JP5207288B2 - Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes - Google Patents
Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes Download PDFInfo
- Publication number
- JP5207288B2 JP5207288B2 JP2008045532A JP2008045532A JP5207288B2 JP 5207288 B2 JP5207288 B2 JP 5207288B2 JP 2008045532 A JP2008045532 A JP 2008045532A JP 2008045532 A JP2008045532 A JP 2008045532A JP 5207288 B2 JP5207288 B2 JP 5207288B2
- Authority
- JP
- Japan
- Prior art keywords
- double
- copper
- pipe
- steel sheet
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車のブレーキチューブや冷蔵庫の放冷管等として使用される二重巻きパイプを製造する際、セルフブレージング処理中にあっては耐銅浸入性に優れ、二重巻きパイプ製造後にあっても優れた耐圧性を示すべく高強度であり、しかも、二重巻きパイプの拡管加工、フレア加工、曲げ加工等に耐えられるような優れた延性、かつ、優れた低温靭性を有する高強度銅めっき鋼板の製造方法に関する。 The present invention is excellent in copper penetration resistance during the self-brazing process when manufacturing a double-winding pipe used as a brake tube of an automobile or a cooling tube of a refrigerator. High strength copper that has high strength to show excellent pressure resistance, excellent ductility that can withstand pipe expansion processing, flare processing, bending processing, etc., and excellent low temperature toughness The present invention relates to a method for producing a plated steel sheet.
自動車のブレーキチューブや冷蔵庫の放冷管等には銅めっき鋼板を素材とした二重巻きパイプが使用されている。
二重巻きパイプは、所定幅に裁断しためっき鋼板を造管用ロールでパイプ状に二重に巻き重ねた後、めっき層の融点以上(例えば、めっき層がCuの場合は1130℃程度に加熱した窒素と水素の混合ガス雰囲気中)に1〜2分間保持して、Cuめっき層を溶融させ、その溶融しためっき層で巻き重ね面間を相互に融解接合させる、いわゆるセルフブレージング(自己ろう付)により製造されている。
Double-winding pipes made of copper-plated steel plates are used for automobile brake tubes and refrigerator cooling tubes.
The double-winding pipe is obtained by rolling a plated steel sheet cut into a predetermined width into a pipe shape with a pipe-making roll, and then heating it to a temperature equal to or higher than the melting point of the plating layer (for example, heated to about 1130 ° C. when the plating layer is Cu). Hold in a mixed gas atmosphere of nitrogen and hydrogen for 1 to 2 minutes to melt the Cu plating layer, and melt and bond the wound surfaces to each other with the molten plating layer, so-called self-brazing (self-brazing) It is manufactured by.
そして、図1に示されるような断面構造を有している。すなわち、1は素地鋼板(冷延鋼板)、2,3は銅めっき層,4はセルフブレージングにより形成された銅融着層である。巻き重ね面間の接合性の良否は、渦流探傷法や曲げ試験などにより検査される。二重巻きパイプの製造に使用される銅めっき鋼板は、セルフブレージングの熱処理で、素地鋼板の結晶組織が粗大化し過ぎないこと(耐粗粒化性)、素地鋼板中への溶融銅の浸透(鋼板の脆化を引き起こす)を生じにくいこと(耐銅浸透性)、及び二重巻きパイプ成形後に行われる拡管加工やフレア加工に耐える良好な延性、さらに、優れた低温靭性を有すること、等が要求されている。 And it has a cross-sectional structure as shown in FIG. That is, 1 is a base steel plate (cold rolled steel plate), 2 and 3 are copper plating layers, and 4 is a copper fusion layer formed by self brazing. The bonding quality between the wound surfaces is inspected by an eddy current inspection method, a bending test or the like. The copper-plated steel sheet used for the production of double-pipe pipes is a self-brazing heat treatment in which the crystal structure of the base steel sheet does not become too coarse (coarse grain resistance), and the penetration of molten copper into the base steel sheet ( Steel plate embrittlement) (copper penetration resistance), good ductility to withstand tube expansion and flaring performed after double-winding pipe forming, and excellent low temperature toughness It is requested.
このため、従来から使用されてきた低炭素アルミキルド鋼においても、上記の要求に応えるため、様々な改良技術が提案されている。
例えば、本出願人も、耐銅浸入性及び加工性向上を目的として、鋼板表層に微細なAlN析出物を分散させる技術を提案した(特許文献1参照)。
また、他の出願人から、加工性と強度を兼ね具えさせるために、フェライト組織の平均結晶粒径を細かくしたものを用いることの提案もなされている(特許文献2参照)。
For example, the present applicant has also proposed a technique for dispersing fine AlN precipitates on a steel sheet surface layer for the purpose of improving copper penetration resistance and workability (see Patent Document 1).
In addition, another applicant has also proposed to use a ferrite structure having a finer average grain size in order to have both workability and strength (see Patent Document 2).
特許文献1,2で提案された技術も、それなりの効果を有しているので、重宝されてきた。しかしながら、最近の自動車に見られるように、軽量化、高機能化がますます進展している。これらの要求を満足させるためには、二重巻きパイプも薄肉化することが求められている。特許文献1,2で提案された技術は、上記要求には必ずしも十分に応えきれていない。従来の二重巻きパイプ用銅めっき鋼板は、強度よりもむしろ加工性の確保を主眼においている。このため、降伏応力が200MPa級の低炭素アルミキルド鋼が用いられている。このため、軽量化のために薄肉化すると所望の耐圧性を確保することができない。
また、他に、降伏応力300MPa以上の銅めっき鋼板で二重巻きパイプを製造する事例を紹介する文献は見当たらない。
The techniques proposed in
In addition, there is no literature that introduces an example of producing a double-winding pipe from a copper-plated steel sheet having a yield stress of 300 MPa or more.
本発明は、このような問題を解消すべく案出されたものであり、薄肉化した鋼板であっても、二重巻きパイプ製造後に優れた耐圧性を示すべく300MPa以上の降伏応力を呈し、しかも、二重巻きパイプの拡管加工、フレア加工、曲げ加工等に耐えられるような優れた延性と、優れた低温靭性、さらに、従来鋼よりも高い耐銅浸入性を有する二重巻きパイプ用高強度銅めっき鋼板の製造方法を提供することを目的とする。
なお、本出願では、特許文献1,2に開示されているような従来の降伏強度が200MPa級の銅めっき鋼板に対して、本発明に従う降伏強度が300MPa級の銅めっき鋼板を高強度材と称することがある。
The present invention has been devised to solve such a problem, even in the case of a thinned steel plate, it exhibits a yield stress of 300 MPa or more in order to exhibit excellent pressure resistance after production of a double-winding pipe, Moreover, it has excellent ductility that can withstand pipe expansion, flare processing, bending, etc. of double-winding pipes, excellent low-temperature toughness, and high resistance for double-winding pipes that have higher copper penetration resistance than conventional steel. It aims at providing the manufacturing method of a strength copper plating steel plate.
In addition, in this application, with respect to the conventional copper plating steel plate with a yield strength of 200 MPa class as disclosed in
本発明の二重巻きパイプ用高強度銅めっき鋼板の製造方法は、その目的を達成するため、C:0.01〜0.10質量%,Mn:0.05〜1.0質量%,P:0.02〜0.2質量%以下,sol.Al:0.03〜0.10質量%,N:0.002〜0.008質量%,B:0.002〜0.005質量%を含有し、残部がFe及び不可避不純物からなるスラブを熱間圧延し、巻取温度450〜600℃で巻取り、圧下率50〜90%で冷間圧延した後、100〜200℃/hの加熱速度で450〜600℃に加熱してその温度で1h以上保持し、引き続き100〜200℃/hの加熱速度で700〜800℃に加熱してその温度で5h以上均熱保持し、その後炉冷する工程からなる箱焼鈍を施した後、当該鋼板に銅めっきを施すことを特徴とする。 In order to achieve the object, the method for producing a high-strength copper-plated steel sheet for double-wound pipes according to the present invention includes C: 0.01 to 0.10% by mass, Mn: 0.05 to 1.0% by mass, P : 0.02-0.2 mass% or less, sol.Al: 0.03-0.10 mass%, N: 0.002-0.008 mass%, B: 0.002-0.005 mass% Containing, the remainder slab consisting of Fe and inevitable impurities is hot-rolled, wound at a coiling temperature of 450-600 ° C., cold-rolled at a rolling reduction of 50-90%, and then heated at 100-200 ° C./h Heat to 450 to 600 ° C. at a temperature and hold at that temperature for 1 h or more, then heat to 700 to 800 ° C. at a heating rate of 100 to 200 ° C./h and keep soaked at that temperature for 5 h or more, and then cool in the furnace After performing box annealing consisting of a process of performing copper plating on the steel sheet, To do.
本発明によれば、銅めっきを施す鋼板のP,Al,N及びBの含有量が細かく規定されている。このため、各成分の作用効果が十分に発揮され、高強度化とともに高延性化が図られた鋼板が提供される。しかも銅めっき後に二重巻きしてセルフブレージングする際にも効果的に溶融銅の粒界浸入を抑制することが可能になる。
これらの総合により、高強度で、かつ拡管加工、フレア加工、曲げ加工等に耐えられる二重巻きパイプが低コストで提供できる。
According to the present invention, the contents of P, Al, N and B of the steel sheet to be subjected to copper plating are finely defined. For this reason, the effect of each component is fully exhibited, and the steel plate with high ductility and high strength is provided. In addition, it is possible to effectively suppress the intergranular penetration of the molten copper even when double winding and self-brazing after copper plating.
With these integrations, it is possible to provide a high-strength double-pipe pipe that can withstand tube expansion, flaring, bending, and the like at low cost.
本発明者等は、二重巻きパイプ用銅めっき鋼板として、最適な鋼成分組成及び製造条件について、鋭意検討を重ねてきた。
その過程で次の知見を得た。
(1)低炭素アルミキルド鋼をベースに固溶強化元素であるPの含有量を増やして鋼板の降伏強度を高める。その結果として二重巻きパイプの板厚を薄くしても所定の耐圧性能が得られるので、二重巻きパイプを用いて製造される製品の軽量化が可能となる。また、含有Pは、後記のBと同様に、セルフブレージング処理時に結晶粒界に偏析し、溶融銅が粒界に浸入して脆化割れを起こすことを抑制する作用がある。
しかし、Pの含有量を増やすと低温靭性が低下するため、Bの添加により低温靭性の低下を抑制する。
The inventors of the present invention have made extensive studies on the optimal steel component composition and production conditions as a copper-plated steel sheet for double-winding pipes.
The following knowledge was obtained in the process.
(1) Increase the yield strength of the steel sheet by increasing the content of P, which is a solid solution strengthening element, based on low carbon aluminum killed steel. As a result, even if the thickness of the double-winding pipe is reduced, a predetermined pressure resistance performance can be obtained, so that a product manufactured using the double-winding pipe can be reduced in weight. Further, the content P has the effect of suppressing segregation at the crystal grain boundaries during the self-brazing treatment and intrusion of the molten copper into the grain boundaries to cause embrittlement cracks, as in B described later.
However, when the P content is increased, the low temperature toughness is lowered, so the addition of B suppresses the low temperature toughness.
(2)特別な熱処理である箱焼鈍の450〜600℃と700〜800℃でのステップ焼鈍によって固溶Alと固溶NをAlNとして析出させ、鋼中の固溶Nが低減することにより鋼板の延性が向上する。その鋼板に銅めっきを施し二重巻きパイプを製造するので、鋼板の延性改善により二重巻きパイプの高延性化が図れる。 (2) Solid annealing by step annealing at 450 to 600 ° C. and 700 to 800 ° C., which is a special heat treatment, causes precipitation of solute Al and solute N as AlN, thereby reducing the solute N in the steel sheet. The ductility is improved. Since the steel sheet is plated with copper to produce a double-winding pipe, the ductility of the steel sheet can be improved to increase the ductility of the double-winding pipe.
(3)Bは、前述の低温靭性の低下を抑制する以外に、次の効果も呈する。セルフブレージング処理を行うために加熱する段階の950〜1100℃において、析出していたBNの一部が分解し、固溶Bを生成する。そして固溶Bは結晶粒界に偏析して溶融銅の粒界浸入を抑制する。また、一方、残存するBNは結晶粒の成長を抑制し、粗粒化を防止する。そしてこの耐粗粒化性は、上記の溶融銅の粒界浸入を抑制することにもなる。さらに、AlNとBNの溶解度積の差異により、セルフブレージングの約1130℃程度でAlNに比べてBNは分解しにくく、BNとして残存するものが多い。それにより、固溶NをBNとして固定する作用がAlNより強く、セルフブレージング後においても固溶Nを低減できる。そのため、二重巻きパイプの延性が向上する。 (3) B exhibits the following effects in addition to suppressing the above-described decrease in low-temperature toughness. At 950 to 1100 ° C. in the stage of heating for performing the self-brazing treatment, a part of the precipitated BN is decomposed to produce a solid solution B. The solid solution B segregates at the crystal grain boundaries and suppresses the penetration of the molten copper grain boundaries. On the other hand, the remaining BN suppresses the growth of crystal grains and prevents coarsening. And this coarse-grain-proof property will also suppress the grain boundary penetration | invasion of said molten copper. Furthermore, due to the difference in solubility product between AlN and BN, BN is less likely to decompose than AlN at about 1130 ° C. of self-brazing, and many remain as BN. Thereby, the action of fixing the solid solution N as BN is stronger than that of AlN, and the solid solution N can be reduced even after self-brazing. Therefore, the ductility of the double-winding pipe is improved.
以上の知見を総合した結果、本発明に到達したものである。特に、P含有量を従来よりも多くして強化を図るとともに粒界への偏析量を多くし、溶融銅に対する粒界脆化の抑制作用を利用したものである。
以下に、本発明を具体的に説明するが、本発明では、素地となる炭素鋼板の含有C,Mn,P,sol.Al,N及びB量が厳密に規定されていることを特徴としている。
本発明における素地鋼板の化学組成の限定理由は次のとおりである。
As a result of integrating the above findings, the present invention has been achieved. In particular, the P content is increased to increase the amount of segregation and the segregation amount to the grain boundary is increased to utilize the effect of suppressing grain boundary embrittlement with respect to molten copper.
Hereinafter, the present invention will be described in detail. The present invention is characterized in that the contents of C, Mn, P, sol. Al, N, and B in the carbon steel sheet to be the base are strictly defined. .
The reasons for limiting the chemical composition of the base steel sheet in the present invention are as follows.
C:0.01〜0.10質量%
C量が少ない程延性が高く、加工性は優れる。しかし、0.01質量%に満たない程まで脱炭することは、製鋼工程での脱炭時間が長くなり、製造コストが高くなる。また、粗粒となりやすく、耐銅浸入性が低下する。逆に、0.10質量%を超えるほどに多くなると、セルフブレージング処理後の冷却過程で、針状のフェライト組織が形成され易く、二重巻きパイプの延性の低下が顕著になる。
C: 0.01-0.10 mass%
The smaller the amount of C, the higher the ductility and the better the workability. However, decarburization to less than 0.01% by mass increases the decarburization time in the steel making process and increases the production cost. Moreover, it becomes easy to become a coarse grain and copper permeation resistance falls. On the other hand, when the amount exceeds 0.10% by mass, a needle-like ferrite structure is easily formed in the cooling process after the self-brazing treatment, and the ductility of the double-wound pipe is significantly reduced.
Mn:0.05〜1.0質量%
Mnは鋼の熱間脆性の防止を目的として添加する。0.05質量%に満たないとその目的が達成できない。逆に1.0質量%を超えるほどに多くなると、セルフブレージング処理後の冷却過程で、針状のフェライト組織が形成され易く、二重巻きパイプの延性の低下が顕著になる。
Mn: 0.05 to 1.0% by mass
Mn is added for the purpose of preventing hot brittleness of the steel. If the amount is less than 0.05% by mass, the object cannot be achieved. On the other hand, when the amount exceeds 1.0% by mass, a needle-like ferrite structure is easily formed in the cooling process after the self-brazing treatment, and the ductility of the double-wound pipe is significantly reduced.
P:0.02〜0.2質量%
Pは延性を劣化させることなく、鋼板及び二重巻きパイプの高強度化に寄与する元素である。また、Pは、後記のBと同様に、結晶粒界に偏析して二重巻きパイプの溶融銅の粒界浸入を抑制する。また、これらの作用を発現するには0.02質量%以上が必要である。しかし、0.2質量%を超えて含有すると、結晶粒界に偏析して粒界の強度を低下させ、二重巻きパイプの延性を顕著に劣化させる。
P: 0.02-0.2 mass%
P is an element that contributes to increasing the strength of a steel plate and a double-winding pipe without deteriorating ductility. P, like B described later, segregates at the crystal grain boundary and suppresses the penetration of the molten copper grain boundary in the double-winding pipe. Moreover, 0.02 mass% or more is required in order to express these effects. However, if it exceeds 0.2% by mass, it segregates at the crystal grain boundaries, lowers the grain boundary strength, and significantly deteriorates the ductility of the double-winding pipe.
sol.Al:0.03〜0.10質量%
Alは、鋼の溶製工程の脱酸剤として添加される元素であるが、本発明では、それにとどまらず、二重巻きパイプの拡管加工、フレア加工、曲げ加工等に耐えられる良好な延性を確保するために必須の元素である。熱延板で固溶状態のAlとNは、特別な熱処理である箱焼鈍のステップ焼鈍過程において、AlNとして析出し鋼中の固溶Nが低減するとともに、(111)集合組織を発達させ、鋼板の延性を改善する作用を有する。鋼板の延性を改善することは二重巻きパイプの延性向上を導く。sol.Alが0.03質量%に満たないとその効果が得られず、逆に0.10質量%を超えるほどに多く含有させてもその効果は飽和する。
sol.Al: 0.03-0.10 mass%
Al is an element added as a deoxidizer in the steel melting process, but in the present invention, it is not limited to this, and has good ductility that can withstand pipe expansion processing, flare processing, bending processing, etc. It is an essential element for securing. In the step annealing process of box annealing, which is a special heat treatment, Al and N in a solid solution state in a hot-rolled sheet are precipitated as AlN and the solid solution N in the steel is reduced, and (111) texture is developed. Has the effect of improving the ductility of the steel sheet. Improving the ductility of the steel sheet leads to an improvement in the ductility of the double-pipe pipe. If the amount of sol.Al is less than 0.03% by mass, the effect cannot be obtained. Conversely, the effect is saturated even if the content exceeds 0.10% by mass.
N:0.002〜0.008質量%
Nは、前述のAlと同様に、二重巻きパイプの拡管加工、フレア加工、曲げ加工等に耐えられる良好な延性を確保するために必須の元素である。熱延板で固溶状態のAlとNは、箱焼鈍のステップ焼鈍過程において、AlNとして析出し鋼中の固溶Nが低減するとともに、(111)集合組織を発達させ、鋼板の延性を改善する作用を有する。鋼板の延性を改善することは二重巻きパイプの延性向上を導く。Nが0.002質量%に満たないとその効果は得られない。逆に0.008質量%を超えるほどに多く含有させると、後述するBを添加しても、セルフブレージング処理後の固溶N量が急激に増加し、その固溶Nにより二重巻きパイプの延性が極端に劣化する。
N: 0.002-0.008 mass%
N is an essential element in order to ensure good ductility that can withstand tube expansion processing, flare processing, bending processing, and the like of a double-winding pipe, as with Al described above. In the step annealing process of box annealing, Al and N in a solid solution state in a hot-rolled sheet are precipitated as AlN, reducing the solid solution N in the steel, and developing a (111) texture to improve the ductility of the steel sheet. Have the effect of Improving the ductility of the steel sheet leads to an improvement in the ductility of the double-pipe pipe. The effect cannot be obtained unless N is less than 0.002% by mass. On the other hand, when the content is more than 0.008% by mass, the amount of solid solution N after the self-brazing treatment increases rapidly even when B described later is added. Ductility is extremely deteriorated.
B:0.002〜0.005%
Bは、固溶NとBNとして析出させ、鋼板及び二重巻きパイプにおいて固溶Nによる延性劣化を防止する。また、結晶粒界に偏析した固溶Bは二重巻きパイプの低温靭性を向上させる。この作用を発現させるためには0.002質量%以上の含有が必要である。しかし、0.005質量%の含有でその効果は飽和する。また、0.005質量%以上Bを含有させると、上述の箱焼鈍のステップ焼鈍過程において、AlNとして析出するN量が不足し、逆に鋼板及び二重巻きパイプの延性低下を招く。
B: 0.002 to 0.005%
B precipitates as solute N and BN, and prevents ductile deterioration due to solute N in steel plates and double-pipe pipes. Moreover, the solid solution B segregated at the grain boundaries improves the low temperature toughness of the double-pipe pipe. In order to exhibit this action, it is necessary to contain 0.002% by mass or more. However, the effect is saturated by containing 0.005 mass%. Moreover, when 0.005 mass% or more B is contained, in the above-described step annealing process of box annealing, the amount of N precipitated as AlN is insufficient, and conversely, the ductility of the steel plate and the double-winding pipe is reduced.
析出したBNは、950〜1100℃の温度で加熱するセルフブレージング処理時に一部分解し、固溶Bを生成する。固溶Bは結晶粒界に偏析し、溶融銅の粒界浸入抑制作用を呈する。また、結晶粒界に偏析した固溶Bは、低温靭性を向上させる。
さらに、残存するBNは、セルフブレージング処理過程で結晶粒成長を抑制し、粗粒化を防止する。この耐粗粒化性は、上述の溶融銅の粒界浸入を抑制することにも繋がる。セルフブレージング処理の過程で結晶粒の成長を抑制する作用は、BNだけでなくAlNにも認められる。しかしAlNよりも溶解度積が小さいBNのほうが、より効果的に作用する。
これらの作用を発揮させるためにも、0.001質量%以上のBが必要である。なお、0.005質量%を超えるB量では、BNという析出物の作用となる後者の耐粗粒化性には作用するものの、セルフブレージング処理時に固溶Bが生成しなくなり、耐銅浸入性が小さくなる。
Precipitated BN is partially decomposed during the self-brazing process of heating at a temperature of 950 to 1100 ° C. to produce solid solution B. The solid solution B segregates at the crystal grain boundary and exhibits the effect of suppressing the penetration of the molten copper into the grain boundary. Moreover, the solid solution B segregated at the grain boundaries improves the low temperature toughness.
Furthermore, the remaining BN suppresses crystal grain growth and prevents coarsening during the self-brazing process. This coarse grain resistance also leads to the suppression of the above-mentioned intergranular penetration of molten copper. The effect of suppressing the growth of crystal grains during the self-brazing process is observed not only in BN but also in AlN. However, BN, which has a smaller solubility product than AlN, works more effectively.
In order to exert these actions, 0.001% by mass or more of B is required. In addition, when the amount of B exceeds 0.005% by mass, it acts on the latter coarse grain resistance, which acts as a precipitate of BN, but no solid solution B is generated during the self-brazing treatment, and copper penetration resistance. Becomes smaller.
次に本発明の製造工程について説明する。まず製鋼炉で所定の化学組成に溶製された鋼を、造塊・分解圧延により、または連続鋳造によりスラブとし、スラブ表面手入れを適宜施した後、熱間圧延する。連続鋳造につづいて熱鋳片をそのまま加熱炉に装入して熱間圧延するようにしてもよい。熱間圧延は常法により行なわれる。熱延鋼板品質や熱延効率等の点から、仕上げ温度はAr3変態点直上の温度に調整されることが好ましい。 Next, the manufacturing process of the present invention will be described. First, steel melted to a predetermined chemical composition in a steelmaking furnace is made into a slab by ingot-making / decomposition rolling or continuous casting, and the slab surface is appropriately treated, followed by hot rolling. Following the continuous casting, the hot slab may be inserted into a heating furnace as it is and hot rolled. Hot rolling is performed by a conventional method. From the viewpoint of hot-rolled steel sheet quality, hot-rolling efficiency, etc., the finishing temperature is preferably adjusted to a temperature just above the Ar 3 transformation point.
巻取り温度は450〜600℃の範囲とする。
巻取り温度が600℃を超えると結晶粒が粗大化するとともに、AlNが全量析出し、鋼板及び二重巻きパイプの表面外観が著しく劣化する。また延性も低下する。逆に巻取り温度が450℃に満たないと、熱延鋼板の板形状が悪くなり、二重巻きパイプの造管性並びに二重巻きパイプの形状が不良となる。
熱延鋼板は、酸洗処理の後、冷間圧延に供する。冷間圧延により、結晶粒の粗大化が抑制されて延性の高い鋼板を得るためには、圧下率を50%以上とすることが必要である。圧下率が90%を超えると、延性を向上させる作用は飽和し、それ以上の圧下率は圧延負荷の増大による操業面の不利を招くだけである。したがって90%を上限とする。
The coiling temperature is in the range of 450 to 600 ° C.
When the coiling temperature exceeds 600 ° C., the crystal grains become coarse and all the AlN precipitates, and the surface appearance of the steel plate and the double-winding pipe is remarkably deteriorated. Also, ductility is reduced. On the other hand, if the coiling temperature is less than 450 ° C., the plate shape of the hot-rolled steel sheet is deteriorated, and the tube-forming property of the double-winding pipe and the shape of the double-winding pipe are poor.
The hot-rolled steel sheet is subjected to cold rolling after the pickling treatment. In order to obtain a steel sheet with high ductility by suppressing the coarsening of crystal grains by cold rolling, it is necessary to set the rolling reduction to 50% or more. When the rolling reduction exceeds 90%, the effect of improving the ductility is saturated, and a rolling reduction higher than that causes only an operational disadvantage due to an increase in rolling load. Therefore, the upper limit is 90%.
冷延された冷延鋼板は表面浄化された後、焼鈍処理に付される。本発明は、この焼鈍処理を2段階の温度範囲でステップ処理することを最大の特徴とする。
すなわち、100〜200℃/hの加熱速度で450〜600℃に加熱してその温度で1h以上保持し、引き続き100〜200℃/hの加熱速度で700〜800℃に加熱してその温度で5h以上均熱保持し、その後炉冷する工程からなる箱焼鈍を施すことを最大の特徴としている。
The cold-rolled cold-rolled steel sheet is subjected to an annealing treatment after the surface is purified. The present invention is characterized in that the annealing process is stepped in a two-step temperature range.
That is, it is heated to 450 to 600 ° C. at a heating rate of 100 to 200 ° C./h and held at that temperature for 1 hour or more, and subsequently heated to 700 to 800 ° C. at a heating rate of 100 to 200 ° C./h. The greatest feature is to perform box annealing consisting of a process of holding soaking for 5 hours or more and then cooling the furnace.
特別な熱処理である箱焼鈍の450〜600℃、並びに700〜800℃での加熱なるステップ焼鈍によって、冷延鋼板中に固溶しているAlとNをAlNとして析出させ固溶Nを低減することにより、鋼板の延性をさらに改善させるとともに、二重巻きパイプの高延性化を図るために本条件が特に必要である。
第一ステップでの昇温速度が100℃/hに満たないと結晶粒が粗大化し、降伏応力や加工性が低下し、逆に200℃/hを超える程に速すぎると再結晶温度が上昇し、未再結晶組織が残存する。また、加熱温度が450℃以下および600℃以上になると、固溶Alと固溶NがAlNとして析出しないため、延性が低下する。
By special annealing, step annealing, which is performed at 450 to 600 ° C. and 700 to 800 ° C. of box annealing, Al and N dissolved in the cold-rolled steel sheet are precipitated as AlN to reduce the solid solution N. Thus, this condition is particularly necessary for further improving the ductility of the steel sheet and increasing the ductility of the double-winding pipe.
If the rate of temperature rise in the first step is less than 100 ° C / h, the crystal grains become coarse, yield stress and workability decrease, and conversely if it is too fast to exceed 200 ° C / h, the recrystallization temperature rises. As a result, an unrecrystallized structure remains. Moreover, when heating temperature becomes 450 degrees C or less and 600 degrees C or more, since solid solution Al and solid solution N do not precipitate as AlN, ductility will fall.
第二ステップの焼鈍も条件を細かく規定する必要がある。
昇温速度が100℃/hに満たないと結晶粒が粗大化し、降伏応力や加工性が低下し、逆に200℃/hを超える程に速すぎると再結晶温度が上昇し、未再結晶組織が残存する。また、加熱温度が700℃に満たないと、未再結晶組織が残存する。また800℃を超える程に高すぎると結晶粒が粗大化し、降伏応力や加工性が低下する。
The conditions for the second step of annealing also need to be specified in detail.
If the rate of temperature rise is less than 100 ° C / h, the crystal grains become coarse, yield stress and workability decrease, and conversely if it is too fast to exceed 200 ° C / h, the recrystallization temperature rises and unrecrystallization occurs. The organization remains. If the heating temperature is less than 700 ° C., an unrecrystallized structure remains. On the other hand, if the temperature is too high to exceed 800 ° C., the crystal grains become coarse, and the yield stress and workability deteriorate.
焼鈍処理された鋼板は、常法に従って調質圧延等が施された後、連続電気めっき等による銅めっきが施され、二重巻きパイプ用銅めっき鋼板に仕上げられる。
得られた銅めっき鋼板は、二重巻きパイプに成形加工された後、巻き重ね面間を融着するセルフブレージング熱処理(処理温度:約1130℃程度)に付される。
セルフブレージング熱処理では、その初期段階で素地鋼板の再結晶(約900〜950℃)が生起する。表層部の微細なAlNの析出物がフェライトの再結晶におけるピン止め効果となり、極めて微細なフェライト組織(結晶粒度 FGS No.約10以上)が形成される。パイプの温度が銅の融点以上(約1100℃)に達すると、銅めっき層の溶融による巻き重ね面間の融着結合が生起する。このとき素地鋼板はすでに再結晶を完了し、表面層に極めて微細なフェライト組織が形成されており、その微細化の効果として、溶融銅の粒界浸入を抑制しつつ巻き重ね面間の融着を達成することができる。
The annealed steel sheet is subjected to temper rolling and the like according to a conventional method, and then subjected to copper plating by continuous electroplating or the like, and finished into a copper-plated steel sheet for double-winding pipes.
The obtained copper-plated steel sheet is subjected to a self-brazing heat treatment (processing temperature: about 1130 ° C.) for fusing between the wound surfaces after being formed into a double-wound pipe.
In the self-brazing heat treatment, recrystallization (about 900 to 950 ° C.) of the base steel sheet occurs in the initial stage. The fine AlN precipitates on the surface layer have a pinning effect in ferrite recrystallization, and an extremely fine ferrite structure (grain size FGS No. of about 10 or more) is formed. When the temperature of the pipe reaches or exceeds the melting point of copper (about 1100 ° C.), fusion bonding between the wound surfaces due to melting of the copper plating layer occurs. At this time, the base steel sheet has already been recrystallized, and a very fine ferrite structure has been formed in the surface layer. As a result of the refinement, fusion between the rolled surfaces is suppressed while suppressing the ingress of the grain boundary of the molten copper. Can be achieved.
実施例1:
表1に示す組成を有するスラブを、熱延仕上げ温度900℃、巻取り温度550℃の条件にて板厚2.0mmまで熱間圧延し、酸洗の後、85%の冷延率で板厚0.25mmまで冷間圧延した。その後、ステップ焼鈍を行った。ステップ焼鈍は、150℃/hの加熱速度で500℃まで加熱し、その温度で2h均熱保持した後、引き続き同じ加熱速度で750℃まで加熱して8h均熱保持した後、炉冷した。
Example 1:
A slab having the composition shown in Table 1 is hot-rolled to a sheet thickness of 2.0 mm under conditions of a hot-rolling finishing temperature of 900 ° C. and a winding temperature of 550 ° C., and after pickling, the slab has a cold rolling rate of 85%. Cold rolled to a thickness of 0.25 mm. Then, step annealing was performed. In step annealing, heating was performed at a heating rate of 150 ° C./h up to 500 ° C., and maintained at that temperature for 2 hours soaking, and then heated to 750 ° C. at the same heating rate for 8 h soaking, and then cooled in the furnace.
いずれの供試材も、その後、電気銅めっき装置に通板して、付着量片側10μmの銅めっきを施し、二重巻きパイプ用銅めっき鋼板とした。
続いて二重巻きパイプ用銅めっき鋼板をスリットしてフープとし、二重巻き加工を施し、さらにセルフブレージングに相当する1130℃×60sの熱処理を施すことにより銅めっき層を溶融させて二重巻きパイプとした。その後、伸管加工を施し、外径4.8mmに仕上げた。このようにして製造した二重巻きパイプについて、機械的特性を行って降伏応力と全伸び、溶融銅の浸入深さ、および低温靭性を評価した。
All the test materials were then passed through an electrolytic copper plating apparatus and subjected to copper plating with an adhesion amount of 10 μm on one side to obtain a copper-plated steel sheet for a double-wound pipe.
Subsequently, the copper-plated steel sheet for double-winding pipes is slit into hoops, subjected to double-winding processing, and further subjected to a heat treatment of 1130 ° C. × 60 s corresponding to self-brazing to melt the copper plating layer and double-winding It was a pipe. Thereafter, the tube was drawn to finish the outer diameter to 4.8 mm. The double-wound pipe thus manufactured was subjected to mechanical characteristics to evaluate yield stress and total elongation, penetration depth of molten copper, and low temperature toughness.
(1)パイプの機械的特性;パイプを長さ300mmに切り出し、JIS Z2241に従って引張試験を行い、降伏応力(YS)及び延性(T.El)を測定した。標点距離は50mmとした。延性が25%以下を不合格とした。
(2)溶融銅の浸入深さ;パイプの断面を5%ナイタールで腐食した後、XMA分析装置により、銅の溶着部のCu特性X線像を撮影して、浸入深さを測定した。浸入深さが15μm以上を不合格とした。
(3)低温靭性の評価;パイプを長さ300mmに切り出し、−40℃に冷却して引張試験を行い、引張強度(TS)を測定した。室温での引張強度に比べ90%以上の引張強度を示したものを合格(記号○)とし、90%未満を不合格(記号×)とした。
(1) Mechanical properties of the pipe; the pipe was cut into a length of 300 mm, a tensile test was performed according to JIS Z2241, and the yield stress (YS) and ductility (T.El) were measured. The gauge distance was 50 mm. A ductility of 25% or less was rejected.
(2) Penetration depth of molten copper: After corroding the cross section of the pipe with 5% nital, a Cu characteristic X-ray image of the welded portion of copper was photographed with an XMA analyzer, and the penetration depth was measured. A penetration depth of 15 μm or more was regarded as unacceptable.
(3) Evaluation of low-temperature toughness: The pipe was cut into a length of 300 mm, cooled to −40 ° C., a tensile test was performed, and the tensile strength (TS) was measured. What showed the tensile strength of 90% or more compared with the tensile strength at room temperature was set as the pass (symbol o), and less than 90% was set as the failure (symbol x).
表2に、二重巻きパイプの降伏応力と低温靭性の評価結果を示す。どの組成の素材から製造した二重巻きパイプも300N/mm2以上の降伏応力を示した。しかし、No.4と5はB量が本発明の規定する範囲よりも少ないため、低温靭性の評価で基準を満たさなかった。
図2は、二重巻きパイプの耐銅浸入深さに及ぼすB量の関係を示す。耐銅浸入深さはB量と強い関係があり、B量が本発明の規定する範囲より少なくても多くても浸入深さが15μm以上に及んでいる。また、図3は二重巻きパイプの全伸びに及ぼすB量の関係を示す。全伸びもB量と強い関係があり、B量が本発明の規定する範囲になければ、拡管加工、フレア加工、曲げ加工に必要とされる25%以上の伸びが得られない。
Table 2 shows the evaluation results of the yield stress and the low temperature toughness of the double wound pipe. Double wound pipes manufactured from materials of any composition showed a yield stress of 300 N / mm 2 or more. However, no. 4 and 5 did not satisfy the standard in the evaluation of low temperature toughness because the amount of B was less than the range defined by the present invention.
FIG. 2 shows the relationship of the B amount on the copper penetration depth of the double-pipe pipe. The copper penetration depth has a strong relationship with the B content, and the penetration depth reaches 15 μm or more even if the B content is less than or greater than the range defined by the present invention. FIG. 3 shows the relationship between the B amount and the total elongation of the double-winding pipe. The total elongation is also strongly related to the amount of B. If the amount of B is not within the range specified by the present invention, the elongation of 25% or more required for tube expansion processing, flare processing, and bending processing cannot be obtained.
実施例2:
表3に示す組成を有するスラブを素材とし、表4に示す熱延巻取り温度とステップ焼鈍の加熱速度と加熱温度を変化させて、素材鋼板を製造した。表4に示した以外の条件は実施例1と同様で、熱延仕上げ温度900℃、冷間圧延率85%、板厚は0.25mmである。製造した鋼板は、ステップ焼鈍と通常焼鈍のどちらかを実施し、引き続き実施例1と同様の工程で二重巻きパイプを製造した。表4には、焼鈍条件も示している。試験No.7〜16と、No.22〜31はステップ焼鈍である。No.17〜21は通常焼鈍であり、その条件は第一ステップの欄に記したとおりである。
そして、製造した二重巻きパイプについて、次の試験・評価を行った。表5にその結果を示している。
Example 2:
A slab having the composition shown in Table 3 was used as a raw material, and a raw steel plate was manufactured by changing the hot rolling coiling temperature, the heating rate of step annealing, and the heating temperature shown in Table 4. The conditions other than those shown in Table 4 are the same as in Example 1. The hot rolling finishing temperature is 900 ° C., the cold rolling rate is 85%, and the plate thickness is 0.25 mm. The manufactured steel sheet was subjected to either step annealing or normal annealing, and subsequently a double-pipe pipe was manufactured in the same process as in Example 1. Table 4 also shows the annealing conditions. Test No. 7-16 and No. 22-31 is step annealing. No. 17-21 are normal annealing, The conditions are as having described in the column of the 1st step.
And the following test and evaluation were performed about the manufactured double wound pipe. Table 5 shows the results.
(1)素材の機械的特性;JIS Z2241に従い、JIS5号試験片にて引張試験を行い、降伏応力(YS),引張強度(TS)及び延性(T.El)を測定した。
(2)二重巻きパイプの機械的特性;パイプを長さ300mmに切り出し、JIS Z2241に従って引張試験を行い、降伏応力(YS),引張強度(TS)及び延性(T.El)を測定した。標点距離は50mmとした。延性が25%以下を不合格とした。
(3)溶融銅の浸入深さ;パイプの断面を5%ナイタールで腐食した後、XMA分析装置により、銅の溶着部のCu特性X線像を撮影して、浸入深さを測定した。浸入深さが15μm以上を不合格とした。
(4)低温靭性の評価;パイプを長さ300mmに切り出し、−40℃に冷却して引張試験を行い、引張強度(TS)を測定した。室温での引張強度に比べ90%以上の引張強度を示したものを合格(記号○)とし、90%未満を不合格(記号×)とした。
(1) Mechanical properties of the material: According to JIS Z2241, a tensile test was performed with a JIS No. 5 test piece, and yield stress (YS), tensile strength (TS), and ductility (T.El) were measured.
(2) Mechanical properties of double-wound pipe: The pipe was cut into a length of 300 mm, and subjected to a tensile test according to JIS Z2241, and the yield stress (YS), tensile strength (TS), and ductility (T.El) were measured. The gauge distance was 50 mm. A ductility of 25% or less was rejected.
(3) Penetration depth of molten copper: After corroding the cross section of the pipe with 5% nital, a Cu characteristic X-ray image of the welded portion of copper was photographed with an XMA analyzer, and the penetration depth was measured. A penetration depth of 15 μm or more was regarded as unacceptable.
(4) Evaluation of low-temperature toughness: The pipe was cut out to a length of 300 mm, cooled to −40 ° C., a tensile test was performed, and the tensile strength (TS) was measured. Those exhibiting a tensile strength of 90% or more compared with the tensile strength at room temperature were evaluated as acceptable (symbol ◯), and less than 90% were rejected (symbol x).
表5の結果から、適正な成分組成を有するNo.7〜13は、二重巻きパイプの降伏応力が300MPa以上、延性が25.8〜28.0%で、拡管加工、フレア加工、曲げ加工に必要とされる25%以上の延性を有している。また、二重巻きパイプの銅浸入深さは約2〜5μmと小さく、耐銅浸入性が高くなっている。さらに、ステップ焼鈍を施したNo.14〜16は、二重巻きパイプの延性が29.6〜30.9%と良好であり、しかも、二重巻きパイプの銅浸入深さは約2〜3μmと小さく、耐銅浸入性が高い。 From the results of Table 5, No. having an appropriate component composition. Nos. 7 to 13 have a yield stress of a double-winding pipe of 300 MPa or more and a ductility of 25.8 to 28.0%, and have a ductility of 25% or more required for tube expansion, flaring, and bending. Yes. Further, the copper penetration depth of the double-winding pipe is as small as about 2 to 5 μm, and the copper penetration resistance is high. Furthermore, no. Nos. 14 to 16 have good ductility of the double-wound pipe of 29.6 to 30.9%, and the copper intrusion depth of the double-wound pipe is as small as about 2 to 3 μm and has high resistance to copper infiltration. .
これに対して、No.17〜21は通常焼鈍であり、二重巻きパイプの延性が低くなっている。No.22は含有C量が多く含有B量が少ないために、二重巻きパイプの延性が低く、銅の浸入深さが大きくなっている。No.23は含有Mn量が多く含有B量が少ないために、二重巻きパイプの延性が低く、低温靭性が悪い。さらに、銅の浸入深さが大きくなっている。またNo.24は含有P量が多いために、二重巻きパイプの延性が低く、低温靭性が悪くなっている。No.25は含有N量が多いために、二重巻きパイプの延性が低くなっている。さらに、No.26は含有P量が少ないために二重巻きパイプの降伏応力が低いばかりでなく、銅の浸入深さが大きくなっている。さらにまた、No.27は含有C量が少ないために、銅の浸入深さが大きくなっている。
No.28は第2ステップの加熱温度が高いために、二重巻きパイプの降伏応力が低くなっている。No.29は第1ステップおよび第2ステップの昇温速度が速く、No.30は第1ステップの加熱温度が低く、No.31は熱延巻取り温度が高いために、二重巻きパイプの延性が低くなっている。
In contrast, no. 17-21 are normally annealed and the ductility of a double-winding pipe is low. No. Since No. 22 has a large C content and a small B content, the ductility of the double-pipe pipe is low and the penetration depth of copper is large. No. Since No. 23 has a large content of Mn and a small content of B, the ductility of the double-wound pipe is low and the low-temperature toughness is poor. Furthermore, the penetration depth of copper is increased. No. Since No. 24 has a large content of P, the ductility of the double-wound pipe is low and the low-temperature toughness is poor. No. Since No. 25 has a large N content, the ductility of the double-wound pipe is low. Furthermore, no. No. 26 has a low content of P, so that not only the yield stress of the double-winding pipe is low, but also the penetration depth of copper is large. Furthermore, no. Since No. 27 has a small content of C, the penetration depth of copper is large.
No. Since the heating temperature of the
1 素地鋼板(冷延鋼板)
2 銅めっき層
3 銅めっき層
4 銅融着層
1 Base steel plate (cold rolled steel plate)
2 Copper plating layer 3
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008045532A JP5207288B2 (en) | 2008-02-27 | 2008-02-27 | Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008045532A JP5207288B2 (en) | 2008-02-27 | 2008-02-27 | Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009203506A JP2009203506A (en) | 2009-09-10 |
JP5207288B2 true JP5207288B2 (en) | 2013-06-12 |
Family
ID=41146066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008045532A Active JP5207288B2 (en) | 2008-02-27 | 2008-02-27 | Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5207288B2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3659542B2 (en) * | 1997-03-12 | 2005-06-15 | 日新製鋼株式会社 | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same |
JP3720183B2 (en) * | 1998-01-19 | 2005-11-24 | 日新製鋼株式会社 | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same |
JP3720185B2 (en) * | 1998-02-13 | 2005-11-24 | 日新製鋼株式会社 | Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same |
JP3815762B2 (en) * | 1998-07-29 | 2006-08-30 | 日新製鋼株式会社 | Copper-plated steel sheet for single pipe excellent in coarse grain resistance, copper penetration resistance, etc. and method for producing the same |
JP3549483B2 (en) * | 2000-12-28 | 2004-08-04 | 新日本製鐵株式会社 | Hydroform forming steel pipe excellent in processability and manufacturing method |
JP4419605B2 (en) * | 2004-02-26 | 2010-02-24 | Jfeスチール株式会社 | Steel sheet for double-wound pipe and manufacturing method thereof |
-
2008
- 2008-02-27 JP JP2008045532A patent/JP5207288B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009203506A (en) | 2009-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108474096B (en) | Aluminum-plated iron alloy steel sheet for hot press forming, hot press formed member using same, and method for producing same | |
KR102284770B1 (en) | Steel sheet hot-dip-coated with zn-al-mg-based system having excellent workability and method for manufacturing same | |
JP5316634B2 (en) | High-strength steel sheet with excellent workability and method for producing the same | |
JP6572963B2 (en) | Hot-rolled steel sheet and manufacturing method thereof | |
JP2005120399A (en) | High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method | |
JP6209175B2 (en) | Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent plating surface appearance and burring properties | |
WO2015118864A1 (en) | High-strength hot-rolled steel sheet and production method therefor | |
JP5978614B2 (en) | High-strength hot-rolled steel sheet excellent in punchability and manufacturing method thereof | |
CN111655892B (en) | Hot-rolled steel sheet for continuous pipe and method for producing same | |
JP3720185B2 (en) | Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same | |
JP4867338B2 (en) | Ultra-high strength steel sheet and method for manufacturing the same | |
JP6801496B2 (en) | High-strength molten Zn-Al-Mg-based plated steel sheet with excellent bending workability and its manufacturing method | |
JP5207288B2 (en) | Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes | |
CN114729426B (en) | Hot-rolled steel sheet for resistance-welded steel pipe, method for producing same, line pipe, and building structure | |
JP2018145500A (en) | HIGH STRENGTH MOLTEN Zn-Al-Mg-BASED PLATED STEEL SHEET FOR AUTOMOBILE COMPONENT EXCELLENT IN FLEXURE PROCESSABILITY AND AUTOMOBILE COMPONENT USING THE SAME | |
JP4419605B2 (en) | Steel sheet for double-wound pipe and manufacturing method thereof | |
JP2007247012A (en) | Method for manufacturing steel sheet for ultrathin can, and steel sheet for ultrathin can | |
JP2005171319A (en) | Method for manufacturing high-strength cold-rolled steel sheet having superior ductility and formability for extension flange | |
JP6481270B2 (en) | Resistance spot welding method and welded joint of high strength low specific gravity steel plate | |
JP3815762B2 (en) | Copper-plated steel sheet for single pipe excellent in coarse grain resistance, copper penetration resistance, etc. and method for producing the same | |
JP5434675B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
JP3720183B2 (en) | Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same | |
JP3659542B2 (en) | Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same | |
JP3048739B2 (en) | Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability | |
JP2005230896A (en) | High strength thin steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130213 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130213 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160301 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5207288 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |