JP3665081B2 - Tuber production method - Google Patents

Tuber production method Download PDF

Info

Publication number
JP3665081B2
JP3665081B2 JP24210191A JP24210191A JP3665081B2 JP 3665081 B2 JP3665081 B2 JP 3665081B2 JP 24210191 A JP24210191 A JP 24210191A JP 24210191 A JP24210191 A JP 24210191A JP 3665081 B2 JP3665081 B2 JP 3665081B2
Authority
JP
Japan
Prior art keywords
tubers
potato
strons
temperature
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24210191A
Other languages
Japanese (ja)
Other versions
JPH0584030A (en
Inventor
幹士 間宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP24210191A priority Critical patent/JP3665081B2/en
Publication of JPH0584030A publication Critical patent/JPH0584030A/en
Application granted granted Critical
Publication of JP3665081B2 publication Critical patent/JP3665081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、植物組織培養技術を利用した植物体の育成及び塊茎形成によるバレイショの増殖方法に関する。
【0002】
【従来の技術】
現在、世界のバレイショ生産は、主にバレイショの栄養繁殖性を利用して行われている。すなわち栄養繁殖器官である塊茎、いわゆる芋を植え付け、ここから生育してくる植物体の茎の基部に形成される塊茎を次世代の種芋として、あるいは食用及び加工に利用する方法である。この場合、通常1株から10個程度の塊茎が再生産される。
【0003】
このような栄養繁殖性を利用して増殖及び生産を行う場合、バレイショに限らず各種ウイルス病が極めて大きな問題となっており、栄養繁殖性の作物ではウイルスフリーの種芋あるいは母株等の供給が生産性の向上あるいは維持に極めて重要である。
バレイショの場合、ウイルスフリーの種芋の増殖は、主として生長点培養によりウイルスフリーにした個体を、最初は温室、その後は圃場での栽培、収穫を繰り返して行われている。この場合、i.バレイショの増殖率が低い、ii.圃場での栽培を繰り返すためウイルスに再感染する危険がある、iii .このため一般圃場からの隔離、徹底した防除、及び高度の検疫体制が必要である、等の問題が多く、より簡易かつ安全な方法が求められている。
【0004】
これに代わるウイルスフリー種芋供給法の1つとして、組織培養による無菌条件下で作成した塊茎(マイクロチューバー)の利用が各方面で検討されている。
このような組織培養による塊茎の生産方法として、
・Tovarら 1985, CIP Circular 13(4): 1-5
・Rosellら 1987, Potato Research 30: 111-116
・Hussey G. 及び N. J. Stacey, 1984, Ann. Bot. 53: 565-578
・特願昭63ー500104号(国際公開番号W088/04136)
・秋田、高山 園学要旨、昭63春 P.228ー229
等の報告がある。
【0005】
これらの組織培養による方法では、当初は効率が悪くコスト高になる等の問題があり実用化を阻んできたが、近年、効率の点での改良、あるいはスケールアップ等の検討が行われ、かなり改良されてきている。しかし、これらの方法は培地中にシュクロース等の炭素源を含んでいるため、雑菌汚染の危険性を含んでいる。この危険性は容器が大きくなるほど増大するという点が、スケールアップの際の問題となっている。
【0006】
コスト及び雑菌汚染の危険性の低下を目的とした炭素源を含まない培養条件下でのバレイショの増殖は、古在ら(園学要旨、昭63春)等の報告例がある。しかし、これらは植物体の生育のみに限られ、本発明のように多数のストロンの伸長及び塊茎の形成に至った例は認められていない。
また、バレイショを水耕栽培した例としては、
・K. H. Fong 及び A. Ulrich, 1969, American Potato Journal 13: 269-272
・W. Newton, 1923, Journal of the American Society of Agronomy 15:392-39 9
・H. Griess, 1979, Agrartechnik 29: 225-226
・I. Simko, 1991, Biologia 46: 89-92
等があげられる。しかしながら、H. Griess の論文は、水耕栽培によるバレイショ塊茎生産のための施設に関するもので、どのように、どれくらいの塊茎が形成されたかについての記載はない。また、K. H. Fong 及び A. Ulrich 、並びに W. Newtonの論文は、養分要求性の試験のため水耕栽培を用いたもので、I. Simkoの論文は、水耕栽培による塊茎形成に関するものであるが、いずれも塊茎の大量生産については記載されていない。
【0007】
本発明の塊茎の生産方法は、多数の枝分かれしたストロンを誘導し、更にその各ストロンを塊茎化させるものであるが、自然条件下ではストロンの枝分かれは認められるものの、その程度は本方法に比べれば低く、植物体1本当たりの塊茎数が、小さいものも含めて20個を越えることはほとんど観察されていない。
【0008】
【発明が解決しようとする課題】
本発明は、上記培養法の欠点をふまえた上での、効率的かつ低コストな新規塊茎生産方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、上記目的を達成すべく鋭意研究を重ねた。すなわち、コスト及び雑菌汚染の危険性の低減のために一連の実験を行い、水耕栽培によって植物体から多数のストロンを誘導することに成功したが、ストロンの塊茎化には至らなかった。その後、さらに日長及び温度を検討することにより、1本の植物体当たり自然条件下では考えられないほどの多数の塊茎を得る方法を開発し、本発明に至った。
【0010】
すなわち、本発明の塊茎の生産方法は、バレイショの塊茎の生産方法において、バレイショを、無菌条件下、地上部生育期間中10〜14.6時間の日長条件で、夜間の最低気温が5〜13℃及び昼間の気温との日較差が10℃以上で栽培することにより、ストロンを液中または気相中に生育させ、該ストロンに塊茎を形成せしめることを特徴とするものである。
【0011】
以下、本発明に関する主要な事項につき詳細に説明する。
〔植物組織〕
本発明の対象となる植物には、ソラナム(Solanum) 属の塊茎形成能を持つ種の全てが含まれる。具体例として、例えば、バレイショ栽培種 (Solanum tuberosumS. phureja 等)、S. demissumS. acauleS. stoloniferum等である。これらのうちでは、バレイショ栽培種が代表的である。
【0012】
本発明により塊茎生産を行うためには、1cm 以上の、望ましくは5cm 以上のバレイショの苗が必要である。これらの苗は、in vitroで組織培養により維持されている苗が望ましいが、開放系で本方法による塊茎生産を行う場合はin vitro のものでなくても差し支えない。これらの苗は、茎が太く、濃緑で、根もついている方が初期生育が速い。
【0013】
〔日長条件〕
地上部生育期の日長が15時間以下であればよいが、日長が短すぎると植物体が光不足で徒長しやすくなるため、10〜14時間の日長が好ましい。ここでいう日長とは、人工気象室のように明期と暗期とを明確に分けれる場合は明期の時間を、自然条件下の場合は昼の長さ(日出から日入までの時間)に常用薄明時間を加えた時間をいう。人工気象室の場合、光強度は光合成を促進するため1万lux以上であることが望ましい。 また、ここでいう地上部生育期とは、根から養分を吸収し、地上部が生長している状態をいう。例えば、培地の養分が欠乏した場合、または養分を含まない培地に交換した場合、地上部生育期は実質的に終わり、地上部は黄化し始め、最終的には枯死する。また、地上部の生育を薬剤等で止める場合もあり、この場合はその薬剤処理前までが地上部生育期にあたる。
【0014】
なお、地上部生育期には日長、温度条件等により、ストロンが誘導され、増殖する。また、塊茎も形成される。地上部生育期の後、塊茎充実期に入いる。この時期には地上部の黄化と共に、養分が塊茎に転流し、地上部が枯死するころには塊茎収穫期となる。
〔温度条件〕
地上部生育期を含むストロンの誘導、増殖、および塊茎形成には、夜間比較的低い温度であることが必要である。具体的には夜間の最低気温が5℃〜13℃がよい。夜間の気温が高くなるほど、大きな塊茎が少数形成される傾向がある。また、夜間25℃(昼間30℃)ではストロンの旺盛な発生は認められない。昼間の気温は茎葉の生育に適した温度にする必要があり、10℃〜40℃、好ましくは15℃〜35℃、より好ましくは15℃〜25℃がよい。この際、昼間の気温を夜間よりも高くするために昼夜の日較差を10℃以上にする必要がある。20℃で昼夜の日較差がまったくない場合、12時間日長の短日条件下でもストロンの形成はほとんど認められない。
【0015】
〔栽培方法〕
本方法では栽培に養分を含んだ溶液を用いる。この溶液は通常植物組織培養に使用される基本培地、あるいは、市販の水耕液(例えば大塚ハウスのもの)であればいずれでもよい。また、通常は炭素源はなくてよいが、光が弱く植物体の旺盛な生育が望めない場合はショ糖等の炭素源を添加する。炭素源を加えた場合、雑菌汚染を防ぐため無菌条件下で栽培する必要がある。通常は、大塚ハウス肥料1号及び2号を等量混合したものを、電気伝導度0.5〜3.0(ミリモー/センチメートル)で用いることが多い。このような濃度の培養液の場合、例えば大塚ハウス水耕液1号及び2号を等量ずつ混合した溶液(電気伝導度1.0 )では、培養開始後約2カ月で電気伝導度はほぼ0.0 となる。従って、必要であれば適宜養分を補給してやればよい。
【0016】
苗の茎葉が気相部にあり、根が培養液に触れている形態であればどのような支持法でもよい。培養液に浮かべるだけでは、葉の気孔からのガス交換が十分に行われなくなるため生育しない。支持法の例をあげれば、水耕に用いられるウレタンに茎の基部をはさみ、根を培養液中に浸す方法、あるいは、培養液の表面にオアシスブラウン(Smithers-Oasis社(USA)製)等の支持体を敷き、その上に苗を寝かせて置く方法等があげられる。支持体が発泡樹脂等の場合は、ストロンが自由に潜り込める程度の柔らかさがなければならない。
【0017】
培養液を入れる容器は、培養液の液面以下は遮光されていることが望ましい。また、培養液中へのエアレーションは必須ではないが、根の生育を促進するためには実施した方がよい。
また、培養液を貯めた水槽で栽培するだけでなく、上記の植物体支持に関する要件が満たされていれば、根の側方あるいは下方から水耕液を噴霧してもよい。
【0018】
茎葉が気相中に維持されているという条件が満たされておれば、完全な開放系、すなわち水耕でも、無菌条件下いずれでもよい。閉鎖系で実施する場合、気相部にも通気をした方がよい。ただし、閉鎖系で行う場合、直射日光が当たると容器内の温度が高くなることがあるので温度管理に注意を要する。
また、植物体の生育促進のために炭酸ガス施肥をしてもよい。
【0019】
【実施例】
以下、実施例及び比較例により本発明を更に詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
なお実施例2および3の日長は、「光と植物生育」(養賢堂、稲田勝美著、昭和54年発行)、第25頁、表I.2 .1を参考に算出した。
【0020】
【実施例1】
内寸336×194×156mmのポリプロピレン製の水槽の中に、大塚ハウス水耕液1号及び2号を等量ずつ混合し電気伝導度を1.0 ミリモーに調整したもの5l、及び、植物体支持用にステンレス製の試験管立てを入れた。この試験管立ての上に厚さ約2cmのオアシスブラウンを敷き、in vitroで育成したバレイショの苗(品種メークイン、長さ約10cm)を2本オアシスブラウン上に寝かせて置床した。なお、液面はオアシスブラウンの表面とほぼ同じ高さとした。 この水槽を10時間日長、昼間20℃、夜間10℃に制御したコイトトロン(小糸製作所製)中に置いた。
【0021】
in vitroの植物体は最初は乾燥に弱いため、透明なフラワーキャップで覆い、1週間後にはずした。
ストロンは置床後10日目位から伸長を開始し、オアシスブラウンを突き抜けて下部へと伸長を続けた。この間、茎葉も生長を続け、草丈約40cm程度にまでなった。伸長を続けたストロンは、枝分かれをし、置床後1カ月目位からは塊茎の形成も観察され始めた。
【0022】
電気伝導度は植物体の生育にしたがって減少し、約2カ月後にはほぼ0となった。その後、地上部は黄化し始め、約3カ月後には、地上部は枯死し、枝分かれしたストロンの各先端には塊茎が形成されていた。塊茎重量が0.1 g以上のもののみを計測したところ、総個数(0.1g以上)は400個、総重量は294.6g、平均重量は0.73gであった。すなわち、1本の苗当たり約200個の塊茎が形成されたこととなる。塊茎の重量分布は表1の通りであった。

Figure 0003665081
【0023】
【実施例2】
実施例1において水槽の設置場所を温室(栃木県塩谷郡)とし、苗をウレタンではさんで試験管立てに固定し、栽培を平成2年2月26日(日長約12.3時間)〜5月22日(日長約15.3時間)まで行った。この間の最低気温は5℃〜13℃、最高気温は22℃〜32℃、日較差の最大値は22℃、最小値は10℃であった。植付けた苗は実施例1と同様の生育経過を示した。地上部が黄化し始めた4月30日頃の日長は約14.6時間であった。形成された塊茎の総個数(0.1g以上)は150個、総重量は133.6g、平均重量は0.89gであった。
Figure 0003665081
【0024】
〔参考例1〕
実施例1において水槽の設置場所を1日の最低気温約20℃、最高気温30〜32℃の温室(栃木県塩谷郡)とし、平成2年1月12日(日長約11.7時間)から4月14日(日長約14.0時間)まで栽培を行った。植付けた苗は実施例1と同様の生育経過を示した。地上部が黄化し始めた3月15日頃の日長は約12.8時間であった。形成された塊茎の総個数(0.1g以上)は51個、総重量は164g、平均重量は3.2gであった。
Figure 0003665081
〔比較例1〕
実施例2において、苗を1本、土壌入りの鉢に移植し同じ期間栽培したところ、塊茎の総個数(0.1g以上)は7個、総重量は147.8g、平均重量は27.6g であった。
【0025】
〔比較例2〕
実施例2において、平成3年6月1日(日長約15.5時間)に栽培を開始し、9月1日(日長約14.3時間)まで栽培した。この間の最低気温は16〜23℃、最高気温は27〜38℃、日較差は11〜15℃であった。植付けた苗は実施例1と同様の生育経過を示した。地上部が黄化し始めた8月1日頃の日長は約15.0時間であった。しかし、得られた塊茎は1本の苗当たり、0.1 g以上のものの個数は10個であり、総重量は9.5 gにすぎなかった。
【0026】
【発明の効果】
本発明によれば、従来法に比し、極めて効率よく多数の塊茎を生産することができる。[0001]
[Industrial application fields]
The present invention relates to a method for growing potato by plant growth and tuber formation using plant tissue culture technology.
[0002]
[Prior art]
At present, potato production in the world is mainly carried out by utilizing the vegetative reproduction of potato. That is, it is a method of planting tubers that are vegetative propagation organs, so-called pods, and using the tubers formed at the base of the stalks of plant bodies growing from here as next-generation seed pods or for food and processing. In this case, usually about 1 to 10 tubers are reproduced.
[0003]
When such vegetative propagation is used for propagation and production, various viral diseases are not limited to potato, and various viral diseases are a major problem. It is extremely important to improve or maintain productivity.
In the case of potato, the propagation of virus-free seed pods is carried out by repeating the cultivation and harvesting of individuals that have been made virus-free mainly by growth point culture, first in the greenhouse and then in the field. In this case, i. Low growth rate of potato, ii. Risk of re-infection with virus due to repeated cultivation in the field, iii. For this reason, there are many problems such as isolation from general fields, thorough control, and advanced quarantine systems, and a simpler and safer method is required.
[0004]
As an alternative method for supplying virus-free seed pods, the use of tubers (microtubers) prepared under aseptic conditions by tissue culture has been studied in various fields.
As a tuber production method by such tissue culture,
Tovar et al. 1985, CIP Circular 13 (4): 1-5
Rosell et al. 1987, Potato Research 30: 111-116
・ Hussey G. and NJ Stacey, 1984, Ann. Bot. 53: 565-578
・ Japanese Patent Application No. Sho 63-500104 (International Publication Number W088 / 04136)
・ Akita, Takayama Gakuen Abstract, Spring 63 P.228-229
Etc. are reported.
[0005]
These tissue culture methods have initially had problems such as inefficiency and high cost, and have hindered their practical application. However, in recent years, improvements in efficiency, scale-up, etc. have been investigated, It has been improved. However, since these methods contain a carbon source such as sucrose in the medium, there is a risk of contamination with bacteria. The danger of this scale-up is that this risk increases with the size of the container.
[0006]
There have been reports on the growth of potatoes under culture conditions that do not contain a carbon source for the purpose of reducing the cost and risk of contamination with bacteria (Kozo et al., Spring 63). However, these are limited only to the growth of the plant body, and there are no examples in which a large number of strons are elongated and tubers are formed as in the present invention.
In addition, as an example of hydroponically growing potatoes,
・ KH Fong and A. Ulrich, 1969, American Potato Journal 13: 269-272
・ W. Newton, 1923, Journal of the American Society of Agronomy 15: 392-39 9
・ H. Griess, 1979, Agrartechnik 29: 225-226
・ I. Simko, 1991, Biologia 46: 89-92
Etc. However, H. Griess's paper relates to a facility for the production of potato tubers by hydroponics, and there is no description of how and how many tubers were formed. KH Fong and A. Ulrich and W. Newton's paper used hydroponics to test nutrient requirements, and I. Simko's paper related to tuber formation by hydroponics. However, none of them describes mass production of tubers.
[0007]
The tuber production method of the present invention induces a large number of branched strons and further converts each of the strons into tubers. Although the stron branching is observed under natural conditions, the extent of the strons is compared with that of the present method. It is low, and it is hardly observed that the number of tubers per plant body exceeds 20 including small ones.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an efficient and low-cost method for producing a new tuber taking into account the disadvantages of the culture method.
[0009]
[Means for Solving the Problems]
The present inventor has intensively studied to achieve the above object. That is, a series of experiments were conducted to reduce costs and the risk of contamination with various bacteria, and a large number of strons were successfully derived from plants by hydroponics, but stron tuberification was not achieved. Thereafter, by further studying the day length and temperature, a method for obtaining a large number of tubers that could not be considered under natural conditions per plant was developed, and the present invention was achieved.
[0010]
That is, the tuber production method of the present invention is a potato tuber production method, wherein the potato is subjected to aseptic conditions, a day length condition of 10 to 14.6 hours during the above-ground growth period, and a nighttime minimum temperature of 5 to 5 hours. By growing at 13 ° C. and daytime temperature difference of 10 ° C. or more, strons are grown in liquid or gas phase, and tubers are formed on the strons.
[0011]
Hereafter, the main matter regarding this invention is demonstrated in detail.
[Plant tissue]
Plants that are the subject of the present invention include all species of the genus Solanum that have the ability to form tubers. Specific examples thereof include potato cultivar (Solanum tuberosum, S. phureja and the like), S. demissum, S. acaule, a S. Stoloniferum like. Of these, potato cultivars are typical.
[0012]
In order to carry out tuber production according to the present invention, potato seedlings of 1 cm or more, preferably 5 cm or more are required. These seedlings are preferably seedlings maintained by tissue culture in vitro, but they may not be in vitro when tuber production is carried out by this method in an open system. These seedlings have a thick stem, dark green color, and roots that grow faster.
[0013]
[Day length conditions]
The day length of the above-ground growth period may be 15 hours or less, but if the day length is too short, the plant body is likely to grow due to lack of light, and thus a day length of 10 to 14 hours is preferable. The day length here refers to the time of the light period when the light period and dark period can be clearly separated as in an artificial weather room, and the length of the day (from sunrise to sunset) under natural conditions. Time)) plus the usual twilight time. In the case of an artificial weather room, the light intensity is preferably 10,000 lux or more in order to promote photosynthesis. Moreover, the above-ground part growing season here means a state in which nutrients are absorbed from the roots and the above-ground part is growing. For example, when the nutrient content of the medium is deficient, or when the medium is replaced with a medium that does not contain nutrients, the above-ground growing season is substantially over, the above-ground portion begins to yellow, and eventually dies. In some cases, the growth of the above-ground part is stopped by a chemical or the like, and in this case, the period before the chemical treatment corresponds to the above-ground part growing period.
[0014]
In the above-ground growing season, strons are induced and proliferated by day length, temperature conditions, and the like. Tubers are also formed. After the above-ground growing season, enter the tuber filling stage. At this time, along with the yellowing of the above-ground part, the nutrients commutate to the tubers, and when the above-ground part dies, the tuber harvesting period begins.
(Temperature conditions)
Stron induction, growth, and tuber formation, including the above-ground growing season, requires relatively low temperatures at night. Specifically, the minimum night temperature is preferably 5 ° C to 13 ° C. The higher the temperature at night, the smaller the number of large tubers that tend to form. In addition, vigorous generation of strons is not observed at night at 25 ° C (daytime 30 ° C). The daytime air temperature needs to be a temperature suitable for the growth of foliage, and is 10 to 40 ° C, preferably 15 to 35 ° C, more preferably 15 to 25 ° C. At this time, in order to make the daytime temperature higher than that at night, it is necessary to make the day / night difference between day and night 10 ° C. or higher . When there is no day / night difference at 20 ° C., almost no stron formation is observed even under a short day condition of 12 hours long.
[0015]
[Cultivation method]
In this method, a solution containing nutrients is used for cultivation. This solution may be a basic medium usually used for plant tissue culture or a commercially available hydroponic liquid (for example, from Otsuka House). Usually, a carbon source may be omitted. However, when light is weak and vigorous growth of the plant body cannot be expected, a carbon source such as sucrose is added. If a carbon source is added, it must be cultivated under aseptic conditions to prevent contamination with germs. In general, a mixture of equal amounts of Otsuka House Fertilizer No. 1 and No. 2 is often used at an electrical conductivity of 0.5 to 3.0 (milimo / centimeter). In the case of such a culture solution, for example, in an Otsuka House hydroponic solution No. 1 and No. 2 mixed in equal amounts (electric conductivity 1.0), the electric conductivity is approximately 0.0 in about 2 months after the start of the culture. Become. Therefore, if necessary, nutrients may be appropriately replenished.
[0016]
Any support method may be used as long as the seedling foliage is in the gas phase and the roots are in contact with the culture solution. If it floats only in the culture solution, it does not grow because gas exchange from the pores of the leaves is not sufficiently performed. Examples of support methods include a method in which the base of the stem is sandwiched in urethane used for hydroponics, and the roots are immersed in the culture solution, or the surface of the culture solution is Oasis Brown (manufactured by Smithers-Oasis (USA)) A method of laying a support and placing a seedling on the support is provided. When the support is a foamed resin or the like, the support must be soft enough to allow the stron to sink freely.
[0017]
As for the container which puts a culture solution, it is desirable that the liquid level below the culture solution is shielded from light. In addition, although aeration into the culture solution is not essential, it is better to carry out aeration in order to promote root growth.
Moreover, not only in the water tank which stored the culture solution, if the said requirements regarding plant support are satisfy | filled, you may spray a hydroponic solution from the side or lower part of a root.
[0018]
As long as the condition that the foliage is maintained in the gas phase is satisfied, it may be a completely open system, that is, hydroponics or aseptic conditions. When carried out in a closed system, it is better to ventilate the gas phase. However, when performing in a closed system, the temperature inside the container may increase when exposed to direct sunlight, so care must be taken in temperature management.
Carbon dioxide fertilization may be performed to promote the growth of the plant body.
[0019]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, the scope of the present invention is not limited to these Examples.
The day length of Examples 2 and 3 is “Light and Plant Growth” (Yokendo, Katsumi Inada, published in 1979), page 25, Table I. 2. Calculated with reference to 1.
[0020]
[Example 1]
5 liters of Otsuka House Hydroponic Liquid No. 1 and No. 2 mixed in equal amounts in a water tank made of polypropylene with an inner size of 336 x 194 x 156 mm and adjusted to an electrical conductivity of 1.0 mm, and for plant support A test tube stand made of stainless steel was put in the container. An oasis brown having a thickness of about 2 cm was laid on the test tube stand, and two potato seedlings (variety make-in, about 10 cm in length) grown in vitro were placed on the oasis brown and placed on the floor. The liquid level was almost the same as the surface of Oasis Brown. This water tank was placed in a Koitotron (manufactured by Koito Manufacturing Co., Ltd.) controlled at 10 ° C for 10 hours long, 20 ° C during the day, and 10 ° C during the night.
[0021]
In vitro plants were initially susceptible to drying, so they were covered with a clear flower cap and removed after one week.
Stron began to extend from the 10th day after placement, and continued to extend through the oasis brown. During this time, the foliage continued to grow, reaching a plant height of about 40 cm. Strons that continued to elongate branched and tuber formation began to be observed from the first month after placement.
[0022]
The electrical conductivity decreased with the growth of the plant body, and became almost 0 after about 2 months. Thereafter, the aerial part began to turn yellow, and after about 3 months, the aerial part died, and tubers were formed at the ends of the branched strons. When only tubers with a weight of 0.1 g or more were measured, the total number (0.1 g or more) was 400, the total weight was 294.6 g, and the average weight was 0.73 g. That is, about 200 tubers per one seedling were formed. Tuber weight distribution was as shown in Table 1.
Figure 0003665081
[0023]
[Example 2]
In Example 1, the installation location of the aquarium was set in a greenhouse (Shoya-gun, Tochigi Prefecture), the seedlings were fixed in a test tube stand with urethane sandwiched, and the cultivation was carried out from February 26, 1990 (day length of about 12.3 hours) to May I went to the 22nd (day length about 15.3 hours). During this period, the minimum temperature was 5 ° C to 13 ° C, the maximum temperature was 22 ° C to 32 ° C, the maximum daily range was 22 ° C, and the minimum value was 10 ° C. The planted seedlings showed the same growth process as in Example 1. The day length around April 30 when the ground began to turn yellow was about 14.6 hours. The total number of tubers formed (over 0.1 g) was 150, the total weight was 133.6 g, and the average weight was 0.89 g.
Figure 0003665081
[0024]
[Reference Example 1]
In Example 1, the installation location of the aquarium is a greenhouse (Shoya-gun, Tochigi Prefecture) with a daily minimum temperature of about 20 ° C and a maximum temperature of 30-32 ° C, and from January 12, 1990 (day length of about 11.7 hours), 4 Cultivation was carried out until 14th of May (day length of about 14.0 hours). The planted seedlings showed the same growth process as in Example 1. The day length around March 15 when the ground began to turn yellow was about 12.8 hours. The total number of tubers formed (0.1 g or more) was 51, the total weight was 164 g, and the average weight was 3.2 g.
Figure 0003665081
[Comparative Example 1]
In Example 2, one seedling was transplanted to a pot containing soil and cultivated for the same period. The total number of tubers (0.1 g or more) was 7, the total weight was 147.8 g, and the average weight was 27.6 g. .
[0025]
[Comparative Example 2]
In Example 2, cultivation started on June 1, 1991 (day length of about 15.5 hours), and cultivation was continued until September 1 (day length of about 14.3 hours). During this period, the minimum temperature was 16-23 ° C, the maximum temperature was 27-38 ° C, and the daily range was 11-15 ° C. The planted seedlings showed the same growth process as in Example 1. The day length around August 1 when the ground began to turn yellow was about 15.0 hours. However, the number of tubers obtained per seedling was 0.1 g or more, and the total weight was only 9.5 g.
[0026]
【The invention's effect】
According to the present invention, a large number of tubers can be produced very efficiently as compared with the conventional method.

Claims (1)

バレイショの塊茎の生産方法において、バレイショを、無菌条件下、地上部生育期間中10〜14.6時間の日長条件で、夜間の最低気温が5〜13℃及び昼間の気温との日較差が10℃以上で栽培することにより、ストロンを液中または気相中に生育させ、該ストロンに塊茎を形成せしめることを特徴とするバレイショの塊茎の生産方法。In the method for producing potato tubers, the potato is under aseptic conditions, a day length condition of 10 to 14.6 hours during the above-ground growth period, and the daily temperature difference between the nighttime minimum temperature is 5 to 13 ° C. and the daytime temperature. A method for producing potato tubers, characterized by growing strons in liquid or gas phase by cultivating at 10 ° C. or higher and forming tubers on the strons.
JP24210191A 1991-09-20 1991-09-20 Tuber production method Expired - Lifetime JP3665081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24210191A JP3665081B2 (en) 1991-09-20 1991-09-20 Tuber production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24210191A JP3665081B2 (en) 1991-09-20 1991-09-20 Tuber production method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003385121A Division JP3813958B2 (en) 2003-11-14 2003-11-14 Tuber production method

Publications (2)

Publication Number Publication Date
JPH0584030A JPH0584030A (en) 1993-04-06
JP3665081B2 true JP3665081B2 (en) 2005-06-29

Family

ID=17084321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24210191A Expired - Lifetime JP3665081B2 (en) 1991-09-20 1991-09-20 Tuber production method

Country Status (1)

Country Link
JP (1) JP3665081B2 (en)

Also Published As

Publication number Publication date
JPH0584030A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
Hokanson et al. Strawberry fruit and plug plant production in the greenhouse
CN103947531B (en) A kind of Taxus media water planting making method for its potted landscape
CN103609441B (en) A kind of blueberry seedling-cultivating method
CN101292627A (en) Industrial seedling raising method for vine hard branch single-bud cuttage
CN105724153A (en) Magnoliaceae plant tender branch cuttage propagation method
CN106069141A (en) A kind of method of oriental cherry cutting propagation
CN103875386A (en) Soilless seedling cutting raising method of gardenia jasminoides in potted trays of rice field
CN104920223A (en) Chinese cymbidium seedling breeding method
CN105104143A (en) Water planting cutting propagation method for myrtus communis
CN111264328A (en) Cultivation method of small bougainvillea spectabilis pot culture
CN102870579A (en) Cutting propagation method of mono maple in seedling bags
CN105875161A (en) Cutting propagation culturing method for semi-lignified horseradish tree
CN105010142A (en) Vietnamese Aquilaria agallocha Roxb tissue culture method
CN106665250A (en) Cultivation method of apple root sucker stock
CN105309291A (en) Taxus X media hydroponic potted landscape and manufacturing method thereof
JP3813958B2 (en) Tuber production method
CN104521476A (en) Planting method of strawberry bonsai
CN110073836B (en) Seedling growth regulation method and device and white tree medicinal material planting method
JP3665081B2 (en) Tuber production method
KR100398910B1 (en) Culture method for potting water lily
CN109937722B (en) Method for rapidly propagating Chinese lizardtail ground stems
CN108464207B (en) Culture method for improving transplanting survival rate of rice tissue culture seedlings
KR101210680B1 (en) Strawberry Propagation Method using Closed Transplant Production Systems
CN104145821A (en) In-vitro culture plant regeneration method of grevillea orange marmalade
JP2017074031A (en) Cultivation method of rare tsushima tiger lily

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050331

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090408

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100408

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120408

Year of fee payment: 7