JP3655875B2 - カメラの測距装置 - Google Patents

カメラの測距装置 Download PDF

Info

Publication number
JP3655875B2
JP3655875B2 JP2002024567A JP2002024567A JP3655875B2 JP 3655875 B2 JP3655875 B2 JP 3655875B2 JP 2002024567 A JP2002024567 A JP 2002024567A JP 2002024567 A JP2002024567 A JP 2002024567A JP 3655875 B2 JP3655875 B2 JP 3655875B2
Authority
JP
Japan
Prior art keywords
light
distance
subject
light receiving
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002024567A
Other languages
English (en)
Other versions
JP2002303784A (ja
Inventor
修 野中
剛史 金田一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002024567A priority Critical patent/JP3655875B2/ja
Publication of JP2002303784A publication Critical patent/JP2002303784A/ja
Application granted granted Critical
Publication of JP3655875B2 publication Critical patent/JP3655875B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、カメラの測距装置、詳しくは写真撮影を行なう際に被写体までの距離を測定するアクティブ方式の自動焦点調節装置であるカメラの測距装置に関するものである。
【0002】
【従来の技術】
従来より、写真撮影を行なう小型カメラ等においては、電気的に測距を行なうことで被写体までの距離を測定し、この被写体を撮影する撮影レンズの焦点調節を自動的に行なうようにした自動焦点調節装置(オートフォーカス(AF)装置、測距装置)を備えたものが種々提案され、また実用化されている。
【0003】
上記カメラのAF装置(測距装置)においては、例えば、投光手段によって被写体に対して赤外光等の測距用光を投射して、その光の被写体からの反射信号光を受光手段によって検出し、この検出した反射信号光に基づいて、上記被写体までの距離を三角測量法等を利用して測距を行なう、いわゆる、アクティブ方式の測距装置等が、種々提案され、実用化されている。
【0004】
一般的に、上記アクティブ方式の測距装置においては、暗黒下等においても測距が可能であるので、小型カメラ等に広く適用されているものであるが、測距用光を投射する上記投光手段の投光レンズからの光スポットが、被写体の一部分にしか投射されなかった場合等においては、上記反射信号光を受光する受光手段の受光面に投射される光スポットの像に欠落部分が生じ、いわゆる「スポット欠け」という問題が生じる場合があり、これにより、測定誤差の原因となってしまうという問題点があった。
【0005】
例えば、図21は、カメラのファインダ内の画面枠と、この画面枠内における被写体像を簡単に示す図であるが、この画面枠内における主要被写体105の一部分(図21においてAで示す部分)に投射された光スポットは、主要被写体105に投射された部分においては明るく反射する一方、背景部分においては暗く反射することとなり、このような反射信号光を受光手段によって受光した場合において、上記「スポット欠け」の状態が生じることとなる。
【0006】
そこで、この「スポット欠け」による測定誤差を減少させるために、上記受光手段に加えて、さらに第2受光手段を併設し、2つの受光手段を配設するようにした、いわゆる3眼式アクティブ方式の測距装置が、例えば、特開昭55−119006号公報、特開平1−217425号公報等によって開示されている。
【0007】
図18は、上記3眼式アクティブ方式のカメラの測距装置の概略を示すブロック構成図である。
【0008】
図18に示すように、この測距装置は、投光手段、即ち、赤外発光ダイオード(以下IREDという。)等によって形成される投光素子101、および、この投光素子101からの光を集光し被写体105に投射するための投光レンズ102と、第1、第2受光手段、即ち、上記投光素子101および投光レンズ102によって上記被写体105に投射された光の反射信号光を集光する第1、第2受光レンズ103a,103b、および、この第1、第2受光レンズ103a,103bの後方にそれぞれ設けられ、上記反射信号光が入射する第1および第2位置検出素子(以下PSDという。)104a,104bと、この第1および第2PSD104a,104bより出力される電流信号が入力され処理を行なうPSD信号処理回路109と、カメラ全体を制御するCPU等によって形成される演算制御手段110等によって構成されている。
【0009】
ここで、上記測距装置の投受光レンズ102,103a,103bから上記被写体105までの距離、即ち、被写体距離=Lとすると、上記投光手段(101,102)より投射され、被写体105によって反射された反射信号光106a,106bは、上記第1および第2受光レンズ103a,103bの各主点を透過して、それぞれ上記第1および第2PSD104a,104b上のX1,X2に示す位置に投射される。そして、それぞれの入射位置に応じた信号が上記PSD信号処理回路109に入力されることとなる。
【0010】
ここで、上記PSD信号処理回路109は、上記それぞれの入射位置に応じた信号、即ち、入射位置X1に応じた信号である第1信号と、入射位置X2に応じた信号である第2信号とに基づいて、被写体までの距離Lが求められる。
【0011】
即ち、上記投光レンズ103と上記第1受光レンズ103a間の距離=S1と、また、上記投光レンズ103と上記第2受光レンズ103b間の距離=S2と、上記第1および第2受光レンズ103a,103b間の距離S=(S1+S2)と、そして、上記第1および第2受光レンズ103a,103bのそれぞれの焦点距離=fjとすると、
【数1】
Figure 0003655875
となる。また、上記(1)式より、
【数2】
Figure 0003655875
となる。ここで、S=S1+S2であるので、
【数3】
Figure 0003655875
となり、上記被写体距離Lは、
【数4】
Figure 0003655875
となる。
【0012】
つまり、上記3眼式アクティブ方式の測距装置においては、上記被写体105までの距離Lを測距する際には、上記投光レンズ102と上記第1および第2受光レンズ103a,103bのそれぞれの間の距離S1,S2には依存しないことがわかる。
【0013】
従って、例えば、上記投光手段(101,102)から投射された光スポットが上記被写体105の一部分にしか投射されなかった場合において、その反射信号光107a,107bが、それぞれ上記第1および第2PSD104a,104b上の(X1−Δx),(X2+Δx)に示す位置に入射した際における上記被写体105までの距離Lは、上記(4)式のX1,X2に、上記(X1−Δx),(X2+Δx)をそれぞれ代入することにより求めることができる。この場合において、上記(4)式の分母に着目すると、
X1+X2=(X1−Δx)+(X2+Δx)
=X1−Δx+X2+Δx
=X1+X2
となるので、上記(4)式においては上記Δxの影響を受けることなく、上記被写体距離Lの算出が可能であることがわかる。
【0014】
従って、上記3眼式アクティブ方式の測距装置等においては、上記「スポット欠け」が生じた場合においても、測定誤差を減少させることができ、より精度の高い測距装置とすることができるものである。
【0015】
【発明が解決しようとする課題】
ところが、上記特開昭55−119006号公報、特開平1−217425号公報等に開示されている手段、即ち、上記3眼式アクティブ方式の測距装置等によれば、上記投光手段のカメラ前面側における配置によって、測距可能範囲が変動してしまうという問題点があり、より広範囲において測距を行なうようにするためには、上記測距装置のカメラ内部における配置が規制されることとなると共に、装置自体を小型化するには困難となってしまうという問題点がある。
【0016】
即ち、図19は、上記従来の3眼式アクティブ方式の測距装置の構成を簡単に示す図であるが、図19に示すように、上記投光手段(101a,102a)より投射される測距用光の反射信号光を、上記第1および第2PSD104a,104bによって受光することのできる範囲は、図19において斜線で示す部分に限定される。つまり、上記投光素子101aによって投光レンズ102aを介して投射される測光用光は、被写体距離=LB以遠においてのみ測距することが可能となるが、カメラの前面側における上記投光手段の配置を、図19においてΔXだけ移動させた場合、即ち、投光素子101bによって投光レンズ102bを介して投射するようにした場合においては、被写体距離=LC以遠においてのみ測距することが可能となることとなる。
【0017】
従って、カメラ前面側において上記投光素子(101a,101b)および投光レンズ(102a,102b)、および、第1、第2受光レンズ(103a,103b)と第1、第2PSD(104a,104b)等の配置を変更することで、近距離側の測距可能な位置、即ち、最短撮影距離が長くなってしまうという問題点が生ずる場合が考えられる。
【0018】
なお、図19においては、2つの投光手段、即ち、上記投光素子101a,101bおよび上記投光レンズ102a,102bを同時に図示しているものであるが、これは、上記投光手段の位置によって生じる最短撮影距離の差異を説明するために、便宜上図示したものであって、上記測距装置においては、1つの投光手段があればよいものである。
【0025】
他方、カメラの小型化設計を行なうにあたっては、図18において上記投光レンズ102、第1および第2受光レンズ103a,103bの各レンズを、カメラ前面側において、同一線状に並べて配置するための工夫が必要となるという問題点もある。
【0026】
例えば、図20は、上記3眼アクティブ方式の測距装置をカメラに適用した際の、カメラ前面側の概略を示す図である。
【0027】
図20に示すように、カメラ本体121の前面側において、ファインダ系122と撮影レンズ112の近傍に、上記投光レンズ102、第1および第2受光レンズ103a,103bを同一線上に並べて配置すると、カメラの高さ方向の寸法が測距装置の配置のために、ある程度必要となるので、カメラ自体の小型化設計を規制することとなる。
【0028】
本発明の目的は、測距装置のレイアウトをコンパクトにすることにある
【0029】
【課題を解決するための手段】
本発明によるカメラの測距装置は、被写体に向けて測距用光を投射する投光手段と、上記投光手段から第1の距離を隔てて配置され、上記測距用光による上記被写体からの反射信号光の入射位置に応じた第1信号を出力する第1受光手段と、上記投光手段から上記第1受光手段とは異なる方向であって、上記第1の距離よりも長い第2の距離を隔てて配置され、上記測距用光による上記被写体からの反射信号光の入射位置に応じた第2信号を出力する第2受光手段と、上記投射を行い、上記第2信号による測距結果が所定距離よりも近距離である場合は、上記第2信号に基づいて被写体距離情報を画定し、上記測距結果が上記所定距離よりも遠距離である場合には、上記投射を再度行い、上記第1信号及び第2信号に基づいて被写体距離情報を算出する演算手段と、を具備し、上記投光手段、第1受光手段、ならびに第2受光手段は、撮影光学系を取り囲むようにそれぞれ配置され、上記第1受光手段は、上記反射信号光の入射位置を二次元方向にて検出可能であることを特徴とする。
【0031】
【発明の実施の形態】
以下、図示の実施形態によって本発明を説明する。
図1は、本発明の第1実施形態のカメラの測距装置の基本的な構成を示すブロック構成図である。
図1に示すように、この第1実施形態のカメラの測距装置は、被写体に向けて測距用光を投射する1つの投光手段、即ち、例えば、赤外発光ダイオード(IRED)等によって形成される投光素子1b、および、この投光素子1bからの光を被写体に集光し投射するための投光レンズ2bと、第1、第2受光素子であり第1、第2受光手段、即ち、上記投光素子1bおよび上記投光レンズ2bによって上記被写体に投射された測距用光の反射信号光を集光する第1、第2受光レンズ3a,3bと、この第1、第2受光レンズ3a,3bの後方にそれぞれ設けられ、上記反射信号光が入射する、例えば半導体一次元位置検出素子等によって形成される第1、第2位置検出素子(PSD)4a,4bと、この第1、第2PSD4a,4bの電流信号を入力し処理するアナログ演算手段であるPSD信号処理回路9と、カメラ全体を制御するCPU等によって形成される演算制御手段(CPU)10等によって構成されている。
【0032】
なお、上記第1、第2位置検出素子(PSD)4a,4bは入射光の位置に応じた信号を出力するものであれば、半導体一次元位置検出素子に限られない。
【0033】
また、図1においては、上記投光手段である投光素子1a、投光レンズ2aよりΔXだけ離れた位置に上記投光素子1b、投光レンズ2bを配置するように、2つの投光手段を合わせて図示しているが、これは、上述の図19において説明した上記投光素子101a,101bの関係と同様に、比較のために上記投光素子1a,1bを同時に図示しているものである。従って、この第1実施形態のカメラの測距装置の構成において、上記投光手段である投光素子と投光レンズは、それぞれ1つずつ具備していればよいものである。
【0034】
また、上記第1受光レンズ3aおよび第1PSD4aによって形成される第1受光手段は、被写体からの上記測距用光の反射信号光の入射位置に応じた第1信号を出力し、上記第2受光レンズ3bおよび第2PSD4bによって形成される第2受光手段は、上記第1受光手段とは異なる位置に配置され、被写体からの上記測距用光の反射信号光の入射位置に応じた第2信号を出力するようになっている。
【0035】
なお、上記第1、第2受光手段をそれぞれ構成する第1、第2受光レンズ3a,3bの焦点距離fjについては、略同一のものが適用されるものとする。
【0036】
また、上記PSD信号処理回路9内には、上記第1、第2PSD4a,4bから出力される出力結果である上記第1、第2信号を時分割で切り換える切換スイッチ手段18が配設されている。
【0037】
このように構成された上記第1実施形態のカメラの測距装置においては、上記投光素子1bから上記投光レンズ2bを介して被写体に向けて測距用光が投射されるようになっており、この測距用光の被写体からの反射信号光が、上記第1、第2受光レンズ3a,3bを介して第1、第2PSD4a,4bに受光されて、それぞれ電気信号に変換され、上記PSD信号処理回路9に出力される。
【0038】
ここで、上記第1PSD4aは、上記被写体からの上記測距用光の反射信号光の入射位置に応じた第1信号を、上記PSD信号処理回路9に出力し、また、上記第2PSD4bは、上記被写体からの上記測距用光の反射信号光の入射位置に応じた第2信号を、上記PSD信号処理回路9に出力することとなる。
【0039】
また、上記PSD信号処理回路9内の切換スイッチ手段18は、上記第1、第2PSD4a,4bからのそれぞれの出力、即ち、上記第1信号および第2信号を時分割によって処理するようになっている。
【0040】
即ち、上記演算制御手段10は、上記投光素子1bを時分割で発光させ、被写体に向けて測距用光を投射するように制御し、また、上記第1、第2PSD4a,4bの制御を行なって、上記第1信号に基づいて上記反射信号光の入射位置に応じた第1の値と、上記第2信号に基づいて上記反射信号光の入射位置に応じた第2の値とをそれぞれ独立させて演算する。これによって、上記第1の値または上記第1および第2の値に基づいて上記被写体距離が決定されることとなる。
【0041】
一方、上記演算制御手段10は、近距離側にある被写体に対しては、上記投光手段(1a、1bおよび2a,2b)より投射される測距用光の反射信号光を、上記第1PSD4aのみによって受光するようにし、上記第2PSD4bは使用せずに、上述の(1)式において説明した三角測量法を利用して被写体距離を測定することとなる。
【0042】
即ち、近距離側にある被写体を測距する場合においては、上記投光手段(1b,2b)より投射される測距用光を上記第1PSD4aのみによって受光することのできる近距離側における被写体位置、つまり、近距離側の測距可能な位置である最短撮影距離は、図1に示すように、被写体距離Laに示す距離である。
【0043】
つまり、上記投光素子1aである場合における、近距離側の測距可能な被写体距離LBよりも、さらに近距離側である被写体距離Laにおいて測距が可能となる。
【0044】
従って、上記第1実施形態のカメラの測距装置においては、上記投光素子1bと第1PSD4aのみによって測距可能な最短撮影距離である被写体距離Laから、上記投光素子1bと第1、第2PSD4a,4bによって測距可能となる最も近距離側の被写体位置である被写体距離Lcまでの間においては、上記投光素子1bと第1PSD4aのみによって測距を行なうこととなり、上記第1、第2PSD4a,4bを共に使用するようにした、いわゆる3眼式アクティブ方式による測距は行なわれないために、上述の「スポット欠け」に対しての補正は行なわれないこととなる。しかし、近距離側の被写体に対しては、上記投光手段(1b,2b)によって投射される測距用光の光スポットの広がりは小さいものであるので、「スポット欠け」が生じる可能性も少ないと考えられる。
【0045】
即ち、図2に示すように、上記投光素子1bより投射される測距用光は、上記投光レンズ2bを介して照射されることとなる。このとき、上記投光素子1bの発光径をφLEDとすると、上記投光レンズ2bの焦点距離ftと、照射される被写体までの距離Lとの関係から、光スポット径φSPOTは、次の(11)式によって求めることができる。
【0046】
【数11】
Figure 0003655875
従って、被写体までの距離Lが大きくなるほど、即ち、被写体が遠くにあるほど、上記投光素子1bより投光される測距用光の光スポット径φSPOTは大きいものとなり、「スポット欠け」が生じやすくなる一方、近距離側においては、上記光スポット径φSPOTは小さいものなので、「スポット欠け」が生じる可能性が少ないと考えられる。
【0047】
例えば、上記投光素子1bの発光径φLED=0.4mm、上記投光レンズ2bの焦点距離ft=10mmである場合においては、
距離L=1mの場合には、φSPOT=4cmとなるが、
距離L=5mの場合には、φSPOT=20cmとなる。
【0048】
つまり、3眼アクティブ方式の測距装置においては、「スポット欠け」に対しては、被写体が遠距離にある場合において重要なものとなってくるものであるので、被写体が近距離にある場合においては、上述のように、投光素子1bと第1PSD4aのみによる測距としても、実用上の問題は小さいものである。
【0049】
以上説明したように上記第1実施形態によれば、上記第1、第2PSD4a,4bの出力結果を時分割で切り換える切換スイッチ手段18を配設することで、上記第1、第2PSD4a,4bからのそれぞれの出力である上記第1信号および第2信号を時分割によって処理し、上記第1、第2信号のそれぞれに基づいて上記第1、第2の値をそれぞれ独立させて演算するようにすることができるので、上記第1、第2受光レンズ3a,3bの大きさ、形状等が異なるものを適用することが可能となる。これによって、上記測距装置のカメラ内における配置の自由度を得ることができる。
【0050】
また、近距離における被写体に対しては、上記投光素子1bより投射される測距用光の反射信号光を、上記第2PSD4bは使用せずに、上記第1PSD4aのみによって受光し、測距動作を行なうようにしたので、上記投光手段の配置の自由度を向上させることができる。
【0051】
そして、被写体が遠距離にある場合においては、上記投光手段(1b,2b)より投射される測距用光の反射信号光を、上記第1、第2PSD4a,4bによって受光するようにした、いわゆる3眼アクティブ方式としたので、より精度の高い測距を行なうことができる。
【0052】
図3は、本発明の第2実施形態のカメラの測距装置の概略構成を示すブロック構成図である。なお、この第2実施形態においては、基本的には上述の第1実施形態と同様の構成からなっているものであるので、同様の構成部材については同じ符号を付してその詳しい説明を省略する。
【0053】
図3に示すように、このカメラの測距装置は、被写体5に向けて測距用光を投射する投光手段である投光素子1および投光レンズ2と、上記被写体5からの上記測距用光の反射信号光を受光する一対の受光手段である第1、第2受光レンズ3a,3bおよび第1、第2PSD4a,4bとが配設されており、上記第1、第2PSD4a,4bには、これにより出力される2つの出力信号、即ち、上記第1、第2信号のそれぞれの電流i1,i2を、
【数12】
Figure 0003655875
の形で処理するためのPSD信号処理回路9が電気的に接続されている。
【0054】
なお、上述の第1実施形態においては、上記投光素子1bは、上記第1PSD4aと上記第2PSD4bとの間に位置するように配置していたが、この第2実施形態においては、上記投光素子1は、上記第1、第2PSD4a,4bの配置される位置とは、別の位置に配置するものとする。
【0055】
一方、上記PSD信号処理回路9内には、上記第1、第2PSD4a,4bのそれぞれの出力信号電流i1,i2をそれぞれ増幅するためのプリアンプ14,15,16,17が設けられており、このプリアンプ14,15,16,17からの出力は、切換スイッチ手段18,19によって時分割で切り換えられ、演算回路20に出力されるようになっている。この演算回路20は、上述の(12)式に示す演算を行なうことで上記測距用光の第1、第2PSD4a,4bの各々の入射位置を時分割で検出する検出回路である。
【0056】
なお、上記PSD信号処理回路9内には、上記第1、第2PSD4a,4bから出力される信号から、測距に係る所望の信号である反射信号光以外の信号、例えば、背景光成分等を除去するフィルタ回路等が配設されているものであるが、本発明に直接関係のない部材であるので、その図示を省略している。
【0057】
そして、カメラ全体を制御するワンチップマイコン等のCPU等によって形成される演算制御手段10には、上記投光素子1を発光させるドライバ8が接続されていると共に、上記切換スイッチ手段18,19および演算回路20が電気的に接続されている。これにより、上記演算制御手段10は、上記ドライバ8を制御して上記投光素子1を発光させ、上記切換スイッチ手段18,19の切り換え制御を行ない、上記演算回路20の出力結果に従って、上記被写体5までの距離を演算するようになっている。
【0058】
さらに、上記演算制御手段10は、上記演算された被写体5までの距離に基づいて、合焦手段11によって撮影光学系12を制御するようになっている。
ここで、上記撮影光学系12が、例えば、撮影倍率の変倍自在なズーム光学系を有する場合においては、撮影時における焦点距離等の情報は、焦点距離検出手段であるズーム情報入力手段13等によって、上記演算制御手段10に入力され、この入力された焦点距離情報等の値に応じて、判定手段でもある上記演算制御手段10は、上記切換スイッチ手段18,19の切り換えを判定することで、上記一対の受光手段の両方または片方のいずれかの受光手段の出力を用いて被写体距離の決定を行ない、これによって、合焦動作や露光動作の各制御等を行なうようになっている。
【0059】
ところで、上記投光素子1によって発光される測距用光は、上記投光レンズ2によって被写体に向けて投射されることとなるが、上記測距用光の反射信号光を上記第1、第2PSD4a,4bが共に受光することのできる範囲は、図3において斜線によって示す範囲である。
【0060】
従って、この範囲内にある被写体に対しては、上記第1、第2PSD4a,4bの一対の受光手段による三角測量法を利用した測距が行なわれることとなり、この場合においては、上記第1、第2受光レンズ3a,3b間の距離Sが基線長とされることとなる。
【0061】
一方、上記図3における斜線部分以外の近距離側にある被写体については、上記投光素子1と上記第1PSD4aによる三角測量法を利用した測距が行なわれる。つまり、上記第2PSD4bは使用せずに測距が行なわれることとなる。この場合においては、上記投光レンズ2と第1受光レンズ4a間の距離STが基線長とされることとなる。
【0062】
図4は、上記第2実施形態のカメラの測距装置の測距動作を示すフローチャートである。また、図5は、上記測距装置における測距動作を説明するために、上記投光手段および一対の受光手段等の測距に係る部材を取り出して示した要部拡大図である。
【0063】
まず、図5において、近距離側にある被写体5aを測距する場合には、図3におけるステップS1において、上記演算制御手段10は、上記投光素子(IRED)1を発光させて、上記投光レンズ2によって測距用光を被写体に向けて投射する。これと共に、上記演算制御手段10は、上記切換スイッチ手段18,19の切り換えを行ない、上記第1PSD4aによって上記測距用光の反射信号光の受光を行なう。
【0064】
そして、上記演算回路20において、上記反射信号光の受光位置、即ち、上記第1PSD4a上における入射光の位置X1a(図5において上記第1受光レンズ3aの光軸からのズレ量。第1の値。)の検出が行なわれて、上記演算制御手段10に出力され、次のステップS2の処理に進む。
【0065】
ステップS2においては、上記撮影光学系12の焦点距離fLの所定値f0との比較が行なわれる。ここで、上記撮影光学系12が広角系である場合においては、焦点深度が深く、また、近距離側の被写体を撮影する機会が多い等の点を考慮して、上記第1PSD4a上の第1の値X1aに基づいて測距が行なわれる。
【0066】
即ち、上記ステップS2において、上記撮影光学系12が広角系でないと判断された場合(fL>f0)には、次のステップS3の処理に進む一方、上記撮影光学系12が広角系であると判断された場合(fL≦f0)には、ステップS7の処理に進み、上述のように、上記第1PSD4a上の第1の値X1aに基づいて測距(被写体までの距離Laの計算)が行なわれることとなる。
【0067】
次に、ステップS3において、上記第1の値X1aが、上記第1、第2PSD4a,4bが共に受光することのできる最も近距離側の被写体までの距離Lb、即ち、最短撮影距離における被写体からの反射信号光の上記第1PSD4a上の入射光の位置の所定値X0(図1参照)以下であるとき(X1a≦X0)は、上記一対の受光手段である第1、第2受光レンズ3a,3bおよび第1、第2PSD4a,4bによって測距が行なわれるものとして、次のステップS4の処理に進むこととなる。
【0068】
一方、上記ステップS3において、上記第1の値X1aが、上記所定値X0よりも大なるとき(X1a>X0)には、上記被写体5aからの反射信号光が上記第2PSD4bには入射せず(図5における点線で示す矢印A(X2a)。)、上記第1、第2PSD4a,4bが共に受光できる最短撮影距離Lbよりも、上記被写体5aが近距離側にあるものとして、ステップS7の処理に進み、このステップS7において、上記第1の値X1aに基づいて測距が行なわれ、被写体距離Laの決定が行なわれることとなる。
【0069】
即ち、ステップS7においては、上記投光レンズ2と上記第1受光レンズ3a間を距離STを基線長として測距が行なわれる。このとき、図5に示すように、上記投光レンズ2の焦点距離ftと、上記投光素子1の上記投光レンズ2の光軸からのズレ量Xt、および、上記第1受光レンズ3aの焦点距離fjと、反射信号光の上記第1PSD4a上における入射光の位置、即ち、上記第1の値X1aとすると、次の(13)式によって求めることができる。
【0070】
【数13】
Figure 0003655875
この(13)式において、変数としては、上記第1受光レンズ3aの光軸からのズレ量X1aのみであるので、これを上記第1PSD4a上における位置の検出を行なうことで、被写体5aまでの距離Laを求めることができる。
【0071】
次に、図5において、遠距離側の被写体5bを測距する場合には、上述のステップS1〜ステップS3までの処理が同様に行なわれるが、ここでは、上記ステップS1において上記投光素子1より投射される測距用光の反射信号光は、上記第1PSD4aによって受光され、上記第1PSD4a上における入射光の位置X1b(図5において上記第1受光レンズ3aの光軸からのズレ量。第1の値。)の検出が、上記演算回路20によって行なわれ、上記演算制御手段10に出力されることとなる点が異なるのみであり、他の点については、上述した近距離側の被写体5aを測距する場合と同様である。
【0072】
そして、ステップS3においては、上記第1の値と上記所定値X0との関係は、X1a≦X0であるので、上述したように、次のステップS4の処理に進み、このステップS4において、上記演算制御手段10は、上記投光素子(IRED)1を再度発光させて、上記投光レンズ2によって測距用光を被写体に向けて投射する。これと共に、上記演算制御手段10は、上記切換スイッチ手段18,19の切り換えを行ない、上記第2PSD4bによって上記測距用光の反射信号光の受光が行なわれる。
【0073】
そして、上記演算回路20において、上記反射信号光の受光位置、即ち、上記第2PSD4b上における入射光の位置X2b(上記第2受光レンズ3bの光軸からのズレ量。第2の値。)の検出が行なわれ、上記演算制御手段10に出力されて、次のステップS5の処理に進む。
【0074】
ステップS5において、上述のステップS1において演算された上記第1の値X1bと、上述のステップS4において演算された上記第2の値X2bとに基づいて、上記(3)式によって、上記被写体5bまでの距離Lbを求めることができる。
【0075】
なお、図5に示すように、上記投光素子1、および上記第1、第2PSD4a,4bのカメラ前面側における各部材の配置は、上述の第1実施形態における同部材の配置、即ち、上記投光素子1が上記第1PSD4aと第2PSD4bの間に配置される場合に比べて、被写体距離が長くなる程、上記第1の値X1bは小さくなるので、上記(3)式による演算を行なう際には、上記第1の値X1bの符号を反転させて代入し演算を行なうこととなる。
【0076】
そして、上述のステップS7において算出された被写体5aまでの距離La(近距離側)、もしくは、ステップS5において算出された被写体5bまでの距離Lb(遠距離側)に基いて、上記演算制御手段10は、上記合焦手段11を制御してカメラの撮影光学系12を駆動し、合焦動作が行なわれ、一連の処理を終了する。
【0077】
以上説明したように上記第2実施形態によれば、上記投光手段を配置する位置を、上記一対の受光手段の間に配置するような位置関係(上述の第1実施形態に例示する配置。)に限定されることがないので、カメラ前面側における各部材の配置の自由度を確保することができる。
【0078】
また、上記演算制御手段10によって、上記第1の値X1(a,b)と所定値X0を比較して、この比較結果に応じて上記第1の値に基づいて上記被写体距離を決定するか、上記第1の値および第2の値に基づいて上記被写体距離を決定するかの選択を行なうようにし、上記近距離の被写体5aに対しては、上記第1の値X1aに基づいて上記被写体距離Laを決定し、上記遠距離にある被写体5bに対しては、上記第1の値X1bおよび第2の値X2bに基づいて上記被写体距離Lbを決定するようにしたことにより、遠距離にある被写体5bの測距時に生じる「スポット欠け」に対しては補正を行なって、より精度の高い測距を行なうことができると共に、上記第1、第2PSD4a,4bを大型化することなく、近距離にある被写体5aに対しても精度の高い測距を行なうことができる。
【0079】
次に、本発明の第3実施形態のカメラの測距装置について、以下に説明する。
【0080】
図6は、この第3実施形態の測距装置が適用されたカメラの正面図であって、その前面側における測距装置に係る部材等の配置を簡単に示すものである。
【0081】
図6に示すように、カメラ本体21の前面側の略中央部において、撮影光学系12が配設されており、この撮影光学系12の上部には、ファインダ部が配設され、カメラ本体21の前面側においてファインダ対物レンズ22が配設されている。
【0082】
また、上記撮影光学系12の周辺には、これを囲むようにして、上記投光レンズ2および上記第1、第2受光レンズ3a,3bが配設されている。なお、上記投光レンズ2は、上記ファインダ部の近傍に配置されている。
【0083】
図7は、図6に示す上記第3実施形態のカメラ前面側における上記投光レンズ2および上記第1、第2受光レンズ3a,3bの位置関係を簡単に示す図である。また、図8は、上記図7に示す上記第1、第2受光レンズ3a,3bを取り外した状態を示す図であって、上記投光レンズ2および上記第1、第2受光レンズ3a,3bの後方に配置される上記第1、第2PSD4a,4bとの位置関係を簡単に示している。
【0084】
なお、図7、図8に示すように、上記第1、第2受光レンズ3a,3b間の距離=S、上記投光レンズ2と上記第1受光レンズ3a間の距離=STa(第1の基線長)、上記投光レンズ2と上記第2受光レンズ3b間の距離=STb(第2の基線長)とし、図8に示すように、上記第1、第2PSD4a,4bを結ぶ線と、上記投光レンズ2と上記第2PSD4bとを結ぶ線とのなす角度をθ、上記第1,第2PSD4a,4bの幅方向の寸法をそれぞれwa,wb、上記第1,第2PSD4a,4bの長手方向の寸法をそれぞれta,tbとする。
【0085】
また、上記第3実施形態のカメラの測距装置においては、上記第1PSD4aは、「スポット欠け」に対する補正を行なうために配設されているものであって、上記第1PSD4aを遠距離にある被写体に対してのみで使用するものである。
【0086】
ところで、上記投光手段(投光素子1および投光レンズ2)と一対の受光手段(第1、第2受光レンズ3a,3bおよび第1、第2PSD4a,4b)とをカメラ前面側において配置する場合において、測距を行なう際に生じる「スポット欠け」等による測定誤差を補正し、より正確な測距結果を得るためには、上記第1、第2受光レンズ3a,3bの両レンズ間を結ぶ線方向において、上記第1、第2PSD4a,4bを配置するようにする必要がある(以下、第1条件と言う。)。
【0087】
また、上記投光手段と上記一対の受光手段のいづれか一方とを用いて、三角測量法を利用する測距を行なうためには、上記投光手段と、測距を行なう場合に用いる上記いづれか一方の受光手段を結ぶ線方向において、上記第1、第2PSD4a,4bの検出方向が一致するように配置される必要がある(以下、第2条件と言う。)。
【0088】
そこで、上記一方の受光手段である第1PSD4aについては、二次元の検出方向を有する位置検出素子(PSD)とすることで、上記第1、第2条件を共に満たすことができ、また、上記第2PSD4bは、一般的な一次元の検出方向を有する位置検出素子(PSD)とすることで上記第1、第2条件を共に満たすことが可能となる。
【0089】
従って、図8に示すように、上記投光レンズ2より照射され、被写体によって反射された反射信号光の光スポットは、被写体までの距離が近距離側から遠距離側まで変化した場合において、上記第1PSD4a上で、図8に示す矢印Yt方向に、また、上記第2PSD4b上においては、図8に示す矢印Xt方向に移動することとなる。
【0090】
即ち、上記第2PSD4b上に入射する上記反射信号光の光スポットは、図9に示す上記第2PSD4bの要部拡大図において、上記第1、第2PSD4a,4bを結ぶ線方向に対して角度θの方向(Xt方向)に移動することとなる。従って、上記第2PSD4b上において、上述のように、光スポットのXt方向の移動を検出して測距を行なうこととなるが、ここでは、図9に示すように、光スポットの入射位置X1を検出することによって、被写体距離の測定(測距)を行なうこととする。
【0091】
例えば、上記第1、第2PSD4a,4bを結ぶ線と上記投光レンズ2と上記第2PSD4bとを結ぶ線とのなす角度θ=22°(度)、上記投光レンズ2と上記第1受光レンズ3a間の距離STa=20mm、上記投光レンズ2と上記第2受光レンズ3b間の距離STb=50mm、上記第2受光レンズ3bの焦点距離fj=15mmとした場合において、被写体までの距離Lmin=50cm(近距離側)からLmax=∞(遠距離側)までの測距を行なう場合を考えるとすると、
【数14】
Figure 0003655875
によって求めることができ、上記第2PSD4b上を光スポットが移動する量Xt=1.5mmとなるので、上記第2PSD4b上の光スポットの入射位置に応じた第1の値X1は、
【数15】
Figure 0003655875
によって求められ、X1=約1.39mmとなる。これにより、上記第2PSD4bの長手方向の寸法tbは余裕を考慮に入れても、tb=約2mm程度とすればよいこととなる。
【0092】
また、上記第2PSD4bの長手方向と直交する方向、即ち、上記第2PSD4b上の幅方向における光スポットの移動量Ytは、上述の(14)式と同様に、
【数16】
Figure 0003655875
によって求めることができ、光スポットの移動量Yt=約0.6mmとなるので、上記第2PSD4bの幅方向の寸法wbは、余裕を考慮に入れても、wb=約1.2mm程度とすればよいこととなる。
【0093】
なお、上記第1、第2PSD4a,4bの受光面積は小さい程、反射信号光以外の光等の影響を受けにくくなり、上記第1、第2PSD4a,4bを小さくする程、測距精度の向上を得ることができることとなるので、上記第2PSD4bの形状等については、図10に示す第2PSD4abのような形状に変更することも可能である。ただし、この場合においては、上記第2PSD4b上の光スポット移動量Xtを検出するようにする必要がある。
【0094】
また、上記第1PSD4a上においては、反射信号光の光スポットは、幅方向(図8において矢印Yt方向)に移動し、その長手方向には変動しないので、長手方向の寸法ta=約0.5mm程度とすればよい。
【0095】
そしてまた、上記第1PSD4aの幅方向の寸法waについては、この第1PSD4aは、遠距離にある被写体を測距する場合のみで使用するものであり、反射信号光の光スポットの移動量が少なく、上記第2PSD4bの幅寸法wbほど大きくする必要はない。従って、上記幅寸法wa=1mm以下とすればよいこととなる。
【0096】
このように構成された上記第3実施形態のカメラの測距装置の動作について、以下に説明する。図11は、上記第3実施形態のカメラの測距装置の測距動作を示すフローチャートである。
【0097】
まず、図11に示すように、ステップS10において、上記投光手段による測距用光の投射がなされる。即ち、上記投光素子(IRED)1が発光され、上記投光レンズ2より投射された測距用光は、被写体に反射して、その反射信号光が上記第2PSD4b上に入射する。そして、このときの上記第2PSD4b上の光スポットの入射位置X1(第1の値)が検出される。
【0098】
ステップS11においては、上記演算制御手段10によって、上記光スポットの入射位置に応じた第1の値X1と上記所定値X0との比較がなされ、この比較結果に応じて次の処理が異なる。
【0099】
即ち、上記第1の値X1<所定値X0であれば、被写体は比較的遠距離にあるものと判断されて、次のステップS12の処理に進む一方、上記第1の値X1<所定値X0でなければ、被写体は所定の位置より近距離にあるものと判断されて、この第1の値X1に基づいて、上述の(15)式によって上記第2PSD4b上の光スポット移動量Xtが算出され、次のステップS16の処理に進む。
【0100】
そして、ステップS16において、上記演算制御手段10によって、上述のステップS15において算出された上記光スポット移動量Xtと、上記投光レンズ2と上記第2受光レンズ3b間の距離STb(既定値)および上記第2受光レンズ3bの焦点距離fj(既定値)によって、上述の(14)式より、被写体までの距離Lminが算出されて、次のステップS14の処理に進む。
【0101】
一方、上記ステップS11において、上記光スポット位置X1<所定値X0であると判断されて、ステップS12の処理に進むと、このステップS12において、上記投光素子(IRED)1が再度発光され、その反射信号光が上記第1PSD4a上に入射する。そして、このときの上記第1PSD4a上の光スポットの入射位置X2(第2の値)が検出されて、次のステップS13の処理に進む。
【0102】
ステップS13において、上述のステップS10、S12において検出された上記光スポットの入射位置に応じた第1、第2の値X1,X2に基づいて、上述の(14)式によって被写体までの距離Lminが算出され、次のステップS14の処理に進む。
【0103】
ステップS14において、上述のステップS13、S16において算出された被写体距離Lminに基づいて、上記演算制御手段10は、合焦手段を制御して撮影光学系を駆動して合焦動作を行ない、一連の動作を終了する。
【0104】
以上説明したように上記第3実施形態によれば、カメラ前面側において配置する測距装置に係る部材について、上記撮影光学系12の周辺部に上記投光レンズ2および第1、第2受光レンズ3a,3b等を配置したことによって、カメラの小型化を実現することができる。
【0105】
そして、上記ファインダ部の近傍に上記投光レンズ2を配設することによって、上記撮影光学系12とファインダ光学系の間に生じる視差、即ち、パララックスの補正が可能となる。従って、近距離にある被写体の撮影時において、より正確な画面構成(フレーミング)を行なうことができる。
【0106】
さらに、上記第2PSD4b上に入射する上記反射信号光の光スポットの移動を検出する際に、上記第2PSD4b上における光スポットの入射位置X1を検出することにより測距を行なうようにしたので、上記第1、第2PSD4a,4bの受光面積を、より小さくすることができる。従って、反射信号光以外の光等の影響を受けることが少なく、より精度の高い測距を行なうことができる。
【0107】
図12は、本発明の第4実施形態のカメラの測距装置の概略構成を示すブロック構成図である。なお、この第4実施形態における投受光手段等の配置は、上述の第3実施形態と基本的に同様のものである。
【0108】
即ち、図12に示すように、この第4実施形態のカメラの測距装置は、被写体に向けて測距用光を投射する投光手段、即ち、投光素子1および投光レンズ2と、被写体からの上記測距用光の反射信号光を受光する一対の受光手段、即ち、第1、第2位置検出素子(PSD)4a,4bおよび第1、第2受光レンズ3a,3bとが配設されており、上記第1、第2PSD4a,4bには、これにより出力される2つの出力信号である第1、第2信号が入力されるPSD信号処理回路9が電気的に接続されている。
【0109】
また、上記PSD信号処理回路9には、カメラ全体を制御するワンチップマイコン等のCPU等によって形成される演算制御手段10が接続され、この演算制御手段10には、上記投光素子1を発光させるドライバ8が接続されている。
【0110】
そして、上記投光レンズ2と上記第1受光レンズ3aとを結ぶ第1の基線長方向と、上記投光レンズ2と上記第2受光レンズ3bとを結ぶ第2の基線長方向がほぼ直交するように配置されている。
【0111】
また、上記第1、第2PSD4a,4bは、上記投光レンズ2と上記第2受光レンズ3bとを結ぶ第2の基線長方向と同方向に検出方向を有しており、また、上記第1、第2PSD4a,4bの検出方向の長さは、それぞれ略等しい長さとなるように設定されている。
【0112】
さらに、上記第1PSD4a上においては、図12において斜線で示す部分において、例えばアルミ等を貼付することによって、不必要な定常光が入射しないようにするために遮光がなされている。
【0113】
このように構成された上記第4実施形態のカメラの測距装置において、三角測量法を利用した測距が行なわれることとなるが、ここで、被写体距離を測定するためには、上記投光素子1および投光レンズ2からなる投光手段より投射された測距用光が、被写体に反射し、その反射信号光が上記第2PSD4bに入射されて、その光スポットの位置が検出され、その出力信号(第2信号;上記第2PSD4b上を被写体距離によって移動する光スポットによる出力信号。)が、上記PSD信号処理回路9に入力されることとなる。
【0114】
また、このとき、上記第1PSD4aにも被写体からの反射信号光が入射されるが、この第1PSD4a上においては、上記投光素子1からの光スポットが被写体距離によって移動する移動方向と上記第1PSD4aの検出方向が一致せず、略直交するように配置されているために、この第1PSD4aによる測距は行なわれないが、上記第1PSD4aは、一定量の信号である第1信号を出力することとなる。
【0115】
即ち、図12に示すように、例えば、上記投光素子1より投射された測距用光において、「スポット欠け」が生じた場合においては、上記第1PSD4aが出力する第1信号は、「スポット欠け」の程度によって変動する。このときの、上記第1PSD4aから出力される第1信号の変動は、上記第1、第2PSD4a,4bの長さを略同一としたこと、および、上記第1、第2PSD4a,4bのそれぞれの検出方向を同方向としたことによって、上記第2PSD4b上での「スポット欠け」によって生じる出力信号の変動と略等しいものとなっている。
【0116】
従って、上述のように、上記PSD信号処理回路9には、上記第2PSD4b上の光スポットの位置検出による第2信号(測距結果)と、上記第1PSD4a上の「スポット欠け」によって変動する第1信号が入力されることとなり、上記演算制御手段10は、この第1、第2信号に基づいて演算を行ない、被写体距離を算出する。従って、「スポット欠け」に対する補正が行なわれることとなる。
【0117】
以上説明したように上記第4実施形態によれば、上記一対の受光手段である第1、第2PSD4a,4bおよび第1、第2受光レンズ3a,3bとを略同一として、上記第2PSD4bにより出力される第2信号と、上記第1PSD4aにより出力される第1信号とを、上記PSD信号処理回路9にそれぞれ入力し、この第1、第2信号に基づいて、上記演算制御手段10によって演算を行ない、被写体距離の算出を行なうようにしたので、「スポット欠け」の補正を行なった、より精度の高い測距装置とすることができる。
【0118】
また、上記投光素子1の一回の発光によって投射される測距用光を、上記第1、第2PSD4a,4bによって同時に受光して測距を行なうようにしたので、上記投光素子1の発光による消費電力の省電力化に寄与することができる。
【0119】
そして、上記PSD信号処理回路9は、第1、第2信号の2つの出力信号を時分割で切り換えられて上記切換スイッチ手段10入力し、上記演算制御手段10に出力するようにすればよいので、単純な回路とすることができ、構成部材の製造コストの低減に寄与することができる。
【0120】
なお、上記投光レンズ2と上記第1受光レンズ3aとを結ぶ第1の基線長上において、近接させることで上記第1PSD4a上における反射信号光の変動量は少なくなる。従って、上記投光レンズ2と上記第1受光レンズ3aとの間隔を小さくするような配置とすれば、上記第1PSD4aの幅方向の寸法waを小さくすることができる。
【0121】
上述の第1〜第4実施形態においては、上記一対の受光手段を構成する第1、第2受光レンズの焦点距離については、略同一のものを適用するものとしていたが、例えばカメラ内における上記各実施形態の測距装置等を配設する場合において、上記一対の受光レンズの各仕様を略同一とすることが困難となる場合が考えられる。
【0122】
そこで、上記一対の受光手段を構成する第1、第2受光レンズの焦点距離の仕様について、それぞれ異なるものを適用した場合について、次の第5実施形態によって、以下に説明する。
【0123】
図13は、本発明の第5実施形態のカメラの測距装置の概略構成を示すブロック構成図である。なお、この第5実施形態においては、基本的には上述の第2実施形態と同様の構成からなっているものであるので、同様の構成部材については同じ符号を付してその詳しい説明は省略する。
【0124】
図13に示すように、この第5実施形態のカメラの測距装置31には、被写体5に向けて測距用光を投射する投光手段、即ち、投光素子1および投光レンズ2と、上記被写体5からの上記測距用光の反射信号光を受光する一対の受光手段、即ち、第1、第2PSD4a,4bおよび第1、第2受光レンズ3a,3bとが配設されており、この第1、第2受光レンズ3a,3bのそれぞれの焦点距離fja,fjbはそれぞれ異なるものに設定されているものとする。
【0125】
上記第1PSD4aには、これにより出力される第1信号を増幅するためのプリアンプ14,15が電気的に接続されており、また、上記第2PSD4bには、これにより出力される第2信号を増幅するためのプリアンプ16,17が電気的に接続されている。
【0126】
上記プリアンプ15,16からの各出力信号(第1、第2信号)は、切換スイッチ手段18によって、また、上記プリアンプ14,17からの各出力信号(第1、第2信号)は、切換スイッチ手段19によって、それぞれ切り換えられるようになっている。
そして、上記切換スイッチ18,19は、演算回路20に電気的に接続されており、上記第1第2信号が入力されるようになっている。
【0127】
また、カメラ全体を制御するワンチップマイコン等のCPU等によって形成される演算制御手段10には、上記投光素子1を発光させるドライバ8が接続されていると共に、上記切換スイッチ手段18,19および演算回路20が電気的に接続されている。これによって、上記演算制御手段10は、上記ドライバ8を制御して上記投光素子1を発光させ、上記切換スイッチ手段18,19の切り換え制御を行ない、上記演算回路20の出力結果に従って、上記被写体5までの距離を演算するようになっている。
【0128】
さらに、上記演算制御手段10には、電気的に書込み可能なメモリであるEEPROM25と、パソコン等の情報処理装置等によって構成され、上記演算制御手段10等の制御を行なうチェッカー26等が電気的に接続されるようになっている。
【0129】
このように構成された上記第5実施形態におけるカメラの測距装置31において、測距が行なわれる際の動作について、以下に説明する。
【0130】
図14、図15は、上記第1、第2PSD4a,4b上における反射信号光の光スポットが投射されている状態を簡略化して示したものであって、図14は、上記第1、第2受光レンズ3a,3bの焦点距離が等しい場合の例示であり、図15は、上記第1、第2受光レンズ3a,3bの焦点距離が互いに異なるようにした上記第5実施形態の場合の例示である。
【0131】
図14に示すように、上記第1、第2受光レンズ3a,3bの焦点距離が等しい場合においては、上記第1、第2PSD4a,4bに投射される反射信号光の光スポット26aは、それぞれ同じ大きさとなる。従って、「スポット欠け」量(図14において、点線で示す光スポットの上側部分)も、上記第1、第2PSD4a,4bにおいてそれぞれ同量となるが、図15に示すように、上記第1、第2受光レンズ3a,3bの焦点距離が互いに異なるように設定された場合においては、上記第1、第2PSD4a,4b上に投射される反射信号光の光スポット26b,26cは、それぞれ異なる大きさとなり、また、「スポット欠け」量(図15において、点線で示す光スポットの上側部分。)も、それぞれ異なる。
【0132】
従って、上記第1、第2受光レンズ3a,3bの焦点距離が異なる場合における、2つの反射信号光によって、被写体までの距離を測定するためには、補正を行なう必要がある。つまり、この場合においては、上述の(3)式による被写体距離の演算は成立しないこととなる。
【0133】
つまり、この場合においては、上記第1、第2PSD4a,4b上における反射信号光の光スポット26b,26cの入射位置をそれぞれXa,Xb、上記被写体5までの距離L、上記第1、第2受光レンズ3a,3b間の距離S、上記第1受光レンズ3aの焦点距離fja、上記第2受光レンズ3bの焦点距離fjbとすると、
【数17】
Figure 0003655875
の式が成立することとなる。
【0134】
ところで、上記第1、第2受光レンズ3a、3bの焦点距離fja,fjbは、例えば、部品製造時に生じる偏差、取り付け誤差等の要因によって誤差が生じることが考えられる。そこで、この各部材に生じる誤差等を考慮して、各装置毎に調整を行なう必要がある。即ち、補正値(調整量)αを加味すると、上述の(17)式は、
【数18】
Figure 0003655875
となり、焦点距離の異なる第1、第2受光レンズ3a、3bが適用された測距装置の場合においては、上記(18)式に基づいて被写体距離Lが決定されることとなる。
【0135】
また、上記補正値(調整量)αについて、図16、図17によって、さらに詳しく説明する。
図16は、上述の第5実施形態のカメラの測距装置に調整を行なう調整装置を取り付けた場合の概略構成を示すブロック構成図である。なお、図16において示す測距装置31は、上述の第5実施形態において説明したものと同じものであるが、図面の繁雑化を避けるために、一部の部材を簡略化して図示している。
【0136】
図16に示すように、上記測距装置31には、互いに焦点距離の異なる第1、第2受光レンズ3a,3bが適用されており、上記測距装置31の調整を行なう調整装置29が配設されている。
【0137】
即ち、上記測距装置31内の上記演算制御手段10(CPU)には、上記調整装置29が接続されている。この調整装置29は、パソコン等の情報処理装置等によって構成されるチェッカー26と、選択ドライバ27等から構成されており、上記チェッカー26は、上記測距装置31の演算制御手段10と電気的に接続されている一方、上記調整装置29内において上記選択ドライバ27と電気的に接続されている。
【0138】
また、上記選択ドライバ27には、第1および第2光源である第1、第2投光素子(IRED)28a,28bが、上記測距装置31の第1、第2受光レンズ3a,3bの並び方向と同じ方向に所定の間隔で並べられて配置されており、また、上記第1、第2投光素子(IRED)28a,28bと、上記測距装置31の第1、第2受光レンズ3a,3bとは、所定距離Lだけ離れるように設定されている。
【0139】
そして、上記チェッカー26は、上記選択ドライバ27を制御して、上記第1、第2投光素子28a,28bを選択的に発光させるようになっており、この第1、第2投光素子28a,28bの発光によって投射される光が、上記測距装置31の第1、第2受光レンズ3a,3bを透過して上記第1、第2PSD4a,4bに入射するようになっていると共に、上記測距装置31に取り付けられた際には、上記演算制御手段10を制御するようにもなっている。
【0140】
このように構成された上記調整装置29による上記測距装置31の調整時の動作について、図17のフローチャートによって、以下に説明する。なお、この調整動作については、例えば、上記測距装置31の製造ライン上において行なわれるものである。
【0141】
図17に示すように、まず、ステップS20において、上記調整装置29のチェッカー26は、上記演算制御手段10を制御することで、上記ドライバ8を介して上記測距装置31の投光素子1の発光を停止(OFF)させて、次のステップS21の処理に進む。これによって、次のステップS21以降の処理においては、上記測距装置31の投光素子1の発光動作が禁止されることとなる。
【0142】
次に、ステップS21〜S24において、上記調整装置29のチェッカー26は、上記選択ドライバ27と上記演算制御手段10を制御することで、上記第1、第2投光素子(IRED)28a,28bと、上記測距装置31のスイッチ18,19を切り換え制御して、上記第1、第2投光素子(IRED)28a,28bの発光により投射される光を、上記第1、第2PSD4a,4bに対して順次入射させる。
【0143】
即ち、ステップS21において、上記チェッカー26は、上記選択ドライバ27を制御して、上記第1投光素子(IRED)28aを発光させると共に、上記演算制御手段10を介して上記切換スイッチ18,19を制御して、上記第1PSD4aに、上記第1投光素子(IRED)28aより投射される光を受光させて、信号光位置Xa1を検出し、次のステップS22の処理に進む。
【0144】
続いて、ステップS22において、上記チェッカー26は、上記選択ドライバ27を制御して、上記第2投光素子(IRED)28bを発光させると共に、上記演算制御手段10を介して上記切換スイッチ18,19を制御して、上記第1PSD4aに、上記第2投光素子(IRED)28bより投射される光を受光させて、信号光位置Xa2を検出し、次のステップS23の処理に進む。
【0145】
そして、ステップS23において、上記チェッカー26は、上記選択ドライバ27を制御して、上記第1投光素子(IRED)28aを発光させると共に、上記演算制御手段10を介して上記切換スイッチ18,19を制御して、上記第2PSD4bに、上記第1投光素子(IRED)28aより投射される光を受光させて、信号光位置Xb1を検出し、次のステップS24の処理に進む。
【0146】
さらに、ステップS24において、上記チェッカー26は、上記選択ドライバ27を制御して、上記第2投光素子(IRED)28bを発光させると共に、上記演算制御手段10を介して上記切換スイッチ18,19を制御して、上記第2PSD4bに、上記第2投光素子(IRED)28bより投射される光を受光させて、信号光位置Xb2を検出し、次のステップS25の処理に進む。
【0147】
そして、ステップS25において、上記チェッカー26は、上記検出した信号光位置Xa1,Xa2,Xb1,Xb2に基づいて上記補正値(調整量)αの演算を行ない、次のステップS26の処理に進む。
【0148】
続いて、ステップS26において、上記チェッカー26は、上記補正値(調整量)α、および、上記測距装置31の第1、第2受光レンズ3a,3bと上記第1、第2投光素子IRED28a,28b間の所定距離Lに基づいて、(18)式により係数Aの値の演算を行なう。
【0149】
そして、ステップS27において、上述のステップS25,S26において算出された上記補正値(調整量)α、係数Aは、書込手段(図示せず)等によって、上記EEPROM25に記憶させて、一連の処理を終了する。
【0150】
なお、上記測距装置31において、「スポット欠け」を補正するためには、上記第1、第2投光素子28a,28bのいずれが発光した場合においても、上記第1、第2PSD4a,4bに投射される光の信号光位置Xa1,Xa2,Xb1,Xb2によって、正確に所定距離Lが算出されなければならない。従って、上記第1、第2受光レンズ3a,3bの焦点距離fja,fjbの違いや、取り付け時に生じる誤差等にかかわらず、常に、α(Xa1−Xa2)=(Xb1−Xb2)の関係が成立する必要がある。
【0151】
このようにして、上記調整装置29によって調整が行なわれた測距装置31は、撮影が行なわれる際に行なわれる測距動作、即ち、上記投光素子1の発光動作と、その反射信号光の第1、第2PSD4a,4bによる受光動作によって、反射信号光の入射位置Xa,Xbの検出が行なわれると共に、上記EEPROM25に記憶されている上記補正値(調整量)αおよび係数Aが読み出される。
【0152】
そして、上記検出された入射位置X1,Xb、および、上記EEPROM25から読み出された補正値(調整量)α、係数A等に基いて、上記演算制御手段10によって、上述の(18)式の演算が行なわれ、被写体距離Lが算出される。
【0153】
そして、上記演算制御手段10によって、上記算出された被写体距離Lに基いて、合焦手段等を制御して撮影光学系が駆動され、合焦動作が行なわれることとなる。
【0154】
以上説明したように上記第5実施形態によれば、上記測距装置31の構成部材の取り付け時や、組み立て時等において生じる誤差等を、製造段階等において上記調整装置29によって調整等を行なうようにしたので、上記測距装置31の第1、第2受光レンズ3a,3bを異なる焦点距離を有するものとしても、より精度の高い測距を行なうことができると共に、装置自体の生産コストの減少に寄与することができる。
【0155】
また、上記測距装置31をカメラ内に配設する場合においては、配置上の自由度を向上させることができると共に、容易に小型化を実現することができる。
【0156】
なお、上述の実施形態では、入射位置に応じた第1および第2の値として、演算された入射位置X1,X2を用いていたが、入射位置に応じた値とはこの入射位置X1,X2に限らず、これらの値より直接的または間接的に演算される被写体距離Lや、この被写体距離Lの逆数等の値を用いることも可能である。この場合には、図4、図11のフローチャート中の判断が異なるが、趣旨に沿って適宜変更すればよい。
【0157】
[付記]
(1) 被写体に対し測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光を受光する一対の受光手段と、
上記一対の受光手段の出力結果を時分割で切り換える切換スイッチ手段と、
上記測距用光の上記一対の受光手段の各々の入射位置を時分割で検出する検出回路と、
上記測距用光の投射を制御し、上記切り換え制御を行ない、上記検出回路の出力結果に従って、上記被写体までの距離を演算する演算制御手段と、
を具備した測距装置。
【0158】
(2) 上記演算制御手段は、上記投光手段による上記測距用光の投射時に、上記一対の受光手段のうちの一方の受光手段への上記反射信号光の入射位置を上記検出回路によって検出し、この検出結果に応じて他方の受光手段に基づく検出結果を用いるかを決定するようにした付記第1に記載の測距装置。
【0159】
(3) 上記測距装置はズームレンズ付きカメラに組み込まれ、上記ズームレンズの焦点距離情報を検出する焦点距離検出手段を有し、上記演算制御手段は上記焦点距離検出手段によって検出された上記焦点距離情報の値に応じて、上記一対の受光手段の両方または片方のいずれの受光手段の出力を用いて上記被写体距離を求めるかを決定するようにした付記第1に記載の測距装置。
【0160】
(4) 被写体に対し測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光を受光し、その入射位置を検出する第1受光手段と、
上記第1受光手段への上記反射信号光の入射位置に従って、上記投光手段を再起動し、上記反射信号光を受光するための、上記第1受光手段とは隔離した位置に配置された第2受光手段と、
上記投光手段、上記第1および第2受光手段の切換制御と、上記第1および第2受光手段の出力結果に従って、上記被写体までの距離を決定する演算制御手段と、
を具備した測距装置。
【0161】
(5) 上記被写体を撮影する撮影レンズを具備し、上記撮影レンズの焦点距離情報を入手する手段の出力結果に従って、上記第2受光手段の切り換えを判定する判定手段を有する付記第4に記載の測距装置。
【0162】
(6) 上記演算制御手段は、上記測距用光の投射時に上記第1受光手段の出力に基づいて所定距離より遠距離の場合に、上記投光手段によって上記測距用光を投射し、上記第1および第2受光手段の出力に基づいて上記被写体距離を決定するようにした付記第4に記載の測距装置。
【0163】
(7) 上記測距装置はズームレンズ付きカメラに組み込まれ、上記ズームレンズの焦点距離を検出する焦点距離検出手段を有し、上記演算制御手段は上記焦点距離が所定の焦点距離より広角側の場合に上記第1および第2受光手段の出力に基づいて上記被写体距離を決定し、上記焦点距離が所定の焦点距離より望遠側の場合に上記第1受光手段の出力に基づいて上記被写体距離を決定するようにした付記第4に記載の測距装置。
【0164】
(8) 上記投光手段と上記第1受光手段によって形成される第1の基線長方向と、上記投光手段と上記第2受光手段によって形成される第2の基線長方向は所定の角度で交わるようにした付記第4に記載の測距装置。
【0165】
(9) 上記投光手段と上記第1受光手段によって形成される第1の基線長と、上記投光手段と上記第2受光手段によって形成される第2の基線長の長さが異なる付記第4に記載の測距装置。
【0166】
(10) 第1受光手段の受光系の焦点距離と第2受光手段の受光系の焦点距離が異なる付記第4に記載の測距装置。
【0167】
(11) 第1および第2受光手段の受光系と、上記2つの受光系への光の入射位置から被写体距離を演算する演算手段と、電気的に書き込み可能なメモリとを有する測距装置の調整装置において、
上記測距装置から所定の距離をおいて配置され、上記2つの受光系の並び方向と同じ方向に所定の間隔で並べられた第1および第2光源と、
上記2つの受光系を切り換えながら上記2つの光源を順次駆動し、上記第1受光系に上記第1および第2光源からの光が入射したときの上記第1受光系の各々の出力と、上記第2受光系に第1および第2光源が入射したときの第2受光系の各々の出力に従って補正値を演算する演算手段と、
上記補正値を上記測距装置の上記メモリに書き込む書込手段と、
を具備した測距装置の調整装置。
【0168】
(12) 被写体に対して測距用光を投射する投光手段と、
上記被写体からの上記測距用光の反射信号光を受光し、受光位置に応じた一対の信号を出力する半導体一次元位置検出素子からなる第1および第2受光素子を有する第1および第2受光手段と、
上記第1および第2受光素子の出力を1本ずつ結線し、2つの信号が入力されるアナログ演算手段と、
を具備し、三角測量の原理で測距する測距装置において、
上記投光手段と上記第1受光手段からなる基線長方向に上記第1および第2受光素子の位置検出能力の方向が向き、かつ、上記投光手段と上記第2受光手段からなる基線長方向とは直交する方向に位置検出能力が向くように上記投光手段と上記第1および第2受光手段と受光素子を配置した測距装置。
【0169】
(13) 上記測距装置は、さらに、上記第1および第2受光素子の位置検出能力の方向の長さを同じにした付記第12に記載の測距装置。
【0170】
(14) 被写体に向けて測距用光を投光手段によって投射し、上記被写体からの反射信号光を受光手段によって受光し、上記受光手段から出力される上記反射信号光の入射位置に応じた信号に基づいて上記被写体距離を求めるカメラの測距装置において、
上記受光手段は一対の受光素子を有し、上記被写体の距離が近距離にある場合には上記一対の受光素子の一方の受光素子から出力される上記信号に基づいて上記被写体距離を求め、上記被写体距離が遠距離にある場合には上記一対の受光素子の両方の受光素子から出力される上記信号に基づいて上記被写体距離を求めるようにしたカメラの測距装置。
【0171】
(15) 被写体に向けて測距用光を投光手段によって投射し、上記被写体からの反射信号光を受光手段によって受光し、上記受光手段から出力される上記反射信号光の入射位置に応じた信号に基づいて上記被写体距離を求めるカメラの測距装置において、
上記受光手段は一対の受光素子を有し、この一対の受光素子のそれぞれから出力される上記信号毎に入射位置に応じた値を求め、この値に基づいて上記被写体距離を決定するようにしたカメラの測距装置。
【0172】
【発明の効果】
以上述べたように本発明によれば、撮影光学系の周辺に測距用の投光レンズ、第1,第2受光レンズを配置しているから、測距装置のレイアウトをコンパクトにすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態のカメラの測距装置の基本的な構成を示すブロック構成図。
【図2】上記図1の測距装置において、投光手段より投射される測距用光の光スポット径と被写体距離の関係を説明する図。
【図3】本発明の第2実施形態のカメラの測距装置の概略構成を示すブロック構成図。
【図4】上記図3のカメラの測距装置の測距動作を示すフローチャート。
【図5】上記図3の測距装置における測距動作を説明するために、上記投光手段および一対の受光手段等の測距に係る部材を取り出して示した要部拡大図。
【図6】本発明の第3実施形態のカメラの測距装置が適用されたカメラの正面図であって、その前面側における測距装置に係る部材等の配置を簡単に示す図。
【図7】上記図6に示すカメラ前面側における投光レンズおよび第1、第2受光レンズの位置関係を簡単に示す図。
【図8】上記図7に示す第1、第2受光レンズを取り外した状態を示す図であって、投光レンズおよび第1、第2PSDとの位置関係を簡単に示す図。
【図9】上記図8に示す第2PSDの要部拡大図。
【図10】上記図9に示す第2PSDの他の例示の要部拡大図。
【図11】上記図6のカメラの測距装置の測距動作を示すフローチャート。
【図12】本発明の第4実施形態のカメラの測距装置の概略構成を示すブロック構成図。
【図13】本発明の第5実施形態のカメラの測距装置の概略構成を示すブロック構成図。
【図14】上記図13の測距装置において第1、第2PSD上における反射信号光の光スポットが投射されている状態を簡略化して示した図であって、第1、第2受光レンズの焦点距離が等しい場合の例示。
【図15】上記図13の測距装置において第1、第2PSD上における反射信号光の光スポットが投射されている状態を簡略化して示した図であって、第1、第2受光レンズの焦点距離が互いに異なるようにした場合の例示。
【図16】上記図13の測距装置に調整を行なう調整装置を取り付けた場合の概略構成を示すブロック構成図。
【図17】上記図16のカメラの測距装置の調整装置による調整時の動作のフローチャート。
【図18】従来の3眼式アクティブ方式のカメラの測距装置の概略を示すブロック構成図。
【図19】上記図18の測距装置において動作を説明するブロック構成図。
【図20】上記図18の測距装置をカメラに適用した際の概略を示す図。
【図21】カメラのファインダ内の画面枠と、この画面枠内における被写体像を簡単に示す図であって、「スポット欠け」について説明する図。
【符号の説明】
1……投光素子(投光手段)
2……投光レンズ(投光手段)
3a……第1受光レンズ(第1受光手段)
3b……第2受光レンズ(第2受光手段)
4a……第1位置検出素子(第1PSD;第1受光手段)
4b……第2位置検出素子(第2PSD;第2受光手段)
5……被写体
9……PSD信号処理回路
10……演算制御手段(CPU)
18……切換スイッチ手段

Claims (1)

  1. 被写体に向けて測距用光を投射する投光手段と、
    上記投光手段から第1の距離を隔てて配置され、上記測距用光による上記被写体からの反射信号光の入射位置に応じた第1信号を出力する第1受光手段と、
    上記投光手段から上記第1受光手段とは異なる方向であって、上記第1の距離よりも長い第2の距離を隔てて配置され、上記測距用光による上記被写体からの反射信号光の入射位置に応じた第2信号を出力する第2受光手段と、
    上記投射を行い、上記第2信号による測距結果が所定距離よりも近距離である場合は、上記第2信号に基づいて被写体距離情報を画定し、上記測距結果が上記所定距離よりも遠距離である場合には、上記投射を再度行い、上記第1信号及び第2信号に基づいて被写体距離情報を算出する演算手段と、
    を具備し、
    上記投光手段、第1受光手段、ならびに第2受光手段は、撮影光学系を取り囲むようにそれぞれ配置され
    上記第1受光手段は、上記反射信号光の入射位置を二次元方向にて検出可能であることを特徴とするカメラの測距装置。
JP2002024567A 2002-01-31 2002-01-31 カメラの測距装置 Expired - Fee Related JP3655875B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024567A JP3655875B2 (ja) 2002-01-31 2002-01-31 カメラの測距装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024567A JP3655875B2 (ja) 2002-01-31 2002-01-31 カメラの測距装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8043795A Division JPH08278441A (ja) 1995-04-05 1995-04-05 カメラの測距装置

Publications (2)

Publication Number Publication Date
JP2002303784A JP2002303784A (ja) 2002-10-18
JP3655875B2 true JP3655875B2 (ja) 2005-06-02

Family

ID=19192282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024567A Expired - Fee Related JP3655875B2 (ja) 2002-01-31 2002-01-31 カメラの測距装置

Country Status (1)

Country Link
JP (1) JP3655875B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7566524B2 (ja) * 2019-07-31 2024-10-15 キヤノン株式会社 カメラシステム
US11846731B2 (en) 2019-07-31 2023-12-19 Canon Kabushiki Kaisha Distance detection device and imaging apparatus

Also Published As

Publication number Publication date
JP2002303784A (ja) 2002-10-18

Similar Documents

Publication Publication Date Title
JP5549230B2 (ja) 測距装置、測距用モジュール及びこれを用いた撮像装置
US10168145B2 (en) Three dimensional shape measurement apparatus, control method therefor, and storage medium
JP2001141982A (ja) 電子カメラの自動焦点調節装置
JP3655875B2 (ja) カメラの測距装置
JPH0875981A (ja) カメラ
JP2001141984A (ja) 電子カメラの自動焦点調節装置
JP2014095631A (ja) 3次元計測装置および3次元計測方法
JP6329037B2 (ja) 補助光投光装置、撮像装置及び焦点調節方法
JP2001141983A (ja) 電子カメラの自動焦点調節装置
JPH08278441A (ja) カメラの測距装置
JP2005249432A (ja) プロジェクタ装置および距離測定方法
JP2003222784A (ja) 測距装置及び該測距装置を備えた撮影装置
JP2004069953A (ja) カメラ
JP2849610B2 (ja) マルチフォーカスカメラ
JP3199969B2 (ja) 多点測距装置
JP2001141985A (ja) 電子カメラ
JP3035370B2 (ja) 測距装置
JP2004347908A (ja) プロジェクタ及び自動焦点調節方法
JP3156959B2 (ja) カメラ
JP3290361B2 (ja) カメラの測距装置
JP2004347911A (ja) プロジェクタ及び自動焦点調節方法
JP2002072058A (ja) カメラの調整装置及びその調整方法
JP2871734B2 (ja) 多点測距装置
JP2001141986A (ja) 電子カメラ及び電子カメラの自動焦点調節装置
JP3199974B2 (ja) 測距装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees