JP2004069953A - カメラ - Google Patents

カメラ Download PDF

Info

Publication number
JP2004069953A
JP2004069953A JP2002228266A JP2002228266A JP2004069953A JP 2004069953 A JP2004069953 A JP 2004069953A JP 2002228266 A JP2002228266 A JP 2002228266A JP 2002228266 A JP2002228266 A JP 2002228266A JP 2004069953 A JP2004069953 A JP 2004069953A
Authority
JP
Japan
Prior art keywords
point
distance
subject
distance measurement
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002228266A
Other languages
English (en)
Inventor
Osamu Nonaka
野中 修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002228266A priority Critical patent/JP2004069953A/ja
Priority to US10/634,046 priority patent/US7391463B2/en
Publication of JP2004069953A publication Critical patent/JP2004069953A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】AF用の光学系を利用してAFを行う外光AFと撮影用の光学系を利用してAFを行うイメージャAFとを有効に利用して撮影レンズの位置誤差等を打ち消しつつ、高速にかつ正しいピント合わせを行うこと。
【解決手段】撮影レンズ5を含む光学系とは異なる光路を利用して複数のポイントを測距する測距部4によって第1のポイントを測距した場合の測距結果及び撮影レンズ5のピント位置を変位させたときに撮像素子7上の上記第1のポイントに対応する位置に結像した被写体20の像のコントラスト変化に基づいて、測距部4の測距結果と上記撮影レンズ5の駆動量との対応関係を決定し、上記第1のポイントとは異なる第2のポイントにおける測距部4の測距結果と決定された対応関係とに基づいて撮影レンズ5のピント位置を制御する。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明はカメラに関する。特に、被写体の像をデジタル信号として記録する電子カメラのオートフォーカス(AF)技術の改良に関する。
【0002】
【従来の技術】
電子カメラは撮影用にCCD(Charge Coupled Device)等の撮像素子を有している。このため、電子カメラのAFにおいては撮影レンズを微小変位させたときに撮像素子が出力する像信号を有効利用して撮影レンズのピント合わせを行う、「TTL(Through The Lens)方式」のAF(以後、この方式のAFをイメージャAFと称する)が従来から広く知られていた。このイメージャAFは、撮像素子が出力するコントラストを検出することにより、撮影レンズのピント位置を判定するものである。
【0003】
一方、銀塩カメラ、特に、コンパクトカメラにおいては、撮影時に前述のような撮像素子を必要としないので、撮影レンズを含む撮影光学系とは別途にAF用の測距装置を搭載している。つまり、コンパクトカメラにおいては、測距装置の出力信号に応じて撮影レンズを制御するAF方式(以後、この方式のAFを外光AFと称する)が一般的であった。
【0004】
しかしながら、近年、これらイメージャAF及び外光AFには、それぞれ欠点があることが分かってきている。これらのAF方式の欠点とは次のようなものである。
【0005】
まず、イメージャAFでは、基本的に撮影用の撮像素子を利用してAFを行うので、撮影レンズのピントが大きく被写体から外れている場合には被写体の像がボケて明瞭に捕らえることができず、AFを行うことができない。また、撮影レンズを動かしてみた後でないとピント合わせの方向が分からず、さらに、撮影レンズを動かしながらAFを行うので被写体の像の取り込み時間にも制約があり、結果としてピント合わせに長い時間が必要である。また、複数ポイントの距離を比較する、所謂「マルチAF方式」を用いた場合の主要被写体の検出も困難である。
【0006】
一方、外光AFでは、AF専用のセンサを利用するので、高速の距離検出が可能であるが、撮影レンズをフィードバック制御するわけではないので、温度や湿度等の環境の変化による撮影レンズの位置誤差やカメラ撮影時の撮影姿勢等による撮影レンズの位置誤差等を打ち消すことができない。
【0007】
そこで、これらのAF方式の欠点を解決するために特開2000−321482号公報等にこれらのAF方式を組み合わせて使用する技術が開示されている。上記公報に開示されている技術は、まず、外光AFを利用して粗い測距を行った後、最終的なピント合わせをイメージャAFにより行うものである。
【0008】
【発明が解決しようとする課題】
しかしながら、外光AFで測距できたものが必ずしもイメージャAFで測距できるとは限らず、このような場合には上記公報の技術を用いても十分なピント合わせを行うことができないことがあった。
【0009】
本発明は、上記の事情に鑑みてなされたもので、外光AFとイメージャAFとを有効に利用して撮影レンズの位置誤差等を打ち消しつつ、高速に、かつ正しく主要被写体にピント合わせをすることができるカメラを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記の目的を達成するために、本発明によるカメラは、撮影光学系を介して入射した被写体の像を結像する撮像素子と、上記撮影光学系とは異なる光路を利用して撮影画面内の複数のポイントを測距する測距手段と、この測距手段によって上記複数のポイントのうちの第1のポイントを測距した場合の測距結果及び上記撮影光学系のピント位置を変位させたときに上記撮像素子上の上記第1のポイントに対応する位置に結像した被写体の像のコントラスト変化に基づいて、上記測距手段の測距結果と上記撮影光学系の駆動量との対応関係を決定する決定手段と、上記第1のポイントとは異なる第2のポイントにおける上記測距手段の測距結果と上記決定手段で決定された上記対応関係とに基づいて、上記撮影光学系のピント位置を制御する制御手段とを具備することを特徴とする。
【0011】
即ち、本発明のカメラは、撮影画面内の複数のポイントを測距する測距手段によって第1のポイントを測距した場合の測距結果と、撮影光学系を変位させた場合に、上記撮像素子上の上記第1のポイントに対応する位置における被写体の像のコントラスト変化とから、決定手段によって測距手段の測距結果と撮影光学系の駆動量との対応関係を決定する。制御手段は、この対応関係と測距手段によって上記第1のポイントとは異なる第2のポイントを測距したときの測距結果とに基づいて撮影光学系のピント位置を制御する。
【0012】
また、上記の目的を達成するために、本発明によるカメラは、撮影光学系を介して入射した被写体の像を結像する撮像素子と、上記撮影光学系とは異なる光路を利用して撮影画面内の複数のポイントを測距する測距手段と、この測距手段の測距結果から主要被写体の存在するポイントを第1のポイントとして選択する第1の選択手段と、上記測距手段の測距結果の中で上記第1のポイントよりも上記撮影光学系の制御開始前のピント位置に近いポイントを第2のポイントとして選択する第2の選択手段と、上記撮像素子の上記第2のポイントに対応する領域におけるコントラスト情報と、上記第1のポイントにおける上記測距手段の測距結果及び上記第2のポイントにおける上記測距手段の測距結果に従って上記撮影光学系のピント位置を制御する制御手段とを具備することを特徴とする。
【0013】
即ち、本発明のカメラは、測距手段によって測距した結果、主要被写体が存在するポイントを第1のポイントとして選択し、また、主要被写体が存在するポイントよりも撮影光学系を制御する前のピント位置に近いポイントで測距出力が存在するポイントを第2のポイントとして選択する。そして、上記撮像素子の上記第2のポイントに対応する領域におけるコントラスト情報と、上記第1の選択手段によって選択したポイント及び上記第2の選択手段によって選択したポイントにおける上記測距手段の測距結果とに従って上記撮影光学系のピント位置を制御する。
【0014】
さらに、上記の目的を達成するために、本発明によるカメラは、撮影光学系を介して入射した被写体の像を結像する撮像素子と、上記被写体に光を投射する投光手段と、上記撮影光学系とは異なる光路を利用して、上記投光手段による上記被写体への投光を行わずに測距する第1の測距と、上記投光手段による上記被写体への投光を行いながら測距する第2の測距と、を行う測距手段と、上記第2の測距を行うに先立って、上記第1の測距の結果に基づいて上記撮影光学系のピント位置を変位させた場合に上記撮像素子上に結像する被写体の像のコントラスト変化を検出し、上記第1の測距の結果と上記コントラスト変化とから上記測距手段の測距結果と上記撮影光学系の駆動量との対応関係を決定する決定手段と、上記測距手段による上記第2の測距における測距結果と上記決定手段によって決定した上記対応関係とに基づいて、上記撮影光学系のピント位置を制御する制御手段とを具備することを特徴とする。
【0015】
即ち、本発明のカメラは、投光手段による投光を行わずに測距を行う第1の測距による測距結果と、投光手段による投光を行いながら測距を行う第2の測距による測距結果と、第2の測距を行うに先立って決定した、上記測距手段による第2の測距を行うに先立って、上記測距手段による測距手段による第1の測距の結果に基づいて上記撮影光学系の駆動を開始させる開始ポイントを選択し、この選択した開始ポイントから上記撮影光学系を駆動させた場合に上記撮像素子上に結像する被写体の像のコントラスト変化を検出し、この検出したコントラスト変化と上記第1の測距結果とから上記測距手段の測距結果と上記撮影光学系の駆動量との対応関係を決定する。制御手段は、この対応関係と測距手段による第2の測距結果とに基づいて撮影光学系のピント位置を制御する。
【0016】
つまり、本発明のカメラは外光AFとイメージャAFが共に得意とする測距ポイントにおけるAF結果を用いて主要被写体のピント合わせを行う。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
[第1の実施の形態]
図1は本発明の第1の実施の形態に係るカメラの内部構成を示すブロック図である。即ち、本発明の第1の実施の形態に係るカメラは、マイクロプロセッサ(CPU)1と、受光レンズ2a,2bと、センサアレイ3a,3bと、測距部4と、撮影レンズ5と、レンズ駆動(LD)部6と、撮像素子7と、アナログ/デジタル(A/D)変換部8と、画像処理部9と、記録媒体10と、光源11とを含んで構成される。
【0018】
CPU1はカメラ全体のシーケンスを制御する演算制御手段である。CPU1には撮影シーケンスを開始させるためのスイッチ1aが接続されている。CPU1は撮影者によるスイッチ1aのON操作を判定して一連の撮影シーケンスを開始させる。なお、CPU1は特許請求の範囲に記載の「決定手段」及び「制御手段」の機能を含む。
一対の受光レンズ2a,2bは被写体20からの像を受光して一対のセンサアレイ3a,3bに結像させる。そして、一対のセンサアレイ3a,3bでは、結像した被写体20からの像を電気信号(以後、「像信号」と称する)に変換して測距部4に出力する。
【0019】
測距部4はA/D変換部4aと測距演算部4bとを含んで構成される、所謂、「パッシブ方式」の測距手段である。測距部4内のA/D変換部4aはセンサアレイ3a,3bから入力されてきた像信号をデジタル信号に変換して測距演算部4bに出力する。測距演算部4bでは、このデジタル信号に基づいてカメラから被写体20までの距離、即ち、被写体距離を三角測距の原理により演算する。この三角測距の原理については後に詳述する。なお、測距部4は特許請求の範囲に記載の「測距手段」に相当する。
【0020】
そして、CPU1は前述のようにして演算された被写体距離に基づいて撮影レンズ5のピント合わせ制御を行う。つまり、CPU1は測距演算部4bで演算された被写体距離に基づいてLD部6を制御して撮影レンズ5のピント合わせを行う。
【0021】
撮影レンズ5のピント合わせが終了した後は、露出動作を行う。撮像素子7はCCD等で構成されており、撮影レンズ5を介して結像した被写体20からの像を電気的な像信号に変換してA/D変換部8に出力する。なお、撮像素子7は特許請求の範囲に記載の「撮像素子」に相当する。
【0022】
A/D変換部8は像信号をデジタル信号に変換した後、画像処理部9に出力する。画像処理部9では入力されてきたデジタル信号に基づいて、画像の色や階調の補正などをした後、画像信号の圧縮をして、記録媒体10に画像を記録させて露出動作を完了する。
【0023】
光源11は、ストロボ装置等で構成されている。この光源11からは撮影シーンに応じて露出用や測距用の補助光などが被写体20に投射される。なお、光源11は特許請求の範囲に記載の「投光手段」に相当する。
【0024】
なお、受光レンズ2a,2bとセンサアレイ3a,3b、及び撮影レンズ5と撮像素子7の位置関係は図2(A)に示すような関係にある。つまり、センサアレイ3a,3bと撮像素子7とで同一の被写体20の像が検出可能である。また、センサアレイ3a,3bの出力を被写体距離算出に用いる際に、図の実線で示す位置に結像した被写体20の像の代わりに、異なる位置、例えば図の破線で示す位置に結像した被写体の像を用いることにより、撮影画面内における被写体20以外の被写体の距離も検出可能である。
【0025】
図2(B)に本第1の実施の形態に係るカメラの外観図を示す。つまり、カメラ30の上面には前述のスイッチ1aを操作するためのレリーズボタン1bが設けられている。また、カメラ30の前面には前述の撮影レンズ5及び受光レンズ2a,2bが、図2(A)に示す位置関係で設けられている。また、カメラ30の前面には前述の光源11用の発光窓11aが設けられている。
【0026】
以上説明したような外光式のAFでは、一対の受光レンズ2a,2b及びセンサアレイ3a,3bを人間の両眼のように用いて三角測距の原理で被写体距離を検出し、この被写体距離に基づいて撮影レンズ5のピント合わせを行う。
【0027】
一方でパッシブ方式のAFには、前述のイメージャAFもある。このイメージャAFは、LD部6によって撮影レンズ5の位置を変化させながら、撮像素子7に結像した被写体の像のコントラストを検出していき、コントラストが最も高くなった撮影レンズ5の位置を判定してピント位置とする。
つまり、このイメージャAFは、前述の外光AFのように被写体距離に基づいてピント位置を決定するものとは異なる原理に基づくピント合わせ制御である。
【0028】
このようなイメージャAFでは、撮影レンズ5の位置制御に誤差が生じていた場合であっても、小さな誤差であればその誤差を考慮に入れた状態でピント位置を検出することができる。しかし、図3(A)に示すように主要被写体である人物20aが撮影画面21内の中央部以外に存在している場合には、撮影レンズ5のピントを迅速に人物20aに合わせることが困難である。つまり、主要被写体を特定するために、人物20aと背景被写体の木20bのそれぞれに対して、前述したようなコントラスト判定を行った後、いずれの被写体が主要被写体としてふさわしいか、即ち、いずれの被写体が手前側に存在するかを判定する必要があるからである。このとき、それぞれの被写体に対応するピント位置における画像を一時取り込んでからコントラストを判定する過程が必要となるので、時間がかかってしまう。
【0029】
これに対し、外光AFでは、図2(A)に示すセンサアレイ3a,3bからの像信号を検出して、受光レンズ2a,2bの視差に基づく被写体の像信号のずれを検出することにより被写体距離を決定する。つまり、撮影レンズ5を駆動するのはピント位置が決定した後のみであるのでピント合わせにかかる時間はイメージャAFに比べて短い。また、主要被写体以外の被写体の距離も被写体距離演算に使用する被写体の像信号を切り換えるだけでよいので、主要被写体の位置によらず、図3(A)の領域3cで示すような広範囲の領域における被写体の距離分布が検出可能である。
【0030】
図3(B)に前述のようにして求めた距離分布の例を示す。この距離分布を求めれば、主要被写体がどこに存在しているかを高速で検出することができる。ただし、像信号を用いて距離分布を求める方法では、コントラストがない被写体に対する距離検出が困難である。そこで、例えば、ストロボ等の光源11から被写体に向けて光を照射して、その反射光を検出することにより被写体距離を求めてもよい。つまり、遠距離の被写体から得られる反射光の光量は小さく、近距離の被写体から得られる反射光の光量は大きいのでコントラストがない被写体でも正しい被写体距離を検出することが可能となる。また、コントラストのない被写体は主要被写体ではないと判定するようにしてもよい。
【0031】
なお、イメージャAFにおける主要被写体の検出方法としては、像信号の形状から検出する方法や画像の色情報から検出する方法などが知られている。これらの方法については従来のものと同様であるので説明を省略するが、一般にこれらの方法は距離分布から主要被写体を決定するよりも高速で主要被写体を検出することが可能である。
【0032】
図4(A)に受光レンズ2aを含む外光AF用の光学系の構造図を、図4(B)に撮影レンズ5を含む撮影用の光学系の構造図を示す。なお、図4(A)は受光レンズ2aを含む光学系のみを図示しているが、同図において受光レンズ2aを受光レンズ2bに置き換えることにより、以後の説明と同様の説明が受光レンズ2bについても適用できる。
【0033】
図4(B)に示す撮影用の光学系は、比較的Fナンバーが小さいのでレンズが明るく、また、図4(A)に示す外光AF用の光学系のようにパンフォーカス位置にピント位置が固定されていない。このため撮影レンズ5の駆動制御時の誤差等によってΔLDの位置ずれが生じた場合には、図4(B)中に破線で示すように、撮像素子7上で被写体の像が正しく結像せずにbという広がりをもった、所謂「ボケ」が生じてしまう。このようなボケは、外光AF用の光学系においてもボケbとして生じるが、ボケbはボケbに比べて非常に大きなものである。つまり、撮影レンズ5のピントが大きく外れた場合には、外光AF方式では正しくコントラストの検出が行えても、イメージャAFでは正しくコントラストの検出が行えないことがある。
【0034】
また、図3(A)の人物20aと木20bとではコントラストが異なる。図5に、イメージャAF時におけるコントラスト変化の図を示す。なお、図の横軸は経過時間であり、図の縦軸はその時間において検出される被写体のコントラストである。この場合、人物20aのコントラストは時間毎になだらかな変化が検出され、木20bでは急峻な変化が検出される。この結果、それぞれのコントラストの最大を検出するための時間は、人物20aのコントラストの最大を検出するための時間は時間Δtかかり、木20bのコントラストの最大を検出するための時間は時間Δtかかる。このように、被写体によってピントを合わせやすいものとピントを合わせにくいものとがあり、それぞれピント合わせの時間が異なる。
【0035】
以上のような特性を踏まえた上で、外光AFとイメージャAFの欠点を補うようにこれらのAFを組み合わせた制御を行うことにより高速の主要被写体検出及び高速のピント合わせができ、かつ、撮影レンズの繰り出し誤差も考慮に入れたピント合わせが可能となる。図6はこのようなピント合わせ制御の手順を示すフローチャートである。
【0036】
まず、撮影者によってスイッチ1aがONされたことを判定したCPU1は、外光AF方式、即ち、センサアレイ3a,3bによって図3(A)の領域3cにおける被写体の像信号を検出する(ステップS1)。
【0037】
次に、上記ステップS1で検出した像信号の中からコントラストが最大のポイント(図3(A)の例では木20bに相当する)を検出する(ステップS2)。また、上記ステップS1で検出した像信号に基づいてマルチAFを行い、図3(B)に示すような距離分布を求める(ステップS3)。
【0038】
次に、上記ステップS3で求めた距離分布の中で最も近距離を主要被写体(図3(A)の例では人物20aに相当する)の被写体距離Lとして算出する(ステップS4)。また、上記ステップS3で求めた距離分布の中で上記ステップS2で検出したコントラストが最大のポイントに相当する被写体の被写体距離Lを算出する(ステップS5)。
【0039】
次に、コントラストが最大のポイントを含む領域におけるピント位置LDを撮影レンズ5の駆動制御を行いながら、そのときのコントラストの最大を判定することによって検出する(ステップS6)。そして、L,L,及びLDに基づいて主要被写体に対するピント位置LDを算出する(ステップS7)。
【0040】
ここで、上記ステップS6及びS7におけるLD及びLDの算出方法について図7を参照して説明する。
一般に被写体距離Lの逆数1/Lとピント位置LDとの対応関係は図7の実線で示されるような直線関係となり、このとき、
LD=A×1/L+B           (式1)
の関係が成立する。ただし、A,Bは定数である。しかし、この直線関係は、温度や湿度の変化や撮影者の撮影姿勢などの条件による誤差が生じ、必ずしも同じ関係にはならない。そこで、このときの誤差ΔLDを加味して考えると、図7の実線の関係は、破線のような関係となる。なお、この破線の関係、即ち、実際値を示す直線関係が特許請求の範囲に記載の「対応関係」に対応する。
【0041】
そこで、本第1の実施の形態では、ステップS2で検出したコントラストが最大のポイントを含む領域において、イメージャAFを行ってピント位置LDを検出し、このピント位置LDと理論値LDHOの差分をとることにより誤差ΔLDを求める。つまり、誤差ΔLDは、
ΔLD=LD−LDHO          (式2)
によって求めることができる。このようにして求めた誤差ΔLDから、主要被写体のピント位置LDは、
LD=A×1/L+B+ΔLD      (式3)
により求めることができる。
【0042】
主要被写体のピント位置LDを算出した後は、ピント位置LDに撮影レンズ5のピントを合わせるように撮影レンズ5を繰り出し制御して(ステップS8)、本フローチャートのピント合わせ制御を終了する。この後は、従来と同様の露出動作が行われる。
【0043】
図8(A)、図8(B)は、本第1の実施の形態に係るカメラに用いられているピント合わせの高速化技術を適用していない場合及び適用した場合のタイミングチャートを示す。なお、図8(A)は高速化技術を適用していない場合のタイミングチャートを示し、図8(B)は高速化技術を適用した場合のタイミングチャートを示す。
図8(A)と図8(B)とで、外光AFを行って主要被写体を検出するまでの時間は同じである。しかし、高速化技術を適用していない場合には、主要被写体を検出した後、検出した主要被写体に対してイメージャAFを行ってピント合わせ制御を行う。このとき、前述したように主要被写体(人物20a)のコントラストはなだらかな変化を示すのでコントラストの最大、即ち、ピント位置LDを判定するのに時間がかかる。さらに、最大のコントラストを検出した後に、再び撮影レンズ5をピント位置LDに戻す制御を行う必要がある。
【0044】
一方、高速化技術を適用した場合には、外光AFを行った後、最大コントラストのポイントを含む領域でのみ、イメージャAFを行ってピント位置LDを判定する。そして、それに基づいて主要被写体のピント位置LDを算出した後は、そのまま撮影レンズ5をピント位置LDに駆動制御するので、最大コントラストの検出時間や撮影レンズ5の戻り時間の分、即ち、時間Δtを短縮することができる。
【0045】
以上説明したように本第1の実施の形態では、外光パッシブAFとイメージャAFを適切に組み合わせて撮影レンズのピント合わせを行う。これにより、撮影レンズ駆動時の位置誤差等を打ち消しながら、高速のピント合わせを行うことができる。
【0046】
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。前述の第1の実施の形態では外光パッシブ方式を利用してAFを行っていたが、本第2の実施の形態は、被写体への光投射を伴う「アクティブ方式」を利用してAFを行う例について説明する。なお、本第2の実施の形態におけるこの他の構成については前述の第1の実施の形態と同様のものであるので説明を省略する。
【0047】
図9(A)は、本第2の実施の形態に係るカメラにおける外光アクティブ方式のAF装置の構成図である。即ち、赤外発光ダイオード(IRED)14からの光を投光レンズ13を介して被写体20に投射する。この光はパターン14aのようにして被写体に投射された後反射される。その反射信号光は、投光レンズ13と基線長Bだけ離れた位置にある受光レンズ2を介して半導体光位置検出素子(PSD)15に受光する。このPSD15に受光した反射信号光の入射位置xを検出することにより、三角測距の原理を利用して被写体距離Lを算出する。つまり、
L=B・f/x              (式4)
の関係式を用いて被写体距離Lを算出する。ただし、fは受光レンズ2の焦点距離である。
【0048】
また、複数のポイント(例えば3点)を測距する場合には、同様の考え方を拡張して、図9(B)に示すようにIREDを3つ(IRED14L,14C,14R)及びPSDを3つ(PSD15L,15C,15R)用意するだけでよい。このようにすれば、各ポイントに投射した信号光の反射光の入射位置を検出することにより、前述したような距離分布を求めることができる。また、アクティブAFでは被写体に投射した光の反射光を利用するので、被写体にコントラストがなくとも測距が可能となる。
【0049】
次に図10を参照して、本第2の実施の形態におけるアクティブAFを利用した場合のピント合わせ制御手順について説明する。
まず、スイッチ1aがONされたことをCPU1が判定した場合には外光アクティブAFを利用してマルチAF(図9(B)の例では3点)を行う(ステップS11)。次に、測距を行ったポイントの中で最も近い距離をLとして選択する(ステップS12)。また、次に近い距離をLとして選択する(ステップS13)。なお、この被写体距離Lは前述のコントラストが最大のポイントにおける被写体距離Lに対応するものである。通常、最も近い距離に存在する被写体が主要被写体であることが多く、また、木のようなコントラストの大きな被写体も近距離として検出されることが多い。そこで、最も近い距離を主要被写体の存在する被写体距離Lとし、次に近い距離Lをコントラストが最大のポイントにおける被写体距離Lと同じものとして考える。また、主要被写体の次に近い距離の代わりに、現在の撮影レンズ5の位置から最も近くのコントラスト変化が大きいポイントにおける被写体距離を被写体距離Lとしてもよい。
【0050】
なお、アクティブAFの場合、所定距離よりも遠い距離の被写体に対しては反射光の光量が減少して測距精度が劣化してしまう。そこで、被写体距離Lを選択した後は、被写体距離Lが所定距離L以下であるか否かを判定する(ステップS14)。被写体距離Lが所定距離L以下であると判定した場合には、高速化技術を適用した図8(B)の手順でピント合わせ制御を行うことが可能である。つまり、被写体距離Lを出力したポイント近傍においてイメージャAFを行って、コントラストが最大となる位置をピント位置LDとして検出する(ステップS15)。なお、このとき撮影レンズ5は遠距離側から駆動制御される。
【0051】
次に、CPU1は、LDが検出できたか否かを判定する(ステップS16)。LDが検出できたと判定した場合には、前述した図6のステップS7の手順に従って主要被写体のピント位置LDを算出する(ステップS17)。なお、本第2の実施の形態におけるピント位置LDは、前述の第1の実施の形態におけるピント位置LDに対応する。
【0052】
主要被写体のピント位置LDを算出した後は、撮影レンズ5をピント位置LDに繰り出し制御した後(ステップS18)、本フローチャートのピント合わせ制御を終了する。
【0053】
一方、上記ステップS14の判定において被写体距離Lが所定距離Lよりも大きいと判定した場合、または、上記ステップS16の判定においてLDが検出できなかったと判定した場合には、高速化技術を適用しない図8(A)の手順でピント合わせ制御を行う。つまり、主要被写体に対してイメージャAFを行って、主要被写体にピントを合わせた後(ステップS19)、本フローチャートのピント合わせ制御を終了する。
【0054】
以上説明したように本第2の実施の形態によれば、外光AF方式としてアクティブAFを利用しても、撮影レンズ駆動時の誤差を打ち消しながら、高速のピント合わせを行うことができる。
【0055】
[第3の実施の形態]
次に本発明の第3の実施の形態について説明する。本発明の第3の実施の形態は、アクティブAFとパッシブAFとを組み合わせて使用する、所謂「ハイブリッド方式」のカメラを想定したものである。なお、本第3の実施の形態におけるこの他の構成については前述の第1の実施の形態と同様のものであるので説明を省略する。
【0056】
図11に本第3の実施の形態に係るハイブリッド方式のAF装置の構成図を示す。ハイブリッド方式ではパッシブAFで用いたセンサアレイ3a,3bの各画素に定常光記憶回路18が接続されている。また、パルス的に投射された発光ダイオード(LED)16の光のみが差分回路19によって取り出される。
【0057】
なお、本第3の実施の形態においてはLED16の光に所定のパターンをつけるためにマスク17が設けられている。LED16はLEDドライバ16aによって駆動制御されており、マスク17によって所定のパターンがつけられた光は投光レンズ13を介して集光されて被写体20に投射される。この結果、被写体20には図11に示すパターン16bの光が投射される。このようにして被写体20上に所定のパターン16bの光が投射され、そのパターン16bの光のみが定常光記憶回路18及び差分回路19によって取り出される。このとき、カメラに定常的に入射してくる光は除去される。これにより被写体20にコントラストがない場合でもセンサアレイ3a,3bから被写体20の像を検出することが可能となる。
【0058】
以後は、前述の図1の回路とほぼ同様で、A/D変換部4aによってデジタル化された信号がCPU1において処理されて被写体距離やピント位置などが算出される。
【0059】
また、明るいシーン等においては定常光記憶回路18を動作させる必要がない。このとき本第3の実施の形態に係るカメラは、前述のパッシブAFと同様に動作する。つまり、通常の三角測距の原理によって被写体距離を算出することが可能である。
【0060】
図12は本第3の実施の形態に係るカメラにおけるピント合わせ制御の手順を示すフローチャートである。
CPU1は、スイッチ1aのON状態を判定した場合にセンサアレイ3a,3bによって被写体20の像を検出する(ステップS21)。そして、パッシブ方式、即ち、定常光の記憶を行わずにマルチAFを行う(ステップS22)。
【0061】
次に、上記ステップS22において測距が可能であったか否か、即ち、コントラストの低い領域が存在していなかったか否かを判定する(ステップS23)。なお、この判定は、例えば主要被写体が存在している可能性が高い撮影画面中央部の像信号出力が所定値以下であるかで判定する。コントラストの低い領域が存在したと判定した場合には、LED16から光投射を行ってアクティブAFを行った後(ステップS24)、ステップS25に進む。なお、このアクティブAF時には定常光記憶回路18及び差分回路19によりカメラに定常的に入射してくる定常光成分の除去が行われる。これにより、A/D変換部4aに入力されるのは所定のパターンに従った反射光の信号のみになるので、コントラストが低い被写体に対しても被写体距離を算出することができる。
【0062】
一方、上記ステップS23の判定においてコントラストの低い領域が存在していないと判定した場合には、そのままステップS25に進む。そして、複数ポイントの測距の結果、最も近距離をLとして選択する(ステップS25)。また、次に近い距離をLとして選択する(ステップS26)。そして、この被写体距離Lを出力したポイント近傍において前述のイメージャAFを行ってピント位置LDを検出する(ステップS27)。
【0063】
ピント位置LDを検出した後は、前述した図6のステップS7の手順に従って主要被写体のピント位置LDを算出する(ステップS28)。そして、撮影レンズ5をピント位置LDに繰り出し制御した後(ステップS29)、本フローチャートにおけるピント合わせ制御を終了する。
【0064】
以上説明したように本第3の実施の形態によれば、外光AF方式としてハイブリッド方式を利用しても、撮影レンズ駆動時の誤差を打ち消しながら、高速のピント合わせを行うことができる。
【0065】
[第4の実施の形態]
イメージャAFが苦手とするシーンとしては、前述したもののほかに図13に示すような夜景を背景とした撮影などがある。本第4の実施の形態は、このような夜景シーンにおいて前述した高速化技術を適用したものである。なお、本第4の実施の形態に係るカメラの構成については、前述の第1の実施の形態と同様なので説明を省略する。
【0066】
つまり、図1の構成において光源11からの光を主要被写体(人物)20に投光して、主要被写体20からの反射光を検出するようにすれば、前述した高速化技術を適用して正しいピント合わせを行うことができる。なお、図13に示す夜景シーンにおける外光AF用のセンサアレイ3a,3bの出力する像信号は背景の窓の明かりを検出するので図14(A)に示すようになる。一方、光源11から被写体に向けて補助光の投光を行った場合には、図14(B)に示すような像信号が得られる。つまり、この像信号を利用して外光AFによって主要被写体の被写体距離Lを求め、また、図14(A)のようにして得られた背景被写体の像信号から背景被写体の距離Lを求める。さらに、背景の被写体に対して前述のイメージャAFを行って得られたピント位置LDより、測距結果とピント位置との対応関係を求めれば、この関係と前述の主要被写体の被写体距離Lとから主要被写体のピント位置LDを算出することができる。
【0067】
図15は本第4の実施の形態に係るカメラのピント合わせ時の制御手順を示すフローチャートである。
CPU1は、スイッチ1aのON状態を判定した場合に、光源11からの投光を行わずに外光AFによる測距を行い背景被写体の被写体距離Lを算出する(ステップS31)。次に、この被写体距離Lから前述のイメージャAFを開始する際の開始ポイントを決定した後(ステップS32)、撮影レンズ5の繰り出しを開始する(ステップS33)。そして、撮影レンズ5が上記ステップS32で決定した開始ポイントの近傍に到達したか否かを判定する(ステップS34)。撮影レンズ5がまだ開始ポイントに到達していない場合には、撮影レンズ5が開始ポイントに到達するまで、撮影レンズ5の繰り出しを続ける。
【0068】
一方、上記ステップS34の判定において、撮影レンズ5が開始ポイントに到達したと判定した場合には、その位置からイメージャAFを開始して、背景被写体、即ち、コントラストが大きい被写体のピント位置LDを検出する(ステップS35)。
【0069】
次に、主要被写体20に光源11からの補助光投光を行った状態で、外光AFにより主要被写体20の被写体距離Lを算出する(ステップS36)。そして、前述した図6のステップS7の手順に従って主要被写体20のピント位置LDを算出する(ステップS37)。なお、本第4の実施の形態において、被写体距離Lは前述の第1の実施の形態の被写体距離Lに対応する。
【0070】
主要被写体のピント位置LDを算出した後は、そのまま、撮影レンズ5の繰り出しを継続する。そして、撮影レンズ5がピント位置LDに到達した否かを判定する(ステップS38)。撮影レンズ5がピント位置LDに到達していないと判定した場合には、撮影レンズ5がピント位置LDに到達するまで撮影レンズ5の繰り出しを続ける。
【0071】
一方、上記ステップS38の判定において、撮影レンズ5がピント位置LDに到達したと判定した場合には、撮影レンズ5の繰り出しを停止した後(ステップS39)、本フローチャートにおけるピント合わせ制御を終了する。
【0072】
図16は、本第4の実施の形態におけるピント合わせ制御時のタイミングチャートである。
従来では、イメージャAF時に光源からの補助光投光を多数回行う必要があるが、本第4の実施の形態においては、1回の補助光投光によってピント合わせを行うことができる。このため、省エネルギー対策を行いつつ、夜景シーンにおいても撮影レンズの位置誤差を打ち消した正しいピント合わせを高速に行うことができる。
【0073】
以上実施の形態に基づいて本発明を説明したが、本発明は前述した実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形や応用が可能なことは勿論である。
【0074】
【発明の効果】
以上詳述したように、本発明によれば、外光AFとイメージャAFとを有効に利用して撮影レンズの位置誤差等を打ち消しつつ、高速に、かつ正しく主要被写体にピント合わせをすることができるカメラを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るカメラの内部構成を示すブロック図である。
【図2】図2(A)は受光レンズとセンサアレイ及び撮影レンズと撮像素子の位置関係に関する説明図であり、図2(B)は本発明の第1の実施の形態に係るカメラの外観図である。
【図3】図3(A)は外光AFにおけるセンサアレイの測定範囲を示す図であり、図3(B)は外光AFにより検出した被写体距離の分布図である。
【図4】図4(A)はAF光学系の構造図であり、図4(B)は撮影光学系の構造図である。
【図5】イメージャAFにおける経過時間に対するコントラスト変化を示すグラフである。
【図6】本発明の第1の実施の形態に係るカメラにおけるピント合わせ制御の手順を示すフローチャートである。
【図7】被写体距離の逆数とピント位置との関係を説明するためのグラフである。
【図8】図8(A)は従来のピント合わせ制御時のタイミングチャートであり、図8(B)は本発明の第1の実施の形態におけるピント合わせ制御時のタイミングチャートである。
【図9】図9(A)はアクティブ方式のAF装置の構造図であり、図9(B)はアクティブ方式を用いてマルチAFを行う場合の構造図である。
【図10】本発明の第2の実施の形態に係るカメラにおけるピント合わせ制御の手順を示すフローチャートである。
【図11】ハイブリッド方式のAF装置の構造図である。
【図12】本発明の第3の実施の形態に係るカメラにおけるピント合わせ制御の手順を示すフローチャートである。
【図13】本発明の第4の実施の形態の説明図である。
【図14】図14(A)は被写体に光投射を行う前に得られる像信号を示す図であり、図14(B)は被写体に光投射を行って得られる像信号の図である。
【図15】本発明の第4の実施の形態に係るカメラにおけるピント合わせ制御の手順を示すフローチャートである。
【図16】本発明の第4の実施の形態におけるピント合わせ制御時のタイミングチャートである。
【符号の説明】
1 マイクロプロセッサ(CPU)
1a スイッチ
2,2a,2b 受光レンズ
3a,3b センサアレイ
4 測距部
4a,8 アナログ/デジタル(A/D)変換部
4b 測距演算部
5 撮影レンズ
6 レンズ駆動(LD)部
7 撮像素子
9 画像処理部
10 記録媒体
11 光源
13 投光レンズ
14 赤外発光ダイオード(IRED)
15 半導体光位置検出素子(PSD)
16 発光ダイオード(LED)
16a LEDドライバ
17 マスク
18 定常光記憶回路
19 差分回路

Claims (8)

  1. 撮影光学系を介して入射した被写体の像を結像する撮像素子と、
    上記撮影光学系とは異なる光路を利用して撮影画面内の複数のポイントを測距する測距手段と、
    上記測距手段によって上記複数のポイントのうちの第1のポイントを測距した場合の測距結果及び上記撮影光学系のピント位置を変位させたときに上記撮像素子上の上記第1のポイントに対応する位置に結像した被写体の像のコントラスト変化に基づいて、上記測距手段の測距結果と上記撮影光学系の駆動量との対応関係を決定する決定手段と、
    上記第1のポイントとは異なる第2のポイントにおける上記測距手段の測距結果と上記決定手段で決定された上記対応関係とに基づいて、上記撮影光学系のピント位置を制御する制御手段と、
    を具備することを特徴とするカメラ。
  2. 上記測距手段は、
    上記複数のポイントに存在する被写体の像信号を検出して上記複数のポイントに存在する被写体までの距離を算出する距離算出手段と、
    上記複数のポイントのなかで最もコントラストの高いポイントを上記第1のポイントとして設定し、上記距離算出手段によって算出された被写体までの距離が最も近距離のポイントを上記第2のポイントとして設定する設定手段と、
    を含むことを特徴とする請求項1に記載のカメラ。
  3. 上記測距手段は、上記複数のポイントのどこに主要被写体が存在するかを検出する主要被写体検出手段を含み、
    上記決定手段は、上記主要被写体が存在するポイントを上記第2のポイントとして設定する設定手段を含むことを特徴とする請求項1に記載のカメラ。
  4. 上記主要被写体検出手段は、上記複数のポイントにおける測距結果が最も近距離のポイントを上記主要被写体が存在するポイントとして検出することを特徴とする請求項3に記載のカメラ。
  5. 上記測距手段は、上記複数のポイント内に存在する被写体までの距離をパッシブ方式、もしくはアクティブ方式によって測距することを特徴とする請求項1に記載のカメラ。
  6. 上記測距手段は、測距結果に基づいて主要被写体を検出する主要被写体検出手段を含み、
    上記決定手段は、上記複数のポイントにおける測距結果の中で現在の撮影レンズのピント位置に近い距離を示すポイントを上記第1のポイントに設定し、上記主要被写体が存在するポイントを上記第2のポイントとして設定する設定手段を含むことを特徴とする請求項1に記載のカメラ。
  7. 撮影光学系を介して入射した被写体の像を結像する撮像素子と、
    上記撮影光学系とは異なる光路を利用して撮影画面内の複数のポイントを測距する測距手段と、
    上記測距手段の測距結果から主要被写体の存在するポイントを第1のポイントとして選択する第1の選択手段と、
    上記測距手段の測距結果の中で上記第1のポイントよりも上記撮影光学系の制御開始前のピント位置に近いポイントを第2のポイントとして選択する第2の選択手段と、
    上記撮像素子の上記第2のポイントに対応する領域におけるコントラスト情報と、上記第1のポイントにおける上記測距手段の測距結果及び上記第2のポイントにおける上記測距手段の測距結果に従って上記撮影光学系のピント位置を制御する制御手段と、
    を具備することを特徴とするカメラ。
  8. 撮影光学系を介して入射した被写体の像を結像する撮像素子と、
    上記被写体に光を投射する投光手段と、
    上記撮影光学系とは異なる光路を利用して、上記投光手段による上記被写体への投光を行わずに測距する第1の測距と、上記投光手段による上記被写体への投光を行いながら測距する第2の測距と、を行う測距手段と、
    上記第2の測距を行うに先立って、上記第1の測距の結果に基づいて上記撮影光学系のピント位置を変位させた場合に上記撮像素子上に結像する被写体の像のコントラスト変化を検出し、上記第1の測距の結果と上記コントラスト変化とから上記測距手段の測距結果と上記撮影光学系の駆動量との対応関係を決定する決定手段と、
    上記測距手段による上記第2の測距における測距結果と上記決定手段によって決定した上記対応関係とに基づいて、上記撮影光学系のピント位置を制御する制御手段と、
    を具備することを特徴とするカメラ。
JP2002228266A 2002-08-06 2002-08-06 カメラ Withdrawn JP2004069953A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002228266A JP2004069953A (ja) 2002-08-06 2002-08-06 カメラ
US10/634,046 US7391463B2 (en) 2002-08-06 2003-08-04 Image sensing apparatus having distance measuring unit and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002228266A JP2004069953A (ja) 2002-08-06 2002-08-06 カメラ

Publications (1)

Publication Number Publication Date
JP2004069953A true JP2004069953A (ja) 2004-03-04

Family

ID=32015000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002228266A Withdrawn JP2004069953A (ja) 2002-08-06 2002-08-06 カメラ

Country Status (1)

Country Link
JP (1) JP2004069953A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058099A1 (ja) * 2005-11-15 2007-05-24 Olympus Corporation 撮像装置
JP2008076444A (ja) * 2006-09-19 2008-04-03 Funai Electric Co Ltd 監視カメラおよび撮像装置
JP2010524279A (ja) * 2007-03-09 2010-07-15 イーストマン コダック カンパニー 距離マップ生成型マルチレンズカメラ
JP2017009769A (ja) * 2015-06-22 2017-01-12 株式会社 日立産業制御ソリューションズ 撮像装置、フォーカス制御装置および撮像方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058099A1 (ja) * 2005-11-15 2007-05-24 Olympus Corporation 撮像装置
JP2007139894A (ja) * 2005-11-15 2007-06-07 Olympus Corp 撮像装置
JP2008076444A (ja) * 2006-09-19 2008-04-03 Funai Electric Co Ltd 監視カメラおよび撮像装置
JP2010524279A (ja) * 2007-03-09 2010-07-15 イーストマン コダック カンパニー 距離マップ生成型マルチレンズカメラ
JP2017009769A (ja) * 2015-06-22 2017-01-12 株式会社 日立産業制御ソリューションズ 撮像装置、フォーカス制御装置および撮像方法

Similar Documents

Publication Publication Date Title
US7405762B2 (en) Camera having AF function
US20080247741A1 (en) Image-taking apparatus
US7602435B2 (en) Image-taking apparatus and focus control program for image-taking apparatus
US20100271510A1 (en) Focus control apparatus and optical apparatus
US6704054B1 (en) Autofocusing system
CN101247477A (zh) 摄像设备及其控制方法
JP2003131121A (ja) 自動焦点調節装置及び方法
US7391463B2 (en) Image sensing apparatus having distance measuring unit and control method thereof
JP5393300B2 (ja) 撮像装置
JP2001255456A (ja) 測距装置
JP2004157456A (ja) カメラ及びカメラの測距方法
JP2011013645A5 (ja)
US7570298B2 (en) Image-taking apparatus with first focus control such that in-focus position is searched for based on first signal and second focus control such that one of in-focus position and drive amount is determined based on second signal
JP2001141982A (ja) 電子カメラの自動焦点調節装置
JP4209660B2 (ja) デジタルカメラおよびカメラシステム
JP2001141984A (ja) 電子カメラの自動焦点調節装置
JP2004069953A (ja) カメラ
JP2006065080A (ja) 撮像装置
JP3518891B2 (ja) カメラの測距装置、カメラの移動体検出方法及びカメラ
JP2005173254A (ja) カメラシステム
JP4865275B2 (ja) 焦点検出装置及び撮像装置
JP2001141983A (ja) 電子カメラの自動焦点調節装置
JP2010200138A (ja) 被写体追尾装置
JP4900134B2 (ja) 焦点調節装置、カメラ
JP2004120582A (ja) カメラ

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101