切削コンクリート壁体の補強筋として、従来、H形断面の連続繊維補強部材が使用されることがあるが、前に述べたように、従来のH形断面の連続繊維補強部材では製法上の問題からH形断面を形成するウェブとフランジ部との接合部の強度が著るしく弱くて実用化が困難であり、または、プリプレグの手作業によるウェブとフランジ部との接合部の貼り合わせによる著るしく生産性が低くて実用化が困難であった。   For this reason, a continuous fiber reinforcing member having an H-shaped cross section is conventionally used as a reinforcing bar for a concrete wall to be cut. However, as described above, a conventional continuous fiber reinforcing member having an H-shaped cross section is used. However, the strength of the joint between the web forming the H-shaped cross section and the flange is so weak that it is difficult to put into practical use due to problems in the manufacturing method, or the joint between the web and the flange by manual operation of the prepreg. It was difficult to put it to practical use because of its markedly low productivity due to the bonding.

本発明では、中空筒状部材26,36と製作する際に、繊維強化樹脂における炭素繊維の配向を所期通りに行なうことができる。したがって、この中空筒状部材26,36を縦方向に2分割して形成される分割部材26a,36aを、そのウェブ27,38同士を接合して構成される連続繊維補強部材30,40の断面形状は従来と同じH形断面であり、しかも、ウェブ27,38とフランジ34,39とは一体であり、かつ両方に伸長した炭素繊維の配向がなされているから、従来のような接合部の強度低下が生じないのである。   In the present invention, when the hollow cylindrical members 26 and 36 are manufactured, the carbon fibers in the fiber reinforced resin can be oriented as expected. Therefore, the cross sections of the continuous fiber reinforcing members 30 and 40 configured by joining the webs 27 and 38 to the divided members 26a and 36a formed by dividing the hollow cylindrical members 26 and 36 into two in the vertical direction. The shape is the same H-shaped cross section as in the prior art, and the webs 27 and 38 and the flanges 34 and 39 are integral with each other, and the carbon fibers are oriented in both directions. There is no reduction in strength.

参考第2例の連続繊維補強部材40では、前記の利点に加え前述のように円弧状のフランジ39を有することで、コンクリート壁体8の最終切削段階で、前記補強部材40の小片化に好都合な構成を有している。   In addition to the above-mentioned advantages, the continuous fiber reinforcing member 40 of the second reference example has the arc-shaped flange 39 as described above, which is advantageous for making the reinforcing member 40 smaller in the final cutting stage of the concrete wall 8. It has a configuration.

また、CFRP製の長尺補強筋体31,41のウェブ27,38やフランジ34,39部分には、開口部や突起または表面に凹凸を設けることでコンクリートとの合成梁(補強筋)を構成できることは自明である。   In addition, the webs 27 and 38 and the flanges 34 and 39 of the long reinforcing bars 31 and 41 made of CFRP constitute synthetic beams (reinforcing bars) with concrete by providing irregularities on the openings, protrusions or surfaces. It's obvious what you can do.

図1ないし図14、図18および図27に示す中空筒体を製作する場合には、図18に矢印で炭素繊維を主とする連続繊維の配置方向を示すように、筒体の長手方向(図18の矢印X方向)と、筒体の周方向(矢印Y方向)と、筒体の長手方向に対して傾斜して交差する方向(矢印Z方向)に、炭素繊維を主とする連続繊維を適宜組合せて配置すればよい。また中空筒体の周方向に、炭素繊維等の連続繊維を多数回捲回または螺旋状に捲回して樹脂により埋込むかまたは樹脂を含浸させてもよい。   When manufacturing the hollow cylinder shown in FIG. 1 to FIG. 14, FIG. 18 and FIG. 27, the longitudinal direction of the cylinder (as shown in FIG. A continuous fiber mainly composed of carbon fibers in the direction (arrow X direction in FIG. 18), the circumferential direction of the cylinder (arrow Y direction), and the direction (arrow Z direction) inclined and intersected with the longitudinal direction of the cylinder. May be arranged in appropriate combination. Further, continuous fibers such as carbon fibers may be wound many times or spirally in the circumferential direction of the hollow cylinder and embedded with resin or impregnated with resin.

立坑におけるシールド掘進機推進部の切削用コンクリート壁に本発明の第1例を実施した例を示す正面説明図である。It is front explanatory drawing which shows the example which implemented the 1st example of this invention to the concrete wall for cutting of the shield machine propulsion part in a vertical shaft. 本発明の第1例に係る繊維補強の中空筒体の多段積載時の第1工程を示す断面図である。It is sectional drawing which shows the 1st process at the time of multistage loading of the hollow cylinder of fiber reinforcement which concerns on the 1st example of this invention. 同じく第2工程を示す断面図である。It is sectional drawing which similarly shows a 2nd process. 同じく第3工程を示す断面図である。It is sectional drawing which similarly shows a 3rd process. 第1例に係る中空筒体の縦断面図である。It is a longitudinal cross-sectional view of the hollow cylinder which concerns on a 1st example. 図5のA−A断面図である。It is AA sectional drawing of FIG. 第1例に係る中空筒体の多段積載状態の斜視図である。It is a perspective view of the multistage loading state of the hollow cylinder concerning the 1st example. 第1例に係る中空筒体からなる繊維補強筋体のシールド掘進機による切断前の状態を示す横断面図である。It is a cross-sectional view which shows the state before the cutting | disconnection by the shield machine of the fiber reinforcement reinforcement body which consists of a hollow cylinder which concerns on a 1st example. 同じく繊維補強筋体のシールド掘進機による切断終了時の状態を示す横断面図である。It is a cross-sectional view which shows the state at the time of completion | finish of a cutting | disconnection by the shield machine of a fiber reinforcement reinforcement body similarly. 本発明の第1例に係る中空筒体の第1変形例の多段積載状態を示す斜視図である。It is a perspective view which shows the multistage loading state of the 1st modification of the hollow cylinder which concerns on the 1st example of this invention. 第1例の第1変形例に係る中空筒体からなる繊維補強筋体のシールド掘進機による切断前の状態を示す横断面図である。It is a cross-sectional view which shows the state before the cutting | disconnection by the shield machine of the fiber reinforced reinforcement body which consists of a hollow cylinder which concerns on the 1st modification of a 1st example. 同じく図11の繊維補強筋体のシールド掘進機による切断終了時の状態を示す横断面図である。It is a cross-sectional view which shows the state at the time of completion | finish of the cutting | disconnection by the shield machine of the fiber reinforcement reinforcement body of FIG. 本発明の第1例に係る中空筒体の第2変形例の多段積載状態の斜視図である。It is a perspective view of the multistage loading state of the 2nd modification of the hollow cylinder concerning the 1st example of the present invention. 本発明の第1例に係る中空筒体の第3変形例の多段積載状態の斜視図である。It is a perspective view of the multistage loading state of the 3rd modification of the hollow cylinder concerning the 1st example of the present invention. 立坑におけるシールド掘進機推進部のコンクリート壁に本発明の参考第1例を実施した例を示す正面説明図である。It is front explanatory drawing which shows the example which implemented the reference 1st example of this invention on the concrete wall of the shield machine propulsion part in a vertical shaft. 参考第1例に係る中空筒状部材の分割部材からなる繊維補強筋体のシールド掘進機による切断前の状態を示す横断面図である。It is a cross-sectional view which shows the state before the cutting | disconnection by the shield machine of the fiber reinforced reinforcement body which consists of a division member of the hollow cylindrical member which concerns on a reference 1st example. 同じく図16の繊維補強筋体のシールド掘進機による切断終了時の状態を示す横断面図である。It is a cross-sectional view which shows the state at the time of completion | finish of the cutting | disconnection by the shield machine of the fiber reinforcement reinforcement body of FIG. 参考第1例に係る中空筒状部材の斜視図である。It is a perspective view of the hollow cylindrical member concerning a reference 1st example. 図18の中空筒状部材の2分割状態の斜視図である。FIG. 19 is a perspective view of the hollow cylindrical member of FIG. 18 in a two-divided state. 図19の分割部材をウェブを介して再接合してなる繊維補強筋体の斜視図である。FIG. 20 is a perspective view of a fiber reinforced reinforcing member formed by rejoining the divided member of FIG. 19 via a web. 図20の断面図である。It is sectional drawing of FIG. 図20の繊維補強筋体の長手方向の連結部を示す正面図である。It is a front view which shows the connection part of the longitudinal direction of the fiber reinforcement reinforcement body of FIG. 図22の連結部の断面図である。It is sectional drawing of the connection part of FIG. 立坑におけるシールド掘進機推進部のコンクリート壁に本発明の参考第2例を実施した例を示す正面説明図である。It is front explanatory drawing which shows the example which implemented the reference 2nd example of this invention on the concrete wall of the shield machine propulsion part in a vertical shaft. 本発明の参考第2例に係る繊維補強筋体のシールド掘進機による切断前の状態を示す横断面図である。It is a cross-sectional view which shows the state before the cutting | disconnection by the shield machine of the fiber reinforced reinforcement body which concerns on the reference 2nd example of this invention. 同じく繊維補強筋体のシールド掘進機による切断終了時の状態を示す横断面図である。It is a cross-sectional view which shows the state at the time of completion | finish of a cutting | disconnection by the shield machine of a fiber reinforcement reinforcement body similarly. 参考第2例に係る中空筒状部材の斜視図である。It is a perspective view of the hollow cylindrical member which concerns on the reference 2nd example. 図27の中空筒状部材の2分割状態の斜視図である。FIG. 28 is a perspective view of the hollow cylindrical member of FIG. 27 in a two-divided state. 図28の分割部材を背中合わせに再接合してなる繊維補強筋体の斜視図である。FIG. 29 is a perspective view of a fiber reinforced muscle body formed by rejoining the divided members of FIG. 28 back to back. 図29の断面図である。FIG. 30 is a cross-sectional view of FIG. 29. 第1従来例として立坑におけるシールド掘進機と、その推進部におけるコンクリート壁を示す側面説明図である。It is side explanatory drawing which shows the shield machine in a shaft as a 1st prior art example, and the concrete wall in the propulsion part. 第2従来例として、シールド掘進機が人力によりはつり作業で開削された開口を推進している状態を示す断面説明図である。It is sectional explanatory drawing which shows the state which is pushing the opening excavated by the suspension operation | work by the manpower as a 2nd prior art example. 第3従来例として、立坑におけるシールド掘進機が繊維補強土留壁を切削して推進している状態を示す側面説明図である。It is side explanatory drawing which shows the state which the shield excavation machine in a vertical shaft cuts and promotes the fiber reinforced earth retaining wall as a 3rd prior art example.

符号の説明Explanation of symbols

1 立坑
2 シールド掘進機
3 コンクリート壁体
4 推進部位
6 鋼製支承部材
6a 鋼製係合部材
7,7a 鋼製立坑構成部材
8 切削用コンクリート壁体
9,9a,9b,9c 中空筒体(連続繊維補強部材)
10 テーパ部
11 中空連続筋体
12 範囲
13 円弧状部
14 鋭角状部
15 横断面円形状部
16 矩形状部
17 掘削溝
18 ブラケット
20 吊り金具
21 吊り下げロープ
22 吊り金具
23 トレミー管
24 コンクリートまたはモルタル
25 泥水
26 中空筒状部材
26a 分割部材
27 ウェブ
28 繊維強化樹脂製ボルト
29 ナット
30 連続繊維補強部材
31 長尺補強筋体
32 端縁部
33 添接板
34 フランジ部
35 ボルト孔
36 中空筒状部材
36a 分割部材
37 円弧状部
38 ウェブ
39 フランジ
40 連続繊維補強部材
41 長尺補強筋体
42 モルタルまたはコンクリート
43 泥水排出孔
44 鉄筋
45 H形鋼
46 土留壁
47 開口部
48 引張補強材
49 土留壁
50 地盤改良
51 プレキャストコンクリート
52 場所打ちモルタル
DESCRIPTION OF SYMBOLS 1 Vertical shaft 2 Shield machine 3 Concrete wall body 4 Propulsion part 6 Steel bearing member 6a Steel engaging member 7, 7a Steel shaft structural member 8 Concrete wall body for cutting 9, 9a, 9b, 9c Hollow cylinder (continuous Fiber reinforcement member)
DESCRIPTION OF SYMBOLS 10 Tapered part 11 Hollow continuous muscle body 12 Range 13 Arc-shaped part 14 Acute-angled part 15 Cross-sectional circular part 16 Rectangular part 17 Excavation groove 18 Bracket 20 Hanging bracket 21 Hanging rope 22 Hanging bracket 23 Tremy tube 24 Concrete or mortar 25 Muddy water 26 Hollow cylindrical member 26a Dividing member 27 Web 28 Fiber reinforced resin bolt 29 Nut 30 Continuous fiber reinforcing member 31 Long reinforcing bar 32 End edge 33 Attachment plate 34 Flange 35 Bolt hole 36 Hollow cylindrical member 36a Dividing member 37 Arc-shaped portion 38 Web 39 Flange 40 Continuous fiber reinforcing member 41 Long reinforcing bar body 42 Mortar or concrete 43 Mud drainage hole 44 Reinforcing bar 45 H-shaped steel 46 Earth retaining wall 47 Opening portion 48 Tensile reinforcing material 49 Earth retaining wall 50 Ground improvement 51 Precast concrete 52 Cast-in-place mortar

Claims (3)

下方に向って拡径する横断面が中空の筒体からなり、この中空筒体は炭素繊維を主とした繊維強化樹脂からなることを特徴とする被切削コンクリート壁用の連続繊維補強部材。 A continuous fiber reinforced member for a concrete wall to be cut, characterized in that it has a hollow cylinder whose cross section expands downward, and this hollow cylinder is made of a fiber reinforced resin mainly composed of carbon fibers. 複数の前記中空筒体がテーパ部を介して上下方向に多段に積載されて、かつ前記テーパ部に作用する摩擦力で引張力に対して非脱抜的に嵌合されて中空連続筋体が形成されるものであり、前記各中空筒体の横断面は円形または楕円形または隅角部に丸みを有する多角形若しくはこれらの組合わせ形状からなることを特徴とする請求項1記載の被切削コンクリート壁用の連続繊維補強部材。 A plurality of the hollow cylinders are stacked in multiple stages in the vertical direction via the taper portion, and are fitted non-detachably with respect to a tensile force by a friction force acting on the taper portion, so that a hollow continuous muscle body is obtained. 2. The workpiece according to claim 1, wherein a cross section of each of the hollow cylinders is a circle, an ellipse, a polygon having round corners, or a combination thereof. Continuous fiber reinforced member for concrete walls. 泥水が満たされた掘削溝内において、吊下げ支持された鋼製立坑構成部材を仮受部材として、この仮受部材上に横断面が中空で、下方に向って拡径しており、かつ炭素繊維を主とした繊維強化樹脂から形成される複数の中空筒体を、そのテーパ部を介して多段に積載しながら順次掘削溝内に吊り下して、各中空筒体が非脱抜的に嵌合された中空連続筋体を形成し、この中空連続筋体の中空部にトレミー管を介してコンクリートまたはモルタルを充填する被切削コンクリート壁の施工方法であって、このコンクリートまたはモルタルと、中空連続筋体外の泥水との比重差により各中空筒体の内側から外側に働く圧力で、上下の中空筒体のテーパ重合部の摩擦結合が増大されることを特徴とする連続繊維補強部材による被切削コンクリート壁の施工方法。 In the excavation groove filled with muddy water, the steel shaft constituent member suspended and supported is used as a temporary receiving member, and the horizontal cross section is hollow on the temporary receiving member, and the diameter is expanded downward. A plurality of hollow cylinders formed from fiber reinforced resin mainly composed of fibers are sequentially suspended in the excavation groove while being stacked in multiple stages via the tapered portions, so that each hollow cylinder is non-detachable. A method for constructing a concrete wall to be cut, in which a hollow continuous muscle body is formed, and the hollow portion of the hollow continuous muscle body is filled with concrete or mortar through a tremy tube, the concrete or mortar, and a hollow The frictional coupling between the taper overlapping portions of the upper and lower hollow cylinders is increased by the pressure acting from the inside to the outside of each hollow cylinder due to the difference in specific gravity with the muddy water outside the continuous muscles. Cutting concrete wall Method.
JP2004336837A 2004-11-22 2004-11-22 Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same Expired - Fee Related JP3798414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004336837A JP3798414B2 (en) 2004-11-22 2004-11-22 Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004336837A JP3798414B2 (en) 2004-11-22 2004-11-22 Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14850796A Division JP3665421B2 (en) 1996-05-21 1996-05-21 Continuous fiber reinforcement for concrete walls to be cut

Publications (2)

Publication Number Publication Date
JP2005120825A JP2005120825A (en) 2005-05-12
JP3798414B2 true JP3798414B2 (en) 2006-07-19

Family

ID=34617055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004336837A Expired - Fee Related JP3798414B2 (en) 2004-11-22 2004-11-22 Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same

Country Status (1)

Country Link
JP (1) JP3798414B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606171A (en) * 2012-03-29 2012-07-25 王晓利 Gob-side entry retaining method for pouring spacing concrete walls in tunnel of advanced highwall

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851133B2 (en) * 2005-07-22 2012-01-11 鹿島建設株式会社 Cutting segment
JP4738156B2 (en) * 2005-12-06 2011-08-03 新日鉄マテリアルズ株式会社 Cutable retaining wall material
JP5386244B2 (en) * 2009-06-18 2014-01-15 新日鉄住金マテリアルズ株式会社 Cutting joint structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102606171A (en) * 2012-03-29 2012-07-25 王晓利 Gob-side entry retaining method for pouring spacing concrete walls in tunnel of advanced highwall

Also Published As

Publication number Publication date
JP2005120825A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP3876278B2 (en) Easy-cut tunnel segment structure
JP2003314197A (en) Conduit repairing method and conduit interior repairing structure
US20170058479A1 (en) Reinforcement, structure and method for underground reinforced concrete constructions
JP3798414B2 (en) Continuous fiber reinforced member for concrete wall to be cut and construction method of concrete wall to be cut using the same
JP4939803B2 (en) Cutable fiber reinforced resin segments and shield tunnel walls
JP4389570B2 (en) Connection structure of steel wall and reinforced concrete slab
JP4459835B2 (en) Segment for underground structure bulkhead
JP4386804B2 (en) Seismic reinforcement structure for existing steel towers
JPH02112521A (en) Construction of cylindrical structure and steel segment therefor
JP4738156B2 (en) Cutable retaining wall material
KR200386881Y1 (en) A pile head reinforcement structure of precast concrete pile
JP2004285823A (en) Floor slab bridge and floor slab unit
JP3698564B2 (en) Shield tunnel connection structure
JP6866980B2 (en) Joining cap and pile head joining structure
KR102351779B1 (en) Phc pile for soil retaining wall
JP2018168561A (en) Underground structure and method of constructing underground structure
JP3665421B2 (en) Continuous fiber reinforcement for concrete walls to be cut
JP6088883B2 (en) Connection method and connection structure of fiber reinforced pile material for shield excavation
JP3665412B2 (en) Concrete wall reinforcement
JPS6017449Y2 (en) Rebar cage
JP3845297B2 (en) Structure of joint between column and beam
JP5619450B2 (en) Cutable mortar segments and shield tunnel walls
JP3698505B2 (en) Underground cylinder drawing method and split ring used in the method
EP2623676B1 (en) A pile for deep foundation and method for providing a pile
KR102285004B1 (en) Concrete Column Structures Reinforcing Method Using Reinforced Steel Plate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees