JP5560578B2 - Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof - Google Patents
Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof Download PDFInfo
- Publication number
- JP5560578B2 JP5560578B2 JP2009083859A JP2009083859A JP5560578B2 JP 5560578 B2 JP5560578 B2 JP 5560578B2 JP 2009083859 A JP2009083859 A JP 2009083859A JP 2009083859 A JP2009083859 A JP 2009083859A JP 5560578 B2 JP5560578 B2 JP 5560578B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- tin
- workability
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 21
- 239000010960 cold rolled steel Substances 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title description 10
- 229910000831 Steel Inorganic materials 0.000 claims description 67
- 239000010959 steel Substances 0.000 claims description 67
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 56
- 239000002244 precipitate Substances 0.000 claims description 50
- 239000000203 mixture Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 18
- 229910052719 titanium Inorganic materials 0.000 claims description 17
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 229910052758 niobium Inorganic materials 0.000 claims description 13
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 238000005520 cutting process Methods 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000010935 stainless steel Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 238000009987 spinning Methods 0.000 description 41
- 239000002131 composite material Substances 0.000 description 17
- 238000012545 processing Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 238000001556 precipitation Methods 0.000 description 14
- 238000005096 rolling process Methods 0.000 description 14
- 238000000137 annealing Methods 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 13
- 238000005260 corrosion Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- 238000003466 welding Methods 0.000 description 10
- 238000007792 addition Methods 0.000 description 9
- 239000006104 solid solution Substances 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 238000009628 steelmaking Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910052726 zirconium Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000012141 concentrate Substances 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000008313 sensitization Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- -1 portion) Chemical compound 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- YLRAQZINGDSCCK-UHFFFAOYSA-M methanol;tetramethylazanium;chloride Chemical compound [Cl-].OC.C[N+](C)(C)C YLRAQZINGDSCCK-UHFFFAOYSA-M 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車の排気ガス系部材や家電等に用いられる、フェライト系ステンレス冷延鋼板及びその製造方法に関し、特にスピニング加工等が施される製品に用いて好適な加工性に優れるものに関する。 The present invention relates to a ferritic stainless steel cold-rolled steel sheet and a method for producing the same, which are used for automobile exhaust gas-based members, home appliances, and the like, and particularly to a material excellent in workability suitable for a product subjected to spinning processing or the like.
自動車排気系部材、例えば、自動車のエンジンから排出された排気ガスを処理する、触媒コンバーターのハウジングやマフラー等には、加工性と耐食性に優れたSUS409Lや、SUS432、SUS436L、SUS430J1L、SUS444などのフェライト系ステンレス鋼が多用されている。 Ferrites such as SUS409L, SUS432, SUS436L, SUS430J1L, and SUS444, which have excellent processability and corrosion resistance, are used for automobile exhaust system members, such as catalytic converter housings and mufflers that process exhaust gas discharged from automobile engines. Stainless steel is often used.
近年、触媒コンバーターのハウジングは、本体とほぼ同じ径の素管(溶接管)にスピニング加工を施して成形されることが多く、その成形精度も厳格化されていることから、素材自体に求められる要求特性も厳しくなり、素材や加工方法等に関して種々の技術が開発されている。 In recent years, the housing of a catalytic converter is often formed by spinning an element pipe (welded pipe) having the same diameter as that of the main body, and the molding accuracy is also strict, so that the material itself is required. The required characteristics have become stricter, and various technologies have been developed for materials and processing methods.
特許文献1は、スピニング加工によるテーパー鋼管の製造方法に関し、素管を3つのローラで把持し、ローラの長手方向相対移動速度と管の回転数により定まる幾何学的なスパイラル角に対する差が1度以内となるようにローラを長手方向に傾斜させて、3つのローラと素管を長手方向に相対的に移動させるとともに、ローラを管半径方向に移動させることにより、素管にテーパー加工を施すテーパー鋼管の製造方法が提案されている。 Patent Document 1 relates to a method of manufacturing a tapered steel pipe by spinning, and grips the raw pipe with three rollers, and the difference with respect to the geometric spiral angle determined by the longitudinal relative movement speed of the roller and the number of rotations of the pipe is 1 degree. The roller is inclined in the longitudinal direction so as to be within, and the three rollers and the pipe are moved relatively in the longitudinal direction, and the roller is moved in the pipe radial direction to taper the pipe. A method of manufacturing a steel pipe has been proposed.
特許文献2は、スピニング加工性に優れたフェライト系ステンレス鋼溶接管に関し、溶接金属部のミクロ組織を規定、溶接金属部の断面形状が鋼板厚さの0.9倍以上の溶込み深さと、鋼板厚さ以下の管内面側幅を有するものが開示されている。 Patent Document 2 relates to a ferritic stainless steel welded pipe excellent in spinning workability, prescribes the microstructure of the weld metal part, and has a penetration depth of 0.9 times or more of the steel sheet thickness in the cross-sectional shape of the weld metal part, What has the pipe inner surface side width below the steel plate thickness is disclosed.
特許文献3は、スピニング加工性に優れたフェライト系ステンレス鋼板及びスピニング加工方法に関し、鋼組成において、含有酸素量を100ppm以下に制御することでスピニング加工時に割れの起点となるSiO2含有介在物を極力少なくした組織とし、スピニング加工前に当該鋼板端面又は溶接管端面に切削又は研磨の端面処理を施して割れの起点となるせん断加工歪みを予め除去した後、スピニング加工を施す方法を開示している。 Patent Document 3 relates to a ferritic stainless steel plate and a spinning method that are excellent in spinning workability. In the steel composition, the inclusion of SiO 2 containing cracks at the time of spinning is controlled by controlling the oxygen content to 100 ppm or less. Disclosed is a method in which the structure is reduced as much as possible, and the end face treatment of the steel plate end face or the weld pipe end face is subjected to cutting or polishing end face processing before the spinning process to remove the shearing distortion that becomes the starting point of the crack, and then the spinning process is performed. Yes.
特許文献4は、スピニング加工性に優れた排気系膨張部材用のフェライト系ステンレス鋼管に関し、Ti,Ni,C,Mn等の主要構成元素の含有量を規制するとともに、Ti等とともに介在物や析出物を形成するSの含有量を規制することで、破断の起点となる前記介在物や析出物を抑制してスピニング加工性を向上させることが記載されている。 Patent Document 4 relates to a ferritic stainless steel pipe for an exhaust system expansion member excellent in spinning workability, and regulates the content of main constituent elements such as Ti, Ni, C, and Mn, and includes inclusions and precipitates together with Ti and the like. It is described that by controlling the content of S that forms an object, the inclusions and precipitates that are the starting point of fracture are suppressed to improve spinning workability.
しかしながら、代表的なスピニング加工割れである母材管端からの割れ(図16(b))や母材平板部における圧延直角方向の割れ(図16(a))の場合、本発明者等の検討によれば、特許文献1〜4記載の技術によっても、十分にその発生を抑制できない場合があり、その発生が鋼組成に依存する可能性のあることが知見された。 However, in the case of a crack from the base metal pipe end (FIG. 16B) which is a typical spinning crack or a crack in the direction perpendicular to the rolling in the base plate (FIG. 16A), the present inventors According to the study, it has been found that even the techniques described in Patent Documents 1 to 4 may not sufficiently suppress the occurrence, and the occurrence may depend on the steel composition.
そこで、本発明は、スピニング加工等が施される製品に用いて好適な、加工性に優れるフェライト系ステンレス冷延鋼板及びその製造方法を提供することを目的とする。 Then, an object of this invention is to provide the ferritic stainless steel cold-rolled steel plate excellent in workability suitable for the product which spin processing etc. are performed, and its manufacturing method.
発明者らは、スピニング加工の際の材料端部における破断の確率が、同一規格鋼種を素材として用いた場合であっても、コイル毎に異なることから、鋼中の成分および鋼中の不純物成分、析出物形態がスピニング加工性に影響を及ぼしていると考え、スピニング加工時亀裂の発生と伝播を助長すると考えられるNb系炭窒化物およびその集合体,及びTiNおよびその集合体の鋼中における形態と割れの関係を調査し、以下の知見を得た。 The inventors found that the components in steel and the impurity components in steel are different because the probability of fracture at the end of the material at the time of spinning processing is different for each coil even when the same standard steel type is used as the material. , Nb-based carbonitrides and their aggregates, and TiN and their aggregates in steel, which are thought to have an effect on spinning processability and are considered to promote the generation and propagation of cracks during spinning process The relationship between morphology and cracking was investigated and the following findings were obtained.
1.Nb添加フェライト系ステンレス鋼中において板状または棒状のNb炭窒化物が集合体を形成し、クラスター化(図1、2,3,4、但し、図1,2において(a)はSEM観察像、(b)はEDAXによる元素分析結果)した場合、さらにTiN(図5,6)が粗大かつ析出量が多い場合、スピニング加工時割れが顕著に発生する。 1. Plate-like or rod-like Nb carbonitrides form aggregates in Nb-added ferritic stainless steel, and are clustered (FIGS. 1, 2, 3, and 4; (B) is an elemental analysis result by EDAX), and when TiN (FIGS. 5 and 6) is coarse and has a large amount of precipitation, cracks during spinning work remarkably occur.
2.Nb添加鋼に微量なTiを5≦(Nb/Ti)≦25の範囲で添加することでNb系炭窒化物のクラスター化が抑制されるとともに、Ti含有量が少ないのでTi単独添加鋼で問題となる、例えば、5μmを超えるような粗大TiNによる母材の靱性低下を抑制し、加工性を向上させることができる。加えて、母相中の固溶C,NがNb系に比べ大きい、Ti系炭窒化物として鋼中に析出するため、再結晶温度が低下による製造性向上効果が得られる。 2. Adding a small amount of Ti to the Nb-added steel in the range of 5 ≦ (Nb / Ti) ≦ 25 suppresses clustering of Nb-based carbonitrides, and the Ti content is low, so there is a problem with the Ti-added steel For example, it is possible to suppress a decrease in toughness of the base material due to coarse TiN exceeding 5 μm and improve workability. In addition, since the solid solution C and N in the matrix phase is larger in the steel than in the Nb system and precipitates in the steel as a Ti carbonitride, an effect of improving productivity due to a decrease in the recrystallization temperature can be obtained.
3.TiNを主体とする複合析出物とは、TiNのまわりにNbN、NbC、TiC等を複合析出したもので、そのサイズと析出量を規定することによって、以下の効果が得られ、スピニング加工における破断の確率が飛躍的に低減され、
(a)Nb(C,N)のクラスター化を抑制する。
(b)TiNを核として主として炭化物を粗大に複合析出することで母相の高純度化、微細な析出物の生成を抑制する。
(c)さらに、微細な析出をしやすいNbNもTiNとの複合析出物の生成により抑制されるため鋼が軟質となる。
(d)母相が高純度化し、析出物が粗大に持ちきたされるため再結晶温度が低温化し、焼鈍温度の低温化、普通鋼ライン(CAL;Continuos Annealing Line)通板など製造性の向上も期待できる。
3. The composite precipitate mainly composed of TiN is a composite precipitate of NbN, NbC, TiC, etc. around TiN. By defining the size and the amount of precipitation, the following effects can be obtained, and fracture in spinning processing The probability of
(A) Suppresses clustering of Nb (C, N).
(B) The carbide is mainly coarsely precipitated mainly with TiN as a core, thereby suppressing the purification of the parent phase and the generation of fine precipitates.
(C) Furthermore, since NbN, which tends to be finely precipitated, is suppressed by the formation of composite precipitates with TiN, the steel becomes soft.
(D) Since the matrix phase is highly purified and the precipitates are brought coarsely, the recrystallization temperature is lowered, the annealing temperature is lowered, and the productivity of the normal steel line (CAL; Continuos Annealing Line) is improved. Can also be expected.
本発明は、上記知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.鋼組成が、質量%で、C:0.02%以下、Si:0.5%以下、Mn:1.5%以下、Cr:11〜23%、P:0.06%以下、S:0.03%以下、Al:1.0%以下、N:0.015%以下、Nb:0.50%以下、Ti:0.005〜0.10%以下、更に11<(Nb+Ti)/(C+N)、5≦(Nb/Ti)≦25を満足し、残部がFe及び不可避的不純物で、フェライト地組織はJISG0552切断法による結晶粒度番号が6.0以上であり、該地組織中にTi化合物を主体とする析出物を有し、該析出物はその径が1.0μm以上のものは、平均径が5.0μm径以下で、存在密度が1.0x102個/mm2〜8.0x105個/mm2であることを特徴とする加工性に優れたフェライト系ステンレス冷延鋼板。
2.鋼組成に、更に、質量%で、V:0.4%以下、Zr:0.4%以下の1種または2種を含有することを特徴とする1に記載の加工性に優れたフェライト系ステンレス冷延鋼板。
3.鋼組成に、更に、質量%で、Mo:3.0%以下を含有することを特徴とする1または2に記載の加工性に優れたフェライト系ステンレス冷延鋼板。
4.鋼組成に、更に、質量%で、Cu:0.05〜1.0%、Co:0.05〜0.2%、Ni:0.05〜2.0%の1種または2種以上を含有することを特徴とする1乃至3の何れか一つに記載の加工性に優れたフェライト系ステンレス冷延鋼板。
5.鋼組成に、更に、質量%で、Ca:0.0007〜0.0030%を含有することを特徴とする1乃至4の何れか一つに記載の加工性に優れたフェライト系ステンレス冷延鋼板。
6.鋼組成に、更に、質量%で、B:0.0005〜0.010%を含有することを特徴とする1乃至5の何れか一つに記載の加工性に優れたフェライト系ステンレス冷延鋼板。
7.1乃至6の何れか一つに記載の鋼組成を有するスラブを、1000〜1200℃×1時間の条件で加熱後、仕上げ温度:750〜950℃、巻取り温度:650〜850℃で熱間圧延し、800〜1100℃の熱延板焼鈍後、酸洗し、その後、冷間圧延により所望の板厚とした後、850〜1150℃の再結晶焼鈍を施すことを特徴とする、加工性に優れたフェライト系ステンレス冷延鋼板の製造方法。
The present invention has been made by further study based on the above knowledge, that is, the present invention,
1. Steel composition is mass%, C: 0.02% or less, Si: 0.5% or less, Mn: 1.5% or less, Cr: 11-23%, P: 0.06% or less, S: 0 0.03% or less, Al: 1.0% or less, N: 0.015% or less, Nb: 0.50% or less, Ti: 0.005 to 0.10% or less, and further 11 <(Nb + Ti) / (C + N ) 5 ≦ (Nb / Ti) ≦ 25 is satisfied, the balance is Fe and inevitable impurities, the ferrite texture has a grain size number of 6.0 or more according to the JISG 0552 cutting method, and a Ti compound is contained in the texture. In the case where the precipitate has a diameter of 1.0 μm or more, the average diameter is 5.0 μm or less, and the existence density is 1.0 × 10 2 pieces / mm 2 to 8.0 × 10 A ferritic stainless steel cold-rolled steel sheet excellent in workability, characterized by being 5 pieces / mm 2 .
2. The ferritic material excellent in workability according to 1, characterized in that the steel composition further contains one or two of V: 0.4% or less and Zr: 0.4% or less in mass%. Stainless cold rolled steel sheet.
3. The ferritic stainless steel cold-rolled steel sheet having excellent workability according to 1 or 2, wherein the steel composition further contains Mo: 3.0% or less by mass%.
4). In addition to the steel composition, one or more of Cu: 0.05 to 1.0%, Co: 0.05 to 0.2%, Ni: 0.05 to 2.0% in mass%. The ferritic stainless steel cold-rolled steel sheet excellent in workability as described in any one of 1 to 3, characterized by containing.
5. The ferritic stainless steel cold-rolled steel sheet having excellent workability according to any one of 1 to 4, wherein the steel composition further contains Ca: 0.0007 to 0.0030% by mass%. .
6). The ferritic stainless steel cold-rolled steel sheet having excellent workability according to any one of 1 to 5, wherein the steel composition further contains B: 0.0005 to 0.010% by mass%. .
After heating the slab which has the steel composition as described in any one of 7.1 thru | or 6 on the conditions of 1000-1200 degreeC x 1 hour, finishing temperature: 750-950 degreeC, winding temperature: 650-850 degreeC Hot rolling, pickling after hot-rolled sheet annealing at 800 to 1100 ° C., and then forming a desired thickness by cold rolling, followed by recrystallization annealing at 850 to 1150 ° C., Manufacturing method of ferritic stainless steel cold-rolled steel sheet with excellent workability.
本発明によれば、スピニング加工時に割れの起点(亀裂の発生と伝播を助長)となるクラスター化したNb(C,N)や粗大なCubic形状のTiNを主体とした析出物の形態と量を所定範囲内に制御することで、スピニング加工等の難成形時の加工性を高め、スピニング加工技術やプレス成形の適用範囲(設計の自由度)を拡大することが可能となり、産業上極めて有用である。 According to the present invention, the form and amount of precipitates mainly composed of clustered Nb (C, N) and coarse Cubic-shaped TiN, which become crack initiation points (promoting the generation and propagation of cracks) during spinning, By controlling within the specified range, it is possible to increase the workability at the time of difficult forming such as spinning processing, and to expand the application range (freedom of design) of spinning processing technology and press molding, which is extremely useful industrially. is there.
本発明は、Nb添加鋼に、Tiを微量複合添加することで、TiNを主体とする複合析出物のサイズと密度を抑制し、加工性、靱性を改善することを特徴とする。 The present invention is characterized in that by adding a small amount of Ti to Nb-added steel, the size and density of composite precipitates mainly composed of TiN are suppressed, and workability and toughness are improved.
[成分組成]説明において%は、質量%を意味するものとする。
C:0.02%以下
Cは、鋼中に固溶状態で存在すると伸び、r値を劣化させるため、製鋼工程で可能な限り除去することが望ましい。また、Cは、靱性、加工性を低下させるだけでなく、自動車の排気系部材に適用する場合に特に重要な溶接部の鋭敏化特性を低下させ、耐食性を損なうので含有量は低い程望ましい。本発明では、固溶Cは、後述するTiおよびNbにより炭化物として固定するが、C含有量が0.02%を超えると、固溶Cを固定するためのTi、Nb量が多くなりr値、伸び等加工性が低下するため、0.02%以下とする。
[Component Composition] In the description,% means mass%.
C: 0.02% or less C is desirably removed in the steelmaking process as much as possible in order to elongate and degrade the r value when present in a solid solution state in the steel. Further, C not only lowers the toughness and workability, but also lowers the sensitization property of the weld, which is particularly important when applied to an automobile exhaust system member, and impairs the corrosion resistance. In the present invention, solid solution C is fixed as carbide by Ti and Nb described later. However, when the C content exceeds 0.02%, the amount of Ti and Nb for fixing solid solution C increases and the r value is increased. In order to reduce workability such as elongation, the content is made 0.02% or less.
Si:0.5%以下
Siは、本発明における重要な元素の一つで、固溶強化で鋼を強化し、スピニング加工性および靱性を低下させる。また、SiはTiNの溶解度積に影響を及ぼし、添加量が多くなるとTiNの析出を促進するため、0.50%以下、より好ましくは0.30%以下とする。
Si: 0.5% or less Si is one of the important elements in the present invention, strengthens steel by solid solution strengthening, and decreases spinning workability and toughness. Further, Si affects the solubility product of TiN, and when the addition amount increases, the precipitation of TiN is promoted, so 0.50% or less, more preferably 0.30% or less.
Mn:1.5%以下
Mnは、MnSを形成して熱間加工性に有害なSを無害化する。Mn含有量が1.5%を超えるとその効果が飽和し、またMnの固溶強化による伸びの劣化が大きくなるため、1.5%以下とする。
Mn: 1.5% or less Mn forms MnS and detoxifies S which is harmful to hot workability. If the Mn content exceeds 1.5%, the effect is saturated, and the deterioration of elongation due to solid solution strengthening of Mn becomes large.
P:0.06%以下
Pは、強度を高めるのに有効な元素であるが、粒界に偏析しやすく、Bを含有した場合には、Bの粒界強化作用を低減させ、溶接部の耐二次加工脆性を劣化させる。また、加工性や靭性、高温疲労特性も劣化させる傾向があるので、低い方が望ましく0.06%以下とする。しかし、過度に低減すると製鋼コストの上昇を招くので、好ましくは0.01%〜0.03%に制限する。
P: 0.06% or less P is an element effective for increasing the strength, but is easily segregated at the grain boundary. When B is contained, the grain boundary strengthening action of B is reduced, and Degradation of secondary work brittleness resistance. Moreover, since there exists a tendency for workability, toughness, and high temperature fatigue characteristics to deteriorate, the lower one is desirable, and it is 0.06% or less. However, excessive reduction causes an increase in steelmaking cost, so the content is preferably limited to 0.01% to 0.03%.
S:0.03%以下
Sは、不純物元素であり、鋼板の成形性を劣化させ、また、耐食性を劣化させるので、製鋼工程でできるだけ低減することが望ましい。しかし、Pと同様、過度に低減することは製鋼コストの上昇を招くため、特性との兼ね合いも考慮し、0.03%以下、好ましくはMnやTiで固定できる0.01%以下とする。
S: 0.03% or less S is an impurity element, which deteriorates the formability of the steel sheet and deteriorates the corrosion resistance. Therefore, it is desirable to reduce it as much as possible in the steel making process. However, as in the case of P, excessive reduction leads to an increase in steelmaking cost. Therefore, considering the balance with characteristics, it is 0.03% or less, preferably 0.01% or less that can be fixed with Mn or Ti.
Cr:11〜23%
Crは、自動車用排気管として必要な耐熱性、耐酸化性および耐食性の向上に有効な元素であり含有量が11%に満たないと十分な耐食性が得られず、一方、23%を超えると靱性、加工性が低下するので、11〜23%とする。
Cr: 11-23%
Cr is an element effective for improving heat resistance, oxidation resistance and corrosion resistance necessary for an automobile exhaust pipe. If the content is less than 11%, sufficient corrosion resistance cannot be obtained. Since toughness and workability deteriorate, the content is set to 11 to 23%.
Al:1.0%以下
Alは、製鋼における脱酸剤として、0.01%以上の添加が必要である。しかし、Al含有量が1.0%を超えると固溶強化による伸びの低下が起こる。さらに、過度の添加はAlNやAl2O3他の介在物を生成し、表面外観および耐食性を劣化させるため、1.0%以下とする。
Al: 1.0% or less Al needs to be added in an amount of 0.01% or more as a deoxidizer in steelmaking. However, when the Al content exceeds 1.0%, the elongation decreases due to solid solution strengthening. Furthermore, excessive addition generates AlN, Al 2 O 3 and other inclusions, and deteriorates the surface appearance and corrosion resistance.
なお、AlはAlNとして鋼中のNを析出物に変え鋼の清浄度を低下させる。また、Alは鋼中Nと結びついてAlNを形成するため本発明で最も重要な複合析出の核となる微細なTiN形成を阻害する。特に、そのような作用の防止効果を期待する場合、0.001〜0.2%とする。 In addition, Al changes N in steel into a precipitate as AlN, and reduces the cleanliness of the steel. Further, since Al is combined with N in the steel to form AlN, it inhibits the formation of fine TiN which is the nucleus of the most important composite precipitation in the present invention. In particular, when an effect of preventing such action is expected, the content is made 0.001 to 0.2%.
N:0.015%以下
Nは、本発明で重要な元素の一つである。Tiの添加により溶鋼中または凝固初期過程の高温温度域でNaCl(B1)型結晶構造を有するTiNを形成する。TiNはその後の製造過程でNb系の炭窒化物、Ti炭化物の生成核として作用し、これらと複合析出物を形成して、鋼のマトリックスの高純度化、析出物の粗大化による析出強化能低減、再結晶温度の低温化が図られる。
N: 0.015% or less N is one of the important elements in the present invention. By adding Ti, TiN having a NaCl (B1) type crystal structure is formed in the molten steel or at a high temperature range in the initial solidification process. TiN acts as a production nucleus for Nb-based carbonitrides and Ti carbides in the subsequent manufacturing process, and forms composite precipitates with these, thereby enhancing the precipitation strengthening ability by increasing the purity of the steel matrix and coarsening the precipitates. Reduction and recrystallization temperature can be lowered.
しかし、N含有量が0.015%を超えるとTiNの析出温度が高くなり、溶鋼中でTiNが晶出することで粗大化しやすくなる。また、N含有量が多くなるとTiN析出量も増加するため、加工性の低下、TiNに起因した表面傷発生が顕著になるため、0.015%以下とする。 However, if the N content exceeds 0.015%, the precipitation temperature of TiN becomes high, and TiN crystallizes in the molten steel, so that it tends to become coarse. Further, when the N content is increased, the TiN precipitation amount is also increased, so that the workability is decreased and the generation of surface scratches due to TiN becomes remarkable.
Nb:0.50%以下、Ti:0.005〜0.10%
Nb、Tiは、本発明で最も重要な元素である。Nbは鋼中の炭素、窒素と炭窒化物を形成して固溶CおよびNを低減し、Crの炭窒化物形成を抑制、鋭敏化を抑制するとともに延性、靱性、溶接性および耐食性を高める上で有用な元素である。
Nb: 0.50% or less, Ti: 0.005-0.10%
Nb and Ti are the most important elements in the present invention. Nb forms carbon, nitrogen and carbonitride in steel to reduce solid solution C and N, suppresses formation of Cr carbonitride, suppresses sensitization and enhances ductility, toughness, weldability and corrosion resistance It is an element useful above.
しかしながら、その効果は上述したC、N含有範囲において0.50%を超えると飽和する。また、余剰のNbはクラスター状のNb系析出物を形成しやすく、さらにNbが固溶状態で存在した場合、鋼の加工性や製造性を低下させるため、0.50%以下とする。 However, the effect is saturated when it exceeds 0.50% in the above-described C and N content range. Further, excess Nb tends to form cluster-like Nb-based precipitates, and further, when Nb is present in a solid solution state, the workability and manufacturability of steel are reduced, so the content is made 0.50% or less.
また、NbはTi含有量との兼ね合いから析出物の形態と密度、すなわち、0.3〜2.0μm程度のTiNを起点としたTi/Nb複合析出物の析出量、サイズや析出形態に影響を及ぼす。 In addition, Nb affects the form and density of precipitates in consideration of the Ti content, that is, the precipitation amount, size and precipitation form of Ti / Nb composite precipitates starting from TiN of about 0.3 to 2.0 μm. Effect.
すなわち、TiNは形状がCubic状であり、端部に応力が集中しやすく、加工時割れの発生と伝播の起点となると考えられるため、本発明では、上記Nb含有量に対して、鋼の加工性、製造製確保の観点からTi含有量を0.005〜0.10%とする。 That is, TiN has a Cubic shape, stress is likely to concentrate at the end, and it is considered that it becomes a starting point of cracking and propagation during processing. Therefore, in the present invention, the processing of steel is performed with respect to the Nb content. From the standpoint of securing properties and manufacturing, the Ti content is set to 0.005 to 0.10%.
Ti含有量が0.10%を超えると、比較的粗大なTiNが形成されやすくなり加工性および靭性を低下させる。また、0.005%未満だとTiN複合析出による鋼の特性改善効果が認められない。 When the Ti content exceeds 0.10%, relatively coarse TiN is likely to be formed, and workability and toughness are reduced. On the other hand, if it is less than 0.005%, the effect of improving the properties of steel by TiN composite precipitation is not recognized.
Nb,Tiを複合添加した場合、Ti,Nb単独添加に比べて以下の利点がある。
1.図9、10はTiNを核とした複合析出物のSEM画像、図11は図10に示したTiNのEPMAによる元素マッピング像で(a)はNb、(b)はTi,(c)はC,(d)はFeの分析例を示す。図12は図10に示したTiNを核とした複合析出物の模式図を示している。TiNの周囲(エッジ部分)にNbC、TiCが複合析出しており、エッジ部への応力集中を緩和する。尚、図9に示したSEM画像は、微量電流計付き定電位電解装置を用い、非水溶性電解液(10%AA液)中で定電位電解エッチングするspeed法(Selective Potentio−static Etching by Electrolytic Dissolutionの略)で析出物を現出させて観察した画像である。
2.Ti単独鋼に比べTiNサイズが小さく、ストリンガー(粗大TiNに起因した擦り傷)や亀裂の発生・伝播の起点になると考えられる粗大(5μm以上)析出物を抑制できる。
3.また、Nb−Ti複合添加ではNb単独添加鋼に比べ、1〜3μm程度のTiN周囲にNbおよびTi系炭化物が複合析出しているので、微細かつ板状のNbN析出を抑制することができる。その結果、マトリックス中の微細析出物が低減し、析出強化能の低減により軟質化が期待される。
4.また、析出物を比較的等方的な形状で粗大に制御できるので、再結晶温度の低減も期待できる。
When Nb and Ti are added in combination, the following advantages are obtained as compared with the addition of Ti and Nb alone.
1. 9 and 10 are SEM images of composite precipitates with TiN as a nucleus, FIG. 11 is an element mapping image of TiN shown in FIG. 10 by EPMA, (a) is Nb, (b) is Ti, (c) is C , (D) shows an analysis example of Fe. FIG. 12 shows a schematic diagram of a composite precipitate having TiN as a nucleus shown in FIG. NbC and TiC are precipitated together around TiN (edge portion), and the stress concentration on the edge portion is alleviated. In addition, the SEM image shown in FIG. 9 is a speed method (Selective Potentio-static Etching by Electrical) in which a potentiostatic electrolysis apparatus with a trace ammeter is used and electroless etching is performed in a non-aqueous electrolyte (10% AA solution). This is an image obtained by observing precipitates by abbreviation (Dissolution).
2. The TiN size is smaller than Ti single steel, and coarse (5 μm or more) precipitates that are thought to be the starting point for the generation and propagation of stringers (abrasion caused by coarse TiN) and cracks can be suppressed.
3. Further, in the Nb—Ti composite addition, Nb and Ti-based carbides are compositely precipitated around TiN of about 1 to 3 μm as compared with the steel added with Nb alone, so that fine and plate-like NbN precipitation can be suppressed. As a result, fine precipitates in the matrix are reduced, and softening is expected by reducing the precipitation strengthening ability.
4). Moreover, since the precipitate can be coarsely controlled with a relatively isotropic shape, a reduction in the recrystallization temperature can be expected.
11<(Nb+Ti)/(C+N)
本パラメータ式は、Ti,Nb系炭窒化物形成によるC,Nの固定、特に溶接部でのCr炭化物析出に起因した鋭敏化を抑制するもので、11<(Nb+Ti)/(C+N)とする。
11 <(Nb + Ti) / (C + N)
This parameter equation suppresses sensitization due to the fixation of C and N by Ti, Nb-based carbonitride formation, in particular, Cr carbide precipitation in the weld zone, and 11 <(Nb + Ti) / (C + N). .
5≦(Nb/Ti)≦25
本パラメータ式は、Ti,Nb複合添加鋼においてTiNを微細に析出させるために規定する。Nb/Tiが5未満では、複合析出物の核となるTiNが粗大になりスピニング加工性の低下をまねく。 25を超えると複合添加の材質改善効果が十分得られないため、5≦(Nb/Ti)≦25とする。
5 ≦ (Nb / Ti) ≦ 25
This parameter formula is defined in order to precipitate TiN finely in the Ti and Nb composite added steel. If Nb / Ti is less than 5, TiN that is the core of the composite precipitate becomes coarse, resulting in a decrease in spinning processability. If it exceeds 25, the material improvement effect of the composite addition cannot be obtained sufficiently, so 5 ≦ (Nb / Ti) ≦ 25.
以上が本発明の基本成分組成であるが、更に特性を向上させる場合、V,Zr,Mo,Cu,Co,Ni,Ca,Bの一種または二種以上を添加する。 The above is the basic component composition of the present invention, but when further improving the characteristics, one or more of V, Zr, Mo, Cu, Co, Ni, Ca and B are added.
V:0.4%以下、Zr:0.4%以下
V,Zrはいずれも炭化物形成により鋼中の固溶炭素の無害化を目的として添加される。これら元素の添加により耐食性や深絞り性(r値)を向上させる効果を有しており、単独、もしくは複合して添加する。
V: 0.4% or less, Zr: 0.4% or less Both V and Zr are added for the purpose of detoxifying solute carbon in steel by forming carbides. The addition of these elements has the effect of improving the corrosion resistance and deep drawability (r value), and is added alone or in combination.
また、これらの添加で形成された各種炭化物は、熱延板の粒径を微細化してr値の向上に寄与するとともに、仕上げ焼鈍における結晶粒成長を抑制し、微細組織とすることにより耐二次加工脆性を向上させる。 In addition, various carbides formed by these additions contribute to the improvement of the r value by reducing the grain size of the hot-rolled sheet, while suppressing the crystal grain growth in the finish annealing and making it a fine structure. Improves subsequent processing brittleness.
V:0.4%、Zr:0.4%を超えて添加すると固溶V,Zr量が鋼中に多くなり鋼の加工性を損なうため、上限をV:0.4%、Zr:0.4%とした。Tiとの複合添加を考えた場合、その効果を阻害しないために、V:0.2%以下、Zr:0.2%以下とすることが好ましい。 V: 0.4%, Zr: If added over 0.4%, the amount of solute V and Zr increases in the steel and impairs the workability of the steel, so the upper limit is V: 0.4%, Zr: 0 4%. When considering the combined addition with Ti, in order not to inhibit the effect, it is preferable to set V: 0.2% or less and Zr: 0.2% or less.
Mo:3.0%以下
Moも、Cu同様、耐食性の改善に有効な元素である。しかしながら、3.0%を超えて添加すると、スピニング加工性が低下するだけでなく、オーステナイト相の安定性が低下し、特に溶接熱影響部の靱性が低下するため、3.0%以下とする。なお、スピニング加工性と耐食性の両立という観点からは 0.1〜1.0 %の範囲が好適である。
Mo: 3.0% or less Mo, like Cu, is an element effective for improving corrosion resistance. However, if added over 3.0%, not only the spinning workability is lowered, but also the stability of the austenite phase is lowered, and particularly the toughness of the weld heat affected zone is lowered. . In addition, the range of 0.1 to 1.0% is preferable from the viewpoint of both spinning workability and corrosion resistance.
Cu:0.05〜1.0%以下、Co:0.05〜0.2%、Ni:0.05〜2.0%
Cu、Co、Niは、耐食性、特に耐硫酸溶液中における耐食性を向上させる。しかしながら、Cu:1.0%、Co:0.2%、Ni:2.0%超えて添加すると、熱間圧延等における熱間割れのおそれが生じる。
Cu: 0.05 to 1.0% or less, Co: 0.05 to 0.2%, Ni: 0.05 to 2.0%
Cu, Co, and Ni improve the corrosion resistance, particularly the corrosion resistance in a sulfuric acid solution. However, if Cu is added in excess of 1.0%, Co: 0.2%, Ni: 2.0%, there is a risk of hot cracking in hot rolling or the like.
また上述した効果は、Cu:0.05%、Co:0.05%、Ni:0.05%以上添加しないと明瞭に現れないのでCu:0.05〜1.0%以下、Co:0.05〜0.2%、Ni:0.1〜2.0%とする。 Further, the effects described above do not appear clearly unless Cu: 0.05%, Co: 0.05%, Ni: 0.05% or more, so Cu: 0.05 to 1.0% or less, Co: 0 0.05-0.2%, Ni: 0.1-2.0%.
Ca:0.0007〜0.0030%
Caは、微量の添加により、Ti添加鋼の連続鋳造の際に発生しやすいTi系介在物によるイマージョンノズルの閉塞を防止する効果を有する。0.0007%を超えないとその効果は少なく、一方、0.0030%を超えると耐食性を著しく低下させる。好ましくは、0.0010〜0.0015%である。
Ca: 0.0007 to 0.0030%
Ca has the effect of preventing clogging of the immersion nozzle due to Ti inclusions that are likely to occur during continuous casting of Ti-added steel due to the addition of a small amount of Ca. If it does not exceed 0.0007%, the effect is small. On the other hand, if it exceeds 0.0030%, the corrosion resistance is remarkably lowered. Preferably, it is 0.0010 to 0.0015%.
B:0.0005〜0.010%
Bは、焼入れ性の向上を通じて特に溶接熱影響部の靭性改善に効果がある。しかしながら、含有量が0.0005%未満ではその効果に乏しく、一方0.01%を超える添加では、硬化が大きくなり、母材、溶接熱影響部とも、じん性および加工性が損なわれるため、0.0005〜0.010%とする。
B: 0.0005 to 0.010%
B is particularly effective in improving the toughness of the heat affected zone by improving the hardenability. However, if the content is less than 0.0005%, the effect is poor. On the other hand, if the content exceeds 0.01%, the hardening becomes large, and the toughness and workability of both the base material and the weld heat affected zone are impaired. 0.0005 to 0.010%.
本発明ではSn:0.3%以下、Mg:0.005%以下の一種または二種を含有していても、本発明の各特性に格別の影響を及ぼさないため、これらの元素を添加しても良い。上述した成分の他は、Feおよび不可避的不純物である。 Even if one or two of Sn: 0.3% or less and Mg: 0.005% or less are contained in the present invention, these elements are not added because they do not have a special influence on each characteristic of the present invention. May be. In addition to the components described above, Fe and unavoidable impurities.
[ミクロ組織]
1.母相フェライト組織
本発明では、ミクロ組織の母相フェライト組織は、JISG0552切断法による結晶粒度番号が6.0以上のフェライト単相組織とする。
[Microstructure]
1. In the present invention, the microstructure ferrite structure of the microstructure is a ferrite single-phase structure having a crystal grain size number of 6.0 or more according to the JISG0552 cutting method.
冷延鋼板の結晶粒径の大きさと表面粗さは、耐二次加工脆性や加工後の肌荒れに大きな影響を及ぼし、粒度番号(JISG0552)が6.0超えると著しくスピニング加工性が低下するため、平均結晶粒径は粒度番号6.0以上とする。望ましくは、平均結晶粒径を7.5以下とする。 The size of crystal grain size and surface roughness of cold-rolled steel sheets have a great influence on the resistance to secondary work embrittlement and rough skin after processing, and when the grain size number (JISG 0552) exceeds 6.0, spinning workability is significantly reduced. The average grain size is 6.0 or more. Desirably, the average crystal grain size is 7.5 or less.
尚、粒度番号はJISG0552に定める切断法で測定し、圧延方向(L方向)に平行な板厚断面における×100倍の観察面について5視野観察しその平均値として求める。 The grain size number is measured by the cutting method defined in JISG0552, and is observed as 5 averages on an observation surface of x100 times in the plate thickness section parallel to the rolling direction (L direction), and is obtained as an average value.
2.析出物
本発明では、スピニング加工や難成形時に亀裂の発生と伝播の起点となるTi化合物を主体とする析出物の大きさ及び密度を制限する。具体的にはTiNを主体とする(TiNおよびTiCなどの複合炭化物が主)介在物、さらにNb系析出物に起因した繊維状の集合体およびNb系を主体とした複合析出物を平均径が5.0μm以下で、析出物の存在密度:1.0x102個/mm2〜8.0x105個/mm2以下の、1μm径以上の炭窒化物およびその集合体と規定する。ここで径とは(長径+短径)/2とする。
2. Precipitates In the present invention, the size and density of precipitates mainly composed of a Ti compound that is the starting point of crack generation and propagation during spinning and difficult forming are limited. Specifically, inclusions mainly composed of TiN (mainly composite carbides such as TiN and TiC), fibrous aggregates derived from Nb-based precipitates, and composite precipitates mainly composed of Nb-based materials have an average diameter. It is defined as a carbonitride having a diameter of 1 μm or more and an aggregate thereof having a density of 5.0 μm or less and a precipitate density of 1.0 × 10 2 pieces / mm 2 to 8.0 × 10 5 pieces / mm 2 . Here, the diameter is (major axis + minor axis) / 2.
TiおよびNb系炭窒化物の存在密度が高いとクラスター(凝集化)した場合、微細なTiおよびNb系炭窒化物でも割れの起点となりやすい。また亀裂の伝播サイトが多く、割れが助長されるため、複合析出物の核となるTiNの密度を8.0x105個/mm2以下とする。 When the density of Ti and Nb carbonitrides is high, if they are clustered (agglomerated), even fine Ti and Nb carbonitrides are likely to be the starting point of cracking. In addition, since there are many crack propagation sites and cracks are promoted, the density of TiN serving as the core of the composite precipitate is set to 8.0 × 10 5 pieces / mm 2 or less.
なお、精錬での負荷、鋼中のC,Nを十分固着するために必要なTi含有量を確保するため、TiNの下限密度を1.0x102個/mm2とする。表面傷の観点からは、TiNの析出物密度は好ましく5.0x104個/mm2以下となる。 Note that the lower limit density of TiN is set to 1.0 × 10 2 pieces / mm 2 in order to secure the Ti content necessary for sufficiently fixing the load during refining and C and N in the steel. From the viewpoint of surface scratches, the TiN precipitate density is preferably 5.0 × 10 4 pieces / mm 2 or less.
粗大なCubic形状のTiNや板状または棒状のNb(C,N)集合体形成により、成形加工性が低下しやすくなる原因、せん断端面に割れ(特に端面われ)が発生しやすくなる原因については、次のように考えられる。 Regarding the reason why forming processability tends to be lowered due to the formation of coarse Cubic-shaped TiN and plate-like or rod-like Nb (C, N) aggregates, and the cause of cracks (especially end face cracks) being likely to occur on the shear end face. It is considered as follows.
TiNは他のTi系析出物に比べ析出温度が高温で粗大化しやすく、液相中に析出した場合、最大10μmを超えるものも見られる。さらに、粗大であるとともに立方晶(Cubic)形状(図6)であるため、端面に応力が集中しやすい。 TiN tends to coarsen at higher temperatures than other Ti-based precipitates, and when it precipitates in the liquid phase, a maximum of 10 μm is observed. Furthermore, since it is coarse and has a cubic (Cubic) shape (FIG. 6), stress tends to concentrate on the end face.
すなわち粗大なTiNを主体とする析出物は加工時端面に応力が集中し、亀裂の発生と伝播の起点となりやすいため、母材せん断端の変形能に影響を及ぼし、破断面の割合を増加させる。 In other words, coarse TiN-based precipitates concentrate stress on the end face during processing, and are likely to become the starting point of crack generation and propagation, thus affecting the deformability of the base metal shear edge and increasing the fracture surface ratio. .
また、Nb系炭窒化物は鋼中では母相と整合析出した場合、板状に析出しやすい。また、板状に析出した場合単体としてはTiNに比べ微細であるが、複数の板状析出物がかたまって生成しやすく、圧延方向に数μ〜10μmに近い集合体を形成することがある。その場合、これらクラスター化したNb系析出物端部が変形時ボイドの起点となり割れの発生を助長する。すなわち、Nb系析出物は単体では小さくとも圧延長手方向にクラスター化した場合加工性を低下させるため有害である。 In addition, Nb-based carbonitrides are likely to precipitate in a plate shape when aligned with the parent phase in steel. Further, when precipitated in a plate shape, the single substance is finer than TiN, but a plurality of plate-like precipitates are easily formed and may form an aggregate close to several μm to 10 μm in the rolling direction. In that case, the end portions of these clustered Nb-based precipitates become the starting point of voids during deformation, and promote the generation of cracks. That is, the Nb-based precipitates are harmful because they reduce workability when clustered in the longitudinal direction of the rolling even if they are small.
また、これら析出物が存在した場合、破断面の割合が増加した端面は破断限界歪みが増加するために、端面に引張応力が発生するスピニング加工が施されるとき、加工割れに至り、その伝播が助長される。 In addition, when these precipitates are present, the end face with an increased fracture surface ratio increases the fracture limit strain, and therefore when the end face is subjected to a spinning process in which tensile stress is generated, it leads to a work crack and its propagation. Is encouraged.
TiおよびNb系炭窒化物の析出物存在密度は例えば次のようにして求める。試験片の板面に垂直で、かつ圧延方向に平行な断面を10%AA液(10%アセチルアセトン‐1%塩化テトラメチルアンモニウム‐メタノール)で電解した後、透過型電子顕微鏡(加速電圧200kV)で0.2万〜6万倍の倍率で、視野にある各種析出物を大きい順に50個(あるいはこれ以上)観察する。図8に測定例を示す。 The precipitate density of Ti and Nb-based carbonitrides is determined, for example, as follows. A section perpendicular to the plate surface of the test piece and parallel to the rolling direction was electrolyzed with 10% AA solution (10% acetylacetone-1% tetramethylammonium chloride-methanol), and then transmitted using a transmission electron microscope (acceleration voltage 200 kV). At a magnification of 20,000 to 60,000 times, 50 (or more) various precipitates in the visual field are observed in the descending order. FIG. 8 shows a measurement example.
なお、析出物は、個々にEDAXを用いて元素分析を行い、組成を調べることにより、同定できる。TiNの形状はほぼ立方体または直方体、Nb系の炭窒化物は直方体(板状)であることが多い。個々の析出物もしくはクラスター化した析出物について、観察面とほぼ平行となる面をなす長辺方向の切断線分を長軸とし、この長軸と直交する方向(短辺方向)の最大切断線分を短軸として、(長軸長さ+短軸長さ)/2を求め、これを全析出物観察個数について平均したものを析出物平均径とした。 In addition, a precipitate can be identified by conducting an elemental analysis using EDAX and examining the composition. The shape of TiN is almost a cube or a rectangular parallelepiped, and the Nb-based carbonitride is often a rectangular parallelepiped (plate shape). For individual precipitates or clustered precipitates, the long cutting line segment that forms a plane almost parallel to the observation plane is the long axis, and the maximum cutting line in the direction perpendicular to the long axis (short side direction) Using the minute as the minor axis, (major axis length + minor axis length) / 2 was determined, and this was averaged over the total number of precipitates observed to obtain the average precipitate diameter.
本発明に係るフェライト系ステンレス冷延鋼板は、製鋼工程で本発明の組成要件を満たすように溶製・鋳造した鋼素材を、熱間圧延工程、熱延板焼鈍工程(例えば箱焼鈍)、酸洗工程で順次処理して熱延板となし、これをさらに冷延工程、仕上げ焼鈍工程(例えば連続焼鈍)で順次処理して冷延焼鈍板となすという方法で製造するのが好適である。 The ferritic stainless steel cold rolled steel sheet according to the present invention is a steel material that has been melted and cast so as to satisfy the composition requirements of the present invention in the steelmaking process, a hot rolling process, a hot rolled sheet annealing process (for example, box annealing), an acid It is preferable to manufacture by a method in which a hot-rolled sheet is formed by sequentially processing in a washing process, and this is further processed in a cold-rolled process and a finish annealing process (for example, continuous annealing) to form a cold-rolled annealed sheet.
具体的には、上記鋼組成を有するスラブを、1000〜1200℃×1時間の条件で加熱後、仕上げ温度:750〜950℃、巻取り温度:650〜850℃で熱間圧延し、800〜1100℃の熱延板焼鈍後、酸洗し、その後、冷間圧延により所望の板厚とした後、850〜1150℃の再結晶焼鈍を施すことが望ましい。 Specifically, the slab having the above steel composition is heated under conditions of 1000 to 1200 ° C. × 1 hour, and then hot-rolled at a finishing temperature of 750 to 950 ° C. and a winding temperature of 650 to 850 ° C., 800 to It is desirable that after hot-rolled sheet annealing at 1100 ° C., pickling, and then cold rolling to obtain a desired thickness, followed by recrystallization annealing at 850 to 1150 ° C.
なお、製鋼工程では、鋼組成の調整に加え、TiN平均径の制御も行なう。TiN平均径を制御するには、連続鋳造における溶鋼過熱度(鋳造温度−鋼の凝固開始温度)を15〜60℃とし、TiNが析出・粗大化する温度域である1500〜1300℃間の平均冷却速度を5℃/秒以上とすることが肝要である。好ましくは7℃/秒以上である。 In the steelmaking process, in addition to adjusting the steel composition, the TiN average diameter is also controlled. In order to control the TiN average diameter, the molten steel superheat degree in continuous casting (casting temperature—solidification start temperature of steel) is set to 15 to 60 ° C., and the average between 1500 to 1300 ° C., which is the temperature range in which TiN precipitates and coarsens. It is important to set the cooling rate to 5 ° C./second or more. Preferably, it is 7 ° C./second or more.
なお、以上説明した本発明鋼板を用いて、溶接によりパイプに組み立てる場合には、TIG、MIG、ERW等のアーク溶接や、電縫溶接、レーザー溶接など、通常の溶接方法はすべて適用可能である。以下、実施例に基づいて、本発明をさらに詳しく説明する。 In addition, when assembling a pipe by welding using the steel sheet of the present invention described above, all ordinary welding methods such as arc welding such as TIG, MIG, and ERW, electric welding, and laser welding are applicable. . Hereinafter, the present invention will be described in more detail based on examples.
表1に示す成分組成になる鋼を、小鋼スラブを、1000〜1200℃×1時間の条件で加熱後、仕上げ温度:750〜950℃、巻取り温度:650〜850℃の条件で熱間圧延を施して5.0mm厚の熱延板とした。尚、連続鋳造における溶鋼過熱度(鋳造温度−鋼の凝固開始温度)を15〜60℃とし、TiNが析出・粗大化する温度域である1500〜1300℃間の平均冷却速度を5℃/秒以上とした。 After heating the steel having the composition shown in Table 1 to a small steel slab under conditions of 1000 to 1200 ° C. × 1 hour, it is hot under conditions of finishing temperature: 750 to 950 ° C. and winding temperature: 650 to 850 ° C. Rolling was performed to obtain a hot-rolled sheet having a thickness of 5.0 mm. In addition, the molten steel superheat degree in continuous casting (casting temperature—solidification start temperature of steel) is 15 to 60 ° C., and the average cooling rate between 1500 to 1300 ° C., which is the temperature range in which TiN precipitates and coarsens, is 5 ° C./second. That is all.
得られた熱延板の一部に対しては800〜1100℃の熱延板焼鈍を施したのち、酸洗してから、冷間圧延により板厚:1.0mmとし、850〜1150℃の再結晶焼鈍を施し、溶接管用冷延鋼板とした。上記のようにして得られた各鋼板について種々の試験を実施した。 A part of the obtained hot-rolled sheet is subjected to hot-rolled sheet annealing at 800 to 1100 ° C., and then pickled, and then cold-rolled to a sheet thickness of 1.0 mm, and 850 to 1150 ° C. Recrystallization annealing was performed to obtain a cold-rolled steel sheet for a welded pipe. Various tests were carried out on each steel plate obtained as described above.
圧延方向(L方向)に平行な板厚断面におけるフェライト結晶粒の粒度番号をJIS G0552(切断法)に準拠して求めた。 The grain number number of the ferrite crystal grains in the plate thickness section parallel to the rolling direction (L direction) was determined according to JIS G0552 (cutting method).
JIS13号B試験片を用い、L方向(圧延方向)、D方向(圧延方向に対して45°の方向)、C方向(圧延方向に対して90°の方向)のYS、TS、El(伸び)を測定した。 Using JIS No. 13 B test pieces, YS, TS, El (elongation) in the L direction (rolling direction), D direction (direction of 45 ° with respect to the rolling direction), and C direction (direction of 90 ° with respect to the rolling direction) ) Was measured.
また、JIS13号B試験片を用い、15%の単軸引張予歪を与えて、3点法に従うL,D,C各方向のr値(rL,rD,rC)を求め、平均r値(=(rL+2rD+rC)/4)を計算し、これのn数3点の平均値を求めた。 Also, using a JIS No. 13 B test piece, giving 15% uniaxial tensile pre-strain, obtaining r values (r L , r D , r C ) in L, D, and C directions according to the three-point method, averaging The r value (= (r L + 2r D + r C ) / 4) was calculated, and the average value of the n number of 3 points was calculated.
冷延焼鈍板から採取した試験片の板面に垂直でかつ圧延方向に平行な断面を10%AA液で電解した後、透過型電子顕微鏡(加速電圧200kV)により、0.2万〜6万倍で観察し、50個以上のTiNについて平均径を測定した。平均径の定義は前述のとおりである。 After electrolysis of a cross section perpendicular to the plate surface of the test piece taken from the cold-rolled annealed plate and parallel to the rolling direction with 10% AA solution, it was 20,000 to 60,000 using a transmission electron microscope (acceleration voltage 200 kV). The average diameter was measured for 50 or more TiN. The definition of the average diameter is as described above.
TiN平均径が表面性状に及ぼす影響を評価するために、冷延焼鈍板から採取した300mm×200mmのサンプルを同一条件でバフ研磨し、その表面を詳細に目視観察し、微細な欠陥(疵)の数を数えた。バフ研磨は各サンプル5枚ずつ行い、数えた疵の数は単位面積あたりの数に換算した。 In order to evaluate the influence of the average TiN diameter on the surface properties, a 300 mm × 200 mm sample taken from the cold-rolled annealed plate was buffed under the same conditions, the surface was visually observed in detail, and fine defects (疵) I counted the number of. Buffing was performed for 5 samples, and the number of wrinkles counted was converted to the number per unit area.
熱延板の靱性調査はJISZ2242に記載形状の4号試験片5mmtサンプルを用い、JISZ2242に準拠して試験を行った。試験は0℃で各5本試験を行い吸収エネルギーの平均を求めた。試験において吸収エネルギーが2kgf/cm2以下の場合:評価X、2〜5kgf/cm2を:評価△、8kgf/cm2以上を:評価○とした。 The toughness of the hot-rolled sheet was tested in accordance with JISZ2242, using a No. 4 test piece 5 mm t sample having the shape described in JISZ2242. The test was carried out at 0 ° C., and the average of absorbed energy was determined. In the test, when the absorbed energy was 2 kgf / cm 2 or less: Evaluation X, 2 to 5 kgf / cm 2 was evaluated: Δ, and 8 kgf / cm 2 or more was evaluated as ○.
スピニング加工性は以下の要領で評価した。試験体を、上記冷延鋼板を高周波溶接し、1.0mmt×120mmφ×500mmlの電縫管とした。溶接は、シールドガス(アルゴン)雰囲気中で行い、外周面側に20リットル/min、内周面側に10リットル/min のシールドガスを流しながら、溶接速度200mm/min、アーク電圧11V、溶接電流50〜100Aの各条件で行った。 Spinning workability was evaluated as follows. The specimen, the cold-rolled steel sheet and high frequency welding, and the electric-resistance-welded pipe of 1.0mm t × 120mm φ × 500mml. Welding is performed in a shielding gas (argon) atmosphere, and a welding speed of 200 mm / min, an arc voltage of 11 V, a welding current is applied while flowing a shielding gas of 20 liter / min on the outer peripheral surface side and 10 liter / min on the inner peripheral surface side. It carried out on each condition of 50-100A.
得られた電縫管に対し、スピニング加工装置を用いて、回転速度:500rpm または1000rpm、絞り込み量:2mm/回、成形ロールの相対平行移動速度:8000mm/minの条件で、絞り部径が60mmφ、長さが50mm、テーパー部のr2部)の長さが60mmとなるようなスピニング加工を施した。 With respect to the obtained electric sewing tube, using a spinning processing apparatus, the diameter of the drawn portion was 60 mmφ under the conditions of a rotation speed: 500 rpm or 1000 rpm, a drawing amount: 2 mm / time, and a relative parallel movement speed of the forming roll: 8000 mm / min. and a length of 50 mm, a length of r 2 parts) of the tapered portion is subjected to a spinning process such that the 60 mm.
締り込量みは、成形ロールが素管に対して相対的に往復運動するとき、この1往復当たりの成形ロール押し当て量の増大分を表す。 The amount of tightening represents an increase in the pressing amount of the forming roll per reciprocation when the forming roll reciprocates relative to the raw tube.
スピニング加工性は、各供試鋼毎に200本の電縫管に対して上記スピニング加工を施し、加工割れ発生数を求めて評価した。 Spinning workability was evaluated by performing the above spinning process on 200 ERW tubes for each test steel, and determining the number of occurrences of work cracks.
図13、14は本実施例に用いたスピニング加工装置の構造を説明する概略構成図で、素管1を把持してその軸C−C回りに回転させる回転駆動手段と、素管1に所定の形状を付与すべく成形ローラ4を移動させる成形ローラ移動手段を備えている。 FIGS. 13 and 14 are schematic configuration diagrams for explaining the structure of the spinning processing apparatus used in the present embodiment. Rotation drive means for gripping the raw tube 1 and rotating it around its axis CC, and a predetermined amount for the raw tube 1 are shown. The forming roller moving means for moving the forming roller 4 to provide the shape is provided.
回転駆動手段は、スピンドル2に設けられた素管を把持するためのチャック等の把持機構3と、スピンドル2を回転駆動するためのモータ(図示省略)とを備えてなるもので、素管1を把持してその軸C−C回りに回転させる。 The rotational driving means includes a gripping mechanism 3 such as a chuck for gripping the raw tube provided on the spindle 2 and a motor (not shown) for rotationally driving the spindle 2. Is rotated around its axis CC.
成形ローラ4の移動手段は、数値制御可能なサーボ機構(図示省略)からなるもので、素管1を所望の形状に成形すべく、設定入力されたデータに基づいて成形ローラ4と素管1とを相対的に軸C−C方向および径D方向に移動させるよう構成されている。成形ローラ4は、図中Aの矢印のように移動させられつつ素管1に押し当てられることによって、素管1は円錐部をもつ形状にスピニング絞り加工される。 The moving means of the forming roller 4 is composed of a numerically controllable servo mechanism (not shown). In order to form the raw tube 1 into a desired shape, the forming roller 4 and the raw tube 1 are set based on the set and inputted data. Are relatively moved in the direction of the axis CC and the direction of the diameter D. The forming roller 4 is pressed and pressed against the element tube 1 while being moved as indicated by an arrow A in the figure, whereby the element tube 1 is subjected to spinning drawing into a shape having a conical portion.
表2に試験結果を示す。本発明例はいずれも、割れが抑制されており優れたスピニング加工性を有する。一方、本発明の範囲を外れる比較例はスピニング加工により端部割れが発生している。尚、表中、スピニング加工性は、各供試鋼毎に200本の電縫管に対して上記スピニング加工を施し、加工割れ発生数が、0本を◎、1〜2本を○、3〜9本を△、10本以上を×として記載した。 Table 2 shows the test results. In all of the inventive examples, cracking is suppressed and excellent spinning workability is obtained. On the other hand, in the comparative example outside the scope of the present invention, end cracks are generated by spinning. In the table, the spinning workability indicates that the above-mentioned spinning process is performed on 200 ERW tubes for each test steel, and the number of cracks generated is 0 for ◎, 1-2 for ◯, 3 ~ 9 were described as Δ, and 10 or more as x.
1 素管
2 スピンドル
3 把持機構
4 成形ローラ群
4a、4b、4c 成形ローラ
5 回転台
6 基台
7 把持機構
8 移動テーブル
9 モータケース
11a ハウジングの本体部
11b ハウジングのコーン部
11c ハウジングの接続部
DESCRIPTION OF SYMBOLS 1 Elementary tube 2 Spindle 3 Grasp mechanism 4 Forming roller group 4a, 4b, 4c Forming roller 5 Rotating base 6 Base 7 Grasp mechanism 8 Moving table 9 Motor case 11a Housing main part 11b Housing cone part 11c Housing connecting part
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009083859A JP5560578B2 (en) | 2009-03-31 | 2009-03-31 | Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009083859A JP5560578B2 (en) | 2009-03-31 | 2009-03-31 | Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010235994A JP2010235994A (en) | 2010-10-21 |
JP5560578B2 true JP5560578B2 (en) | 2014-07-30 |
Family
ID=43090599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009083859A Active JP5560578B2 (en) | 2009-03-31 | 2009-03-31 | Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5560578B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112020A (en) * | 2010-11-26 | 2012-06-14 | Jfe Steel Corp | Ferritic stainless steel sheet and ferritic stainless steel pipe for automotive exhaust system parts |
JP5866628B2 (en) * | 2011-03-31 | 2016-02-17 | 日新製鋼株式会社 | Ferritic stainless steel with excellent secondary workability and Cr evaporation resistance |
KR101956709B1 (en) * | 2012-05-28 | 2019-03-11 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
KR101569589B1 (en) * | 2013-12-24 | 2015-11-16 | 주식회사 포스코 | Ferritic stainless steel having excellentridging resistance and menufacturing method there of |
WO2015099459A1 (en) * | 2013-12-24 | 2015-07-02 | (주)포스코 | Ferritic stainless steel with improved formability and ridging resistance, and manufacturing method therefor |
KR101569590B1 (en) | 2013-12-24 | 2015-11-16 | 주식회사 포스코 | Ferritic stainless steel having excellentridging resistance and formability and menufacturing method there of |
US20170283894A1 (en) * | 2014-12-26 | 2017-10-05 | Posco | Ferritic stainless steel having excellent ductility and method for manufacturing same |
EP3388542A4 (en) * | 2016-02-02 | 2019-11-06 | Nisshin Steel Co., Ltd. | HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME |
JP7013302B2 (en) * | 2018-03-27 | 2022-01-31 | 日鉄ステンレス株式会社 | Al-containing ferritic stainless steel and processed products with excellent secondary workability and high-temperature oxidation resistance |
JP7284587B2 (en) * | 2019-02-04 | 2023-05-31 | 日鉄ステンレス株式会社 | Al-containing ferritic stainless steel sheet and method for producing the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5002991B2 (en) * | 2006-03-20 | 2012-08-15 | Jfeスチール株式会社 | Method for producing ferritic stainless steel cold-rolled steel sheet excellent in surface distortion resistance and surface properties and coated steel sheet |
-
2009
- 2009-03-31 JP JP2009083859A patent/JP5560578B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010235994A (en) | 2010-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5560578B2 (en) | Ferritic stainless steel cold-rolled steel sheet excellent in workability and manufacturing method thereof | |
JP5707671B2 (en) | Nb-added ferritic stainless steel sheet excellent in workability and manufacturability and method for producing the same | |
JP5682901B2 (en) | Ti-added ferritic stainless steel sheet excellent in spinning workability and manufacturing method thereof | |
JP6354909B2 (en) | High-strength steel sheet, high-strength galvanized steel sheet, and production methods thereof | |
WO2020045219A1 (en) | High-strength steel plate and method for producing same | |
KR100733016B1 (en) | FERRITIC STAINLESS STEEL PLATE WITH Ti AND METHOD FOR PRODUCTION THEREOF | |
JP4072090B2 (en) | High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof | |
KR101878245B1 (en) | Ferritic stainless steel excellent in oxidation resistance | |
TWI460292B (en) | Ferritic stainless steel | |
CN109642286B (en) | Ferritic stainless steel hot-rolled annealed steel sheet and method for producing same | |
JP4855553B2 (en) | High-strength ultra-thick H-section steel and its manufacturing method | |
JP2006118000A (en) | Lightweight high strength steel having excellent ductility and its production method | |
WO2006109664A1 (en) | Ferritic heat-resistant steel | |
JP5825185B2 (en) | Cold rolled steel sheet and method for producing the same | |
WO2003106722A1 (en) | Heat-resistant ferritic stainless steel and method for production thereof | |
CN110337503B (en) | Ferritic stainless steel sheet, hot-rolled coil, and flange member for automobile exhaust system | |
CN114207169A (en) | Steel sheet and method for producing same | |
JP4288146B2 (en) | Method for producing burring high-strength steel sheet with excellent softening resistance in weld heat affected zone | |
JP5391606B2 (en) | High-strength cold-rolled steel sheet with excellent weldability and manufacturing method thereof | |
JP6569745B2 (en) | Hot rolled steel sheet for coiled tubing and method for producing the same | |
CN114761596B (en) | Steel sheet and method for producing same | |
JP7223210B2 (en) | Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance | |
CN115087754B (en) | High-strength steel sheet and method for producing same | |
WO2015015735A1 (en) | Ferritic stainless steel having excellent weld corrosion resistance | |
KR100856306B1 (en) | Ferritic stainless steel having excellent low temperature formability of welded zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120223 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140513 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140526 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5560578 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |