JP3657486B2 - スイッチ素子駆動回路 - Google Patents

スイッチ素子駆動回路 Download PDF

Info

Publication number
JP3657486B2
JP3657486B2 JP35252899A JP35252899A JP3657486B2 JP 3657486 B2 JP3657486 B2 JP 3657486B2 JP 35252899 A JP35252899 A JP 35252899A JP 35252899 A JP35252899 A JP 35252899A JP 3657486 B2 JP3657486 B2 JP 3657486B2
Authority
JP
Japan
Prior art keywords
signal
circuit
input
pulse
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35252899A
Other languages
English (en)
Other versions
JP2001168700A (ja
Inventor
伸一郎 片岡
正志 稲生
弘樹 松永
泰永 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP35252899A priority Critical patent/JP3657486B2/ja
Publication of JP2001168700A publication Critical patent/JP2001168700A/ja
Application granted granted Critical
Publication of JP3657486B2 publication Critical patent/JP3657486B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、直列接続されたMOSトランジスタ、バイポーラトランジスタなどの一対のスイッチ素子(高電位側スイッチ素子および低電位側スイッチ素子)のうち、何れか一方のスイッチ素子(例えば、高電位側スイッチ素子)を、入力されたパルス信号のレベルに応じてオンオフさせるスイッチ素子駆動回路に関するものである。
【0002】
【従来の技術】
以下、従来の電力用スイッチ素子駆動回路について説明する。この電力用スイッチ素子駆動回路は、直列接続された一対の電力用NチャネルMOSトランジスタのうち、高電位側の電力用NチャネルMOSトランジスタを、入力されたパルス信号のレベルに応じてオンオフさせるために用いられる。
【0003】
この電力用スイッチ素子駆動回路は、電力用NチャネルMOSトランジスタのオンオフのためのパルス信号を生成する低電圧回路とは基準電位が異なり、低電圧回路から出力されるパルス信号で直接に駆動できない高電位側の電力用NチャネルMOSトランジスタを駆動するために用いられ、入力されたパルス信号の立ち上がりエッジと立ち下がりエッジとを検出し、各エッジ検出パルスの基準電位をレベルシフトした後、各エッジ検出パルスでRSフリップフロップをセット・リセットすることで、入力されたパルス信号と等価なパルスを高電位側の電力用NチャネルMOSトランジスタの基準電位に合わせて生成し、高電位側の電力用NチャネルMOSトランジスタをオンオフ動作させるものである。
【0004】
上記の一対の電力用NチャネルMOSトランジスタは、例えばインバータ回路を構成して直流を交流に変換して負荷へ電力供給するのに用いられる。一対の電力用NチャネルMOSトランジスタは、一対のパルス信号によって、所定のデッドタイムをもって交互にオン動作をする。
【0005】
図6は、従来の電力用スイッチ素子駆動回路の構成を示す回路図である。図6において、1,2は一対のパルス信号を入力するパルス信号入力端子、60〜65はインバータ、36,66,67はコンデンサ、68,69はNOR回路、18,19は高耐圧NチャネルMOSトランジスタ、20,21は抵抗、22〜25はツェナーダイオード、26,27はPチャネルMOSトランジスタ、28,29はNチャネルMOSトランジスタ、31,32は電力用NチャネルMOSトランジスタ、33は電圧Vbを有する高電圧電源、34は電圧Vaを有する低電圧電源、35は順方向電圧がVFであるダイオード、37は負荷である。
【0006】
70は低電圧電源34に接続された低電圧回路であり、立ち下がりエッジ検出回路70A,立ち上がりエッジ検出回路70Bで構成されている。立ち下がりエッジ検出回路70Aは、遅延回路70Cとインバータ62とNOR回路68とで構成されている。また、立ち上がりエッジ検出回路70Bは、遅延回路70Dとインバータ65とNOR回路69とで構成されている。遅延回路70Cはインバータ60,61とコンデンサ66で構成され、遅延回路70Dはインバータ63,64とコンデンサ67で構成されている。
【0007】
1A,2A,71〜81は信号である。30は最低電位は信号81でとり、最高電位はダイオード35のカソードより印加されるRSフリップフロップである。
【0008】
以上のように構成された電力用スイッチ素子駆動回路について、図7のタイミングチャートを用いて各部の動作を説明する。
【0009】
まず、パルス信号入力端子1に入力された信号1Aを、インバータ60で反転しコンデンサ66で遅延しインバータ61で反転した信号をさらにインバータ62で反転した信号71と、もとの信号1AとのNOR回路68によるNOR演算により、信号74が作られる。また、同時にパルス信号入力端子1に入力された信号1Aをもとに、インバータ63で反転しコンデンサ67で遅延しインバータ64で反転した信号73と、もとの信号1Aをインバータ65で反転した信号72とのNOR回路69によるNOR演算により信号75が作られる。
【0010】
つぎに、信号74は、高耐圧NチャネルMOSトランジスタ18と抵抗20で構成されるレベルシフト回路にて信号76に変換された後、PチャネルMOSトランジスタ26とNチャネルMOSトランジスタ28で構成されるインバータにより、信号74と同極性の信号78になる。同様に、信号75は、高耐圧NチャネルMOSトランジスタ19と抵抗21で構成されるレベルシフト回路にて信号77に変換された後、PチャネルMOSトランジスタ27とNチャネルMOSトランジスタ29で構成されるインバータにより信号75と同極性の信号79になる。
【0011】
ツェナーダイオード22〜25は、信号81が高電圧でしかも高耐圧NチャネルMOSトランジスタ18、あるいは高耐圧NチャネルMOSトランジスタ19が導通状態時に、PチャネルMOSトランジスタ26,27とNチャネルMOSトランジスタ28,29のゲート耐圧保護を目的としたものである。この場合、2段直列のツェナー電圧よりもダイオード35のカソード電圧が小さくなるように低電圧電源34を設定する必要がある。
【0012】
つぎに、信号78はRSフリップフロップ30のリセット端子に入力され、信号79はRSフリップフロップ30のセット端子に入力され、パルス信号入力端子1に入力された信号1Aとほぼ同一タイミングで振幅レベルの増幅された信号80がRSフリップフロップ30のQ出力として得られる。
【0013】
なお、パルス信号入力端子1に入力された信号1Aから立上がりエッジと立下がりエッジのパルスを検出し再度RSフリップフロップ30にて信号80を作る一連の構成の目的は、抵抗20,21、高耐圧NチャネルMOSトランジスタ18,19で構成されるレベルシフト回路での消費電力を削減することにある。
【0014】
信号80とパルス信号入力端子2より入力された信号2Aのタイミングは、電力用NチャネルMOSトランジスタ31,32で貫通電流が流れないように両方とも同時にハイレベル状態になる期間がないように入力されている。いわゆる、デッドタイムが設けられている。
【0015】
電力用NチャネルMOSトランジスタ32が導通状態で電力用NチャネルMOSトランジスタ31が遮断状態の時には、ダイオード35の順方向電圧をVF、低電圧電源34の電圧をVaとすると、コンデンサ36の端子間電圧がVa−VFになるように充電される。
【0016】
また、電力用NチャネルMOSトランジスタ32が遮断状態で電力用NチャネルMOSトランジスタ31が導通状態の時には、高圧電源33の電圧をVbとすると、コンデンサ36の端子間電圧Va−VFを保持したまま信号81の電位がVbになり、ダイオード35は遮断状態になる。
【0017】
以上のような動作により得られる信号81により、負荷37が駆動される。
【0018】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、パルス信号入力端子1に小さいデューティの信号1Aあるいは徐々にデューティが小さくなるような信号1Aが入力され、信号74あるいは信号75に正規な信号が伝達されなくなった場合、つまり、立ち下がりエッジ検出回路70Cまたは立ち上がりエッジ検出回路70Dが正常なエッジ検出を行えなくなった場合、つぎのような問題が生じる。
【0019】
上記のような信号1Aがパルス信号入力端子1に入力された場合、コンデンサ66あるいはコンデンサ67でのフィルタ作用により、インバータ61あるいはインバータ64への入力がしきい値電圧を超えることができなくなり、その結果信号71あるいは信号73のどちらかが先にあるいは同時に消える(ハイレベル状態あるいはローレベル状態に固定される)。
【0020】
信号71が先に消える場合、図8のタイミングチャートに示すように、RSフリップフロップ30のリセット端子に入力される信号78が先に消え(ローレベル状態に固定され)、RSフリップフロップ30のセット端子に入力される信号79が残る。そのため、RSフリップフロップ30の出力となる信号80は、ハイレベル状態固定となる。その結果、信号2Aがハイレベル状態のタイミング時には、電力用NチャネルMOSトランジスタ31,32において貫通電流が流れてしまう。図8において、破線は、信号71が消えていない状態を示している。
【0021】
また、信号73が先に消える場合、図9のタイミングチャートに示すように、RSフリップフロップ30のセット端子に入力される信号79の立下がりが遅れる(パルス信号入力端子1に入力される信号1Aの立下がりとほぼ同一タイミング)のみで、RSフリップフロップ30のセット端子に入力される信号79もリセット端子に入力される信号78も消えることはない。そして、さらにパルス信号入力端子1に入力される信号1Aのデューティが小さくなると上記で説明した信号71が先に消える場合と同様の動作により、RSフリップフロップ30の出力となる信号80はハイレベル状態固定となり、信号2Aがハイレベル状態のタイミング時には電力用NチャネルMOSトランジスタ31,32において貫通電流が流れてしまう。図9において、破線は、信号73が消えていない状態を示している。
【0022】
なお、図8、図9においては、信号1Aに対する信号71の遅延量(極性は反転している)と信号1Aに対する信号73の遅延量とが、信号1Aのハイレベル状態のパルス幅よりも小さい場合について説明しているが、大きい場合も同様の動作になる。
【0023】
本発明は上記従来の問題点を解決するもので、フリップフロップのリセット端子に入力される信号が消える時にはセット端子に入力される信号も必ず消えるように構成して、直列接続された一対のスイッチ素子に貫通電流が流れないようにすることができるスイッチ素子駆動回路を提供することを目的とする。
【0024】
【課題を解決するための手段】
この目的を達成するために、本発明のスイッチ素子駆動回路は、入力されたパルス信号のレベルに応じて直列接続された一対のスイッチ素子の何れか一方をオンオフさせるもので、パルス信号の立ち上がりエッジを検出して立ち上がりエッジ検出パルスを発生する立ち上がりエッジ検出回路と、パルス信号の立ち下がりエッジを検出して立ち下がりエッジ検出パルスを発生する立ち下がりエッジ検出回路と、立ち上がり検出パルスをセット入力とし、立ち下がりエッジ検出パルスをリセット入力とし、出力で一対のスイッチ素子の何れか一方をオン駆動するフリップフロップとを備えている。
【0025】
この場合、立ち下がりエッジ検出回路は、パルス信号を所定時間遅延させる第1の遅延回路と、第1の遅延回路の出力信号の反転信号とパルス信号との否定論理和演算を行う第1の論理回路とからなる。
【0026】
また、立ち上がりエッジ検出回路は、パルス信号と第1の遅延回路の出力信号との否定論理積演算を行う第2の論理回路と、第2の論理回路の出力信号を所定時間遅延させる第2の遅延回路と、第2の遅延回路の出力信号の反転信号と第2の論理回路の出力信号との否定論理和演算を行う第3の論理回路とからなる。
【0027】
この構成によれば、入力パルスを第2の遅延回路で遅延し、入力パルスと第2の遅延回路の出力信号との論理演算処理によって立ち上がりエッジを検出するのに代えて、第1の遅延回路の出力信号と入力パルスとの否定論理積演算により得られた信号を第2の遅延回路で遅延し、第1の遅延回路の出力信号と入力パルスとの否定論理積演算により得られた信号と第2の遅延回路の出力信号との論理演算処理によって立ち上がりエッジを検出するので、入力されるパルス信号のデューティが小さい条件下において、フリップフロップのリセット端子に入力されるパルス信号が消える時には、フリップフロップのセット端子に入力されるパルス信号も必ず消えることになる。
【0028】
その結果、入力されるパルス信号のデューティが小さくなってもあるいは徐々に小さくしていっても、RSフリップフロップの出力はハイレベル状態固定になることはなく、例えばハーフブリッジ回路などを駆動する際に貫通電流が流れない構成を実現できる。
【0029】
上記構成において、立ち下がりエッジ検出回路の第1の論理回路の後段に前記第1の論理回路の出力信号を、前記第1の遅延回路の遅延時間に相当する時間だけ遅延させる第3の遅延回路を挿入した構成を採用してもよい。このようにすると、入力されるパルス信号の立ち上がりエッジからそのエッジ検出までの遅れと、入力されるパルス信号の立ち下がりエッジからそのエッジ検出までの遅れとを合わせることができ、入力されるパルス信号のパルス幅とRSフリップフロップより出力される信号のパルス幅を同じにすることができ、入力されたパルス信号に対し、より忠実にスイッチ素子を駆動することができる。
【0030】
また、第1の遅延回路の遅延時間を第2の遅延回路の遅延時間より大きくすることも可能である。このようにすると、入力されるパルス信号の立ち上がりエッジのエッジ検出パルス幅を、入力されるパルス信号の立ち下がりエッジのエッジ検出パルス幅より狭くすることができ、RSフリップフロップに入力されるセット信号幅がRSフリップフロップに入力されるリセット信号幅より狭くなり、RSフリップフロップの出力がローレベル固定となる、入力されるパルス信号幅を、より広くすることができる。また、入力されるパルス信号の動作可能なパルス幅の下限を変更できる。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0032】
図1は、本発明の実施の形態の電力用スイッチ素子駆動回路の構成を示す回路図である。図1において、1,2は一対のパルス信号を入力するパルス信号入力端子、3〜10はインバータ、11〜13,36はコンデンサ、14はNAND回路、15,16はNOR回路、18,19は高耐圧NチャネルMOSトランジスタ、20,21は抵抗、22〜25はツェナーダイオード、26,27はPチャネルMOSトランジスタ、28,29はNチャネルMOSトランジスタ、31,32は電力用NチャネルMOSトランジスタ、33は電圧Vbを有する高電圧電源、34は電圧Vaを有する低電圧電源、35は順方向電圧がVFであるダイオード、37は負荷である。
【0033】
17は低電圧電源34に接続された低電圧回路であり、立ち下がりエッジ検出回路17A,立ち上がりエッジ検出回路17Bで構成されている。立ち下がりエッジ検出回路17Aは、遅延回路17C,17Eとインバータ42とNOR回路15で構成されている。また、立ち上がりエッジ検出回路17Bは、NAND回路14と遅延回路17Dとインバータ46とNOR回路16で構成されている。遅延回路17Cはインバータ3,4とコンデンサ11で構成され、遅延回路17Dはインバータ6,7とコンデンサ12で構成されている。遅延回路17Eはインバータ9,10とコンデンサ13で構成されている。
【0034】
1A,2A,41〜53は信号である。30は最低電位は信号53でとり、最高電位はダイオード35のカソードより印加されるRSフリップフロップである。
【0035】
以上のように構成された電力用スイッチ素子駆動回路について、図2のタイミングチャートを用いて各部の動作を説明する。
【0036】
まず、パルス信号入力端子1に入力された信号1Aを、インバータ3で反転しコンデンサ11で遅延しインバータ4で反転した信号41をさらにインバータ5で反転した信号42と、もとの信号1AとのNOR回路15によるNOR演算により信号43が作られる。
【0037】
また、同時にパルス信号入力端子1に入力された信号1Aをインバータ3で反転しコンデンサ11で遅延しインバータ4で反転した信号41と、もとの信号1AとのNAND回路14によるNAND演算により信号45が作られる。そして、信号45をインバータ6で反転しコンデンサ12で遅延しインバータ7で反転した信号をさらにインバータ8で反転した信号46と、信号45とのNOR回路16によるNOR演算により信号47が作られる。
【0038】
上記の構成において、コンデンサ11で信号1Aの立上がりエッジに対して信号41の立上がりエッジの遅延時間と同じ時間だけ、信号1Aの立上がりエッジに対して信号47の立上がりエッジが遅延しており、遅延量を合わせることを一つの目的として、信号43をインバータ9で反転しコンデンサ13で遅延しインバータ10で反転して信号44を得ている。この信号44は信号47と遅延量が一致している。
【0039】
つぎに、信号44は、高耐圧NチャネルMOSトランジスタ18と抵抗20で構成されるレベルシフト回路にて信号48に変換された後、PチャネルMOSトランジスタ26とNチャネルMOSトランジスタ28で構成されるインバータにより、信号44と同極性の信号50になる。同様に、信号47は、高耐圧NチャネルMOSトランジスタ19と抵抗21で構成されるレベルシフト回路にて信号49に変換された後、PチャネルMOSトランジスタ27とNチャネルMOSトランジスタ29で構成されるインバータにより信号47と同極性の信号51になる。
【0040】
ツェナーダイオード22〜25は、信号53が高電圧でしかも高耐圧NチャネルMOSトランジスタ18、あるいは高耐圧NチャネルMOSトランジスタ19が導通状態時に、PチャネルMOSトランジスタ26,27とNチャネルMOSトランジスタ28,29のゲート耐圧保護を目的としたものである。この場合、2段直列のツェナー電圧よりもダイオード35のカソード電圧が小さくなるように低電圧電源34を設定する必要がある。
【0041】
つぎに、信号50はRSフリップフロップ30のリセット端子に入力され、信号51はRSフリップフロップ30のセット端子に入力され、RSフリップフロップ30の出力となる信号52のパルス信号入力端子1からの信号1Aに対する遅延量は、立上がりは信号1Aの立上がりがコンデンサ11で遅延する時間分、立下がりは信号43の立上がりがコンデンサ13で遅延する時間分遅延し、また、振幅レベルが増幅される。
【0042】
なお、パルス信号入力端子1に入力された信号1Aから立上がりエッジと立下がりエッジのパルスを検出し再度RSフリップフロップ30にて信号52を作る一連の構成の目的は、抵抗20,21、高耐圧NチャネルMOSトランジスタ18,19で構成されるレベルシフト回路での消費電力を削減することにある。
【0043】
信号52とパルス信号入力端子2より入力された信号2Aのタイミングは、電力用NチャネルMOSトランジスタ31,32で貫通電流が流れないように両方とも同時にハイレベル状態になる期間がないように入力されている。いわゆる、デッドタイムが設けられている。
【0044】
電力用NチャネルMOSトランジスタ32が導通状態で電力用NチャネルMOSトランジスタ31が遮断状態の時には、ダイオード35の順方向電圧をVF、低電圧電源34の電圧をVaとすると、コンデンサ36の端子間電圧はVa−VFになるように充電される。
【0045】
また、電力用NチャネルMOSトランジスタ32が遮断状態で電力用NチャネルMOSトランジスタ31が導通状態の時には、高圧電源33の電圧をVbとすると、コンデンサ36の端子間電圧Va−VFを保持したまま信号53の電位がVbになり、ダイオード35は遮断状態になる。
【0046】
以上のような動作から得られる信号53により、負荷37は基本的には駆動されるが、つぎにパルス信号入力端子1に小さいデューティの信号1Aあるいは徐々にデューティが小さくなるような信号1Aが入力される非標準な場合の動作について説明する。
【0047】
上記のような信号1Aがパルス信号入力端子1に入力された場合、コンデンサ11あるいはコンデンサ12でのフィルタ作用により信号41あるいは信号46のどちらかが先にあるいは同時に消える(ハイレベル状態あるいはローレベル状態に固定される)。
【0048】
まず、信号41が先に消える場合については、図3のタイミングチャートに示すように、RSフリップフロップ30のリセット端子に入力される信号50が消える時にはセット端子に入力される信号51も必ず消え、徐々に信号1Aのデューティが小さくなり極めて小さい状態では、信号50と信号51のハイレベル状態パルスの時間差は極めて小さくなり、信号50の方が時間的に後に発生するため、最後にRSフリップフロップ30のリセット端子に信号50が入力された後、信号50、信号51がともに消える。このため、RSフリップフロップ30の出力となる信号52はローレベル状態固定となり、電力用NチャネルMOSトランジスタ31,32における貫通電流は流れない。図3において、破線は信号41が消えていない状態を示している。
【0049】
つぎに、信号46が先に消える場合については、図4のタイミングチャートに示すように、RSフリップフロップ30のリセット端子に入力される信号50もセット端子に入力される信号51も残る。また、信号1Aのデューティが図4に示しているものより大きい場合はセット端子に入力される信号51のみ信号1Aと信号41のAND演算の信号のデューティと同一となり大きくなるが、基本的にはRSフリップフロップ30のリセット端子に入力される信号50もセット端子に入力される信号51も残る。そして、さらに信号1Aのデューティが小さくなると、信号41が先に消える場合の動作と同一になる。図4において、破線は信号46が消えていない状態を示している。
【0050】
なお、後者の場合、信号44のデューティより信号47のデューティの方が大きくなり、また、信号43から信号44への経路でデューティが小さくなりRSフリップフロップ30へのセット端子に入力される信号51よりリセット端子に入力される信号50の方が先に消える可能性もあるため、コンデンサ11をコンデンサ12より大きくしたり、あるいはインバータ4の入力スレッシュ電圧を大きくしたり、インバータ7の入力スレッシュホールド電圧を小さくしたりすることにより、第1の遅延回路17Cの遅延時間を第2の遅延回路17Dの遅延時間より長くする方法も考えられる。
【0051】
ここで、上記における信号51より信号50の方が先に消える可能性について説明する。入力信号1Aのデューティが小さく、入力信号1Aのパルス幅が狭くなったとき、第1の遅延回路17Cは動作動作しているが、第2の遅延回路17Dは動作していない状況があり得る。第2の遅延回路17Dが動作していないときは、信号45がNOR回路16をスルーすることになり、上記のような現象が生じる。
【0052】
この対策として、上記のように、第1の遅延回路17Cの遅延時間を第2の遅延回路17Dの遅延時間より長くすると、入力されるパルス信号1Aの立ち上がりエッジのエッジ検出パルス幅を、入力されるパルス信号1Aの立ち下がりエッジのエッジ検出パルス幅より狭くすることができ、RSフリップフロップ30に入力されるセット信号幅がRSフリップフロップ30に入力されるリセット信号幅より狭くなり、RSフリップフロップ30の出力がローレベル固定となる。その結果、RSフリップフロップ30の出力がローレベル固定となる、入力されるパルス信号幅を、より広くすることができる。また、入力されるパルス信号の動作可能なパルス幅の下限を変更できる。
【0053】
また、本実施の形態において、信号1Aのハイレベル状態のパルス幅より信号52のハイレベル状態のパルス幅が信号1Aの立上がりから信号42の立上がりまでの遅延量分短くても支障のない場合は、インバータ9,10とコンデンサ13は省略できる。
【0054】
また、上記本実施の形態では、信号1Aに対する信号41の遅延量が信号1Aのハイレベル状態のパルス幅より小さい場合について説明したが、信号1Aに対する信号41の遅延量が信号1Aのハイレベル状態のパルス幅より大きい場合についてのタイミングチャートは図5のようになる。
【0055】
この場合、信号45がハイレベル状態固定となるため、RSフリップフロップ30のセット端子に入力される信号51はローレベル状態固定で、リセット端子には図5のような信号50が入力されるため、RSフリップフロップ30の出力となる信号52はローレベル状態固定となり、電力用NチャネルMOSトランジスタ31,32における貫通電流は流れない。
【0056】
なお、上記の実施の形態において、NAND回路14を用いているのは、以下の理由からである。すわなち、NAND回路14を用いずに、単にインバータ4の出力を反転しただけのものを、NOR回路16とインバータ6とに加える構成では、遅延回路17Cが動作せず(信号を通さず)、遅延回路17Dが動作していると、入力パルス信号がスルーし、RSフリップフロップ30へのセット信号のみが入力されることが発生し得る。しかし、NAND回路14を用いると、遅延回路17Cが動作しないときは、信号41がローレベルとなり、遅延回路17DからRSフリップフロップ30への入力信号のスルーを禁止することができるのである。
【0057】
以上のように、本実施の形態によれば、信号1Aをコンデンサ11を用いて遅延した信号41の反転信号である信号42と信号1AのNOR演算により信号43を作り、信号43をコンデンサ13を用いて遅延した信号44と同一タイミングの信号50をRSフリップフロップ30のリセット端子への入力とし、信号41と信号1AのNAND演算により信号45を作り、信号45をコンデンサ12を用いて遅延し反転した信号46と信号45のNOR演算により信号47を作り、信号47と同一タイミングの信号51をRSフリップフロップ30のセット端子への入力とすることにより、信号1Aが小さいデューティの場合あるいは信号1Aのデューティが徐々に小さくなった場合において、RSフリップフロップ30のリセット端子の入力となる信号50が消える時には、セット端子の入力となる信号51も必ず消え、RSフリップフロップ30の出力となる信号52はローレベル状態固定となり、電力用NチャネルMOSトランジスタ31,32において貫通電流が流れないようにすることができる。
【0058】
【発明の効果】
本発明によれば、パルス信号入力端子に入力されたパルス信号の立上がりエッジおよび立下がりエッジをそれぞれ第1および第2のエッジ検出回路にて検出・出力し、第1および第2のエッジ検出回路より出力された信号に基づいた信号をRSフリップフロップのリセット端子とセット端子に入力する構成において、パルス信号入力端子に小さいデューティの信号あるいはデューティが徐々に小さくなる信号が入力される場合、リセット端子に入力される信号が消える時には必ずセット端子に入力される信号も消えることになり、パルス信号入力端子に小さいデューティの信号あるいはデューティが徐々に小さくなる信号が入力される時には、RSフリップフロップの出力がローレベル状態固定となることにより、RSフリップフロップの出力に接続されることが想定されるハーフブリッジ回路などに貫通電流が流れないようにすることができる優れたスイッチ素子駆動回路を実現するものである。
【図面の簡単な説明】
【図1】本発明の実施の形態における電力用スイッチ素子駆動回路の構成を示す回路図である。
【図2】本発明の実施の形態の電力用スイッチ素子駆動回路において、通常信号がパルス信号入力端子に入力された場合のタイミングチャートである。
【図3】本発明の実施の形態の電力用スイッチ素子駆動回路において、小さいデューティの信号がパルス信号入力端子に入力され、信号41が信号46より先に消えた時のタイミングチャートである。
【図4】本発明の実施の形態の電力用スイッチ素子駆動回路において、小さいデューティの信号がパルス信号入力端子に入力され、信号46が信号41より先に消えた時のタイミングチャートである。
【図5】本発明の実施の形態の電力用スイッチ素子駆動回路において、信号1から信号41への遅延量が信号1のハイレベル状態のパルス幅より大きい時のタイミングチャートである。
【図6】従来のRSフリップフロップ制御回路の構成を示す回路図である。
【図7】従来の電力用スイッチ素子駆動回路において、通常信号がパルス信号入力端子に入力された場合のタイミングチャートである。
【図8】従来の電力用スイッチ素子駆動回路において、小さいデューティの信号がパルス信号入力端子に入力され、信号71が信号73より先に消えた時のタイミングチャートである。
【図9】従来の電力用スイッチ素子駆動回路において、小さいデューティの信号がパルス信号入力端子に入力され、信号73が信号71より先に消えた時のタイミングチャートである。
【符号の説明】
1,2 パルス信号入力端子
3〜10,60〜65 インバータ
11〜13,36,66,67 コンデンサ
14 NAND回路
15,16,68,69 NOR回路
17,70 低電圧回路
17A,17B,70A,70B エッジ検出回路
17C,17D,17E,70C,70D 遅延回路
18,19 高耐圧NチャネルMOSトランジスタ
20,21 抵抗
22〜25 ツェナーダイオード
26,27 PチャネルMOSトランジスタ
28,29 NチャネルMOSトランジスタ
30 RSフリップフロップ
31,32 電力用NチャネルMOSトランジスタ
33 高電圧電源
34 低電圧電源
35 ダイオード
37 負荷
41〜53,71〜81 信号

Claims (3)

  1. 入力されたパルス信号のレベルに応じて直列接続された一対のスイッチ素子の何れか一方をオンオフさせるスイッチ素子駆動回路であって、前記パルス信号の立ち上がりエッジを検出して立ち上がりエッジ検出パルスを発生する立ち上がりエッジ検出回路と、前記パルス信号の立ち下がりエッジを検出して立ち下がりエッジ検出パルスを発生する立ち下がりエッジ検出回路と、前記立ち上がり検出パルスをセット入力とし、前記立ち下がりエッジ検出パルスをリセット入力とし、出力で前記一対のスイッチ素子の何れか一方をオン駆動するフリップフロップとを備え、
    前記立ち下がりエッジ検出回路は、前記パルス信号を所定時間遅延させる第1の遅延回路と、前記第1の遅延回路の出力信号の反転信号と前記パルス信号との否定論理和演算を行う第1の論理回路とからなり、
    前記立ち上がりエッジ検出回路は、前記パルス信号と前記第1の遅延回路の出力信号との否定論理積演算を行う第2の論理回路と、前記第2の論理回路の出力信号を所定時間遅延させる第2の遅延回路と、前記第2の遅延回路の出力信号の反転信号と前記第2の論理回路の出力信号との否定論理和演算を行う第3の論理回路とからなるスイッチ素子駆動回路。
  2. 立ち下がりエッジ検出回路は、第1の論理回路の後段に前記第1の論理回路の出力信号を、前記第1の遅延回路の遅延時間に相当する時間だけ遅延させる第3の遅延回路が挿入されている請求項1記載のスイッチ素子駆動回路。
  3. 第1の遅延回路の遅延時間を第2の遅延回路の遅延時間より大きくした請求項1または2記載のスイッチ素子駆動回路。
JP35252899A 1999-12-13 1999-12-13 スイッチ素子駆動回路 Expired - Fee Related JP3657486B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35252899A JP3657486B2 (ja) 1999-12-13 1999-12-13 スイッチ素子駆動回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35252899A JP3657486B2 (ja) 1999-12-13 1999-12-13 スイッチ素子駆動回路

Publications (2)

Publication Number Publication Date
JP2001168700A JP2001168700A (ja) 2001-06-22
JP3657486B2 true JP3657486B2 (ja) 2005-06-08

Family

ID=18424689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35252899A Expired - Fee Related JP3657486B2 (ja) 1999-12-13 1999-12-13 スイッチ素子駆動回路

Country Status (1)

Country Link
JP (1) JP3657486B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157010B2 (ja) * 2003-10-27 2008-09-24 三菱電機株式会社 駆動回路及び半導体装置
US10826374B2 (en) * 2018-08-08 2020-11-03 Semiconductor Components Industries, Llc Control of pulse generator in driving control device
CN114172494B (zh) * 2022-02-11 2022-05-17 山东兆通微电子有限公司 一种时钟信号延时电路

Also Published As

Publication number Publication date
JP2001168700A (ja) 2001-06-22

Similar Documents

Publication Publication Date Title
JP3618829B2 (ja) ノイズの影響を受けないリセット優先レベルシフト回路
KR100933651B1 (ko) 하프-브릿지 드라이버 및 그러한 드라이버를 갖는 파워 변환 시스템
JP5537270B2 (ja) 出力回路
US6664822B2 (en) Driving device having dummy circuit
KR100850840B1 (ko) 구동장치
JP6194959B2 (ja) 駆動回路および半導体装置
US20100141304A1 (en) Drive circuit for power element
US20110074485A1 (en) Semiconductor circuit
JP2000252809A (ja) レベルシフト回路
JP7395831B2 (ja) 駆動回路
JP2007243254A (ja) スイッチ素子駆動回路
JPH04230117A (ja) dv/dt妨害排除能力を備えた回路とMOS回路のためのゲートドライバ
US9587616B2 (en) Internal combustion engine ignition device
JP2006296119A (ja) 半導体スイッチング素子の駆動回路
US10411691B2 (en) Semiconductor device driving circuit
KR20170006291A (ko) 파워-온 리셋 회로 및 이를 포함하는 저전압 차단 회로
JP2013162568A (ja) モータ駆動制御システム
JP2004260730A (ja) パルス発生回路及びそれを用いたハイサイドドライバ回路
JP2002208849A (ja) 誘導性負荷駆動回路
JP5003588B2 (ja) 半導体回路
US6734704B1 (en) Voltage level-shifting control circuit for electronic switch
JP3657486B2 (ja) スイッチ素子駆動回路
JP2010124047A (ja) レベルシフト回路
JP4535028B2 (ja) D級増幅器およびその過電流保護方法
JP2003338743A (ja) パワーデバイスの駆動回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees