JPH11229084A - Copper plated steel sheet for double wound pipe, excellent in copper penetration resistance, workability, and the like, and its production - Google Patents

Copper plated steel sheet for double wound pipe, excellent in copper penetration resistance, workability, and the like, and its production

Info

Publication number
JPH11229084A
JPH11229084A JP3076598A JP3076598A JPH11229084A JP H11229084 A JPH11229084 A JP H11229084A JP 3076598 A JP3076598 A JP 3076598A JP 3076598 A JP3076598 A JP 3076598A JP H11229084 A JPH11229084 A JP H11229084A
Authority
JP
Japan
Prior art keywords
steel sheet
copper
pipe
double
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3076598A
Other languages
Japanese (ja)
Other versions
JP3720185B2 (en
Inventor
Satoru Usuki
哲 臼杵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP03076598A priority Critical patent/JP3720185B2/en
Publication of JPH11229084A publication Critical patent/JPH11229084A/en
Application granted granted Critical
Publication of JP3720185B2 publication Critical patent/JP3720185B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper plated steel sheet used for manufacture of a double roll pipe and excellent in copper penetration resistance, grain coarsening resistance, workability, etc., and its production. SOLUTION: This copper plated steel sheet is constituted by applying copper plating to a steel sheet which has a chemical composition consisting of 0.03-0.08% C, <=0.1% Si, 0.05-0.5% Mn, <=0.020% P, <=0.015% S, 0.03-0.08% sol. Al, 0.003-0.008% N, 0.0008-0.002% B, and the balance essentially Fe and where fine AlN precipitates are densely dispersed in the surface layer (20 to 100 μm layer thickness). This copper plated steel sheet can be produced by applying cold rolling to a hot rolled steel plate of a slab having the above chemical composition at 40 to 90% draft, subjecting the resultant cold rolled steel sheet to annealing treatment in the temp. region between the recrystallization temp. and 850 deg.C in an N2 -H2 gaseous mixture of >=2 vol.% hydrogen concentration, and then applying copper plating to the steel sheet.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車のブレーキ
チューブや冷蔵庫の放冷管等として使用される二重巻き
パイプを製造するための耐銅浸入性および加工性等にす
ぐれた銅めっき鋼板およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-plated steel sheet having excellent copper penetration resistance and workability for producing a double-wound pipe used as a brake tube of an automobile or a cooling tube of a refrigerator. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】銅めっき鋼板を素材とする二重巻きパイ
プは、所定幅に裁断した銅めっき鋼板のフープを造管用
ロールでパイプ状に巻き重ねた後、銅の融点以上(例え
ば1130℃) に加熱されたDXガス中に適当時間(約1〜
2分程度)保持して銅めっき層を溶融し、巻き重ね面間
を融着結合させる、いわゆるセルフ・ブレージング処理
を施すことにより製造される。図8は、二重巻きパイプ
の断面を示している。1は素地鋼板(冷延鋼板)、2は
銅めっき層,3はセルフ・ブレージングにより形成され
た銅融着層であり、巻き重ね面間の接合性の良否は、渦
流探傷法や曲げ試験などにより検査される。
2. Description of the Related Art A double-wound pipe made of a copper-plated steel sheet is obtained by winding a hoop of a copper-plated steel sheet cut to a predetermined width into a pipe shape using a pipe-forming roll, and then melting the copper to a temperature equal to or higher than the melting point of copper (eg, 1130 ° C.) For a suitable time (about 1 to
It is manufactured by performing so-called self-brazing treatment in which the copper plating layer is melted while being held for about 2 minutes, and the wrapped surfaces are fused and bonded. FIG. 8 shows a cross section of a double wound pipe. 1 is a base steel plate (cold rolled steel plate), 2 is a copper plating layer, 3 is a copper fusion layer formed by self-brazing, and the quality of the bonding between the wrapped surfaces is determined by an eddy current flaw detection method, a bending test, or the like. Inspected by

【0003】二重巻きパイプの製造に使用される銅めっ
き鋼板は、セルフ・ブレージングの熱処理で、素地鋼板
の結晶組織が粗大化し過ぎないこと(耐粗粒化性)、素
地鋼板中への溶融銅の浸入(鋼板の脆化を引き起こす)
を生じにくいこと(耐銅浸入性)、および二重巻きパイ
プ成形後に行われる拡管加工やフレア加工に耐える良好
な延性を有すること等が要求される。上記銅めっき鋼板
の素地鋼として、低炭素アルミキルド鋼が使用され、特
公平8-14013 号公報には、C: 0.01〜0.15%, Si: 0.
1 %以下, Mn: 0.05〜0.6%, Al: 0.003 〜0.1 %,
P: 0.015 %以下,B: 0.0004〜0.004 %,残部はF
eおよび不可避不純物からなる素地鋼板に銅めっきを施
したものが開示されている。そこには、素地鋼板のB含
有効果として、結晶組織が微細化され,耐溶接割れ性が
改善されることが記載されている。
[0003] The copper-plated steel sheet used in the production of the double-wound pipe must not be excessively coarsened by the heat treatment of self-brazing (coarse-graining resistance). Infiltration of copper (causing embrittlement of steel sheet)
(Copper infiltration resistance), and good ductility to withstand expansion and flaring performed after forming a double wound pipe. Low carbon aluminum killed steel is used as the base steel of the copper-plated steel sheet. Japanese Patent Publication No. 8-14013 discloses that C: 0.01 to 0.15%, Si: 0.
1% or less, Mn: 0.05-0.6%, Al: 0.003-0.1%,
P: 0.015% or less, B: 0.0004 to 0.004%, and the balance is F
It discloses that a base steel plate made of e and unavoidable impurities is subjected to copper plating. It describes that as a B-containing effect of the base steel sheet, the crystal structure is refined and the weld crack resistance is improved.

【0004】[0004]

【発明が解決しようとする課題】従来の銅めっき鋼板
は、素地鋼板が、低炭素アルミキルド鋼板の範疇に属す
るものであっても、耐銅浸入性,耐粗粒化性等の不足に
より、二重巻きパイプ成形加工後のセルフ・ブレージン
グ熱処理において、溶融銅の浸入による粒界脆化やフェ
ライト組織の針状化・粗大化等による延性の低下を生じ
易く、その後の拡管加工やフレア加工で、割れを発生す
る例が多くみられる。低炭素アルミキルド鋼のB元素の
添加は、前記公報に記載されているように、フェライト
組織の微細化に有効ではあるが、B添加量や、C,sol.
Al,N等の含有量の多寡により、ブレージング熱処理に
おけるフェライト組織の粗大化・銅の浸入による粒界脆
化,あるいはブレージング処理後の冷却過程におけるフ
ェライト組織の過度の微細化や針状化等による硬質化を
生じ易い。このため、パイプ造管後の拡管加工やフレア
加工に要求される充分な成形加工性を保証することは困
難である。本発明は、二重巻きパイプに関する従来の問
題を解消し、拡管加工やフレア加工等に耐え得る良好な
加工性を保証するための改良された耐粗粒化性,耐銅浸
入性等を備えた銅めっき鋼板およびその製造方法を提供
するものである。
The conventional copper-plated steel sheet, even though the base steel sheet belongs to the category of low-carbon aluminum-killed steel sheet, has a problem in that it lacks copper penetration resistance and coarse-graining resistance. In self-brazing heat treatment after forming a heavy wound pipe, it is easy to cause grain boundary embrittlement due to infiltration of molten copper and decrease in ductility due to needle-like and coarsening of ferrite structure, and in subsequent expanding and flare processing, There are many cases where cracks occur. Although the addition of the B element to the low-carbon aluminum-killed steel is effective in refining the ferrite structure as described in the above-mentioned publication, the B addition amount, C, sol.
Depending on the content of Al, N, etc., the ferrite structure becomes coarse in the brazing heat treatment, grain boundary embrittlement due to copper intrusion, or the ferrite structure becomes excessively fine or acicular in the cooling process after the brazing treatment. Hardening easily occurs. For this reason, it is difficult to guarantee sufficient formability required for pipe expansion and flare processing after pipe formation. The present invention solves the conventional problems related to double-wound pipes, and has improved coarse-graining resistance, copper penetration resistance, and the like for ensuring good workability that can withstand tube expansion and flaring. And a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明の二重巻きパイプ
用銅めっき鋼板は、重量%で,C : 0.03〜0.0
8%,Si: 0.1%以下,Mn: 0.05〜0.5
%,P : 0.020%以下,S : 0.015%以
下,sol.Al: 0.03〜0.08%,N : 0.00
3〜0.008%,B : 0.0008〜0.002
%,残部は実質的にFeからなり、微細なAlN析出物
が分散した層厚20〜100μmの表層を有する素地鋼
板に銅めっきが施されている。
The copper-plated steel sheet for a double-wound pipe according to the present invention has a C content of 0.03 to 0.0% by weight.
8%, Si: 0.1% or less, Mn: 0.05 to 0.5
%, P: 0.020% or less, S: 0.015% or less, sol. Al: 0.03 to 0.08%, N: 0.00
3 to 0.008%, B: 0.0008 to 0.002
%, And the balance is substantially composed of Fe, and the base steel sheet having a surface layer having a layer thickness of 20 to 100 μm in which fine AlN precipitates are dispersed is plated with copper.

【0006】本発明の二重巻きパイプ用銅めっき鋼板
は、前記化学組成を有する鋼のスラブを、熱間圧延し、
圧下率40〜90%で冷間圧延した後、冷延鋼板を、水
素濃度2vol %以上のN2 −H2 混合ガス中、再結晶温
度〜850℃の温度域で焼鈍処理し、ついで該鋼板に銅
めっきを施す工程により製造される。本発明の銅めっき
鋼板を使用して製造される二重巻きパイプは、素地鋼板
の化学組成,特にC,Al,NおよびBの適量含有の効
果として、セルフ・ブレージング熱処理において、フェ
ライト組織の針状化・粗大化が抑制防止されると共に、
高い耐銅浸入性により、銅浸入とそれによる粒界脆化が
回避され、また素地鋼板の時効性等も改善される。これ
らの効果として、拡管加工やフレア加工に必要な高延性
(約25%以上の伸び率が必要とされている)が確保さ
れる。
[0006] The copper-plated steel sheet for a double-wound pipe of the present invention is obtained by hot rolling a slab of steel having the chemical composition described above,
After cold rolling at a rolling reduction of 40 to 90%, the cold-rolled steel sheet is annealed in an N 2 -H 2 mixed gas having a hydrogen concentration of 2 vol% or more in a temperature range of a recrystallization temperature to 850 ° C. It is manufactured by a process of applying copper plating to the metal. The double-wound pipe manufactured by using the copper-plated steel sheet of the present invention has a needle of a ferrite structure in a self-brazing heat treatment as an effect of an appropriate content of the chemical composition of the base steel sheet, particularly, C, Al, N and B. In addition to preventing the formation and coarsening from being suppressed,
Due to the high copper penetration resistance, copper penetration and the resulting grain boundary embrittlement are avoided, and the aging properties of the base steel sheet are also improved. As these effects, high ductility (an elongation of about 25% or more is required) required for pipe expansion and flare processing is ensured.

【0007】本発明の銅めっき鋼板の上記材質改善にお
いて、素地鋼板のB含有および表層部の微細AlNの析
出分散の効果は重要である。鋼板表層部の微細なAlN
析出物は、N2 −H2 混合ガスを雰囲気とする冷延鋼板
の焼鈍処理における窒化反応により形成される。このA
lN析出物は、粒径約50〜500Åの著しく微細な粒
子であり、二重巻きパイプのブレージング熱処理におい
て、フェライトの再結晶過程でのピン止め効果となって
素地鋼板表層に著しく微細なフェライト組織を形成せし
める。その表層組織はフェライト結晶粒度番号FGS.
NO (JIS G 0552) 約10以上と著しく微細であり、溶
融銅の粒界浸入に対する高い抵抗性を有している。
[0007] In the above-mentioned improvement of the quality of the copper-plated steel sheet of the present invention, the effects of the B content of the base steel sheet and the precipitation and dispersion of fine AlN in the surface layer are important. Fine AlN on steel sheet surface
Precipitates are formed by nitriding reaction in the annealing process of cold rolled steel sheet to atmosphere N 2 -H 2 mixture gas. This A
The 1N precipitates are remarkably fine particles having a particle size of about 50 to 500 °, and have a pinning effect in the recrystallization process of ferrite during the brazing heat treatment of the double-wound pipe, resulting in a remarkably fine ferrite structure on the surface layer of the base steel sheet. Is formed. Its surface layer structure has a ferrite grain size number FGS.
NO (JIS G 0552) It is extremely fine, about 10 or more, and has high resistance to penetration of molten copper at grain boundaries.

【0008】一方,素地鋼板に添加された鋼中のBは、
Alに比しNとの親和力が強く、熱延鋼板の巻取り段階
や冷延鋼板の焼鈍処理段階で、鋼中の固溶Nと優先的に
結合し、BN析出物を形成する。このBN析出物は、二
重巻きパイプのブレージング熱処理(1100〜115
0℃)の初期段階(約950〜1050℃)で、その一
部が分解して固溶Bと固溶Nを生成する。固溶Bは、二
重巻きパイプ温度が銅の融点(約1100℃)以上に達
するまでの間にフェライト結晶粒界に析出し、フェライ
ト結晶粒界を強化する。この粒界強化により、溶融銅の
粒界浸入が抑制防止される。また、粒界に析出したBは
フェライト結晶の異常成長を抑え、組織の粗大化の抑制
防止に奏効する。
On the other hand, B in the steel added to the base steel sheet is
It has a stronger affinity for N than Al, and is preferentially bonded to solute N in steel during the winding step of a hot-rolled steel sheet and the annealing treatment step of a cold-rolled steel sheet to form BN precipitates. This BN precipitate is subjected to a brazing heat treatment (1100 to 115) for a double wound pipe.
In the initial stage (approximately 950 to 1050 ° C.), a part thereof is decomposed to form solid solution B and solid solution N. The solid solution B precipitates at the ferrite grain boundaries until the temperature of the double-wound pipe reaches or exceeds the melting point of copper (about 1100 ° C.), and strengthens the ferrite grain boundaries. By this grain boundary strengthening, penetration of the molten copper into the grain boundary is suppressed and prevented. Further, B precipitated at the grain boundaries suppresses abnormal growth of ferrite crystals, and is effective in preventing the coarsening of the structure.

【0009】更に、ブレージング熱処理につづく冷却過
程(冷却速度: 約20〜40℃/秒)において、鋼中の
固溶BはNと結合してBN析出物を生成する。AlN析
出物についても、前記ブレージング熱処理(約1130
℃)で、その一部がAlとNに分解し鋼中に固溶する
が、ブレージング熱処理後の冷却速度は比較的大きいた
め、この冷却過程ではAlとNとの反応(AlNの析
出)は殆ど生じない。これに対し、BはAlに比しNと
の親和力が強いので、比較的大きい冷却速度でも、固溶
Nと結合しBN析出物を生成するのである。このBN析
出物の生成反応により、固溶N量(硬質化の原因とな
る)が低減し、パイプの時効性が改善され、延性が高め
られる。しかも、BN析出物はAlN析出物よりも大き
いので、パイプの降伏点(YP)の低下,延性の向上に
有利に作用する。また、このBNの析出生成により、ブ
レージング熱処理前に行われる二重巻きパイプの造管加
工性の顕著な改善効果も得られる。
Further, in the cooling step (cooling rate: about 20 to 40 ° C./sec) following the brazing heat treatment, solute B in the steel combines with N to form BN precipitates. AlN precipitates are also treated with the brazing heat treatment (about 1130).
C), a part thereof is decomposed into Al and N and forms a solid solution in the steel. However, since the cooling rate after the brazing heat treatment is relatively large, the reaction between Al and N (precipitation of AlN) during this cooling process Almost no occurrence. On the other hand, since B has a higher affinity for N than Al, it combines with solute N to form BN precipitates even at a relatively high cooling rate. This BN precipitate formation reaction reduces the amount of solute N (which causes hardening), improves aging of the pipe, and increases ductility. In addition, since the BN precipitate is larger than the AlN precipitate, it advantageously acts to lower the yield point (YP) of the pipe and improve the ductility. In addition, due to the precipitation of BN, a remarkable effect of improving the workability of the double-wound pipe performed before the brazing heat treatment can be obtained.

【0010】本発明における素地鋼板の化学組成の限定
理由は次のとおりである。 C: 0.03〜0.08% 冷延鋼板の延性を高める点からはC量は少ない程よい
が、その量が少な過ぎると、セルフ・ブレージング熱処
理において鋼板の耐粗粒化性の不足をきたす。また、粒
界強度の低下に起因して耐銅浸入性も低下する。一方C
量が多くなると、炭化物析出量の増加による延性の低下
を招き、特に0.08%を越えると、セルフ・ブレージ
ング処理後の冷却過程で、針状のフェライト組織が形成
され易く、延性の低下が顕著になる。このため、0.0
3〜0.08%とする。
The reasons for limiting the chemical composition of the base steel sheet in the present invention are as follows. C: 0.03 to 0.08% From the viewpoint of increasing the ductility of the cold-rolled steel sheet, the smaller the C content is, the better. However, if the C content is too small, the steel sheet becomes insufficient in coarse-graining resistance in self-brazing heat treatment. . Further, the copper penetration resistance is also reduced due to the decrease in the grain boundary strength. Meanwhile C
If the amount increases, the ductility decreases due to an increase in the amount of carbide precipitation. In particular, if the amount exceeds 0.08%, a needle-like ferrite structure is easily formed in the cooling process after the self-brazing treatment, and the ductility decreases. Become noticeable. Therefore, 0.0
3 to 0.08%.

【0011】Si: 0.1%以下 Siは、鋼の溶製工程における脱酸元素として添加され
る。そのための添加量は0.1%までで十分である。ま
たそれ以上の多量添加は、延性を低下させるので、これ
を上限とする。 Mn: 0.05〜0.5% Mnは、鋼の熱間脆性を防止する目的で添加される。
0.05%に満たないと、その効果が不足し、他方0.
5%を越えると、延性の低下をきたす。
Si: 0.1% or less Si is added as a deoxidizing element in the steel smelting process. The addition amount for that purpose is sufficient up to 0.1%. Further, addition of a large amount more than this lowers the ductility, so this is made the upper limit. Mn: 0.05-0.5% Mn is added for the purpose of preventing hot brittleness of steel.
If it is less than 0.05%, the effect will be insufficient, while on the other hand it will be less than 0.1%.
If it exceeds 5%, the ductility decreases.

【0012】P: 0.020%以下,Pは、降伏強度お
よび引張強度を高める効果を有するが、多量に添加する
と、延性の低下を招き、また結晶粒界に偏析して、粒界
の強度を低下させる。このため、0.020%以下とす
る。好ましくは0.008〜0.015%である。 S: 0.015% Sは、MnS等の非金属介在物を形成して鋼板の加工性
を低下させる。0.015%以下であれば、その実害は
回避されるので、これを上限とする。
P: 0.020% or less, P has an effect of increasing the yield strength and tensile strength. However, if added in a large amount, it causes a decrease in ductility and segregates at the crystal grain boundaries, and the strength of the grain boundaries is increased. Lower. Therefore, the content is set to 0.020% or less. Preferably it is 0.008 to 0.015%. S: 0.015% S forms nonmetallic inclusions such as MnS and reduces the workability of the steel sheet. If it is 0.015% or less, the actual harm is avoided, so this is set as the upper limit.

【0013】sol.Al: 0.03〜0.08% Alは、鋼の溶製工程の脱酸剤として添加される元素で
あるが、本発明では、それにとどまらず、AlNの析出
物を形成し、ブレージングにおける耐粗粒化性,耐銅浸
入性を高める目的で添加される。これらの効果を得るに
は、sol.Al量(可溶性Al量)として、少なくとも
0.03%を必要とする。しかし、多量に添加すると、
AlNの過剰析出により延性が低下し、また非金属介在
物の増加による鋼板表面品質の低下(表面疵の増加)を
きたすので、0.08%を上限とする。
Sol. Al: 0.03 to 0.08% Al is an element added as a deoxidizing agent in the steel smelting process, but in the present invention, not only that, but also a precipitate of AlN is formed. It is added for the purpose of increasing the resistance to coarsening and the penetration of copper during brazing. To obtain these effects, at least 0.03% is required as the sol.Al content (soluble Al content). However, when added in large amounts,
Since the excessive precipitation of AlN lowers the ductility, and the increase in nonmetallic inclusions lowers the steel sheet surface quality (increases in surface flaws), the upper limit is made 0.08%.

【0014】N: 0.003〜0.008%,Nは、A
lと反応し、AlNの微細な析出物を形成して素地鋼板
の耐粗粒化性を高め、ブレージング処理におけるフェラ
イト組織の粗大化を防止する。含有量が0.003%に
満たないと、AlNの析出量が不足し、耐粗粒化性を確
保することができない。他方、あまり多く添加すると、
AlNの過剰析出に伴う延性の低下,パイプの硬質化を
招く。このため、0.008%を上限とする。
N: 0.003-0.008%, N is A
reacts with 1 to form fine precipitates of AlN to increase the coarse-graining resistance of the base steel sheet and prevent the ferrite structure from becoming coarse during the brazing treatment. If the content is less than 0.003%, the precipitation amount of AlN is insufficient, and it is not possible to secure the coarse graining resistance. On the other hand, if you add too much,
This leads to a decrease in ductility due to excessive precipitation of AlN and a hardening of the pipe. Therefore, the upper limit is 0.008%.

【0015】B: 0.0008〜0.002% Bは、前述のように、ブレージング熱処理前の段階にお
いては二重巻きパイプの造管加工性を高め、ブレージン
グ熱処理においては、フェライト結晶粒の粒界に析出し
て耐粗粒化性を高めると共に、溶融銅の粒界浸入および
粒界脆化を抑制防止する。更にブレージング熱処理に続
く冷却過程では、素地鋼中の固溶Nと結合して、固溶N
量を低減しパイプを軟質化し、かつ時効劣化の防止に奏
効する。これらの効果を得るために、少なくとも0.0
008%の含有を必要とする。0.002%を超える
と、ブレージング後の冷却過程における素地鋼組織の過
度の微細化,針状化による硬質化を招き、パイプの加工
性を損なう。このため、0.002%を上限とする。
B: 0.0008 to 0.002% B, as described above, enhances the workability of the double-wound pipe before the brazing heat treatment, and increases the ferrite crystal grains in the brazing heat treatment. In addition to increasing the coarsening resistance by precipitation at the boundaries, it also prevents molten copper from entering the grain boundaries and suppressing grain boundary embrittlement. Further, in the cooling process following the brazing heat treatment, the solid solution is combined with solid solution N in the base steel to form solid solution N.
It is effective in reducing the amount, softening the pipe, and preventing aging deterioration. To achieve these effects, at least 0.0
008% content is required. If the content exceeds 0.002%, the microstructure of the base steel in the cooling process after brazing is excessively refined and hardened due to needle-like formation, thereby impairing the workability of the pipe. Therefore, the upper limit is 0.002%.

【0016】次に本発明の製造工程について説明する。
まず製鋼炉で所定の化学組成に溶製された鋼を、造塊・
分解圧延により、または連続鋳造によりスラブとし、ス
ラブ表面手入れを適宜施した後、熱間圧延する。連続鋳
造につづいて熱鋳片をそのまま加熱炉に装入して熱間圧
延するようにしてもよい。熱間圧延は常法により行なわ
れる。熱延鋼板品質や熱延効率等の点から、仕上げ温度
はAr3変態点直上の温度に調整され、巻取り温度は約5
00〜700℃の範囲が適当である。
Next, the manufacturing process of the present invention will be described.
First, steel melted to a specified chemical composition in a steelmaking furnace is cast into
The slab is formed by decomposition rolling or continuous casting, and after appropriately treating the slab surface, hot rolling is performed. After the continuous casting, the hot slab may be directly charged into a heating furnace and hot rolled. Hot rolling is performed by a conventional method. In view of the quality of hot-rolled steel sheet and hot-rolling efficiency, the finishing temperature is adjusted to the temperature just above the Ar3 transformation point, and the winding temperature is about 5
The range of 00 to 700 ° C is appropriate.

【0017】熱延鋼板を、酸洗処理の後、冷間圧延に供
する。冷間圧延は、結晶粒の粗大化を抑制し、延性の良
好な冷延鋼板を得るために、圧下率を40%以上とする
ことが必要である。圧下率が90%を越えると、結晶粒
の微細化効果は飽和し、それ以上の圧下率は圧延負荷の
増大による操業面の不利を招くので、90%を上限とす
る。
After the pickling treatment, the hot-rolled steel sheet is subjected to cold rolling. In cold rolling, it is necessary to reduce the rolling reduction to 40% or more in order to suppress the coarsening of crystal grains and obtain a cold-rolled steel sheet having good ductility. If the rolling reduction exceeds 90%, the effect of refining the crystal grains is saturated, and if the rolling reduction is higher than that, the operation surface becomes disadvantageous due to an increase in the rolling load, so the upper limit is 90%.

【0018】冷延鋼板は表面浄化処理を施されて、焼鈍
処理に付される。焼鈍処理において、鋼板は再結晶し、
また窒化反応により微細なAlN粒が緻密に分散した表
層部(AlNリッチ層)が形成される。この焼鈍処理
は、水素濃度が2体積%以上のN2 −H2 混合ガスを雰
囲気とし、再結晶温度(約600℃)〜850℃の温度
域で加熱することにより行われる。雰囲気を形成するN
2 −H2 混合ガスは、例えばNXガス(H2 :2vol%, CO:3
vol%, 残部:N2 ),DXガス(H2 :10vol%, CO:10vol%, CO
2 :7vol%, 残部:N2 ) 等を適用することができる。
[0018] The cold-rolled steel sheet is subjected to a surface cleaning treatment and then subjected to an annealing treatment. In the annealing process, the steel sheet recrystallizes,
In addition, a surface layer portion (AlN-rich layer) in which fine AlN particles are densely dispersed by the nitridation reaction is formed. This annealing treatment is performed by heating in a temperature range of a recrystallization temperature (about 600 ° C.) to 850 ° C. in an atmosphere of a N 2 —H 2 mixed gas having a hydrogen concentration of 2% by volume or more. N to form atmosphere
The 2- H 2 mixed gas is, for example, NX gas (H 2 : 2vol%, CO: 3
vol%, the balance: N 2), DX gas (H 2: 10vol%, CO : 10vol%, CO
2 : 7vol%, balance: N 2 ) etc. can be applied.

【0019】焼鈍処理の上限温度を850℃としている
のは、それ以上の高温度を必要としないだけでなく、高
温化に伴い結晶粒の成長粗大化が助長され、適正なフェ
ライト組織を確保することが困難となるからである。焼
鈍方式はバッチ焼鈍または連続焼鈍のいずれでもよい
が、比較的長い処理時間が与えられるバッチ焼鈍の場合
は、雰囲気温度を約650℃〜720℃とし、処理時間
の短い連続焼鈍の場合は、約750〜850℃に調節設
定するとよい。
The reason that the upper limit temperature of the annealing treatment is set to 850 ° C. is that not only does not require a higher temperature, but also the growth and coarsening of crystal grains are promoted with the higher temperature, and an appropriate ferrite structure is secured. This is because it becomes difficult. The annealing method may be either batch annealing or continuous annealing, but in the case of batch annealing in which a relatively long processing time is given, the ambient temperature is set to about 650 ° C to 720 ° C, and in the case of continuous annealing in which the processing time is short, about It is good to adjust and set it to 750-850 ° C.

【0020】焼鈍雰囲気をN2 −H2 混合ガスとするの
は、還元作用による鋼板の金属光沢を確保し、かつ窒化
反応によるAlNリッチ層を鋼板表層に形成するためで
ある。H2 濃度を2体積%以上に規定したのは、それよ
り低い濃度では、還元作用が十分でなく、金属光沢の確
保が困難となるからである。ただし、H2 濃度をあまり
高くすると、N2 濃度の相対的低下により、窒化反応効
率が低下するので、約95体積%を上限とするのが適当
である。焼鈍処理をより効率的に達成するために、N2
−H2 混合ガスのH2 濃度: 10〜75体積%、焼鈍雰
囲気の露点: −10℃以下の条件で焼鈍処理するのが好
ましい。
The reason why the annealing atmosphere is the N 2 -H 2 mixed gas is to secure the metallic luster of the steel sheet by the reducing action and to form an AlN-rich layer on the surface of the steel sheet by the nitriding reaction. The reason why the H 2 concentration is set to 2% by volume or more is that if the concentration is lower than that, the reducing action is not sufficient, and it is difficult to secure metallic luster. However, if the H 2 concentration is too high, the nitridation reaction efficiency is reduced due to a relative decrease in the N 2 concentration, so it is appropriate to set the upper limit to about 95% by volume. In order to achieve the annealing process more efficiently, N 2
The annealing treatment is preferably performed under the following conditions: the H 2 concentration of the —H 2 mixed gas: 10 to 75% by volume, and the dew point of the annealing atmosphere: −10 ° C. or less.

【0021】焼鈍処理過程で鋼板表層部に形成される微
細なAlN析出物(粒径: 約50〜100Å)は、前記
のようにパイプのブレージング熱処理過程で、フェライ
ト再結晶のピン止め効果となり鋼板表層に微細なフェラ
イト組織(FGS.NO: 約10以上)を形成せしめ、耐銅浸入
性を高める。この効果を十分なものとするために、Al
Nリッチ表層部の層厚は20μm以上であることを要す
る。また、その層厚が100μm以下であれば、鋼板の
加工性に実質的な悪影響を生じることはない。この表層
部の層厚は、焼鈍処理の雰囲気ガス組成,処理温度・時
間等により制御される。
The fine AlN precipitates (particle diameter: about 50 to 100 °) formed on the surface layer of the steel sheet during the annealing process serve as a pinning effect of ferrite recrystallization during the brazing heat treatment of the pipe as described above. A fine ferrite structure (FGS.NO: about 10 or more) is formed on the surface layer to enhance copper penetration resistance. To make this effect sufficient, Al
The layer thickness of the N-rich surface layer portion needs to be 20 μm or more. Further, if the layer thickness is 100 μm or less, there is no substantial adverse effect on the workability of the steel sheet. The thickness of the surface layer is controlled by the composition of the atmosphere gas, the temperature and time of the annealing.

【0022】焼鈍処理された鋼板は、常法に従って、調
質圧延および連続電気めっき等による銅めっき(めっき
層厚: 例えば1〜5μm/片面当たり)を施されて二重
巻きパイプ用銅めっき鋼板に仕上げられる。得られた銅
めっき鋼板は、二重巻きパイプに成形加工されたうえ、
巻き重ね面間を融着するブレージング熱処理(処理温
度: 約1100〜1150℃)に付される。
The annealed steel sheet is subjected to copper plating (plating layer thickness: for example, 1 to 5 μm / per side) by temper rolling, continuous electroplating, etc., according to a conventional method, and is a copper-plated steel sheet for a double wound pipe. Finished. The obtained copper-plated steel sheet is formed into a double wound pipe,
It is subjected to a brazing heat treatment (processing temperature: about 1100 to 1150 ° C.) for fusing between the winding surfaces.

【0023】ブレージング熱処理では、その初期段階で
素地鋼板の再結晶(約900〜950℃)を生起し、パ
イプ温度が銅の融点以上(約1100℃)に達すると、
銅めっき層の溶融による巻き重ね面間の融着結合が生じ
る。前述のように、この時点では既に素地鋼板の再結晶
を完了し、表層部は微細AlN粒のピン止め効果により
極めて微細なフェライト組織(FGS.NO約10以上)が形成
されており、また素地鋼板中の固溶Bの一部はフェライ
ト結晶粒界に析出している。この表層組織の微細化およ
びBの粒界析出の効果として、銅の粒界浸入およびそれ
に伴う粒界脆化を抑制防止しつつ、二重巻きパイプの巻
き重ね面の融着結合を達成する。
In the brazing heat treatment, recrystallization of the base steel sheet (about 900 to 950 ° C.) occurs in the initial stage, and when the pipe temperature reaches the melting point of copper (about 1100 ° C.),
The fusion bonding between the winding surfaces occurs due to the melting of the copper plating layer. As described above, at this point, recrystallization of the base steel sheet has already been completed, and an extremely fine ferrite structure (FGS.NO of about 10 or more) has been formed in the surface layer due to the pinning effect of the fine AlN grains. Part of the solid solution B in the steel sheet is precipitated at the ferrite grain boundary. As the effects of the refinement of the surface layer structure and the precipitation of the grain boundary of B, fusion bonding of the winding surface of the double-wound pipe is achieved while suppressing intrusion of the copper grain boundary and accompanying grain boundary embrittlement.

【0024】更に、ブレージング熱処理後の冷却過程で
は、前記のように、鋼中の固溶Bと固溶Nとの反応(B
N析出物の生成)を生じ、硬質化の原因となる固溶N量
が低減し、パイプの時効性の改善・延性の向上効果がも
たらされ、そのBN析出物が、AlN析出物と異なって
比較的大きいサイズであることも、素地鋼板の降伏点(
YP) の低下・延性の向上に有利に作用する。また、素
地鋼板の化学組成(C,Al,N,B量等)の規定の効
果として、ブレージング処理後の冷却過程でのフェライ
ト組織の針状化や粗粒化も抑制防止され、板厚中心部も
比較的微細なフェライト組織(FGS No. 約6以上)が与
えられる。これらの効果として、二重巻きパイプの拡管
加工やフレア加工等に要求される高度の加工性(伸び率
約25%以上)が確保される。
Further, in the cooling process after the brazing heat treatment, as described above, the reaction between the solid solution B and the solid solution N in the steel (B
N precipitates), the amount of solute N causing hardening is reduced, the effect of improving the aging and ductility of the pipe is brought about, and the BN precipitates are different from the AlN precipitates. Is relatively large, and the yield point (
YP) is advantageously reduced and ductility is improved. Further, as a specified effect of the chemical composition (amount of C, Al, N, B, etc.) of the base steel sheet, needle-like or coarse-grained ferrite structures in the cooling process after the brazing treatment are also suppressed and prevented. The part also has a relatively fine ferrite structure (FGS No. about 6 or more). As these effects, a high degree of workability (elongation rate of about 25% or more) required for expanding processing, flare processing, and the like of the double wound pipe is secured.

【0025】次に、二重巻きパイプの延性・加工性に及
ぼす素地鋼板の化学組成の影響について具体的に説明す
る。図1は二重巻きパイプの延性に及ぼす素地鋼板のC
含有量の影響を示している。供試鋼板およびパイプ(管
径: 4.76mm)の製造条件は下記のとおりである。 (1)素地鋼板の化学組成(wt %) C:0.01 〜0.12, Si:0.008, Mn:0.30. P:0.010, S:0.00
8, sol Al:0.040, N:0.0045, B:0.0015, Fe:Bal 。 (2)冷間圧延: 圧下率 85 %,板厚: 0.335 mm。
Next, the effect of the chemical composition of the base steel sheet on the ductility and workability of the double wound pipe will be specifically described. Fig. 1 shows the effect of C on the base steel sheet on the ductility of the double-wound pipe.
The effect of content is shown. The manufacturing conditions for the test steel plate and pipe (tube diameter: 4.76 mm) are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.01 to 0.12, Si: 0.008, Mn: 0.30. P: 0.010, S: 0.00
8, sol Al: 0.040, N: 0.0045, B: 0.0015, Fe: Bal. (2) Cold rolling: reduction rate 85%, thickness: 0.335 mm.

【0026】(3)焼鈍処理(バッチ焼鈍) 雰囲気: N 2 −30 vol% H 2 処理温度・時間: 670℃×10 hr (4)調質圧延: 圧下率 1% (5)銅めっき: 連続電気めっき,層厚 4.5μm(片面当
り) (6)二重巻き成形後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1min
(3) Annealing treatment (batch annealing) Atmosphere: N 2 -30 vol% H 2 Treatment temperature / time: 670 ° C. × 10 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating: continuous Electroplating, layer thickness 4.5μm (per side) (6) Self-brazing treatment after double winding forming Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ℃) Processing temperature / time: 1130 ℃ × 1min

【0027】図1に示したように、二重巻きパイプは、
素地鋼板のC量0.03〜0.08%の範囲において、
伸び率25%以上の高い延性を有している。C量0.0
3%未満の領域で延性が低いのは、鋼板のフェライト組
織が過度に粗大化したことによるものである。他方、C
量0.08%を越える領域での延性低下は、鋼中の炭化
物(Fe3 C)の増量とそれに伴う過度の微細化,および針
状フェライト組織の生成に起因してパイプが硬質化した
ことによる。二重巻きパイプの拡管加工・フレア加工性
には、伸び率約25%以上の延性が必要とされており、
図1は、その要求を充足するために、素地鋼板のC量を
0.03〜0.08%の範囲に調整する必要があること
を示している。
As shown in FIG. 1, the double wound pipe is
In the range of 0.03-0.08% of C amount of the base steel sheet,
It has high ductility with an elongation of 25% or more. C amount 0.0
The low ductility in the region of less than 3% is due to the ferrite structure of the steel sheet being excessively coarse. On the other hand, C
The decrease in ductility in the region exceeding 0.08% is due to the increase in the amount of carbide (Fe 3 C) in the steel and the accompanying excessive refinement, and the hardening of the pipe due to the formation of acicular ferrite structure. by. The expansion and flare workability of a double-wound pipe requires ductility of at least about 25% elongation.
FIG. 1 shows that it is necessary to adjust the C content of the base steel sheet to a range of 0.03 to 0.08% in order to satisfy the requirement.

【0028】図2は、素地鋼板のAl量, N量と二重巻
きパイプの伸び値の関係を示している。供試鋼板および
パイプ(管径:4.76 mm)の製造条件は次のとおりであ
る。 (1)素地鋼板の化学組成(wt%) C:0.06, Si:0.009, Mn:0.45. P:0.013, S:0.008, sol A
l:0.010 〜0.090, N:0.0010〜0.0090, B:0.0016, Fe:Ba
l (2)冷間圧延: 圧下率 83 %,板厚: 0.335 mm
FIG. 2 shows the relationship between the Al content and the N content of the base steel sheet and the elongation value of the double wound pipe. The manufacturing conditions for the test steel plate and pipe (tube diameter: 4.76 mm) are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.06, Si: 0.009, Mn: 0.45.P: 0.013, S: 0.008, sol A
l: 0.010 to 0.090, N: 0.0010 to 0.0090, B: 0.0016, Fe: Ba
l (2) Cold rolling: reduction rate 83%, thickness: 0.335 mm

【0029】(3)焼鈍処理(バッチ焼鈍) 雰囲気:N2 -12 vol% H 2混合ガス 処理温度・時間: 650 ℃×15hr (4)調質圧延: 圧下率 1% (5)銅めっき: 連続電気めっき, 層厚 3.0μm(片面当
たり) (6)二重巻き成形後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1min
(3) Annealing treatment (batch annealing) Atmosphere: N 2 -12 vol% H 2 mixed gas Treatment temperature / time: 650 ° C. × 15 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating: Continuous electroplating, layer thickness 3.0μm (per side) (6) Self-brazing treatment after double winding forming Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ℃) Processing temperature / time: 1130 ℃ × 1min

【0030】図2中の各記号は下記のとおりである。 ○…伸び率 25 %以上 △…AlN の過剰析出により、伸び率 25 %未満 ×…AlN の析出不足(フェライト粒粗大化)により、伸
び率 25 %未満 この図は、二重巻きパイプの拡管加工・フレア加工に要
求される延性(伸び率約25%以上)を満たすために
は、Al量: 0.03〜0.08%、N量: 0.003
〜0.008%の範囲に調整すべきことを示している。
Each symbol in FIG. 2 is as follows. ○: Elongation rate of 25% or more △: Elongation rate of less than 25% due to excessive precipitation of AlN ×: Elongation rate of less than 25% due to insufficient precipitation of AlN (coarse ferrite grains) In order to satisfy the ductility (elongation rate of about 25% or more) required for flare processing, the Al content is 0.03 to 0.08%, and the N content is 0.003.
This indicates that the value should be adjusted to the range of 0.008%.

【0031】図3は、素地鋼板のB含有量と二重巻きパ
イプ(管径: 4.76mm)の伸び値との関係、図4は、素地
鋼板のB含有量とパイプのフェライト結晶粒度番号(FG
S.NO) との関係を示し、図5は、素地鋼板のB含有量と
パイプ素地鋼内の銅浸入深さの関係を示している。これ
らの供試鋼板および二重巻きパイプ(管径:4.76 mm)の
製造条件は次のとおりである。 (1)素地鋼板の化学組成(wt%) C:0.07, Si:0.010, Mn:0.50. P:0.018, S:0.005, sol A
l:0.050, N: 0.0050,B:0.0004〜0.0040, Fe:Bal (2)冷間圧延: 圧下率 89 %,板厚: 0.335 mm
FIG. 3 shows the relationship between the B content of the base steel sheet and the elongation value of the double-wound pipe (tube diameter: 4.76 mm). FIG. 4 shows the B content of the base steel sheet and the ferrite grain size number of the pipe ( FG
FIG. 5 shows the relationship between the B content of the base steel sheet and the copper penetration depth in the pipe base steel. The manufacturing conditions for these test steel plates and double-wound pipes (tube diameter: 4.76 mm) are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.07, Si: 0.010, Mn: 0.50.P: 0.018, S: 0.005, sol A
l: 0.050, N: 0.0050, B: 0.0004 to 0.0040, Fe: Bal (2) Cold rolling: reduction rate 89%, thickness: 0.335 mm

【0032】(3)焼鈍処理(バッチ焼鈍) 雰囲気:N2 -75 vol% H 2混合ガス 処理温度・時間: 660 ℃×12hr (4)調質圧延: 圧下率 1% (5)銅めっき: 連続電気めっき, 層厚 4.0μm(片面当
たり) (6)二重巻き成形後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1min
(3) Annealing treatment (batch annealing) Atmosphere: N 2 -75 vol% H 2 mixed gas Treatment temperature / time: 660 ° C. × 12 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating: Continuous electroplating, layer thickness 4.0μm (per side) (6) Self-brazing treatment after double winding forming Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ℃) Processing temperature / time: 1130 ℃ × 1min

【0033】図3に示したように、二重巻きパイプは、
素地鋼板のB量が0.0008〜0.002%の範囲に
おいて、伸び率25%以上の高い延性を有している。ま
た、図4は、素地鋼板のB量の増加と共に、フェライト
組織が細粒化することを示している。B量が0.000
8%未満では、ファライト粒度番号(FGS.NO)が6.0 以
下の粗粒組織となり、これは粒界強度の不足をきたし、
溶融銅の粒界浸入を充分に抑制防止することができなく
なる。他方、B量が0.002%を超えると、FGS.N0
8.5以上と過度に微細化し、また前記のようにブレージ
ング熱処理後の冷却過程でフェライト組織の針状化をき
たすことになる。
As shown in FIG. 3, the double wound pipe is
When the B content of the base steel sheet is in the range of 0.0008 to 0.002%, the base steel sheet has a high ductility of at least 25%. FIG. 4 shows that the ferrite structure becomes finer as the B content of the base steel sheet increases. B amount is 0.000
If it is less than 8%, a coarse grain structure having a fallite grain size number (FGS.NO) of 6.0 or less, which results in insufficient grain boundary strength,
It becomes impossible to sufficiently suppress and prevent the penetration of the molten copper into the grain boundaries. On the other hand, if the B content exceeds 0.002%, FGS.N0
It is excessively refined to 8.5 or more, and as described above, the ferrite structure becomes acicular in the cooling process after the brazing heat treatment.

【0034】更に、図5に示したように、Bの添加効果
として、パイプの素地鋼への銅の浸入深さは小さくな
る。銅浸入深さが約20μmを超えると、粒界の脆化に
起因する延性不足等の実害が生じる。B量を0.000
8%以上とすることにより、銅の浸入深さを20μm以
下に抑え、粒界脆化とそれによるパイプ延性の低下を防
止することが可能となる。このように、図3〜図5は、
Bの添加効果としてフェライト結晶粒の粗大化とそれに
伴う溶融銅の浸入・粒界脆化、およびフェライト組織の
過度の微細化防止の効果を得るためには、B量を0.0
008%〜0.002%の範囲に調整すべきことを示し
ている。
Further, as shown in FIG. 5, as a result of the addition of B, the penetration depth of copper into the base steel of the pipe is reduced. When the copper penetration depth exceeds about 20 μm, actual harm such as insufficient ductility due to embrittlement of grain boundaries occurs. B amount 0.000
When the content is 8% or more, the penetration depth of copper can be suppressed to 20 μm or less, and it becomes possible to prevent grain boundary embrittlement and a decrease in pipe ductility due to the embrittlement. As described above, FIGS.
As an effect of adding B, in order to obtain the effect of coarsening of ferrite crystal grains and accompanying penetration of molten copper, grain boundary embrittlement, and prevention of excessive refinement of ferrite structure, B content is set to 0.0
This indicates that the adjustment should be made in the range of 008% to 0.002%.

【0035】図6は、本発明の銅めっき鋼板のフープ
(二重巻き成形加工前の所要板幅に裁断した平板材)、
図7は、そのフープを使用して造管された二重巻きパイ
プ(ブレージング熱処理済み)について、それぞれのフ
ェライト組織を示している(いずれも、倍率×10
0)。供試材の製造条件は次のとおりである。 (1)素地鋼板の化学組成(wt%) C:0.04, Si:0.007, Mn:0.25. P:0.012, S:0.007, sol A
l:0.035, N: 0.0035,B:0.0016, Fe:Bal (2)冷間圧延: 圧下率: 80%, 板厚: 0.335 mm
FIG. 6 shows a hoop of the copper-plated steel sheet of the present invention (a flat sheet cut to a required sheet width before double winding forming),
FIG. 7 shows the ferrite structure of each of the double-wound pipes (brazed heat-treated) manufactured using the hoop (all magnifications of × 10).
0). The manufacturing conditions for the test material are as follows. (1) Chemical composition of base steel sheet (wt%) C: 0.04, Si: 0.007, Mn: 0.25. P: 0.012, S: 0.007, sol A
l: 0.035, N: 0.0035, B: 0.0016, Fe: Bal (2) Cold rolling: Reduction: 80%, Thickness: 0.335 mm

【0036】(3)焼鈍処理(バッチ焼鈍) 雰囲気ガス:N2 -15 vol% H 2混合ガス 処理温度・時間: 660 ℃×12hr (4)調質圧延: 圧下率 1 % (5)銅めっき: 連続電気めっき, 層厚 2.5μm(片面当
たり) (6)二重巻き成形加工後のセルフ・ブレージング処理 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1 min
(3) Annealing treatment (batch annealing) Atmosphere gas: N 2 -15 vol% H 2 mixed gas Treatment temperature / time: 660 ° C. × 12 hr (4) Temper rolling: Reduction rate 1% (5) Copper plating : Continuous electroplating, layer thickness 2.5μm (per side) (6) Self-brazing treatment after double winding forming Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ° C) Processing temperature / time: 1130 ° C x 1 min

【0037】図6(二重巻き成形加工前のフープ)は、
鋼板の表層から内部の断面全体にわたってパンケーキ状
のフェライト組織を呈している。そのフェライト結晶粒
度(FGS.NO)は8.3である。他方、図7(二重巻きパ
イプのブレージング処理後)にける鋼板表層部のフェラ
イト組織は、板厚中心部に比し著しく細粒化している。
その表層部の層厚は約50μmであり、結晶粒度FGS.NO
は10〜12である。この表層部の微細化は、前記のよ
うに銅めっき層の溶融に先行して生起し、溶融銅の粒界
侵入を抑制防止に奏効する。
FIG. 6 (hoop before the double winding forming process)
A pancake-like ferrite structure is exhibited from the surface layer of the steel sheet to the entire internal cross section. Its ferrite grain size (FGS.NO) is 8.3. On the other hand, the ferrite structure of the surface layer of the steel sheet in FIG. 7 (after the brazing treatment of the double-wound pipe) is remarkably finer than the central part of the sheet thickness.
The thickness of the surface layer is about 50 μm, and the grain size FGS.
Is 10-12. The miniaturization of the surface layer portion occurs prior to the melting of the copper plating layer as described above, and is effective in preventing molten copper from entering the grain boundary.

【0038】[0038]

【実施例】〔1〕供試材の製造 転炉および脱ガス処理装置により溶製・成分調整を行っ
た溶鋼を連続鋳造に付してスラブとし、熱間圧延→熱延
板の酸洗処理→冷間圧延→冷延板の電解清浄処理→焼鈍
処理→調質圧延→銅めっき→二重巻き成形加工・ブレー
ジング処理の工程を経由して二重巻きパイプ(管径4.
76mm)を得る。 (1)鋼組成: 表1,表2参照 No.1〜14は発明例、No.51 〜66はいずれかの元素の含有
量(表中,下線付記)が本発明の規定から外れている比
較例である。 (2)熱間圧延 加熱温度: 1200℃、熱延仕上げ温度: 895 ℃、熱延巻取
り温度: 500 ℃ (3)冷間圧延 圧下率: 85%、冷延板板厚: 0.335 mm
Example [1] Production of test material Molten steel that has been melted and component-adjusted by a converter and degassing equipment is subjected to continuous casting to form a slab, and then hot-rolled → pickling of hot-rolled sheet → Cold rolling → Electrolytic cleaning of cold rolled sheet → Annealing treatment → Temper rolling → Copper plating → Double winding forming / brazing process Double winding pipe (tube diameter 4.
76 mm). (1) Steel composition: See Tables 1 and 2 Nos. 1 to 14 are invention examples, and Nos. 51 to 66 are contents of any element (underlined in the table) out of the range of the present invention. It is a comparative example. (2) Hot rolling Heating temperature: 1200 ° C, hot rolling finishing temperature: 895 ° C, hot rolling winding temperature: 500 ° C (3) Cold rolling reduction: 85%, cold rolled sheet thickness: 0.335 mm

【0039】(4)焼鈍処理(バッチ焼鈍) 雰囲気: N2 −H2 混合ガス(H2 濃度 2〜75 vol%) 処理温度: 650 〜700 ℃, 処理時間: 8 〜15 hr (5)調質圧延: 圧下率1% (6)銅めっき(連続電気めっき): めっき層厚 3.0μm
(片側当たり) (7)二重巻き成形加工 ・成形加工法: ロール造管(フープ幅 27.5 mm) ・セルフ・ブレージング処理: 雰囲気: DXガス(10vol% H2 -10vol% CO- 6vol% CO2 -N
2,露点:+ 5℃) 処理温度・時間: 1130℃×1 min
(4) Annealing treatment (batch annealing) Atmosphere: N 2 -H 2 mixed gas (H 2 concentration: 2 to 75 vol%) Treatment temperature: 650 to 700 ° C., Treatment time: 8 to 15 hr Quality rolling: Reduction rate 1% (6) Copper plating (continuous electroplating): Plating layer thickness 3.0μm
(Per side) (7) Double winding forming process-Forming method: Roll tube forming (hoop width 27.5 mm)-Self-brazing process: Atmosphere: DX gas (10vol% H 2 -10vol% CO-6vol% CO 2 -N
(2, dew point: + 5 ° C) Processing temperature / time: 1130 ° C x 1 min

【0040】〔2〕パイプの特性評価 (a)引張試験:JIS Z 2241 (11号試験片使用) による。 (b)フェライト粒度:パイプの断面を5 %ナイタールで腐
食し、切断法(JIS G 0552)により粒度番号(FGS.NO)を判
定(倍率: ×200 )。 (c)銅の侵入深さ:パイプの断面を5 %ナイタールで腐食
した後、XMA分析装置により、銅の溶着部(倍率: ×
500 )のCu特性X線像を撮影して浸入深さ(μm)を
測定。
[2] Evaluation of pipe characteristics (a) Tensile test: According to JIS Z 2241 (using a No. 11 test piece). (b) Ferrite grain size: The cross section of the pipe was corroded with 5% nital, and the grain size number (FGS.NO) was determined by the cutting method (JIS G 0552) (magnification: × 200). (c) Copper penetration depth: After corroding the cross section of the pipe with 5% nital, the XMA analyzer was used to weld the copper (magnification: ×
500) X-ray image of Cu characteristic was taken to measure the penetration depth (μm).

【0041】表1および表2に、素地鋼板の化学組成,
銅めっき鋼板および二重巻きパイプの製造条件と併せて
製品パイプの試験結果を示す。発明例No.1〜14のパイプ
は、拡管加工やフレア加工に必要とされる25%以上の
伸び率を有している。また、その表層部(層厚約20〜10
0 μm)のフェライト組織は、FGS.NO 10 〜12と著しく
微細である。この表層部組織の微細化とB添加効果とに
より、銅の浸入深さは約1〜5μmと著しく小さい。肉
厚中心部もFGS.NOが約7〜8の比較的微細なフェライト
組織を有している。このように銅の侵入が抑制され、か
つ肉厚全体にわたり適正な粒度のフェライト組織を有し
ているので、拡管加工やフレア加工における加工性も良
好である。
Tables 1 and 2 show the chemical composition of the base steel sheet,
The test results of the product pipe are shown together with the production conditions of the copper plated steel sheet and the double wound pipe. The pipes of Invention Examples Nos. 1 to 14 have an elongation of 25% or more, which is required for pipe expansion and flare processing. The surface layer (layer thickness of about 20 to 10)
The ferrite structure (0 μm) is extremely fine as FGS.NO 10-12. Due to the refinement of the surface layer structure and the effect of adding B, the copper penetration depth is extremely small, about 1 to 5 μm. The thick center also has a relatively fine ferrite structure with FGS.NO of about 7-8. As described above, since the penetration of copper is suppressed and the ferrite structure has an appropriate grain size over the entire thickness, the workability in the pipe expanding process and the flare process is also good.

【0042】他方、比較例No.51 〜66において、No.51
およびNo.52 のパイプの延性が低いのは、鋼板のC量の
不足のため、フェライト粒が粗大化し、銅の侵入深さが
大きく、粒界の脆化が生じたことによる。No.53 および
No.54 のパイプの延性が劣るのは、素地鋼板のC量が多
すぎるため、鋼中の炭化物(Fe3 C)量の過剰析出、フェ
ライト粒の過度の微細化、および針状のフェライト組織
の生成等による硬質化をきたしたことによる。No.55 と
No.56 (素地鋼板AL量不足)およびNo.59 とNo.60 (素
地鋼板N量不足)のパイプの延性が劣るのは、Al,N
量が少なく、AlNの析出量が不足してフェライト粒が
粗大化し、このため銅の侵入深さが大きくなり、粒界が
脆化したからである。
On the other hand, in Comparative Examples Nos. 51 to 66, No. 51
The low ductility of the No. 52 and No. 52 pipes is due to coarse ferrite grains, large copper penetration depth, and embrittlement of grain boundaries due to insufficient C content of the steel sheet. No.53 and
The poor ductility of the No. 54 pipe is due to the excessive precipitation of carbides (Fe 3 C) in the steel, excessive refinement of ferrite grains, and the needle-like ferrite structure due to the excessive C content of the base steel sheet. Due to hardening caused by the formation of No.55 and
The poor ductility of No.56 (insufficient base steel sheet AL) and No.59 and No.60 (insufficient base steel sheet N) are due to Al, N
This is because the amount of AlN was small and the amount of AlN precipitated was insufficient, and the ferrite grains were coarsened, so that the penetration depth of copper became large and the grain boundaries became embrittled.

【0043】また、No.57 とNo.58 (素地鋼板AL量過
剰)およびNo.61 とNo.62 (素地鋼板N量過剰)のパイ
プの延性が劣るのは、Al,N量が過剰であるために、
AlNの過剰析出とフェライト粒の過度の細粒化をきた
したことによる。No.63 およびNo.64 (素地鋼板 B量不
足)のパイプ延性が低いのは、素地鋼板のB量不足によ
り、フェライト粒が粗大化し、溶融銅の浸入深さが大き
くなり、粒界の脆化が生じたことによる。No.65 とNo.6
6 (素地鋼板 B量過剰)のパイプ延性が劣るのは、素地
鋼板のB量が過剰であることにより、固溶B量が過剰析
出して、フェライト結晶粒が過度に微細化したこと、お
よび針状フェライト組織が形成されて硬質化しているの
である。
The poor ductility of the pipes of No. 57 and No. 58 (excess of the base steel sheet AL) and No. 61 and No. 62 (excess of the base steel sheet N) are due to the excessive Al and N contents. To be
This is due to excessive precipitation of AlN and excessive refinement of ferrite grains. The low pipe ductility of No. 63 and No. 64 (base steel plate lacking B content) is due to the lack of B content of the base steel plate, the ferrite grains are coarsened, the penetration depth of the molten copper increases, and the grain boundaries become brittle. Due to the occurrence of No.65 and No.6
6 The inferior pipe ductility of the (base steel sheet B excess) is because the excess B content of the base steel sheet caused excessive precipitation of the solute B and excessively fine ferrite grains, and The needle-like ferrite structure is formed and hardened.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【発明の効果】本発明の二重巻きパイプ用銅めっき鋼板
は、セルフ・ブレージング処理における耐銅浸入性が高
く、銅の侵入およびそれに起因する粒界脆化を抑制防止
し、またブレージング処理後のフェライト組織の粗大化
や針状化とそれに付随するパイプの硬質化も抑制防止さ
れる。従って得られる二重巻きパイプは、高い延性を有
し、拡管加工やフレア加工等における加工割れが抑制防
止され、製造歩留りの向上,パイプ加工工程の簡素化な
どの合理化・低コスト化を可能とすると共に、パイプ品
質の向上安定化等の効果をもたらす。またパイプの加工
形状の複雑化への対応が可能となり、二重巻きパイプの
用途の拡大・多様化を可能とするものである。
The copper-plated steel sheet for a double-wound pipe according to the present invention has a high resistance to copper penetration in self-brazing treatment, prevents copper intrusion and grain boundary embrittlement caused by the copper penetration, and prevents copper intrusion after the brazing treatment. The ferrite structure is also prevented from becoming coarse or needle-like and the accompanying hardening of the pipe is prevented. Therefore, the obtained double-wound pipe has high ductility, which can prevent processing cracks during pipe expansion and flare processing, and can improve the production yield, simplify the pipe processing process, and streamline and reduce costs. At the same time, effects such as improvement and stabilization of pipe quality are brought about. In addition, it is possible to cope with complicated processing shapes of pipes, and it is possible to expand and diversify applications of double-wound pipes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】二重巻きパイプの伸び値と素地鋼板のC量との
関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the elongation value of a double-wound pipe and the C content of a base steel sheet.

【図2】二重巻きパイプの伸び値と素地鋼板のAl,N量と
の関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the elongation value of a double-wound pipe and the amounts of Al and N of a base steel sheet.

【図3】二重巻きパイプの伸び値と素地鋼板のB量との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the elongation value of a double-wound pipe and the B content of a base steel sheet.

【図4】二重巻きパイプの素地鋼板のフェライト粒度番
号(FGS.NO)とB量との関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a ferrite grain size number (FGS. NO) and a B content of a base steel sheet of a double-wound pipe.

【図5】二重巻きパイプの素地鋼への銅の浸入深さと素
地鋼板のB量との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the penetration depth of copper into the base steel of the double-wound pipe and the B content of the base steel sheet.

【図6】二重巻きパイプ成形加工前の銅めっき鋼板フー
プのフェライト組織を示す図面代用顕微鏡写真(倍率×
100)である。
FIG. 6 is a drawing-substituting micrograph (magnification ×) showing the ferrite structure of a copper-plated steel sheet hoop before forming a double-wound pipe.
100).

【図7】二重巻きパイプにおける素地鋼板のフェライト
組織を示す図面代用顕微鏡写真(倍率×100)であ
る。
FIG. 7 is a micrograph (magnification × 100) showing a ferrite structure of a base steel sheet in a double-wound pipe.

【図8】二重巻きパイプを示す模式的断面図である。FIG. 8 is a schematic sectional view showing a double wound pipe.

【符号の説明】[Explanation of symbols]

1: 素地鋼板 2: 銅めっき層 3: 銅の融着層 1: Base steel sheet 2: Copper plating layer 3: Copper fusion layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で,C : 0.03〜0.08
%,Si: 0.1%以下,Mn: 0.05〜0.5%,
P : 0.020%以下,S : 0.015%以下,so
l.Al: 0.03〜0.08%,N : 0.003〜
0.008%,B : 0.0008〜0.002%,残
部は実質的にFeからなり、微細なAlN析出物が分散
した層厚20〜100μmの表層を有する素地鋼板に銅
めっきを施されていることを特徴とする耐銅浸入性およ
び加工性等にすぐれた二重巻きパイプ用銅めっき鋼板。
1. C: 0.03 to 0.08 by weight%
%, Si: 0.1% or less, Mn: 0.05-0.5%,
P: 0.020% or less, S: 0.015% or less, so
l. Al: 0.03-0.08%, N: 0.003-
0.008%, B: 0.0008% to 0.002%, the balance being substantially composed of Fe, and copper plating is applied to a base steel sheet having a surface layer having a thickness of 20 to 100 μm in which fine AlN precipitates are dispersed. A copper-plated steel sheet for double-wound pipes, which is excellent in copper penetration resistance and workability.
【請求項2】 重量%で、 C : 0.03〜0.08%,Si: 0.1%以下,M
n: 0.05〜0.5%,P : 0.020%以下,S
: 0.015%以下,sol.Al: 0.03〜0.08
%,N : 0.003〜0.008%,B : 0.00
08〜0.002%,残部は実質的にFeからなるスラ
ブを熱間圧延し、圧下率40〜90%で冷間圧延した
後、冷延鋼板を、水素濃度2vol %以上のN2 −H2
合ガス中、再結晶温度〜850℃の温度域で焼鈍処理
し、ついで該鋼板に銅めっきを施すことを特徴とする請
求項1に記載の耐銅浸入性および加工性等にすぐれた二
重巻きパイプ用銅めっき鋼板の製造方法。
2. In% by weight, C: 0.03 to 0.08%, Si: 0.1% or less, M
n: 0.05 to 0.5%, P: 0.020% or less, S
: 0.015% or less, sol. Al: 0.03 to 0.08
%, N: 0.003 to 0.008%, B: 0.00
After hot rolling a slab consisting of 08 to 0.002% and the remainder substantially made of Fe and cold rolling at a rolling reduction of 40 to 90%, the cold rolled steel sheet is N 2 -H having a hydrogen concentration of 2 vol% or more. 2. The steel sheet according to claim 1, wherein the steel sheet is annealed in a temperature range from a recrystallization temperature to 850 ° C. in a mixed gas, and then the steel sheet is plated with copper. Manufacturing method of copper plated steel sheet for heavy wound pipe.
JP03076598A 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same Expired - Lifetime JP3720185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03076598A JP3720185B2 (en) 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03076598A JP3720185B2 (en) 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11229084A true JPH11229084A (en) 1999-08-24
JP3720185B2 JP3720185B2 (en) 2005-11-24

Family

ID=12312792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03076598A Expired - Lifetime JP3720185B2 (en) 1998-02-13 1998-02-13 Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same

Country Status (1)

Country Link
JP (1) JP3720185B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527660A (en) * 2003-06-18 2006-12-07 ヒル・アンド・ミユラー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Double wall metal tube, metal strip and strip, and method of coating metal strip
WO2008134958A1 (en) * 2007-05-03 2008-11-13 Fujian Jingtai Pipe Industry Co., Ltd. A copper plating method for steel tubular
JP2009203506A (en) * 2008-02-27 2009-09-10 Nisshin Steel Co Ltd High strength copper plated steel sheet for double-wound pipe, and method for producing the same
WO2018030974A2 (en) 2016-08-08 2018-02-15 Net Boru Sanayi Ve Dis Ticaret Kollektif Sirketi Bora Saman Ve Ortagi A washing assembly for sheet metals for producing double- layered copper-coated pipes
WO2018030972A2 (en) 2016-08-08 2018-02-15 Net Boru Sanayi Ve Dis Ticaret Kollektif Sirketi Bora Saman Ve Ortagi A metal coating device and method for production of double-layered and copper coated pipe
EP3395983A4 (en) * 2015-12-22 2018-12-19 Posco Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor
EP3670683A1 (en) * 2018-12-19 2020-06-24 LG Electronics Inc. Copper-alloy stainless pipe, air conditioner including the same, and method of manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006527660A (en) * 2003-06-18 2006-12-07 ヒル・アンド・ミユラー・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Double wall metal tube, metal strip and strip, and method of coating metal strip
WO2008134958A1 (en) * 2007-05-03 2008-11-13 Fujian Jingtai Pipe Industry Co., Ltd. A copper plating method for steel tubular
JP2009203506A (en) * 2008-02-27 2009-09-10 Nisshin Steel Co Ltd High strength copper plated steel sheet for double-wound pipe, and method for producing the same
EP3395983A4 (en) * 2015-12-22 2018-12-19 Posco Cold rolled steel sheet for continuous type self-brazing and manufacturing method therefor
WO2018030974A2 (en) 2016-08-08 2018-02-15 Net Boru Sanayi Ve Dis Ticaret Kollektif Sirketi Bora Saman Ve Ortagi A washing assembly for sheet metals for producing double- layered copper-coated pipes
WO2018030972A2 (en) 2016-08-08 2018-02-15 Net Boru Sanayi Ve Dis Ticaret Kollektif Sirketi Bora Saman Ve Ortagi A metal coating device and method for production of double-layered and copper coated pipe
US10954599B2 (en) 2016-08-08 2021-03-23 Net Boru Sanayi Ve Dis Ticaret Kollektif Sirketi Bora Saman Ve Ortagi Washing assembly for sheet metals for producing double-layered copper-coated pipes
US10961636B2 (en) 2016-08-08 2021-03-30 Net Boru Sanayi Ve Dis Ticaret Kollektif Sirketi Bora Saman Ve Ortagi Metal coating device and method for production of double-layered and copper coated pipe
EP3670683A1 (en) * 2018-12-19 2020-06-24 LG Electronics Inc. Copper-alloy stainless pipe, air conditioner including the same, and method of manufacturing the same
US11834735B2 (en) 2018-12-19 2023-12-05 Lg Electronics Inc. Copper-alloy stainless pipe, air conditioner including the same, and method of manufacturing the same

Also Published As

Publication number Publication date
JP3720185B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5707671B2 (en) Nb-added ferritic stainless steel sheet excellent in workability and manufacturability and method for producing the same
JP5560578B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof
JP2020143368A (en) High-strength galvanized steel sheet and high-strength member
WO2019176112A1 (en) Steel sheet for coal/ore carrier hold
JP2005273002A (en) Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
KR20210107806A (en) A hot-pressed member, a cold-rolled steel sheet for a hot-pressed member, and their manufacturing method
JP2007138259A (en) Spring steel wire material superior in pickling characteristics
JP3720185B2 (en) Copper-plated steel sheet for double-wound pipes excellent in copper penetration resistance and workability, etc. and method for producing the same
JP2002309345A (en) Thin steel sheet having excllent impact characteristic after quenching and production method therefor
JP3815762B2 (en) Copper-plated steel sheet for single pipe excellent in coarse grain resistance, copper penetration resistance, etc. and method for producing the same
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP3720183B2 (en) Copper-plated steel sheet for double-winding pipes with excellent resistance to copper penetration and the like, and method for producing the same
JP5087813B2 (en) High-tensile hot-dip galvanized steel sheet with excellent plating properties and method for producing the same
JP2007177303A (en) Steel having excellent ductility and its production method
JP2002180190A (en) High strength hot rolled steel sheet having excellent hole expandability and ductility and its production method
JP3659542B2 (en) Copper-plated steel sheet for double-wound pipes with excellent copper permeation resistance, and method for producing the same
JP3545697B2 (en) Low corrosion rate high strength hot rolled steel sheet excellent in hole expandability and ductility and method for producing the same
JP4419605B2 (en) Steel sheet for double-wound pipe and manufacturing method thereof
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability
JP2021055135A (en) HOT-DIP Zn-Al-Mg BASED PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
WO2019203251A1 (en) Hot-rolled steel sheet
KR102606996B1 (en) High strength cold rolled steel sheet having excellent bending workability, galva-annealed steel sheet and method of manufacturing the same
JP2002309344A (en) Thin steel sheet having excellent toughness after quenching and production method therefor
JPS633929B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term