JP3720185B2 - Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same - Google Patents

Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same Download PDF

Info

Publication number
JP3720185B2
JP3720185B2 JP03076598A JP3076598A JP3720185B2 JP 3720185 B2 JP3720185 B2 JP 3720185B2 JP 03076598 A JP03076598 A JP 03076598A JP 3076598 A JP3076598 A JP 3076598A JP 3720185 B2 JP3720185 B2 JP 3720185B2
Authority
JP
Japan
Prior art keywords
copper
steel sheet
double
pipe
base steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03076598A
Other languages
Japanese (ja)
Other versions
JPH11229084A (en
Inventor
哲 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP03076598A priority Critical patent/JP3720185B2/en
Publication of JPH11229084A publication Critical patent/JPH11229084A/en
Application granted granted Critical
Publication of JP3720185B2 publication Critical patent/JP3720185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のブレーキチューブや冷蔵庫の放冷管等として使用される二重巻きパイプを製造するための耐銅浸入性および加工性等にすぐれた銅めっき鋼板およびその製造方法に関する。
【0002】
【従来の技術】
銅めっき鋼板を素材とする二重巻きパイプは、所定幅に裁断した銅めっき鋼板のフープを造管用ロールでパイプ状に巻き重ねた後、銅の融点以上(例えば1130℃) に加熱されたDXガス中に適当時間(約1〜2分程度)保持して銅めっき層を溶融し、巻き重ね面間を融着結合させる、いわゆるセルフ・ブレージング処理を施すことにより製造される。図8は、二重巻きパイプの断面を示している。1は素地鋼板(冷延鋼板)、2は銅めっき層,3はセルフ・ブレージングにより形成された銅融着層であり、巻き重ね面間の接合性の良否は、渦流探傷法や曲げ試験などにより検査される。
【0003】
二重巻きパイプの製造に使用される銅めっき鋼板は、セルフ・ブレージングの熱処理で、素地鋼板の結晶組織が粗大化し過ぎないこと(耐粗粒化性)、素地鋼板中への溶融銅の浸入(鋼板の脆化を引き起こす)を生じにくいこと(耐銅浸入性)、および二重巻きパイプ成形後に行われる拡管加工やフレア加工に耐える良好な延性を有すること等が要求される。
上記銅めっき鋼板の素地鋼として、低炭素アルミキルド鋼が使用され、特公平8-14013 号公報には、C: 0.01〜0.15%, Si: 0.1 %以下, Mn: 0.05〜0.6 %, Al: 0.003 〜0.1 %, P: 0.015 %以下,B: 0.0004〜0.004 %,残部はFeおよび不可避不純物からなる素地鋼板に銅めっきを施したものが開示されている。そこには、素地鋼板のB含有効果として、結晶組織が微細化され,耐溶接割れ性が改善されることが記載されている。
【0004】
【発明が解決しようとする課題】
従来の銅めっき鋼板は、素地鋼板が、低炭素アルミキルド鋼板の範疇に属するものであっても、耐銅浸入性,耐粗粒化性等の不足により、二重巻きパイプ成形加工後のセルフ・ブレージング熱処理において、溶融銅の浸入による粒界脆化やフェライト組織の針状化・粗大化等による延性の低下を生じ易く、その後の拡管加工やフレア加工で、割れを発生する例が多くみられる。低炭素アルミキルド鋼のB元素の添加は、前記公報に記載されているように、フェライト組織の微細化に有効ではあるが、B添加量や、C,sol.Al,N等の含有量の多寡により、ブレージング熱処理におけるフェライト組織の粗大化・銅の浸入による粒界脆化,あるいはブレージング処理後の冷却過程におけるフェライト組織の過度の微細化や針状化等による硬質化を生じ易い。このため、パイプ造管後の拡管加工やフレア加工に要求される充分な成形加工性を保証することは困難である。
本発明は、二重巻きパイプに関する従来の問題を解消し、拡管加工やフレア加工等に耐え得る良好な加工性を保証するための改良された耐粗粒化性,耐銅浸入性等を備えた銅めっき鋼板およびその製造方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明の二重巻きパイプ用銅めっき鋼板は、重量%で、
C :0.03〜0.08%,
Si:0.1%以下,
Mn:0.05〜0.5%,
P :0.020%以下,
S :0.015%以下,
Sol.Al:0.03〜0.08%,
N :0.003〜0.008%,
B : 0.0008〜0.002%,
残部はF及び不可避不純物からなり、微細なAlN析出物が分散した層厚20〜100μmの表層を有する素地鋼板に銅めっきが施されている。
【0006】
本発明の二重巻きパイプ用銅めっき鋼板は、前記化学組成を有する鋼のスラブを、熱間圧延し、圧下率40〜90%で冷間圧延した後、冷延鋼板を、水素濃度2vol %以上のN2 −H2 混合ガス中、再結晶温度〜850℃の温度域で焼鈍処理し、ついで該鋼板に銅めっきを施す工程により製造される。
本発明の銅めっき鋼板を使用して製造される二重巻きパイプは、素地鋼板の化学組成,特にC,Al,NおよびBの適量含有の効果として、セルフ・ブレージング熱処理において、フェライト組織の針状化・粗大化が抑制防止されると共に、高い耐銅浸入性により、銅浸入とそれによる粒界脆化が回避され、また素地鋼板の時効性等も改善される。これらの効果として、拡管加工やフレア加工に必要な高延性(約25%以上の伸び率が必要とされている)が確保される。
【0007】
本発明の銅めっき鋼板の上記材質改善において、素地鋼板のB含有および表層部の微細AlNの析出分散の効果は重要である。
鋼板表層部の微細なAlN析出物は、N2 −H2 混合ガスを雰囲気とする冷延鋼板の焼鈍処理における窒化反応により形成される。このAlN析出物は、粒径約50〜500Åの著しく微細な粒子であり、二重巻きパイプのブレージング熱処理において、フェライトの再結晶過程でのピン止め効果となって素地鋼板表層に著しく微細なフェライト組織を形成せしめる。その表層組織はフェライト結晶粒度番号FGS.NO (JIS G 0552) 約10以上と著しく微細であり、溶融銅の粒界浸入に対する高い抵抗性を有している。
【0008】
一方,素地鋼板に添加された鋼中のBは、Alに比しNとの親和力が強く、熱延鋼板の巻取り段階や冷延鋼板の焼鈍処理段階で、鋼中の固溶Nと優先的に結合し、BN析出物を形成する。このBN析出物は、二重巻きパイプのブレージング熱処理(1100〜1150℃)の初期段階(約950〜1050℃)で、その一部が分解して固溶Bと固溶Nを生成する。固溶Bは、二重巻きパイプ温度が銅の融点(約1100℃)以上に達するまでの間にフェライト結晶粒界に析出し、フェライト結晶粒界を強化する。この粒界強化により、溶融銅の粒界浸入が抑制防止される。また、粒界に析出したBはフェライト結晶の異常成長を抑え、組織の粗大化の抑制防止に奏効する。
【0009】
更に、ブレージング熱処理につづく冷却過程(冷却速度: 約20〜40℃/秒)において、鋼中の固溶BはNと結合してBN析出物を生成する。AlN析出物についても、前記ブレージング熱処理(約1130℃)で、その一部がAlとNに分解し鋼中に固溶するが、ブレージング熱処理後の冷却速度は比較的大きいため、この冷却過程ではAlとNとの反応(AlNの析出)は殆ど生じない。これに対し、BはAlに比しNとの親和力が強いので、比較的大きい冷却速度でも、固溶Nと結合しBN析出物を生成するのである。このBN析出物の生成反応により、固溶N量(硬質化の原因となる)が低減し、パイプの時効性が改善され、延性が高められる。しかも、BN析出物はAlN析出物よりも大きいので、パイプの降伏点(YP)の低下,延性の向上に有利に作用する。また、このBNの析出生成により、ブレージング熱処理前に行われる二重巻きパイプの造管加工性の顕著な改善効果も得られる。
【0010】
本発明における素地鋼板の化学組成の限定理由は次のとおりである。
C: 0.03〜0.08%
冷延鋼板の延性を高める点からはC量は少ない程よいが、その量が少な過ぎると、セルフ・ブレージング熱処理において鋼板の耐粗粒化性の不足をきたす。また、粒界強度の低下に起因して耐銅浸入性も低下する。一方C量が多くなると、炭化物析出量の増加による延性の低下を招き、特に0.08%を越えると、セルフ・ブレージング処理後の冷却過程で、針状のフェライト組織が形成され易く、延性の低下が顕著になる。このため、0.03〜0.08%とする。
【0011】
Si: 0.1%以下
Siは、鋼の溶製工程における脱酸元素として添加される。そのための添加量は0.1%までで十分である。またそれ以上の多量添加は、延性を低下させるので、これを上限とする。
Mn: 0.05〜0.5%
Mnは、鋼の熱間脆性を防止する目的で添加される。0.05%に満たないと、その効果が不足し、他方0.5%を越えると、延性の低下をきたす。
【0012】
P: 0.020%以下,
Pは、降伏強度および引張強度を高める効果を有するが、多量に添加すると、延性の低下を招き、また結晶粒界に偏析して、粒界の強度を低下させる。このため、0.020%以下とする。好ましくは0.008〜0.015%である。
S: 0.015%
Sは、MnS等の非金属介在物を形成して鋼板の加工性を低下させる。0.015%以下であれば、その実害は回避されるので、これを上限とする。
【0013】
sol.Al: 0.03〜0.08%
Alは、鋼の溶製工程の脱酸剤として添加される元素であるが、本発明では、それにとどまらず、AlNの析出物を形成し、ブレージングにおける耐粗粒化性,耐銅浸入性を高める目的で添加される。これらの効果を得るには、sol.Al量(可溶性Al量)として、少なくとも0.03%を必要とする。しかし、多量に添加すると、AlNの過剰析出により延性が低下し、また非金属介在物の増加による鋼板表面品質の低下(表面疵の増加)をきたすので、0.08%を上限とする。
【0014】
N: 0.003〜0.008%,
Nは、Alと反応し、AlNの微細な析出物を形成して素地鋼板の耐粗粒化性を高め、ブレージング処理におけるフェライト組織の粗大化を防止する。含有量が0.003%に満たないと、AlNの析出量が不足し、耐粗粒化性を確保することができない。他方、あまり多く添加すると、AlNの過剰析出に伴う延性の低下,パイプの硬質化を招く。このため、0.008%を上限とする。
【0015】
B: 0.0008〜0.002%
Bは、前述のように、ブレージング熱処理前の段階においては二重巻きパイプの造管加工性を高め、ブレージング熱処理においては、フェライト結晶粒の粒界に析出して耐粗粒化性を高めると共に、溶融銅の粒界浸入および粒界脆化を抑制防止する。更にブレージング熱処理に続く冷却過程では、素地鋼中の固溶Nと結合して、固溶N量を低減しパイプを軟質化し、かつ時効劣化の防止に奏効する。これらの効果を得るために、少なくとも0.0008%の含有を必要とする。0.002%を超えると、ブレージング後の冷却過程における素地鋼組織の過度の微細化,針状化による硬質化を招き、パイプの加工性を損なう。このため、0.002%を上限とする。
【0016】
次に本発明の製造工程について説明する。
まず製鋼炉で所定の化学組成に溶製された鋼を、造塊・分解圧延により、または連続鋳造によりスラブとし、スラブ表面手入れを適宜施した後、熱間圧延する。連続鋳造につづいて熱鋳片をそのまま加熱炉に装入して熱間圧延するようにしてもよい。熱間圧延は常法により行なわれる。熱延鋼板品質や熱延効率等の点から、仕上げ温度はAr3変態点直上の温度に調整され、巻取り温度は約500〜700℃の範囲が適当である。
【0017】
熱延鋼板を、酸洗処理の後、冷間圧延に供する。冷間圧延は、結晶粒の粗大化を抑制し、延性の良好な冷延鋼板を得るために、圧下率を40%以上とすることが必要である。圧下率が90%を越えると、結晶粒の微細化効果は飽和し、それ以上の圧下率は圧延負荷の増大による操業面の不利を招くので、90%を上限とする。
【0018】
冷延鋼板は表面浄化処理を施されて、焼鈍処理に付される。焼鈍処理において、鋼板は再結晶し、また窒化反応により微細なAlN粒が緻密に分散した表層部(AlNリッチ層)が形成される。この焼鈍処理は、水素濃度が2体積%以上のN2 −H2 混合ガスを雰囲気とし、再結晶温度(約600℃)〜850℃の温度域で加熱することにより行われる。雰囲気を形成するN2 −H2 混合ガスは、例えばNXガス(H2 :2vol%, CO:3vol%, 残部:N2 ),DXガス(H2 :10vol%, CO:10vol%, CO2 :7vol%, 残部:N2 ) 等を適用することができる。
【0019】
焼鈍処理の上限温度を850℃としているのは、それ以上の高温度を必要としないだけでなく、高温化に伴い結晶粒の成長粗大化が助長され、適正なフェライト組織を確保することが困難となるからである。焼鈍方式はバッチ焼鈍または連続焼鈍のいずれでもよいが、比較的長い処理時間が与えられるバッチ焼鈍の場合は、雰囲気温度を約650℃〜720℃とし、処理時間の短い連続焼鈍の場合は、約750〜850℃に調節設定するとよい。
【0020】
焼鈍雰囲気をN2 −H2 混合ガスとするのは、還元作用による鋼板の金属光沢を確保し、かつ窒化反応によるAlNリッチ層を鋼板表層に形成するためである。H2 濃度を2体積%以上に規定したのは、それより低い濃度では、還元作用が十分でなく、金属光沢の確保が困難となるからである。ただし、H2 濃度をあまり高くすると、N2 濃度の相対的低下により、窒化反応効率が低下するので、約95体積%を上限とするのが適当である。焼鈍処理をより効率的に達成するために、N2 −H2 混合ガスのH2 濃度: 10〜75体積%、焼鈍雰囲気の露点: −10℃以下の条件で焼鈍処理するのが好ましい。
【0021】
焼鈍処理過程で鋼板表層部に形成される微細なAlN析出物(粒径: 約50〜100Å)は、前記のようにパイプのブレージング熱処理過程で、フェライト再結晶のピン止め効果となり鋼板表層に微細なフェライト組織(FGS.NO: 約10以上)を形成せしめ、耐銅浸入性を高める。この効果を十分なものとするために、AlNリッチ表層部の層厚は20μm以上であることを要する。また、その層厚が100μm以下であれば、鋼板の加工性に実質的な悪影響を生じることはない。この表層部の層厚は、焼鈍処理の雰囲気ガス組成,処理温度・時間等により制御される。
【0022】
焼鈍処理された鋼板は、常法に従って、調質圧延および連続電気めっき等による銅めっき(めっき層厚: 例えば1〜5μm/片面当たり)を施されて二重巻きパイプ用銅めっき鋼板に仕上げられる。
得られた銅めっき鋼板は、二重巻きパイプに成形加工されたうえ、巻き重ね面間を融着するブレージング熱処理(処理温度: 約1100〜1150℃)に付される。
【0023】
ブレージング熱処理では、その初期段階で素地鋼板の再結晶(約900〜950℃)を生起し、パイプ温度が銅の融点以上(約1100℃)に達すると、銅めっき層の溶融による巻き重ね面間の融着結合が生じる。前述のように、この時点では既に素地鋼板の再結晶を完了し、表層部は微細AlN粒のピン止め効果により極めて微細なフェライト組織(FGS.NO約10以上)が形成されており、また素地鋼板中の固溶Bの一部はフェライト結晶粒界に析出している。この表層組織の微細化およびBの粒界析出の効果として、銅の粒界浸入およびそれに伴う粒界脆化を抑制防止しつつ、二重巻きパイプの巻き重ね面の融着結合を達成する。
【0024】
更に、ブレージング熱処理後の冷却過程では、前記のように、鋼中の固溶Bと固溶Nとの反応(BN析出物の生成)を生じ、硬質化の原因となる固溶N量が低減し、パイプの時効性の改善・延性の向上効果がもたらされ、そのBN析出物が、AlN析出物と異なって比較的大きいサイズであることも、素地鋼板の降伏点( YP) の低下・延性の向上に有利に作用する。また、素地鋼板の化学組成(C,Al,N,B量等)の規定の効果として、ブレージング処理後の冷却過程でのフェライト組織の針状化や粗粒化も抑制防止され、板厚中心部も比較的微細なフェライト組織(FGS No. 約6以上)が与えられる。
これらの効果として、二重巻きパイプの拡管加工やフレア加工等に要求される高度の加工性(伸び率約25%以上)が確保される。
【0025】
次に、二重巻きパイプの延性・加工性に及ぼす素地鋼板の化学組成の影響について具体的に説明する。
図1は二重巻きパイプの延性に及ぼす素地鋼板のC含有量の影響を示している。供試鋼板およびパイプ(管径: 4.76mm)の製造条件は下記のとおりである。
(1)素地鋼板の化学組成(wt %)
C:0.01 〜0.12, Si:0.008, Mn:0.30. P:0.010, S:0.008, sol Al:0.040, N:0.0045, B:0.0015, Fe:Bal 。
(2)冷間圧延: 圧下率 85 %,板厚: 0.335 mm。
【0026】
(3)焼鈍処理(バッチ焼鈍)
雰囲気: N 2 −30 vol% H 2
処理温度・時間: 670℃×10 hr
(4)調質圧延: 圧下率 1%
(5)銅めっき: 連続電気めっき,層厚 4.5μm(片面当り)
(6)二重巻き成形後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1min
【0027】
図1に示したように、二重巻きパイプは、素地鋼板のC量0.03〜0.08%の範囲において、伸び率25%以上の高い延性を有している。C量0.03%未満の領域で延性が低いのは、鋼板のフェライト組織が過度に粗大化したことによるものである。他方、C量0.08%を越える領域での延性低下は、鋼中の炭化物(Fe3 C)の増量とそれに伴う過度の微細化,および針状フェライト組織の生成に起因してパイプが硬質化したことによる。二重巻きパイプの拡管加工・フレア加工性には、伸び率約25%以上の延性が必要とされており、図1は、その要求を充足するために、素地鋼板のC量を0.03〜0.08%の範囲に調整する必要があることを示している。
【0028】
図2は、素地鋼板のAl量, N量と二重巻きパイプの伸び値の関係を示している。供試鋼板およびパイプ(管径:4.76 mm)の製造条件は次のとおりである。
(1)素地鋼板の化学組成(wt%)
C:0.06, Si:0.009, Mn:0.45. P:0.013, S:0.008, sol Al:0.010 〜0.090, N: 0.0010〜0.0090, B:0.0016, Fe:Bal
(2)冷間圧延: 圧下率 83 %,板厚: 0.335 mm
【0029】
(3)焼鈍処理(バッチ焼鈍)
雰囲気:N2 -12 vol% H 2混合ガス
処理温度・時間: 650 ℃×15hr
(4)調質圧延: 圧下率 1%
(5)銅めっき: 連続電気めっき, 層厚 3.0μm(片面当たり)
(6)二重巻き成形後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1min
【0030】
図2中の各記号は下記のとおりである。
○…伸び率 25 %以上
△…AlN の過剰析出により、伸び率 25 %未満
×…AlN の析出不足(フェライト粒粗大化)により、伸び率 25 %未満
この図は、二重巻きパイプの拡管加工・フレア加工に要求される延性(伸び率約25%以上)を満たすためには、Al量: 0.03〜0.08%、N量: 0.003〜0.008%の範囲に調整すべきことを示している。
【0031】
図3は、素地鋼板のB含有量と二重巻きパイプ(管径: 4.76mm)の伸び値との関係、図4は、素地鋼板のB含有量とパイプのフェライト結晶粒度番号(FGS.NO) との関係を示し、図5は、素地鋼板のB含有量とパイプ素地鋼内の銅浸入深さの関係を示している。これらの供試鋼板および二重巻きパイプ(管径:4.76 mm) の製造条件は次のとおりである。
(1)素地鋼板の化学組成(wt%)
C:0.07, Si:0.010, Mn:0.50. P:0.018, S:0.005, sol Al:0.050, N: 0.0050, B:0.0004〜0.0040, Fe:Bal
(2)冷間圧延: 圧下率 89 %,板厚: 0.335 mm
【0032】
(3)焼鈍処理(バッチ焼鈍)
雰囲気:N2 -75 vol% H 2混合ガス
処理温度・時間: 660 ℃×12hr
(4)調質圧延: 圧下率 1%
(5)銅めっき: 連続電気めっき, 層厚 4.0μm(片面当たり)
(6)二重巻き成形後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1min
【0033】
図3に示したように、二重巻きパイプは、素地鋼板のB量が0.0008〜0.002%の範囲において、伸び率25%以上の高い延性を有している。
また、図4は、素地鋼板のB量の増加と共に、フェライト組織が細粒化することを示している。B量が0.0008%未満では、ファライト粒度番号(FGS.NO)が6.0 以下の粗粒組織となり、これは粒界強度の不足をきたし、溶融銅の粒界浸入を充分に抑制防止することができなくなる。他方、B量が0.002%を超えると、FGS.N0 8.5以上と過度に微細化し、また前記のようにブレージング熱処理後の冷却過程でフェライト組織の針状化をきたすことになる。
【0034】
更に、図5に示したように、Bの添加効果として、パイプの素地鋼への銅の浸入深さは小さくなる。銅浸入深さが約20μmを超えると、粒界の脆化に起因する延性不足等の実害が生じる。B量を0.0008%以上とすることにより、銅の浸入深さを20μm以下に抑え、粒界脆化とそれによるパイプ延性の低下を防止することが可能となる。
このように、図3〜図5は、Bの添加効果としてフェライト結晶粒の粗大化とそれに伴う溶融銅の浸入・粒界脆化、およびフェライト組織の過度の微細化防止の効果を得るためには、B量を0.0008%〜0.002%の範囲に調整すべきことを示している。
【0035】
図6は、本発明の銅めっき鋼板のフープ(二重巻き成形加工前の所要板幅に裁断した平板材)、図7は、そのフープを使用して造管された二重巻きパイプ(ブレージング熱処理済み)について、それぞれのフェライト組織を示している(いずれも、倍率×100)。
供試材の製造条件は次のとおりである。
(1)素地鋼板の化学組成(wt%)
C:0.04, Si:0.007, Mn:0.25. P:0.012, S:0.007, sol Al:0.035, N: 0.0035, B:0.0016, Fe:Bal
(2)冷間圧延: 圧下率: 80%, 板厚: 0.335 mm
【0036】
(3)焼鈍処理(バッチ焼鈍)
雰囲気ガス:N2 -15 vol% H 2混合ガス
処理温度・時間: 660 ℃×12hr
(4)調質圧延: 圧下率 1 %
(5)銅めっき: 連続電気めっき, 層厚 2.5μm(片面当たり)
(6)二重巻き成形加工後のセルフ・ブレージング処理
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1 min
【0037】
図6(二重巻き成形加工前のフープ)は、鋼板の表層から内部の断面全体にわたってパンケーキ状のフェライト組織を呈している。そのフェライト結晶粒度(FGS.NO)は8.3である。
他方、図7(二重巻きパイプのブレージング処理後)にける鋼板表層部のフェライト組織は、板厚中心部に比し著しく細粒化している。その表層部の層厚は約50μmであり、結晶粒度FGS.NOは10〜12である。この表層部の微細化は、前記のように銅めっき層の溶融に先行して生起し、溶融銅の粒界侵入を抑制防止に奏効する。
【0038】
【実施例】
〔1〕供試材の製造
転炉および脱ガス処理装置により溶製・成分調整を行った溶鋼を連続鋳造に付してスラブとし、熱間圧延→熱延板の酸洗処理→冷間圧延→冷延板の電解清浄処理→焼鈍処理→調質圧延→銅めっき→二重巻き成形加工・ブレージング処理の工程を経由して二重巻きパイプ(管径4.76mm)を得る。
(1)鋼組成: 表1,表2参照
No.1〜14は発明例、No.51 〜66はいずれかの元素の含有量(表中,下線付記)が本発明の規定から外れている比較例である。
(2)熱間圧延
加熱温度: 1200℃、熱延仕上げ温度: 895 ℃、熱延巻取り温度: 500 ℃
(3)冷間圧延
圧下率: 85%、冷延板板厚: 0.335 mm
【0039】
(4)焼鈍処理(バッチ焼鈍)
雰囲気: N2 −H2 混合ガス(H2 濃度 2〜75 vol%)
処理温度: 650 〜700 ℃, 処理時間: 8 〜15 hr
(5)調質圧延: 圧下率1%
(6)銅めっき(連続電気めっき): めっき層厚 3.0μm(片側当たり)
(7)二重巻き成形加工
・成形加工法: ロール造管(フープ幅 27.5 mm)
・セルフ・ブレージング処理:
雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N2,露点:+ 5℃)
処理温度・時間: 1130℃×1 min
【0040】
〔2〕パイプの特性評価
(a)引張試験:
JIS Z 2241 (11号試験片使用) による。
(b)フェライト粒度:
パイプの断面を5 %ナイタールで腐食し、切断法(JIS G 0552)により粒度番
号(FGS.NO)を判定(倍率: ×200 )。
(c)銅の侵入深さ:
パイプの断面を5 %ナイタールで腐食した後、XMA分析装置により、銅の溶着部(倍率: ×500 )のCu特性X線像を撮影して浸入深さ(μm)を測定。
【0041】
表1および表2に、素地鋼板の化学組成,銅めっき鋼板および二重巻きパイプの製造条件と併せて製品パイプの試験結果を示す。
発明例No.1〜14のパイプは、拡管加工やフレア加工に必要とされる25%以上の伸び率を有している。また、その表層部(層厚約20〜100 μm)のフェライト組織は、FGS.NO 10 〜12と著しく微細である。この表層部組織の微細化とB添加効果とにより、銅の浸入深さは約1〜5μmと著しく小さい。肉厚中心部もFGS.NOが約7〜8の比較的微細なフェライト組織を有している。このように銅の侵入が抑制され、かつ肉厚全体にわたり適正な粒度のフェライト組織を有しているので、拡管加工やフレア加工における加工性も良好である。
【0042】
他方、比較例No.51 〜66において、No.51 およびNo.52 のパイプの延性が低いのは、鋼板のC量の不足のため、フェライト粒が粗大化し、銅の侵入深さが大きく、粒界の脆化が生じたことによる。
No.53 およびNo.54 のパイプの延性が劣るのは、素地鋼板のC量が多すぎるため、鋼中の炭化物(Fe3 C)量の過剰析出、フェライト粒の過度の微細化、および針状のフェライト組織の生成等による硬質化をきたしたことによる。
No.55 とNo.56 (素地鋼板AL量不足)およびNo.59 とNo.60 (素地鋼板N量不足)のパイプの延性が劣るのは、Al,N量が少なく、AlNの析出量が不足してフェライト粒が粗大化し、このため銅の侵入深さが大きくなり、粒界が脆化したからである。
【0043】
また、No.57 とNo.58 (素地鋼板AL量過剰)およびNo.61 とNo.62 (素地鋼板N量過剰)のパイプの延性が劣るのは、Al,N量が過剰であるために、AlNの過剰析出とフェライト粒の過度の細粒化をきたしたことによる。
No.63 およびNo.64 (素地鋼板 B量不足)のパイプ延性が低いのは、素地鋼板のB量不足により、フェライト粒が粗大化し、溶融銅の浸入深さが大きくなり、粒界の脆化が生じたことによる。
No.65 とNo.66 (素地鋼板 B量過剰)のパイプ延性が劣るのは、素地鋼板のB量が過剰であることにより、固溶B量が過剰析出して、フェライト結晶粒が過度に微細化したこと、および針状フェライト組織が形成されて硬質化しているのである。
【0044】
【表1】

Figure 0003720185
【0045】
【表2】
Figure 0003720185
【0046】
【発明の効果】
本発明の二重巻きパイプ用銅めっき鋼板は、セルフ・ブレージング処理における耐銅浸入性が高く、銅の侵入およびそれに起因する粒界脆化を抑制防止し、またブレージング処理後のフェライト組織の粗大化や針状化とそれに付随するパイプの硬質化も抑制防止される。従って得られる二重巻きパイプは、高い延性を有し、拡管加工やフレア加工等における加工割れが抑制防止され、製造歩留りの向上,パイプ加工工程の簡素化などの合理化・低コスト化を可能とすると共に、パイプ品質の向上安定化等の効果をもたらす。またパイプの加工形状の複雑化への対応が可能となり、二重巻きパイプの用途の拡大・多様化を可能とするものである。
【図面の簡単な説明】
【図1】二重巻きパイプの伸び値と素地鋼板のC量との関係を示すグラフである。
【図2】二重巻きパイプの伸び値と素地鋼板のAl,N量との関係を示すグラフである。
【図3】二重巻きパイプの伸び値と素地鋼板のB量との関係を示すグラフである。
【図4】二重巻きパイプの素地鋼板のフェライト粒度番号(FGS.NO)とB量との関係を示すグラフである。
【図5】二重巻きパイプの素地鋼への銅の浸入深さと素地鋼板のB量との関係を示すグラフである。
【図6】二重巻きパイプ成形加工前の銅めっき鋼板フープのフェライト組織を示す図面代用顕微鏡写真(倍率×100)である。
【図7】二重巻きパイプにおける素地鋼板のフェライト組織を示す図面代用顕微鏡写真(倍率×100)である。
【図8】二重巻きパイプを示す模式的断面図である。
【符号の説明】
1: 素地鋼板
2: 銅めっき層
3: 銅の融着層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper-plated steel sheet excellent in copper penetration resistance and workability for manufacturing a double-winding pipe used as a brake tube for an automobile, a cooling tube for a refrigerator, and the like, and a method for manufacturing the same.
[0002]
[Prior art]
A double-winding pipe made of copper-plated steel sheet is made of DX that is heated to a copper melting point or higher (for example, 1130 ° C) after a copper-plated steel sheet hoop cut into a predetermined width is rolled into a pipe shape by a pipe-making roll. It is manufactured by holding a suitable time (about 1 to 2 minutes) in a gas, melting the copper plating layer, and performing a so-called self-brazing treatment in which the wound surfaces are fusion bonded. FIG. 8 shows a cross section of a double-wound pipe. Reference numeral 1 is a base steel plate (cold rolled steel plate), 2 is a copper plating layer, 3 is a copper fusion layer formed by self-brazing, and the quality of the bonding between the winding surfaces is determined by eddy current testing or bending test, etc. Inspected by
[0003]
Copper-plated steel sheets used for the production of double-pipe pipes are self-brazing heat treatment, the crystal structure of the base steel sheet does not become too coarse (coarse grain resistance), and the penetration of molten copper into the base steel sheet It is required that the steel sheet is less likely to cause embrittlement (copper penetration resistance) and has good ductility to withstand tube expansion processing and flare processing performed after double-winding pipe forming.
Low carbon aluminum killed steel is used as the base steel for the above copper-plated steel sheet. In Japanese Patent Publication No. 8-14013, C: 0.01 to 0.15%, Si: 0.1% or less, Mn: 0.05 to 0.6%, Al: 0.003 ˜0.1%, P: 0.015% or less, B: 0.0004 to 0.004%, and the balance is disclosed by subjecting a base steel plate made of Fe and inevitable impurities to copper plating. It describes that as a B-containing effect of the base steel sheet, the crystal structure is refined and the weld crack resistance is improved.
[0004]
[Problems to be solved by the invention]
Conventional copper-plated steel sheets, even if the base steel sheet belongs to the category of low-carbon aluminum killed steel sheet, due to the lack of copper penetration resistance, coarse grain resistance, etc., self- In brazing heat treatment, it tends to cause grain boundary embrittlement due to the intrusion of molten copper and decrease in ductility due to acicular and coarsening of the ferrite structure, and there are many cases where cracks are generated in subsequent tube expansion and flare processing. . As described in the above publication, the addition of B element in low carbon aluminum killed steel is effective for refinement of the ferrite structure, but the amount of B addition and the content of C, sol. As a result, the ferrite structure becomes coarse due to brazing heat treatment, grain boundary embrittlement due to copper intrusion, or hardening due to excessive refinement or acicularization of the ferrite structure during the cooling process after brazing treatment. For this reason, it is difficult to guarantee sufficient formability required for pipe expansion processing and flare processing after pipe making.
The present invention is provided with improved coarse grain resistance, copper penetration resistance, etc. to eliminate the conventional problems related to double-winding pipes and to ensure good workability that can withstand tube expansion processing, flare processing, etc. A copper-plated steel sheet and a method for producing the same are provided.
[0005]
[Means for Solving the Problems]
The copper-plated steel sheet for double-wound pipes of the present invention is in% by weight,
C: 0.03 to 0.08%,
Si: 0.1% or less,
Mn: 0.05-0.5%,
P: 0.020% or less,
S: 0.015% or less,
Sol.Al: 0.03 to 0.08%,
N: 0.003 to 0.008%,
B: 0.0008 to 0.002%,
The balance consists of Fe and inevitable impurities , and a copper base plate is applied to a base steel plate having a surface layer with a layer thickness of 20 to 100 μm in which fine AlN precipitates are dispersed.
[0006]
The copper-plated steel sheet for double-wound pipes of the present invention is obtained by hot-rolling a steel slab having the above chemical composition and cold-rolling it at a reduction rate of 40 to 90%, and then subjecting the cold-rolled steel sheet to a hydrogen concentration of 2 vol%. In the above-mentioned N 2 —H 2 mixed gas, it is manufactured by annealing at a recrystallization temperature to 850 ° C. and then copper plating the steel sheet.
The double-winding pipe manufactured using the copper-plated steel sheet of the present invention has a ferrite structure needle in the self-brazing heat treatment as an effect of containing an appropriate amount of C, Al, N and B as a chemical composition of the base steel sheet. In addition to being prevented from being formed and coarsened, high copper penetration resistance prevents copper penetration and resulting grain boundary embrittlement, and improves the aging of the base steel sheet. As these effects, high ductility (an elongation rate of about 25% or more is required) necessary for tube expansion processing and flare processing is ensured.
[0007]
In the material improvement of the copper-plated steel sheet of the present invention, the effects of the B content of the base steel sheet and the precipitation and dispersion of fine AlN in the surface layer are important.
Fine AlN precipitates on the surface layer of the steel sheet are formed by a nitriding reaction in an annealing process of a cold-rolled steel sheet using an N 2 —H 2 mixed gas as an atmosphere. This AlN precipitate is a remarkably fine particle having a particle size of about 50 to 500 mm, and becomes a pinning effect in the recrystallization process of ferrite in the brazing heat treatment of the double-wound pipe, and the remarkably fine ferrite on the surface of the base steel sheet. Form an organization. Its surface structure is ferrite grain size number FGS. NO (JIS G 0552) It is remarkably fine, about 10 or more, and has high resistance to intergranular penetration of molten copper.
[0008]
On the other hand, B in steel added to the base steel plate has a stronger affinity with N than Al, and it has priority over solute N in steel at the winding stage of hot-rolled steel sheet and annealing process of cold-rolled steel sheet. Bond together to form BN precipitates. This BN precipitate is partly decomposed to form solute B and solute N at the initial stage (about 950 to 1050 ° C.) of the brazing heat treatment (1100 to 1150 ° C.) of the double-wound pipe. The solid solution B precipitates at the ferrite crystal grain boundary until the double-winding pipe temperature reaches the melting point of copper (about 1100 ° C.) or higher, and strengthens the ferrite crystal grain boundary. By this grain boundary strengthening, the grain boundary penetration of molten copper is suppressed and prevented. Further, B precipitated at the grain boundary suppresses the abnormal growth of the ferrite crystal and is effective in preventing the coarsening of the structure.
[0009]
Further, in the cooling process following the brazing heat treatment (cooling rate: about 20 to 40 ° C./second), the solid solution B in the steel combines with N to form BN precipitates. AlN precipitates are also partly decomposed into Al and N by the brazing heat treatment (about 1130 ° C.) and are dissolved in the steel, but the cooling rate after the brazing heat treatment is relatively high. Almost no reaction between Al and N (precipitation of AlN) occurs. On the other hand, since B has a stronger affinity for N than Al, it binds to solute N and produces BN precipitates even at a relatively high cooling rate. By the formation reaction of this BN precipitate, the amount of dissolved N (causing hardening) is reduced, the aging property of the pipe is improved, and the ductility is increased. In addition, since the BN precipitate is larger than the AlN precipitate, it advantageously acts to lower the yield point (YP) of the pipe and improve the ductility. In addition, the precipitation of BN can provide a remarkable improvement effect on the tube-forming workability of the double-winding pipe performed before the brazing heat treatment.
[0010]
The reasons for limiting the chemical composition of the base steel sheet in the present invention are as follows.
C: 0.03-0.08%
From the point of increasing the ductility of the cold-rolled steel sheet, the smaller the amount of C, the better. However, if the amount is too small, the coarsening resistance of the steel sheet is insufficient in the self-brazing heat treatment. In addition, the resistance to copper penetration also decreases due to a decrease in grain boundary strength. On the other hand, when the amount of C increases, ductility decreases due to an increase in the amount of precipitated carbide. Especially when it exceeds 0.08%, a needle-like ferrite structure is easily formed in the cooling process after the self-brazing treatment, and the ductility is reduced. The decrease becomes noticeable. For this reason, it is 0.03 to 0.08%.
[0011]
Si: 0.1% or less Si is added as a deoxidizing element in the steel melting process. For this purpose, it is sufficient to add up to 0.1%. Moreover, since addition of a larger amount reduces ductility, this is made the upper limit.
Mn: 0.05-0.5%
Mn is added for the purpose of preventing hot brittleness of the steel. If it is less than 0.05%, the effect is insufficient, while if it exceeds 0.5%, ductility is lowered.
[0012]
P: 0.020% or less,
P has the effect of increasing the yield strength and tensile strength, but if added in a large amount, it causes a decrease in ductility, and segregates at the crystal grain boundary, thereby lowering the grain boundary strength. For this reason, it is made into 0.020% or less. Preferably it is 0.008 to 0.015%.
S: 0.015%
S forms non-metallic inclusions such as MnS to lower the workability of the steel sheet. If it is 0.015% or less, the actual damage is avoided, so this is the upper limit.
[0013]
sol.Al: 0.03-0.08%
Al is an element added as a deoxidizer in the steel melting process. However, in the present invention, not only that, but a precipitate of AlN is formed, and resistance to coarsening and copper penetration in brazing is achieved. It is added for the purpose of enhancing. In order to obtain these effects, at least 0.03% is required as the sol.Al amount (soluble Al amount). However, if added in a large amount, the ductility decreases due to excessive precipitation of AlN, and the steel sheet surface quality decreases (increases in surface flaws) due to an increase in non-metallic inclusions, so 0.08% is made the upper limit.
[0014]
N: 0.003 to 0.008%,
N reacts with Al to form fine precipitates of AlN to enhance the coarse grain resistance of the base steel sheet and prevent the ferrite structure from becoming coarse in the brazing treatment. If the content is less than 0.003%, the precipitation amount of AlN is insufficient, and the coarsening resistance cannot be ensured. On the other hand, if it is added too much, ductility is lowered due to excessive precipitation of AlN, and the pipe is hardened. For this reason, 0.008% is made the upper limit.
[0015]
B: 0.0008 to 0.002%
As described above, B improves the tube-forming workability of the double-winding pipe in the stage before the brazing heat treatment, and in the brazing heat treatment, it precipitates at the grain boundaries of the ferrite crystal grains and improves the resistance to coarsening. In addition, it suppresses and prevents grain boundary penetration and grain boundary embrittlement of molten copper. Further, in the cooling process subsequent to the brazing heat treatment, it combines with the solid solution N in the base steel to reduce the amount of the solid solution N, soften the pipe, and to prevent aging deterioration. In order to obtain these effects, a content of at least 0.0008% is required. If it exceeds 0.002%, excessive refinement of the base steel structure in the cooling process after brazing and hardening due to acicularization will be caused, and the workability of the pipe will be impaired. For this reason, the upper limit is made 0.002%.
[0016]
Next, the manufacturing process of the present invention will be described.
First, steel melted to a predetermined chemical composition in a steelmaking furnace is made into a slab by ingot-making / decomposition rolling or continuous casting, and the slab surface is appropriately treated, followed by hot rolling. Following the continuous casting, the hot slab may be inserted into a heating furnace as it is and hot rolled. Hot rolling is performed by a conventional method. From the viewpoint of hot rolled steel sheet quality, hot rolling efficiency, etc., the finishing temperature is adjusted to a temperature just above the Ar3 transformation point, and the coiling temperature is suitably in the range of about 500 to 700 ° C.
[0017]
The hot-rolled steel sheet is subjected to cold rolling after the pickling treatment. In cold rolling, in order to suppress coarsening of crystal grains and obtain a cold-rolled steel sheet having good ductility, it is necessary to set the rolling reduction to 40% or more. If the rolling reduction exceeds 90%, the effect of refining the crystal grains is saturated, and a rolling reduction beyond that causes a disadvantage in operation due to an increase in rolling load, so 90% is made the upper limit.
[0018]
The cold-rolled steel sheet is subjected to a surface purification treatment and subjected to an annealing treatment. In the annealing treatment, the steel sheet is recrystallized, and a surface layer portion (AlN rich layer) in which fine AlN grains are densely dispersed is formed by a nitriding reaction. This annealing process is performed by using a N 2 —H 2 mixed gas having a hydrogen concentration of 2% by volume or more as an atmosphere and heating in a temperature range of a recrystallization temperature (about 600 ° C.) to 850 ° C. The N 2 —H 2 mixed gas forming the atmosphere is, for example, NX gas (H 2 : 2 vol%, CO: 3 vol%, balance: N 2 ), DX gas (H 2 : 10 vol%, CO: 10 vol%, CO 2 : 7vol%, balance: N 2 ) etc. can be applied.
[0019]
The upper limit temperature of the annealing process is set to 850 ° C., not only does not require a higher temperature, but also the growth of crystal grains is promoted as the temperature rises, and it is difficult to secure an appropriate ferrite structure. Because it becomes. The annealing method may be either batch annealing or continuous annealing, but in the case of batch annealing in which a relatively long processing time is given, the ambient temperature is about 650 ° C. to 720 ° C., and in the case of continuous annealing with a short processing time, about It may be adjusted to 750 to 850 ° C.
[0020]
The reason why the annealing atmosphere is N 2 —H 2 mixed gas is to secure the metallic luster of the steel sheet due to the reducing action and to form an AlN rich layer by nitriding reaction on the steel sheet surface layer. The reason why the H 2 concentration is specified to be 2% by volume or more is that if the concentration is lower than that, the reducing action is not sufficient, and it is difficult to ensure the metallic luster. However, if the H 2 concentration is too high, the nitriding reaction efficiency decreases due to the relative decrease in the N 2 concentration, so it is appropriate to set the upper limit at about 95% by volume. In order to achieve the annealing treatment more efficiently, it is preferable to perform the annealing treatment under the conditions of H 2 concentration of N 2 —H 2 mixed gas: 10 to 75% by volume and dew point of annealing atmosphere: −10 ° C. or less.
[0021]
The fine AlN precipitates (grain size: about 50 to 100 mm) formed on the steel sheet surface layer during the annealing process become the pinning effect of ferrite recrystallization in the brazing heat treatment process of the pipe as described above and are fine on the steel sheet surface layer. A strong ferrite structure (FGS.NO: about 10 or more) to improve copper penetration resistance. In order to make this effect sufficient, the layer thickness of the AlN-rich surface layer portion needs to be 20 μm or more. Moreover, if the layer thickness is 100 μm or less, there is no substantial adverse effect on the workability of the steel sheet. The thickness of the surface layer is controlled by the atmosphere gas composition of the annealing process, the processing temperature / time, and the like.
[0022]
The annealed steel sheet is subjected to copper plating (plating layer thickness: for example, 1 to 5 μm / per side) by temper rolling and continuous electroplating according to a conventional method to finish a copper-plated steel sheet for a double-winding pipe. .
The obtained copper-plated steel sheet is subjected to a brazing heat treatment (processing temperature: about 1100 to 1150 ° C.) that is formed into a double-winding pipe and is fused between the wound surfaces.
[0023]
In the brazing heat treatment, recrystallization (about 900 to 950 ° C.) of the base steel plate occurs at the initial stage, and when the pipe temperature reaches the melting point of copper (about 1100 ° C.), the space between the winding surfaces due to the melting of the copper plating layer Fusion bonding occurs. As mentioned above, recrystallization of the base steel plate has already been completed at this point, and the surface layer has a very fine ferrite structure (FGS.NO of about 10 or more) due to the pinning effect of the fine AlN grains. Part of the solid solution B in the steel sheet is precipitated at the ferrite grain boundaries. As an effect of the refinement of the surface layer structure and the grain boundary precipitation of B, fusion bonding of the lap surfaces of the double-winding pipe is achieved while preventing the grain boundary penetration of copper and the accompanying grain boundary embrittlement.
[0024]
Further, in the cooling process after the brazing heat treatment, as described above, the reaction between the solid solution B and the solid solution N in the steel (generation of BN precipitates) occurs, and the amount of the solid solution N that causes the hardening is reduced. However, the aging of the pipe is improved and the ductility is improved. The BN precipitates are relatively large in size unlike the AlN precipitates, and the yield point (YP) of the base steel sheet is reduced. This is advantageous for improving ductility. In addition, as a result of the regulation of the chemical composition (C, Al, N, B amount, etc.) of the base steel plate, it is possible to prevent and prevent the ferrite structure from becoming acicular and coarse in the cooling process after brazing treatment, and to center the plate thickness. The part is also given a relatively fine ferrite structure (FGS No. approx. 6 or more).
As these effects, a high degree of workability (elongation rate of about 25% or more) required for pipe expansion processing and flare processing of double-winding pipes is ensured.
[0025]
Next, the influence of the chemical composition of the base steel sheet on the ductility and workability of the double-wound pipe will be specifically described.
FIG. 1 shows the influence of the C content of the base steel sheet on the ductility of the double-winding pipe. The manufacturing conditions of the test steel plates and pipes (tube diameter: 4.76 mm) are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.01-0.12, Si: 0.008, Mn: 0.30. P: 0.010, S: 0.008, sol Al: 0.040, N: 0.0045, B: 0.0015, Fe: Bal.
(2) Cold rolling: reduction ratio of 85%, sheet thickness: 0.335 mm.
[0026]
(3) Annealing treatment (batch annealing)
Atmosphere: N 2 −30 vol% H 2
Processing temperature / time: 670 ℃ × 10 hr
(4) Temper rolling: Reduction ratio 1%
(5) Copper plating: Continuous electroplating, layer thickness 4.5μm (per side)
(6) double-wrap forming after the self-brazing treatment atmosphere: DX gas (10vol% H 2 -10vol% CO- 6vol% CO 2 -N 2, dew point: + 5 ° C.)
Processing temperature / time: 1130 ℃ × 1min
[0027]
As shown in FIG. 1, the double-wound pipe has high ductility with an elongation rate of 25% or more in the range of the C content of the base steel sheet of 0.03 to 0.08%. The reason why the ductility is low in the region where the C content is less than 0.03% is that the ferrite structure of the steel sheet is excessively coarsened. On the other hand, the ductility drop in the region where the C content exceeds 0.08% is due to the increase in carbide (Fe 3 C) in the steel, excessive refinement, and the formation of acicular ferrite structure. Because it became. Ductility with an elongation of about 25% or more is required for pipe expansion and flare workability of double-wound pipes. FIG. 1 shows that the C content of the base steel sheet is 0.03 to satisfy the requirement. It shows that it is necessary to adjust to the range of ˜0.08%.
[0028]
FIG. 2 shows the relationship between the Al amount and N amount of the base steel sheet and the elongation value of the double-winding pipe. The manufacturing conditions of the test steel plate and pipe (tube diameter: 4.76 mm) are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.06, Si: 0.009, Mn: 0.45.P: 0.013, S: 0.008, sol Al: 0.010 to 0.090, N: 0.0010 to 0.0090, B: 0.0016, Fe: Bal
(2) Cold rolling: 83% reduction, sheet thickness: 0.335 mm
[0029]
(3) Annealing treatment (batch annealing)
Atmosphere: N 2 -12 vol% H 2 gas mixture Processing temperature / time: 650 ° C x 15 hr
(4) Temper rolling: Reduction ratio 1%
(5) Copper plating: Continuous electroplating, layer thickness 3.0μm (per side)
(6) double-wrap forming after the self-brazing treatment atmosphere: DX gas (10vol% H 2 -10vol% CO- 6vol% CO 2 -N 2, dew point: + 5 ° C.)
Processing temperature / time: 1130 ℃ × 1min
[0030]
Each symbol in FIG. 2 is as follows.
○ ... Elongation rate of 25% or more △ ... Elongation rate of AlN is less than 25% × ... AlN precipitation rate is insufficient (ferrite grain coarsening), and elongation rate is less than 25% In order to satisfy the ductility required for flare processing (elongation rate of about 25% or more), the amount of Al is adjusted to the range of 0.03 to 0.08% and the amount of N: 0.003 to 0.008%. Indicates what should be done.
[0031]
Fig. 3 shows the relationship between the B content of the base steel plate and the elongation value of the double-wound pipe (tube diameter: 4.76 mm). Fig. 4 shows the B content of the base steel plate and the ferrite grain size number of the pipe (FGS.NO FIG. 5 shows the relationship between the B content of the base steel sheet and the copper penetration depth in the pipe base steel. The manufacturing conditions of these test steel plates and double-winding pipes (tube diameter: 4.76 mm) are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.07, Si: 0.010, Mn: 0.50.P: 0.018, S: 0.005, sol Al: 0.050, N: 0.0050, B: 0.0004 ~ 0.0040, Fe: Bal
(2) Cold rolling: reduction ratio 89%, sheet thickness: 0.335 mm
[0032]
(3) Annealing treatment (batch annealing)
Atmosphere: N 2 -75 vol% H 2 gas mixtureTemperature and time: 660 ° C x 12 hr
(4) Temper rolling: Reduction ratio 1%
(5) Copper plating: Continuous electroplating, layer thickness 4.0μm (per side)
(6) double-wrap forming after the self-brazing treatment atmosphere: DX gas (10vol% H 2 -10vol% CO- 6vol% CO 2 -N 2, dew point: + 5 ° C.)
Processing temperature / time: 1130 ℃ × 1min
[0033]
As shown in FIG. 3, the double-winding pipe has high ductility with an elongation of 25% or more when the B content of the base steel plate is in the range of 0.0008 to 0.002%.
FIG. 4 shows that the ferrite structure becomes finer as the B content of the base steel sheet increases. When the amount of B is less than 0.0008%, a coarse grain structure having a farite grain size number (FGS.NO) of 6.0 or less is obtained, which causes insufficient grain boundary strength and sufficiently suppresses and prevents the penetration of grain boundary of molten copper. Can not be. On the other hand, when the amount of B exceeds 0.002%, it becomes excessively fine as FGS.N0 8.5 or more, and as described above, the ferrite structure becomes acicular in the cooling process after the brazing heat treatment.
[0034]
Furthermore, as shown in FIG. 5, as an effect of addition of B, the penetration depth of copper into the base steel of the pipe is reduced. When the copper penetration depth exceeds about 20 μm, actual damage such as lack of ductility due to grain boundary embrittlement occurs. By setting the amount of B to 0.0008% or more, it is possible to suppress the penetration depth of copper to 20 μm or less, and to prevent grain boundary embrittlement and the resulting decrease in pipe ductility.
As described above, FIGS. 3 to 5 are intended to obtain the effect of preventing the coarsening of the ferrite crystal grains and the accompanying intrusion of molten copper and the grain boundary embrittlement, and excessive refinement of the ferrite structure as an effect of adding B. Indicates that the amount of B should be adjusted to a range of 0.0008% to 0.002%.
[0035]
FIG. 6 shows a hoop of a copper-plated steel sheet according to the present invention (a flat plate material cut to a required plate width before double-winding forming), and FIG. 7 shows a double-wound pipe (brazing) formed using the hoop. Each of the ferrite structures is shown for (heat-treated) (both magnification × 100).
The production conditions of the specimens are as follows.
(1) Chemical composition of base steel sheet (wt%)
C: 0.04, Si: 0.007, Mn: 0.25.P: 0.012, S: 0.007, sol Al: 0.035, N: 0.0035, B: 0.0016, Fe: Bal
(2) Cold rolling: reduction ratio: 80%, sheet thickness: 0.335 mm
[0036]
(3) Annealing treatment (batch annealing)
Atmosphere gas: N 2 -15 vol% H 2 gas mixture Processing temperature and time: 660 ° C x 12 hr
(4) Temper rolling: Reduction ratio 1%
(5) Copper plating: Continuous electroplating, layer thickness 2.5μm (per side)
(6) Self-brazing treatment atmosphere after double winding molding: DX gas (10 vol% H 2 -10 vol% CO-6 vol% CO 2 -N 2, dew point: + 5 ° C)
Processing temperature / time: 1130 ℃ × 1 min
[0037]
FIG. 6 (hoop before double winding forming) exhibits a pancake-like ferrite structure from the surface layer of the steel sheet to the entire internal cross section. Its ferrite grain size (FGS.NO) is 8.3.
On the other hand, the ferrite structure of the steel plate surface layer portion in FIG. 7 (after the brazing treatment of the double-winding pipe) is remarkably finer than the plate thickness center portion. The surface layer has a layer thickness of about 50 μm and a crystal grain size FGS.NO of 10-12. This miniaturization of the surface layer portion occurs prior to the melting of the copper plating layer as described above, and is effective in preventing the grain boundary penetration of the molten copper.
[0038]
【Example】
[1] Production of test material Molten steel that has been melted and adjusted by degassing equipment using a converter and degassing equipment is subjected to continuous casting to form a slab, which is hot-rolled → hot-rolled sheet pickled → cold-rolled → Electrolytic cleaning treatment of cold-rolled sheet → annealing treatment → temper rolling → copper plating → double winding forming process and brazing treatment to obtain a double winding pipe (tube diameter 4.76 mm).
(1) Steel composition: See Tables 1 and 2
Nos. 1 to 14 are invention examples, and Nos. 51 to 66 are comparative examples in which the content of any element (in the table, underlined) is out of the definition of the present invention.
(2) Hot rolling heating temperature: 1200 ° C, hot rolling finishing temperature: 895 ° C, hot rolling coiling temperature: 500 ° C
(3) Cold rolling reduction: 85%, cold rolled sheet thickness: 0.335 mm
[0039]
(4) Annealing treatment (batch annealing)
Atmosphere: N 2 -H 2 mixture gas (H 2 concentration from 2 to 75 vol%)
Processing temperature: 650 ~ 700 ° C, Processing time: 8 ~ 15 hr
(5) Temper rolling: Reduction ratio 1%
(6) Copper plating (continuous electroplating): Plating layer thickness 3.0μm (per side)
(7) Double winding forming and forming method: Roll pipe making (hoop width 27.5 mm)
・ Self-brazing process:
Atmosphere: DX gas (10 vol% H 2 -10 vol% CO-6 vol% CO 2 -N 2, dew point: + 5 ° C)
Processing temperature / time: 1130 ℃ × 1 min
[0040]
[2] Pipe characteristic evaluation
(a) Tensile test:
According to JIS Z 2241 (No. 11 test piece used).
(b) Ferrite grain size:
The pipe cross-section is corroded with 5% nital and the particle size number (FGS.NO) is determined by the cutting method (JIS G 0552) (magnification: × 200).
(c) Copper penetration depth:
After the pipe cross-section was corroded with 5% nital, a Cu characteristic X-ray image of the copper welded part (magnification: × 500) was taken with an XMA analyzer to measure the penetration depth (μm).
[0041]
Tables 1 and 2 show the product pipe test results together with the chemical composition of the base steel sheet, the production conditions of the copper-plated steel sheet and the double-winding pipe.
The pipes of Invention Examples Nos. 1 to 14 have an elongation of 25% or more required for pipe expansion processing and flare processing. Further, the ferrite structure of the surface layer portion (layer thickness of about 20 to 100 μm) is remarkably fine as FGS.NO 10 to 12. Due to the refinement of the surface layer structure and the B addition effect, the penetration depth of copper is remarkably as small as about 1 to 5 μm. The center of the wall also has a relatively fine ferrite structure with FGS.NO of about 7-8. Thus, since the penetration | invasion of copper is suppressed and it has the ferrite structure | tissue of a suitable particle size over the whole thickness, the workability in a pipe expansion process or a flare process is also favorable.
[0042]
On the other hand, in Comparative Examples Nos. 51 to 66, the ductility of the pipes No. 51 and No. 52 is low because of the insufficient amount of C in the steel sheet, the ferrite grains are coarsened, and the copper penetration depth is large. This is because the grain boundaries become brittle.
The ductility of No.53 and No.54 pipes is inferior because the amount of C in the base steel sheet is too large, so excessive precipitation of carbide (Fe 3 C) in steel, excessive refinement of ferrite grains, and needles This is due to the hardening caused by the formation of a ferrite structure.
The ductility of pipes No. 55 and No. 56 (base steel sheet AL amount shortage) and No. 59 and No. 60 (base steel plate N shortage amount) are inferior. This is because the ferrite grains are coarsened and the copper penetration depth becomes large, and the grain boundaries become brittle.
[0043]
In addition, the ductility of pipes No. 57 and No. 58 (excessive amount of base steel sheet AL) and No. 61 and No. 62 (excessive amount of base steel sheet N) is inferior because of the excessive amounts of Al and N. This is due to excessive precipitation of AlN and excessive fineness of ferrite grains.
The pipe ductility of No. 63 and No. 64 (insufficient base steel sheet B amount) is low because the ferrite grain becomes coarse due to the insufficient B amount of the base steel sheet, the penetration depth of the molten copper increases, and the grain boundary becomes brittle. This is due to the fact that
The pipe ductility of No. 65 and No. 66 (excessive amount of base steel plate B) is inferior because the amount of B in the base steel plate is excessive, so that the amount of solid solution B is excessively precipitated and the ferrite crystal grains are excessive. It is refined and a needle-like ferrite structure is formed and hardened.
[0044]
[Table 1]
Figure 0003720185
[0045]
[Table 2]
Figure 0003720185
[0046]
【The invention's effect】
The copper-plated steel sheet for double-wound pipes of the present invention has high copper penetration resistance in self-brazing treatment, suppresses and prevents copper intrusion and grain boundary embrittlement caused by it, and the ferrite structure after brazing treatment is coarse It is also possible to suppress or prevent the formation of needles and needles and the accompanying hardening of pipes. Therefore, the obtained double-wound pipe has high ductility, prevents cracking in pipe expansion processing and flare processing, etc., and enables rationalization and cost reduction such as improvement of manufacturing yield and simplification of pipe processing process. At the same time, it brings about effects such as improving and stabilizing pipe quality. In addition, it is possible to cope with the complex shape of pipes and to expand and diversify the applications of double-winding pipes.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the elongation value of a double-winding pipe and the C amount of a base steel plate.
FIG. 2 is a graph showing the relationship between the elongation value of a double-winding pipe and the amounts of Al and N of a base steel plate.
FIG. 3 is a graph showing the relationship between the elongation value of a double-winding pipe and the B amount of a base steel plate.
FIG. 4 is a graph showing the relationship between the ferrite grain size number (FGS.NO) and the B amount of a base steel sheet of a double-wound pipe.
FIG. 5 is a graph showing the relationship between the penetration depth of copper into the base steel of the double-pipe pipe and the B amount of the base steel plate.
FIG. 6 is a drawing-substituting micrograph (magnification × 100) showing a ferrite structure of a copper-plated steel sheet hoop before forming a double-wound pipe.
FIG. 7 is a drawing-substituting micrograph (magnification × 100) showing a ferrite structure of a base steel sheet in a double-winding pipe.
FIG. 8 is a schematic cross-sectional view showing a double-winding pipe.
[Explanation of symbols]
1: Base steel plate 2: Copper plating layer 3: Copper fusion layer

Claims (2)

重量%で、
C :0.03〜0.08%,
Si:0.1%以下,
Mn:0.05〜0.5%,
P :0.020%以下,
S :0.015%以下,
Sol.Al:0.03〜0.08%,
N :0.003〜0.008%,
B : 0.0008〜0.002%,
残部はF及び不可避不純物からなり、微細なAlN析出物が分散した層厚20〜100μmの表層を有する素地鋼板に銅めっきを施されていることを特徴とする耐銅浸入性および加工性等にすぐれた二重巻きパイプ用銅めっき鋼板。
% By weight
C: 0.03 to 0.08%,
Si: 0.1% or less,
Mn: 0.05-0.5%,
P: 0.020% or less,
S: 0.015% or less,
Sol.Al: 0.03 to 0.08%,
N: 0.003 to 0.008%,
B: 0.0008 to 0.002%,
The remainder consists of Fe and inevitable impurities , and copper plating is applied to the base steel sheet having a surface layer with a layer thickness of 20 to 100 μm in which fine AlN precipitates are dispersed. Excellent copper-plated steel sheet for double-wound pipes.
重量%で、
C :0.03〜0.08%,
Si:0.1%以下,
Mn:0.05〜0.5%,
P :0.020%以下,
S :0.015%以下,
Sol.Al:0.03〜0.08%,
N :0.003〜0.008%,
B : 0.0008〜0.002%,
残部はF及び不可避不純物からなるスラブを熱間圧延し、圧下率40〜90%で冷間圧延した後、冷延鋼板を、水素濃度2vol%以上のN−H混合がス中、再結晶温度〜850℃の温度域で焼鈍処理し、ついで該鋼板に銅めっきを施すことを特徴とする請求項1に記載の耐銅浸入性および加工性等にすぐれた二重巻きパイプ用銅めっき鋼板の製造方法。
% By weight
C: 0.03 to 0.08%,
Si: 0.1% or less,
Mn: 0.05-0.5%,
P: 0.020% or less,
S: 0.015% or less,
Sol.Al: 0.03 to 0.08%,
N: 0.003 to 0.008%,
B: 0.0008 to 0.002%,
The remainder is a hot slab made of Fe and inevitable impurities, and after cold rolling at a rolling reduction of 40 to 90%, the cold rolled steel sheet is mixed with N 2 —H 2 with a hydrogen concentration of 2 vol% or more. The copper for double-winding pipes according to claim 1, wherein the steel plate is annealed in a temperature range of recrystallization temperature to 850 ° C, and then plated with copper on the steel sheet. Manufacturing method of plated steel sheet.
JP03076598A 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same Expired - Lifetime JP3720185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03076598A JP3720185B2 (en) 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03076598A JP3720185B2 (en) 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11229084A JPH11229084A (en) 1999-08-24
JP3720185B2 true JP3720185B2 (en) 2005-11-24

Family

ID=12312792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03076598A Expired - Lifetime JP3720185B2 (en) 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same

Country Status (1)

Country Link
JP (1) JP3720185B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1488865A1 (en) * 2003-06-18 2004-12-22 Hille & Müller GmbH Double walled metal tube, metal band and strip, and method of coating a metal strip
CN100503898C (en) * 2007-05-03 2009-06-24 福建省京泰管业有限公司 Method for manufacturing steel lining copper tube
JP5207288B2 (en) * 2008-02-27 2013-06-12 日新製鋼株式会社 Manufacturing method of high-strength copper-plated steel sheet for double-wound pipes
KR101746802B1 (en) * 2015-12-22 2017-06-13 주식회사 포스코 Cold-rolled steel sheet for continuous-type self-brazing and manufacturing method of the same
TR201611085A2 (en) 2016-08-08 2018-02-21 Bora Saman A Metal Coating Device and Method Used in the Production of Double Deck and Copper Coated Tubes
TR201611090A2 (en) 2016-08-08 2018-02-21 Bora Saman A WASHING MACHINE FOR SHEET SHEETS USED IN DOUBLE-LAYER AND COPPER-COATED PIPE PRODUCTION
KR102247418B1 (en) 2018-12-19 2021-05-03 엘지전자 주식회사 Stainless tube having copper alloy, air conditioner including the same and a method for manufacturing the same

Also Published As

Publication number Publication date
JPH11229084A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
EP2465962B1 (en) High-strength steel sheets and processes for production of the same
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP6572963B2 (en) Hot-rolled steel sheet and manufacturing method thereof
KR20210107806A (en) A hot-pressed member, a cold-rolled steel sheet for a hot-pressed member, and their manufacturing method
JP2010235995A (en) Niobium-added ferritic stainless cool-rolled steel sheet excellent in workability and manufacturability and method for manufacturing the same
JP2010235994A (en) Ferritic cold-rolled stainless steel sheet having excellent workability and method for manufacturing the same
JP6086079B2 (en) High strength high yield ratio cold rolled steel sheet and method for producing the same
JP2013124395A (en) High-strength hot-rolled steel sheet with excellent blanking property, and manufacturing method therefor
JP3720185B2 (en) Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same
TWI506146B (en) High strength cold rolled steel sheet excellent in weldability and method for manufacturing the same
JP5124865B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP6569745B2 (en) Hot rolled steel sheet for coiled tubing and method for producing the same
JP3815762B2 (en) Copper-plated steel sheet for single pipe excellent in coarse grain resistance, copper penetration resistance, etc. and method for producing the same
JP4022019B2 (en) High-strength cold-rolled steel sheet with excellent formability after welding and difficult to soften weld heat-affected zone
WO2021100534A1 (en) Hot rolled steel sheet for electroseamed steel pipe and method for producing same, electroseamed steel pipe and method for producing same, line pipe, and building structure
JP5087813B2 (en) High-tensile hot-dip galvanized steel sheet with excellent plating properties and method for producing the same
JP3720183B2 (en) Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same
JP2004270006A (en) Method of producing component having excellent shape-fixability
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP3659542B2 (en) Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same
JP4419605B2 (en) Steel sheet for double-wound pipe and manufacturing method thereof
JP3943754B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone.
JP6086078B2 (en) High-strength cold-rolled steel sheet with excellent stretch flangeability and manufacturing method thereof
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JPS633929B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term