JP3659542B2 - Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same - Google Patents
Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same Download PDFInfo
- Publication number
- JP3659542B2 JP3659542B2 JP05739597A JP5739597A JP3659542B2 JP 3659542 B2 JP3659542 B2 JP 3659542B2 JP 05739597 A JP05739597 A JP 05739597A JP 5739597 A JP5739597 A JP 5739597A JP 3659542 B2 JP3659542 B2 JP 3659542B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- steel sheet
- double
- less
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Heat Treatment Of Articles (AREA)
- Electroplating Methods And Accessories (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、自動車のブレーキチューブや冷蔵庫の放冷管等として使用される二重巻きパイプを製造するための耐銅浸透性等にすぐれた銅めっき鋼板およびその製造方法に関する。
【0002】
【従来の技術】
銅めっき鋼板を素材する二重巻きパイプは、所定幅に裁断した銅めっき鋼板のフープを造管用ロールでパイプ状に巻き重ねた後、銅の融点以上(例えば1130℃) に加熱されたDXガス中に適当時間(約1〜2分程度)保持して銅めっき層を溶融し、巻き重ね面間を融着結合させる、いわゆるセルフ・ブレージング処理を施すことにより製造される。図5は、二重巻きパイプの断面を示している。1は素地鋼板(冷延鋼板)、2は銅めっき層,3はセルフ・ブレージングにより形成された銅融着層であり、巻き重ね面間の接合性の良否は、渦流探傷法や曲げ試験などにより検査される。
二重巻きパイプの製造に使用される銅めっき鋼板は、セルフ・ブレージングの熱処理で、素地鋼板の結晶組織が粗大化し過ぎないこと(耐粗粒化性)、素地鋼板中への溶融銅の浸透(鋼板の脆化を引き起こす)を生じにくいこと(耐銅浸透性)、および二重巻きパイプ成形後に行われる拡管加工やフレア加工に耐える良好な延性を有すること等が要求される。
【0003】
上記銅めっき鋼板の素地鋼として、従来より低炭素アルミキルド鋼が使用され、その改良材として、特公平8-14013 号公報には、C: 0.01〜0.15%, Si: 0.1 %以下, Mn: 0.05〜0.6 %, Al: 0.003 〜0.1 %, P: 0.015 %以下,B: 0.0004〜0.004 %,残部はFeおよび不可避不純物からなる素地鋼板に銅めっきを施したものが開示されている。この銅めっき鋼板は、そこに記載されているように、素地鋼板のB元素含有効果として、結晶組織の微細化、耐溶接割れ性の向上等の効果を得るというものである。
【0004】
【発明が解決しようとする課題】
従来の銅めっき鋼板は、その素地鋼板が、低炭素アルミキルド鋼板の範疇に属するものであっても、耐銅浸透性,耐粗粒化性等の不足により、二重巻きパイプ成形加工後のセルフ・ブレージング熱処理において、溶融銅の侵入による粒界脆化やフェライト組織の針状化・粗大化等による延性の低下を生じ易く、その後の拡管加工やフレア加工で、割れが発生する例が多くみられる。前記公報に記載されているようにB元素の添加は、フェライト組織の微細化に有効ではあるが、B元素量が約20ppm 以上の低炭素アルミキルド鋼板では、ブレージング処理後の冷却過程で、針状のフェライト組織が生成し、パイプの加工性が損なわれる。
本発明は、二重巻きパイプに関する従来の問題を解消し、拡管加工やフレア加工等に耐え得る良好な加工性を保証するための改良された耐粗粒化性,耐銅浸透性等を備えた銅めっき鋼板およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明の二重巻きパイプ用銅めっき鋼板は、重量%で,
C: 0.03〜0.08%,
Si: 0.1%以下,
Mn: 0.05〜0.5%,
P: 0.015%以下,
S: 0.015%以下,
sol.Al: 0.03〜0.08%,
N: 0.003〜0.008%,
残部は実質的にFeおよび不可避不純物からなる素地鋼板とその表面を被覆するめっき層からなり、該素地鋼板は、微細なAlNの析出物が緻密に分散した層厚50〜100μmの表層部を有することを特徴としている。
【0006】
本発明の二重巻きパイプ用銅めっき鋼板は、前記化学組成を有する鋼のスラブを、熱間圧延し、圧下率50〜90%で冷間圧延した後、冷延鋼板を、水素濃度2vol %以上のN2 −H2 混合ガス中、再結晶温度〜850℃の温度域で焼鈍処理し、ついで該鋼板に銅めっき処理を施す工程により製造される。
【0007】
本発明の銅めっき鋼板は、素地鋼板の化学組成、特にそのC,Al,N量の規定により、二重巻きパイプのセルフ・ブレージング熱処理におけるフェライト組織の針状化・粗大化が抑制防止され、また鋼板表層部(層厚約50〜100μm)に緻密に分散するAlNの析出物(50〜500Å程度)は、セルフ・ブレージング熱処理で生じるフェライトの再結晶におけるピン止め効果となって鋼板表層部に微細なフェライト組織を形成せしめる。その表層部の結晶粒度FGS.No(JIS G 0552) は約10以上と著しく微細であり、この表層組織の微細化により、ブレージング熱処理での耐銅浸透性が高められ、溶融銅の粒界侵入とそれによる粒界の脆化が抑制防止される。
【0008】
表層部のフェライト組織の微細化を可能にする表層部のAlN粒は、N2 −H2 混合ガスを雰囲気とする焼鈍処理における窒化反応により成形され、また板厚中心部も素地鋼板のC,Al,N量等の規定の効果として粗粒化が抑制防止され、比較的微細なフェライト組織(FGS.No: 約6以上)を有する。従って本発明では、前記公報(特公平8-14013 号)の銅めっき鋼板と異なって、B元素などの微細化元素の使用を必要としない。なお、鋼板表層部のAlNの析出物が豊富に分散する層厚は50〜100μmと薄い層であるので、このAlNリッチ層のために鋼板の加工性が損なわれることはない。
本発明の銅めっき鋼板を使用して製造される二重巻きパイプは、粗粒化や溶融銅の粒界侵入およびそれに起因する脆化が抑制防止されることにより、良好な延性が与えられ、拡管加工やフレア加工に必要とされる延性(約25%以上の伸び率が必要とされている)を十分に満足することができる。
【0009】
本発明における素地鋼板の化学組成の限定理由は次のとおりである。
C: 0.03〜0.08%
冷延鋼板の延性を高める点からはC量は少ない程よいが、その量が少な過ぎると、耐粗粒化性の不足をきたす。また、粒界強度の低下に起因して耐銅浸透性も低下する。一方C量が多くなると、炭化物析出量の増加による延性の低下を招き、特に0.08%を越えると、セルフ・ブレージング処理後の冷却過程で、針状のフェライト組織が形成され易く、延性の低下が顕著になる。このため、0.03〜0.08%とする。
【0010】
Si: 0.1%以下
Siは、鋼の溶製工程における脱酸元素として添加される。そのための添加量は0.1%までで十分である。またそれ以上の多量添加は、延性を低下させるので、これを上限とする。
Mn: 0.05〜0.5%
Mnは、鋼の熱間脆性を防止する目的で添加される。0.05%に満たないと、その効果が不足し、他方0.5%を越えると、延性の低下をきたす。
【0011】
P: 0.015%以下,
Pは、降伏強度および引張強度を高める効果を有するが、多量に添加すると、延性の低下を招き、また結晶粒界に偏析して、粒界の強度を低下させる。このため、0.015%以下とする。好ましくは0.008〜0.015%である。
S: 0.015%
Sは、MnS等の非金属介在物を形成して鋼板の加工性を低下させる。0.015%以下であれば、その実害は回避されるので、これを上限とする。
【0012】
sol.Al: 0.03〜0.08%
Alは、鋼の溶製工程の脱酸剤として添加される元素であるが、本発明では、それにとどまらず、AlNの析出物を形成し、ブレージングにおける耐粗粒化性,耐銅浸透性を高める目的で添加される。これらの効果を得るには、sol.Al量(可溶性Al量)として、少なくとも0.03%を必要とする。しかし、多量に添加すると、AlNの過剰析出により延性が低下し、また非金属介在物の増加による鋼板表面品質の低下(表面疵の増加)をきたす。このため、sol.Al量の上限は0.08%とする。
【0013】
N: 0.003〜0.008%,
Nは、Alと反応し、AlNの微細な析出物を形成して素地鋼板の耐粗粒化性を高め、ブレージング処理におけるフェライト組織の粗大化を防止する。含有量が0.003%に満たないと、AlNの析出量が不足し、耐粗粒化性を確保することができない。他方、あまり多く添加すると、AlNの過剰析出に伴う延性の低下,パイプの硬質化を招く。このため、0.008%を上限とする。
【0014】
次に本発明の製造工程について説明する。
まず製鋼炉で所定の化学組成に溶製された鋼を、造塊・分解圧延により、または連続鋳造によりスラブとし、スラブ表面手入れを適宜施した後、熱間圧延する。連続鋳造につづいて熱鋳片をそのまま加熱炉に装入して熱間圧延するようにしてもよい。熱間圧延は常法により行なわれる。熱延鋼板品質や熱延効率等の点から、仕上げ温度はAr3変態点直上の温度に調整され、巻取り温度は約500〜700℃の範囲が適当である。
【0015】
熱延鋼板は、酸洗処理の後、冷間圧延に供する。冷間圧延は、結晶粒の粗大化を抑制し、延性の良好な冷延鋼板を得るために、圧下率を50%以上とすることが必要である。圧下率が90%を越えると、結晶粒の微細化効果は飽和し、それ以上の圧下率は圧延負荷の増大による操業面の不利を招くだけであり、従って90%を上限とする。
【0016】
冷延鋼板は表面浄化されたうえ、焼鈍処理に付される。焼鈍処理において、鋼板は再結晶し、また窒化反応により、微細なAlN粒が緻密に分散した表層部(AlNリッチ層)が形成される。この焼鈍処理は、水素濃度が2体積%以上のN2 −H2 混合ガスを雰囲気とし、再結晶温度(約600℃)〜850℃の温度域で加熱することにより行われる。そのN2 −H2 混合ガスは、この他にNXガス(H2 : 2 vol%, CO:3 vol%,残部N2 ) ,DXガス(H2 :10 vol%, CO:10 vol%, CO2 :7 vol%,残部N2 )等を使用してよい(これらの混合ガスはCOガスやCO2 ガスを含有しているが、それによって焼鈍効果を損なわれることはない)。
【0017】
焼鈍処理の上限温度を850℃としているのは、それ以上の高温度を必要としないだけでなく、高温化に伴い結晶粒の成長粗大化が助長され、微細組織を確保することが困難となるからである。焼鈍方式はバッチ焼鈍または連続焼鈍のいずれでもよいが、比較的長い処理時間が与えられるバッチ焼鈍の場合は、雰囲気温度を約650℃〜720℃とし、処理時間の短い連続焼鈍の場合は、約750〜850℃に調節設定するとよい。
焼鈍雰囲気をN2 −H2 混合ガスとしているのは、還元作用による鋼板の金属光沢を確保し、かつ窒化反応によるAlNリッチ層を形成するためである。そのH2 濃度を2体積%以上に規定したのは、それより低い濃度では、還元作用が十分でなく、金属光沢の確保が困難となるからである。ただし、H2 濃度をあまり高くすると、N2 濃度の相対的低下により、窒化反応効率が低下するので、約90体積%を上限とするのが適当である。焼鈍処理をより効率的に達成するために、N2 −H2 混合ガスのH2 濃度: 10〜80体積%、焼鈍雰囲気の露点: −10℃以下の条件で焼鈍処理するのが好ましい。
【0018】
窒化反応により生成する鋼板表層のAlNの析出物(50〜500Å程度の大きさである)は、二重巻きパイプのブレージング処理過程において、鋼板表層部を極めて微細なフェライト組織に再結晶化することを可能とし、その微細化効果として、鋼板に高度の耐銅浸透性が付与される。この耐銅浸透性を十分なものとするために、AlNリッチの表層部の層厚は、約50μm以上であるのが好ましい。また、その表層部の層厚は100μmを超えない層厚であれば、鋼板の加工性に悪影響を及ぼすこともない。この表層部の層厚は、焼鈍処理の雰囲気ガス組成,処理温度・時間等により制御することができる。
【0019】
焼鈍処理された鋼板は、常法に従って、調質圧延および連続電気めっき等による銅めっき(めっき層厚: 例えば1〜5μm/片面当たり)を施されて二重巻きパイプ用銅めっき鋼板に仕上げられる。得られた銅めっき鋼板は、二重巻きパイプに成形加工されたうえ、巻き重ね面間を融着するブレージング熱処理(処理温度: 約1100〜1150℃)に付される。
【0020】
ブレージング熱処理では、その初期段階で素地鋼板の再結晶(約900〜950℃)が生起する。表層部(AlN粒凝集層)は、微細なAlNの析出物がフェライトの再結晶におけるピン止め効果となり、極めて微細なフェライト組織(結晶粒度 FGS No.約10以上)が形成される。パイプの温度が銅の融点以上(約1100℃)に達すると、銅めっき層の溶融による巻き重ね面間の融着結合が生起する。このとき素地鋼板はすでに再結晶を完了し、表面層に極めて微細なフェライト組織が形成されており、その微細化の効果として、溶融銅の粒界侵入を抑制防止しつつ巻き重ね面間の融着を達成することができる。また、前記のように素地鋼板の化学組成(C,Al,N量等)の規定の効果として、ブレージング熱処理後の冷却過程のフェライト組織の針状化や粗粒化も抑制防止され、素地鋼板の板厚中心部のフェライト組織も比較的微細なフェライト組織(FGS No. 約6以上)を有している。
【0021】
次に、二重巻きパイプの延性・加工性に及ぼす地鋼板の化学組成の影響について具体的に説明する。
図1は二重巻きパイプの延性に及ぼす素地鋼板のC含有量の影響を示している。供試鋼板およびパイプ(管径: 4.76mm)の製造条件は下記のとおりである。
(1)素地鋼板の化学組成(wt %)
C:0.01 〜0.12, Si:0.008, Mn:0.25. P:0.013, S:0.006, sol Al:0.035, N:0 .0040, Fe:Bal。
(2)冷間圧延: 圧下率 83 %,板厚: 0.335 mm。
(3)焼鈍処理(バッチ焼鈍)
雰囲気: N 2 −10vol% H 2混合ガス
処理温度・時間: 660℃×12 hr
(4)調質圧延: 圧下率 1%
(5)銅めっき: 連続電気めっき,層厚5 μm/ 片面当り
(6)二重巻き成形後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1min
【0022】
図1に示したように、二重巻きパイプは、素地鋼板のC量0.03〜0.08%の範囲において、伸び率25%以上の高い延性が与えられている。C量0.03%未満の領域の延性が低いのは、鋼板のフェライト組織が過度に粗大化したことによるものであり、他方C量0.08%を越える領域での延性低下は、鋼中の炭化物(Fe3 C)の増量、および針状のフェライト組織の生成に起因してパイプが硬質化したことによる。二重巻きパイプの拡管加工・フレア加工性には、伸び率約25%以上の延性が必要とされており、図1は、その要求を充足するために、素地鋼板のC量を0.03〜0.08%の範囲に調整する必要があることを示している。
【0023】
図2は、素地鋼板のAl量, N量と二重巻きパイプの伸び値の関係を示している。供試鋼板およびパイプ(管径:4.76 mm)の製造条件は次のとおりである。
(1)素地鋼板の化学組成(wt%)
C:0.05, Si:0.009, Mn:0.35. P:0.013, S:0.006, sol Al:0.010 〜0.090, N: 0.0010〜0.0090, Fe:Bal
(2)冷間圧延: 圧下率 83 %,板厚: 0.335 mm
(3)焼鈍処理(バッチ焼鈍)
雰囲気:N2 -12 vol% H 2混合ガス
処理温度・時間: 670 ℃×10hr
(4)調質圧延: 圧下率 1%
(5)銅めっき: 連続電気めっき, 層厚 5μm(片面当たり)
(6)二重巻き成形後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1min
【0024】
図2中の各記号は下記のとおりである。
○…伸び率 25 %以上
△…AlN の過剰析出により、伸び率 25 %未満
×…AlN の析出不足(フェライト粒粗大化)により、伸び率 25 %未満
この図より、二重巻きパイプの拡管加工・フレア加工に要求される延性(伸び率約25%以上)を満たすためには、Al量は0.03〜0.08%、N量は0.003〜0.008%の範囲に調整すべきことがわかる。
【0025】
図3は、本発明の銅めっき鋼板のフープ(二重巻き成形加工前の所要板幅に裁断した平板材)、図4は、そのフープを使用して造管した二重巻きパイプ(ブレージング処理済み)について、それぞれのフェライト組織を示している(いずれも、倍率×100)。
供試材の製造条件は次のとおりである。
(1)素地鋼板の化学組成(wt%)
C:0.06, Si:0.010, Mn:0.45. P:0.015, S:0.010, sol Al:0.060, N: 0.0060, Fe:Bal
(2)冷間圧延: 圧下率: 83%, 板厚: 0.335 mm
(3)焼鈍処理(バッチ焼鈍)
雰囲気ガス:N2 -15 vol% H 2混合ガス
処理温度・時間: 660 ℃×8 hr
(4)調質圧延: 圧下率 1 %
(5)銅めっき: 連続電気めっき, 層厚 5μm(片面当たり)
(6)二重巻き成形加工後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1 min
【0026】
図3(二重巻き成形加工前のフープ)は、鋼板の表層から内部の断面全体にわたってパンケーキ状のフェライト組織を呈している。そのフェライト結晶粒度( FGS No.)は8.3である。
他方、図4(二重巻きパイプのブレージング処理後)にける鋼板表層部のフェライト組織は、板厚中心部に比し著しく細粒化している。その表層部の層厚は約80μmであり、結晶粒度FGS Noは10〜12である。この表層部の微細化は、前記のようにブレージング処理過程で、表層部の微細なAlNをフェライト生成のピン止めとして再結晶が行われることによる効果である。また、この表層部の微細化は銅めっき層の溶融に先行して生起し、溶融銅の粒界侵入を抑制防止する。
【0027】
【実施例】
〔1〕供試材の製造
転炉および脱ガス処理装置により溶製・成分調整を行った溶鋼を連続鋳造に付してスラブとし、熱間圧延→熱延板の酸洗処理→冷間圧延→冷延板の電解清浄処理→焼鈍処理→調質圧延→銅めっき→二重巻き成形加工・ブレージング処理の工程を経由して二重巻きパイプ(管径4.76mm)を得る。
(1)鋼組成: 表1,表2参照
No.1〜14は発明例、No.51 〜62はいずれかの元素の含有量(表中,下線付記)が本発明の規定から外れている比較例である。
(2)熱間圧延
加熱温度: 1230℃、熱延仕上げ温度: 890 ℃、熱延巻取り温度: 520 ℃
(3)冷間圧延
圧下率: 83%、冷延板板厚: 0.335 mm
【0028】
(4)焼鈍処理(バッチ焼鈍)
雰囲気: N2 −H2 混合ガス(H2 濃度 2〜20体積%)
処理温度: 650 〜700 ℃, 処理時間: 8 〜15 hr
(5)調質圧延: 圧下率1%
(6)銅めっき(連続電気めっき): めっき層厚 5μm(片側当たり)
(7)二重巻き成形加工
・成形加工法: ロール造管(フープ幅 27.4 mm)
・セルフ・ブレージング処理:
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1 min
【0029】
〔2〕パイプの特性評価
(a)引張試験: JIS Z 2241(11号試験片使用) による。
(b)フェライト粒度: パイプの断面を5 %ナイタールで腐食し、切断法(JIS G 0552)により粒度番号(FGS No)を判定(倍率: ×200 )。
(c)銅の侵入深さ: パイプの断面を5 %ナイタールで腐食した後、XMA分析装置により、銅の溶着部(倍率: ×500 )のCu特性X線像を撮影して侵入深さ(μm)を測定。
【0030】
表1および表2に、素地鋼板の化学組成,銅めっき鋼板および二重巻きパイプの製造条件と併せて製品パイプの試験結果を示す。
発明例No.1〜14のパイプは、拡管加工やフレア加工に必要とされる25%以上の伸び率を有している。また、その表層部(層厚約50〜100 μm)のフェライト組織は、FGS No.10 〜12と著しく微細であり、このため耐銅浸透性が高く、銅の侵入深さは約3〜11μmと少ない。肉厚中心部もFGS No約8以上の比較的微細なフェライト組織を有している。このように銅の侵入が抑制され、かつ肉厚全体にわたり微細なフェライト組織を有しているので、拡管加工やフレア加工におけるう加工性も良好である。
【0031】
他方、比較例No.51 〜62において、No.51 およびNo.52 のパイプの延性が低いのは、鋼板のC量の不足のため、フェライト粒が粗大化し、銅の侵入深さが大きく、粒界の脆化が生じたことによる。
No.53 およびNo.54 のパイプの延性が劣るのは、素地鋼板のC量が多すぎるため、鋼中の炭化物(Fe3 C)量が過剰に析出したこと、および針状のフェライト組織が形成されたことにより硬質化しているのである。
No.55 とNo.56 (素地鋼板Al量不足)およびNo.59 とNo.60 (素地鋼板N量不足)のパイプの延性が劣るのは、Al,N量が少なく、AlNの析出量が不足してフェライト粒が粗大化し、このため銅の侵入深さが大きくなり、粒界が脆化したからである。
また、No.57 とNo.58 (素地鋼板Al量過剰)およびNo.61 とNo.62 (素地鋼板N量過剰)のパイプの延性が劣るのは、Al,N量が多過ぎ、鋼中にAlNが過剰に析出して硬質化したことによる。
【0032】
【表1】
【0033】
【表2】
【0034】
【発明の効果】
本発明の二重巻きパイプ用銅めっき鋼板は、セルフ・ブレージング処理における耐銅浸透性が高く、銅の侵入およびそれに起因する粒界脆化を抑制防止し、またブレージング処理後のフェライト組織の粗大化や針状化とそれに付随するパイプの硬質化も抑制防止される。従って得られる二重巻きパイプは、高い延性を有し、拡管加工やフレア加工等における加工割れが抑制防止され、製造歩留りの向上,パイプ品質の向上安定化等の効果が得られる。
【図面の簡単な説明】
【図1】二重巻きパイプの伸び値と母材鋼板のC量との関係を示すグラフである。
【図2】二重巻きパイプの伸び値と母材鋼板のAl,N量との関係を示すグラフである。
【図3】二重巻き成形加工前の銅めっき鋼板フープのフェライト組織を示す図面代用顕微鏡写真(倍率×100)である。
【図4】二重巻きパイプにおける鋼板のフェライト組織を示す図面代用顕微鏡写真(倍率×100)である。
【図5】二重巻きパイプを示す模式的断面図である。
【符号の説明】
1: 母材鋼板
2: 銅めっき層
3: 融着層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper-plated steel sheet having excellent copper permeation resistance and the like and a method for producing the same for producing a double-pipe pipe used as a brake tube for an automobile, a cooling tube for a refrigerator, or the like.
[0002]
[Prior art]
A double-pipe pipe made of copper-plated steel sheet is a DX gas heated to a copper melting point or higher (eg 1130 ° C) after a copper-plated steel sheet hoop cut into a predetermined width is rolled into a pipe shape with a pipe-making roll. It is manufactured by holding a suitable time (about 1 to 2 minutes), melting the copper plating layer, and performing a so-called self-brazing treatment in which the wound surfaces are fusion bonded. FIG. 5 shows a cross section of a double-wound pipe.
Copper-plated steel sheets used for the production of double-pipe pipes are self-brazing heat treatment, the crystal structure of the base steel sheet does not become too coarse (resistance to coarsening), and the penetration of molten copper into the base steel sheet It is required that the steel plate is less likely to cause embrittlement (copper permeation resistance), and has good ductility to withstand tube expansion and flare processing performed after double-winding pipe forming.
[0003]
Conventionally, low carbon aluminum killed steel has been used as the base steel for the copper-plated steel sheet. As an improved material, Japanese Patent Publication No. 8-14013 discloses that C: 0.01 to 0.15%, Si: 0.1% or less, Mn: 0.05 ˜0.6%, Al: 0.003 to 0.1%, P: 0.015% or less, B: 0.0004 to 0.004%, and the balance of the base steel plate made of Fe and inevitable impurities is disclosed. As described therein, this copper-plated steel sheet has effects such as refinement of crystal structure and improvement of weld crack resistance as the B element-containing effect of the base steel sheet.
[0004]
[Problems to be solved by the invention]
Conventional copper-plated steel sheets, even if the base steel sheets belong to the category of low-carbon aluminum killed steel sheets, are not self-adhesive after double-winding pipe forming due to lack of copper permeation resistance, coarse grain resistance, etc.・ In brazing heat treatment, there are many cases where cracks occur during subsequent tube expansion or flare processing, which tends to cause grain boundary embrittlement due to the intrusion of molten copper and decrease in ductility due to acicular or coarsening of the ferrite structure. It is done. As described in the above publication, the addition of element B is effective for refining the ferrite structure. However, in a low-carbon aluminum killed steel sheet having an elemental content of B of about 20 ppm or more, a needle shape is formed during the cooling process after brazing. This produces a ferrite structure and impairs the workability of the pipe.
The present invention is provided with improved coarse grain resistance, copper permeation resistance, etc. to solve the conventional problems related to double-winding pipes and to ensure good workability that can withstand tube expansion processing, flare processing, etc. A copper-plated steel sheet and a method for producing the same are provided.
[0005]
[Means for Solving the Problems]
The copper-plated steel sheet for double-wound pipes of the present invention is in weight%,
C: 0.03 to 0.08%,
Si: 0.1% or less,
Mn: 0.05 to 0.5%,
P: 0.015% or less,
S: 0.015% or less,
sol.Al: 0.03-0.08%,
N: 0.003 to 0.008%,
The balance is composed of a base steel plate substantially composed of Fe and inevitable impurities and a plating layer covering the surface, and the base steel plate has a surface layer portion having a layer thickness of 50 to 100 μm in which fine AlN precipitates are densely dispersed. It is characterized by that.
[0006]
The copper-plated steel sheet for double-wound pipes of the present invention is obtained by hot rolling a steel slab having the above chemical composition and cold rolling it at a reduction ratio of 50 to 90%, and then subjecting the cold rolled steel sheet to a hydrogen concentration of 2 vol%. In the above-mentioned N 2 —H 2 mixed gas, it is manufactured by a step of annealing in a temperature range of a recrystallization temperature to 850 ° C. and then subjecting the steel plate to a copper plating treatment.
[0007]
According to the chemical composition of the base steel sheet, particularly the amount of C, Al, and N, the copper-plated steel sheet of the present invention suppresses and prevents the acicularization and coarsening of the ferrite structure in the self-brazing heat treatment of the double-winding pipe, In addition, AlN precipitates (about 50 to 500 mm) densely dispersed in the steel sheet surface layer (layer thickness of about 50 to 100 μm) serve as a pinning effect in the recrystallization of ferrite generated by self-brazing heat treatment and A fine ferrite structure is formed. The crystal grain size FGS.No (JIS G 0552) of the surface layer is remarkably fine, about 10 or more, and by refinement of the surface layer structure, the copper penetration resistance in brazing heat treatment is enhanced and the molten copper enters the grain boundary. And the embrittlement of the grain boundary due to this is suppressed and prevented.
[0008]
The AlN grains in the surface layer portion that enable the refinement of the ferrite structure in the surface layer portion are formed by a nitriding reaction in an annealing process in which an N 2 —H 2 mixed gas is used as the atmosphere. As a specified effect such as the amount of Al and N, coarsening is suppressed and prevented, and a relatively fine ferrite structure (FGS. No .: about 6 or more) is provided. Accordingly, in the present invention, unlike the copper-plated steel sheet disclosed in the above publication (Japanese Patent Publication No. 8-14013), it is not necessary to use a refining element such as B element. In addition, since the layer thickness in which the precipitates of AlN in the steel plate surface layer are dispersed abundantly is 50 to 100 μm, the workability of the steel plate is not impaired by the AlN rich layer.
The double-winding pipe produced using the copper-plated steel sheet of the present invention is given good ductility by preventing and preventing coarse graining and intergranular penetration of molten copper and embrittlement caused thereby, The ductility required for tube expansion and flare processing (elongation of about 25% or more is required) can be sufficiently satisfied.
[0009]
The reasons for limiting the chemical composition of the base steel sheet in the present invention are as follows.
C: 0.03-0.08%
From the point of increasing the ductility of the cold-rolled steel sheet, the smaller the amount of C, the better. However, when the amount is too small, the coarse grain resistance is insufficient. Further, the copper permeation resistance also decreases due to the decrease in grain boundary strength. On the other hand, when the amount of C increases, ductility decreases due to an increase in the amount of precipitated carbide. Especially when it exceeds 0.08%, a needle-like ferrite structure is easily formed in the cooling process after the self-brazing treatment, and the ductility is reduced. The decrease becomes noticeable. For this reason, it is 0.03 to 0.08%.
[0010]
Si: 0.1% or less Si is added as a deoxidizing element in the steel melting process. For this purpose, it is sufficient to add up to 0.1%. Moreover, since addition of a larger amount reduces ductility, this is made the upper limit.
Mn: 0.05-0.5%
Mn is added for the purpose of preventing hot brittleness of the steel. If it is less than 0.05%, the effect is insufficient, while if it exceeds 0.5%, ductility is lowered.
[0011]
P: 0.015% or less,
P has the effect of increasing the yield strength and tensile strength, but if added in a large amount, it causes a decrease in ductility, and segregates at the crystal grain boundary, thereby lowering the grain boundary strength. For this reason, it is made 0.015% or less. Preferably it is 0.008 to 0.015%.
S: 0.015%
S forms non-metallic inclusions such as MnS to lower the workability of the steel sheet. If it is 0.015% or less, the actual damage is avoided, so this is the upper limit.
[0012]
sol.Al: 0.03-0.08%
Al is an element added as a deoxidizer in the steel melting process. However, in the present invention, not only that, but a precipitate of AlN is formed, and the coarsening resistance and copper penetration resistance in brazing are improved. It is added for the purpose of enhancing. In order to obtain these effects, at least 0.03% is required as the sol.Al amount (soluble Al amount). However, if added in a large amount, the ductility is lowered due to excessive precipitation of AlN, and the steel sheet surface quality is lowered (increase in surface flaws) due to the increase of nonmetallic inclusions. For this reason, the upper limit of the amount of sol.Al is 0.08%.
[0013]
N: 0.003 to 0.008%,
N reacts with Al to form fine precipitates of AlN to enhance the coarse grain resistance of the base steel sheet and prevent the ferrite structure from becoming coarse in the brazing treatment. If the content is less than 0.003%, the precipitation amount of AlN is insufficient, and the coarsening resistance cannot be ensured. On the other hand, if it is added too much, ductility is lowered due to excessive precipitation of AlN, and the pipe is hardened. For this reason, 0.008% is made the upper limit.
[0014]
Next, the manufacturing process of the present invention will be described.
First, steel melted to a predetermined chemical composition in a steelmaking furnace is made into a slab by ingot-making / decomposition rolling or continuous casting, and the slab surface is appropriately treated, followed by hot rolling. Following the continuous casting, the hot slab may be inserted into a heating furnace as it is and hot rolled. Hot rolling is performed by a conventional method. From the viewpoint of hot rolled steel sheet quality, hot rolling efficiency, etc., the finishing temperature is adjusted to a temperature just above the Ar3 transformation point, and the coiling temperature is suitably in the range of about 500 to 700 ° C.
[0015]
The hot-rolled steel sheet is subjected to cold rolling after the pickling treatment. In cold rolling, in order to suppress the coarsening of crystal grains and obtain a cold-rolled steel sheet having good ductility, the rolling reduction needs to be 50% or more. When the rolling reduction exceeds 90%, the effect of refining the crystal grains is saturated, and the rolling reduction beyond that only causes a disadvantage of operation due to an increase in rolling load, so 90% is the upper limit.
[0016]
The surface of the cold-rolled steel sheet is subjected to annealing treatment after being purified. In the annealing treatment, the steel sheet is recrystallized, and a surface layer portion (AlN rich layer) in which fine AlN grains are densely dispersed is formed by nitriding reaction. This annealing process is performed by using a N 2 —H 2 mixed gas having a hydrogen concentration of 2% by volume or more as an atmosphere and heating in a temperature range of a recrystallization temperature (about 600 ° C.) to 850 ° C. The N 2 -H 2 gas mixture is NX gas (H 2 : 2 vol%, CO: 3 vol%, balance N 2 ), DX gas (H 2 : 10 vol%, CO: 10 vol%, (CO 2 : 7 vol%, balance N 2 ) may be used (these mixed gases contain CO gas or CO 2 gas, but the annealing effect is not impaired thereby).
[0017]
The upper limit temperature of the annealing treatment is set to 850 ° C., not only the higher temperature is not required, but also the growth of crystal grains is promoted as the temperature is increased, and it becomes difficult to secure a fine structure. Because. The annealing method may be either batch annealing or continuous annealing, but in the case of batch annealing in which a relatively long processing time is given, the ambient temperature is about 650 ° C. to 720 ° C., and in the case of continuous annealing with a short processing time, about It may be adjusted to 750 to 850 ° C.
The reason why the annealing atmosphere is the N 2 —H 2 mixed gas is to secure the metallic luster of the steel sheet due to the reducing action and to form an AlN rich layer by the nitriding reaction. The reason why the H 2 concentration is specified to be 2% by volume or more is that, if the concentration is lower than that, the reduction action is not sufficient, and it is difficult to ensure the metallic luster. However, if the H 2 concentration is too high, the nitriding reaction efficiency decreases due to the relative decrease in the N 2 concentration, so it is appropriate to set the upper limit at about 90% by volume. In order to achieve the annealing treatment more efficiently, it is preferable to perform the annealing treatment under the conditions of H 2 concentration of N 2 —H 2 mixed gas: 10 to 80% by volume and dew point of annealing atmosphere: −10 ° C. or less.
[0018]
Precipitates of AlN on the steel sheet surface layer produced by the nitriding reaction (having a size of about 50 to 500 mm) should be recrystallized into a very fine ferrite structure in the brazing process of the double-pipe pipe. As a refinement effect, high copper permeation resistance is imparted to the steel sheet. In order to ensure sufficient copper permeation resistance, the layer thickness of the AlN-rich surface layer is preferably about 50 μm or more. Moreover, if the layer thickness of the surface layer part does not exceed 100 μm, the workability of the steel sheet is not adversely affected. The thickness of the surface layer portion can be controlled by the atmospheric gas composition of the annealing treatment, the treatment temperature / time, and the like.
[0019]
The annealed steel sheet is subjected to copper plating (plating layer thickness: for example, 1 to 5 μm / per side) by temper rolling and continuous electroplating according to a conventional method to finish a copper-plated steel sheet for a double-winding pipe. . The obtained copper-plated steel sheet is subjected to a brazing heat treatment (processing temperature: about 1100 to 1150 ° C.) that is formed into a double-winding pipe and is fused between the wound surfaces.
[0020]
In the brazing heat treatment, recrystallization (about 900 to 950 ° C.) of the base steel sheet occurs in the initial stage. In the surface layer portion (AlN grain aggregation layer), fine AlN precipitates have a pinning effect in recrystallization of ferrite, and an extremely fine ferrite structure (crystal grain size FGS No. of about 10 or more) is formed. When the temperature of the pipe reaches or exceeds the melting point of copper (about 1100 ° C.), fusion bonding between the wound surfaces due to melting of the copper plating layer occurs. At this time, the base steel plate has already been recrystallized, and a very fine ferrite structure has been formed in the surface layer. As a result of the refinement, the fusion between the winding surfaces is suppressed while preventing the grain boundary penetration of the molten copper. Wear can be achieved. In addition, as described above, as the effect of defining the chemical composition (C, Al, N amount, etc.) of the base steel plate, acicular and coarsening of the ferrite structure in the cooling process after brazing heat treatment is suppressed and prevented, and the base steel plate The ferrite structure at the center of the plate thickness also has a relatively fine ferrite structure (FGS No. about 6 or more).
[0021]
Next, the influence of the chemical composition of the ground steel plate on the ductility and workability of the double-wound pipe will be specifically described.
FIG. 1 shows the influence of the C content of the base steel sheet on the ductility of the double-winding pipe. The manufacturing conditions of the test steel plates and pipes (tube diameter: 4.76 mm) are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.01-0.12, Si: 0.008, Mn: 0.25. P: 0.013, S: 0.006, sol Al: 0.035, N: 0.0040, Fe: Bal.
(2) Cold rolling: reduction ratio 83%, sheet thickness: 0.335 mm.
(3) Annealing treatment (batch annealing)
Atmosphere: N 2 -10vol% H 2 gas mixture Processing temperature / time: 660 ° C x 12 hr
(4) Temper rolling:
(5) Copper plating: Continuous electroplating, layer thickness 5 μm / per side
(6) double-wrap forming after the self-brazing treatment atmosphere: DX gas (10vol% H 2 -10vol% CO- 6vol% CO 2 -
Processing temperature / time: 1130 ℃ × 1min
[0022]
As shown in FIG. 1, the double-winding pipe is given high ductility with an elongation of 25% or more in the range of the C content of the base steel sheet of 0.03 to 0.08%. The low ductility in the region where the C content is less than 0.03% is due to excessive coarsening of the ferrite structure of the steel sheet, while the ductility reduction in the region where the C content exceeds 0.08% This is because the pipe was hardened due to the increase in the amount of carbide (Fe 3 C) and the formation of a needle-like ferrite structure. Ductility with an elongation of about 25% or more is required for pipe expansion and flare workability of double-wound pipes. FIG. 1 shows that the C content of the base steel sheet is 0.03 to satisfy the requirement. It shows that it is necessary to adjust to the range of ˜0.08%.
[0023]
FIG. 2 shows the relationship between the Al amount and N amount of the base steel sheet and the elongation value of the double-winding pipe. The manufacturing conditions of the test steel plate and pipe (tube diameter: 4.76 mm) are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.05, Si: 0.009, Mn: 0.35. P: 0.013, S: 0.006, sol Al: 0.010 to 0.090, N: 0.0010 to 0.0090, Fe: Bal
(2) Cold rolling: 83% reduction, sheet thickness: 0.335 mm
(3) Annealing treatment (batch annealing)
Atmosphere: N 2 -12 vol% H 2 gas mixtureTemperature and time: 670 ° C x 10 hr
(4) Temper rolling:
(5) Copper plating: Continuous electroplating, layer thickness 5μm (per side)
(6) double-wrap forming after the self-brazing treatment atmosphere: DX gas (10vol% H 2 -10vol% CO- 6vol% CO 2 -
Processing temperature / time: 1130 ℃ × 1min
[0024]
Each symbol in FIG. 2 is as follows.
○ ... Elongation rate of 25% or more △ ... Elongation rate of AlN is less than 25% × ... AlN precipitation rate is insufficient (ferrite grain coarsening), and elongation rate is less than 25%・ In order to satisfy the ductility required for flare processing (elongation rate of about 25% or more), the Al content is adjusted to 0.03 to 0.08% and the N content is adjusted to a range of 0.003 to 0.008%. I know what to do.
[0025]
FIG. 3 shows a hoop of a copper-plated steel sheet according to the present invention (a flat plate material cut to a required plate width before double-winding forming), and FIG. 4 shows a double-wound pipe (brazing treatment) formed using the hoop. (Completed) shows the ferrite structure of each (both magnification × 100).
The production conditions of the specimens are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.06, Si: 0.010, Mn: 0.45. P: 0.015, S: 0.010, sol Al: 0.060, N: 0.0060, Fe: Bal
(2) Cold rolling: reduction ratio: 83%, sheet thickness: 0.335 mm
(3) Annealing treatment (batch annealing)
Atmosphere gas: N 2 -15 vol% H 2 gas mixture Processing temperature and time: 660 ° C x 8 hr
(4) Temper rolling:
(5) Copper plating: Continuous electroplating, layer thickness 5μm (per side)
(6) Self-brazing treatment atmosphere after double winding molding: DX gas (10 vol% H 2 -10 vol% CO-6 vol% CO 2 -N 2, dew point: + 5 ° C)
Processing temperature / time: 1130 ℃ × 1 min
[0026]
FIG. 3 (a hoop before the double winding forming process) exhibits a pancake-like ferrite structure from the surface layer of the steel plate to the entire internal cross section. The ferrite crystal grain size (FGS No.) is 8.3.
On the other hand, the ferrite structure of the steel plate surface layer portion in FIG. 4 (after the brazing treatment of the double-winding pipe) is remarkably finer than the plate thickness center portion. The layer thickness of the surface layer is about 80 μm, and the crystal grain size FGS No is 10-12. This refinement of the surface layer portion is an effect due to recrystallization performed by using fine AlN in the surface layer portion as a pinning for ferrite formation in the brazing process as described above. Further, the refinement of the surface layer portion occurs prior to the melting of the copper plating layer, and suppresses and prevents the penetration of grain boundaries of the molten copper.
[0027]
【Example】
[1] Production of test material Molten steel that has been melted and adjusted by degassing equipment using a converter and degassing equipment is subjected to continuous casting to form a slab, which is hot-rolled → hot-rolled sheet pickled → cold-rolled → Electrolytic cleaning treatment of cold-rolled sheet → annealing treatment → temper rolling → copper plating → double winding forming process and brazing treatment to obtain a double winding pipe (tube diameter 4.76 mm).
(1) Steel composition: See Tables 1 and 2
Nos. 1 to 14 are invention examples, and Nos. 51 to 62 are comparative examples in which the content of any element (in the table, underlined) is not within the scope of the present invention.
(2) Hot rolling heating temperature: 1230 ° C, hot rolling finishing temperature: 890 ° C, hot rolling coiling temperature: 520 ° C
(3) Cold rolling reduction: 83%, cold rolled sheet thickness: 0.335 mm
[0028]
(4) Annealing treatment (batch annealing)
Atmosphere: N 2 —H 2 gas mixture (H 2 concentration 2-20% by volume)
Processing temperature: 650 ~ 700 ° C, Processing time: 8 ~ 15 hr
(5) Temper rolling:
(6) Copper plating (continuous electroplating): Plating layer thickness 5μm (per side)
(7) Double winding forming and forming method: Roll pipe making (hoop width 27.4 mm)
・ Self-brazing process:
Atmosphere: DX gas (10 vol% H 2 -10 vol% CO-6 vol% CO 2 -N 2, dew point: + 5 ° C)
Processing temperature / time: 1130 ℃ × 1 min
[0029]
[2] Pipe characteristic evaluation
(a) Tensile test: According to JIS Z 2241 (No. 11 test piece used).
(b) Ferrite grain size: The pipe cross-section is corroded with 5% nital, and the grain size number (FGS No) is determined by the cutting method (JIS G 0552) (magnification: × 200).
(c) Copper penetration depth: After the pipe cross-section was corroded with 5% nital, a Cu characteristic X-ray image of the copper welded part (magnification: × 500) was taken with an XMA analyzer and the penetration depth ( μm).
[0030]
Tables 1 and 2 show the product pipe test results together with the chemical composition of the base steel sheet, the production conditions of the copper-plated steel sheet and the double-winding pipe.
The pipes of Invention Examples Nos. 1 to 14 have an elongation of 25% or more required for pipe expansion processing and flare processing. In addition, the ferrite structure of the surface layer portion (layer thickness of about 50 to 100 μm) is remarkably fine as FGS No. 10 to 12, so that the copper penetration resistance is high and the penetration depth of copper is about 3 to 11 μm. And few. The center of the wall also has a relatively fine ferrite structure of FGS No. 8 or more. As described above, the penetration of copper is suppressed, and since the fine ferrite structure is formed over the entire thickness, the workability in tube expansion processing and flare processing is also good.
[0031]
On the other hand, in Comparative Examples Nos. 51 to 62, the ductility of the pipes No. 51 and No. 52 is low because of the insufficient amount of C in the steel sheet, the ferrite grains are coarsened, and the copper penetration depth is large. This is because the grain boundaries become brittle.
The reason why the ductility of the No. 53 and No. 54 pipes is inferior is that the amount of carbon (Fe 3 C) in the steel is excessively precipitated due to the excessive amount of C in the base steel sheet, and the needle-like ferrite structure is It is hardened by being formed.
The ductility of pipes No. 55 and No. 56 (base steel sheet Al amount shortage) and No. 59 and No. 60 (base steel sheet N shortage amount) is inferior. This is because the ferrite grains are coarsened and the copper penetration depth becomes large, and the grain boundaries become brittle.
In addition, the ductility of pipes No. 57 and No. 58 (excessive amount of base steel sheet Al) and No. 61 and No. 62 (excessive amount of base steel sheet N) is too low. This is because AlN is excessively precipitated and hardened.
[0032]
[Table 1]
[0033]
[Table 2]
[0034]
【The invention's effect】
The copper-plated steel sheet for double-wound pipes of the present invention has high copper permeation resistance in self-brazing treatment, suppresses and prevents copper intrusion and grain boundary embrittlement resulting therefrom, and the ferrite structure after brazing treatment is coarse It is also possible to suppress or prevent the formation of needles and needles and the accompanying hardening of pipes. Therefore, the obtained double-wound pipe has high ductility, and prevents cracking in pipe expansion processing, flare processing, and the like, and effects such as improvement in manufacturing yield and improvement and stabilization of pipe quality can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the elongation value of a double-wound pipe and the C amount of a base steel plate.
FIG. 2 is a graph showing the relationship between the elongation value of a double-winding pipe and the amounts of Al and N of a base steel plate.
FIG. 3 is a drawing-substituting micrograph (magnification × 100) showing a ferrite structure of a copper-plated steel sheet hoop before the double winding forming process.
FIG. 4 is a drawing-substituting micrograph (magnification × 100) showing a ferrite structure of a steel plate in a double-winding pipe.
FIG. 5 is a schematic cross-sectional view showing a double-winding pipe.
[Explanation of symbols]
1: Base steel plate 2: Copper plating layer 3: Fusion layer
Claims (2)
C: 0.03〜0.08%,
Si: 0.1%以下,
Mn: 0.05〜0.5%,
P: 0.015%以下,
S: 0.015%以下,
sol.Al: 0.03〜0.08%,
N: 0.003〜0.008%,
残部は実質的にFeおよび不可避不純物からなる素地鋼板とその表面を被覆するめっき層からなり、該素地鋼板は、微細なAlNの析出物が緻密に分散した層厚50〜100μmの表層部を有することを特徴とする耐銅浸透性等にすぐれた二重巻きパイプ用銅めっき鋼板。% By weight
C: 0.03 to 0.08%,
Si: 0.1% or less,
Mn: 0.05 to 0.5%,
P: 0.015% or less,
S: 0.015% or less,
sol.Al: 0.03-0.08%,
N: 0.003 to 0.008%,
The balance is composed of a base steel plate substantially composed of Fe and inevitable impurities and a plating layer covering the surface, and the base steel plate has a surface layer portion with a layer thickness of 50 to 100 μm in which fine AlN precipitates are densely dispersed. A copper-plated steel sheet for double-winding pipes with excellent copper permeation resistance and other characteristics.
C: 0.03〜0.08%,
Si: 0.1%以下,
Mn: 0.05〜0.5%,
P: 0.015%以下,
S: 0.015%以下,
sol.Al: 0.03〜0.08%,
N: 0.003〜0.008%,
残部Feおよび不可避不純物からなるスラブを熱間圧延し、圧下率50〜90%で冷間圧延した後、冷延鋼板を、水素濃度2vol %以上のN2 −H2 混合ガス中、再結晶温度〜850℃の温度域で焼鈍処理し、ついで該鋼板に銅めっき処理を施すことを特徴とする耐銅浸透性等にすぐれた二重巻きパイプ用銅めっき鋼板の製造方法。% By weight
C: 0.03 to 0.08%,
Si: 0.1% or less,
Mn: 0.05 to 0.5%,
P: 0.015% or less,
S: 0.015% or less,
sol.Al: 0.03-0.08%,
N: 0.003 to 0.008%,
The slab composed of the remaining Fe and inevitable impurities is hot-rolled and cold-rolled at a reduction rate of 50 to 90%, and then the cold-rolled steel sheet is recrystallized in an N 2 —H 2 mixed gas having a hydrogen concentration of 2 vol% or more. A method for producing a copper-plated steel sheet for double-wound pipes, which is excellent in copper permeation resistance and the like, characterized by annealing in a temperature range of ˜850 ° C. and then subjecting the steel sheet to copper plating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05739597A JP3659542B2 (en) | 1997-03-12 | 1997-03-12 | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05739597A JP3659542B2 (en) | 1997-03-12 | 1997-03-12 | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10251798A JPH10251798A (en) | 1998-09-22 |
JP3659542B2 true JP3659542B2 (en) | 2005-06-15 |
Family
ID=13054449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05739597A Expired - Lifetime JP3659542B2 (en) | 1997-03-12 | 1997-03-12 | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3659542B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5207288B2 (en) * | 2008-02-27 | 2013-06-12 | 日新製鋼株式会社 | Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56150459A (en) * | 1980-04-23 | 1981-11-20 | Yamazaki Denki Kogyo Kk | Continuous manufacture of coated soft small-size tube |
JPH0814013B2 (en) * | 1987-06-26 | 1996-02-14 | 日新製鋼株式会社 | Copper-plated steel sheet with excellent weld crack resistance and its manufacturing method |
JPH075971B2 (en) * | 1987-12-31 | 1995-01-25 | 株式会社神戸製鋼所 | Method for producing alloy electroplated steel sheet for deep drawing with excellent impact peel resistance after painting |
JP3217088B2 (en) * | 1991-07-26 | 2001-10-09 | 三桜工業株式会社 | Stainless steel multiple winding pipe |
JPH07278744A (en) * | 1994-04-12 | 1995-10-24 | Nippon Steel Corp | Surface treated starting sheet for di can, excellent in bearing strength an neck-in characteristic, and its production |
JP3288620B2 (en) * | 1996-12-06 | 2002-06-04 | 川崎製鉄株式会社 | Steel sheet for double-wound pipe and method for producing the same |
-
1997
- 1997-03-12 JP JP05739597A patent/JP3659542B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH10251798A (en) | 1998-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5707671B2 (en) | Nb-added ferritic stainless steel sheet excellent in workability and manufacturability and method for producing the same | |
JP5560578B2 (en) | Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof | |
JP6572963B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP4369415B2 (en) | Spring steel wire rod with excellent pickling performance | |
WO2002022893A1 (en) | High tensile strength hot dip plated steel sheet and method for production thereof | |
JP2006307324A (en) | High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method | |
CN113302315A (en) | Hot-rolled steel sheet and welded joint, and method for producing same | |
JP3720185B2 (en) | Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same | |
JP4165292B2 (en) | Manufacturing method of ERW steel pipe for high-strength line pipe with excellent hydrogen cracking resistance | |
JP5124865B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JP6569745B2 (en) | Hot rolled steel sheet for coiled tubing and method for producing the same | |
JP3815762B2 (en) | Copper-plated steel sheet for single pipe excellent in coarse grain resistance, copper penetration resistance, etc. and method for producing the same | |
JP3659542B2 (en) | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same | |
JP2004115871A (en) | Method for producing electroseamed steel pipe for high strength line pipe excellent in hydrogen-crack resistant characteristic and toughness | |
JP5087813B2 (en) | High-tensile hot-dip galvanized steel sheet with excellent plating properties and method for producing the same | |
WO2021100534A1 (en) | Hot rolled steel sheet for electroseamed steel pipe and method for producing same, electroseamed steel pipe and method for producing same, line pipe, and building structure | |
JP3720183B2 (en) | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same | |
JP2010174293A (en) | Steel sheet to be die-quenched superior in hot-punchability | |
EP4249621A1 (en) | Steel material and method for producing same, and tank and method for producing same | |
KR102606996B1 (en) | High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same | |
JP2005240101A (en) | Steel sheet for double-wound pipe and manufacturing method therefor | |
JPH0774383B2 (en) | Method for producing steel sheet with excellent resistance to hydrogen-induced cracking | |
WO2022239591A1 (en) | High-strength hot-rolled steel sheet and manufacturing method therefor, and high-strength electric resistance welded steel pipe and manufacturing method therefor | |
JP6575727B1 (en) | High ductility high strength steel sheet and method for producing the same | |
JPS633929B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050309 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050311 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080325 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090325 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090325 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100325 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100325 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110325 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130325 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140325 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |