JP3655336B2 - Printed wiring board manufacturing method and printed wiring board - Google Patents

Printed wiring board manufacturing method and printed wiring board Download PDF

Info

Publication number
JP3655336B2
JP3655336B2 JP1405495A JP1405495A JP3655336B2 JP 3655336 B2 JP3655336 B2 JP 3655336B2 JP 1405495 A JP1405495 A JP 1405495A JP 1405495 A JP1405495 A JP 1405495A JP 3655336 B2 JP3655336 B2 JP 3655336B2
Authority
JP
Japan
Prior art keywords
layer
conductive
metal layer
conductive metal
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1405495A
Other languages
Japanese (ja)
Other versions
JPH08204333A (en
Inventor
裕昭 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1405495A priority Critical patent/JP3655336B2/en
Publication of JPH08204333A publication Critical patent/JPH08204333A/en
Application granted granted Critical
Publication of JP3655336B2 publication Critical patent/JP3655336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【産業上の利用分野】
本発明は印刷配線板の製造方法に係り、特に配線層間を貫通型の導体部で接続する構成を備え、かつ高密度な配線および実装が可能な信頼性の高い印刷配線板を、歩留まり良好に製造し得る方法に関する。
【0002】
【従来の技術】
両面型印刷配線板もしくは多層型印刷配線板においては、両面導電パターンなどの配線層間の電気的な接続を、次のようにして行っている。すなわち、両面型印刷配線板の場合は、先ず、両面銅箔張り基板の所定位置に穴明け加工(穿設加工)を施し、穿設した穴の内壁面を含め、全面に化学メッキ処理を施す。その後、さらに電気メッキ処理を施し、穴の内壁面の金属層を厚くして信頼性を高め、配線層間の電気的な接続を行っている。
【0003】
また、多層印刷配線板の場合は、基板両面に張られた銅箔をそれぞれパターニングした後、そのパターニング面上に絶縁シート(たとえばプリプレグ)を介して銅箔を積層,配置する。次いで、加熱加圧を施して一体化した後、前述の両面型印刷配線板のときと同様に、穴明け加工およびメッキ処理による配線層間の電気的な接続、表面銅箔についてのパターニングにより多層型印刷配線板を得ている。なお、より配線層の多い多層型印刷配線板の場合は、中間に介挿させる両面型印刷配線板数を増やす方式で製造できる。
【0004】
前記印刷配線板の製造方法において、配線層間の電気的な接続をメッキ方法によらず行う方法として、両面銅箔張り基板の所定位置に穴明けし、この穴内に導電性ペーストを印刷法などにより流し込み、穴内に流し込んだ導電性ペーストの樹脂分を硬化させて、配線層間を電気的に接続する方法も行われている。
【0005】
【発明が解決しようとする課題】
ところで、電子機器類の高性能化やコンパクト化などの要求に対応して、印刷配線板においても、信頼性の高い高密度配線、もしくは微細な配線が求められている。つまり、配線回路もしくは実装回路装置の高機能化は、印刷配線板の高配線密度化もしくは微細な配線化が前提になるとともに、回路機能の信頼性を容易に確保し得ることが重要である。さらに具体的に言及すると、たとえば微細な配線間が所要の絶縁性を保持し得るていどに確実に離隔していること、実装する電子部品の端子が印刷配線板の接続パッドに、隣接する接続部との短絡を起こさずに電気的な接続が達成されることなどが望まれる。
【0006】
しかしながら、銅箔張り基板を素材とし、前記銅箔をフォトリソグラフィもしくはフォトエッチングで配線パターニングする手段を含む印刷配線板の製造方法の場合は、次ぎのような不都合な問題がある。すなわち、両面型もしくは多層配線型のいずれの場合も、最外層の配線パターン形成面に、いわゆる保護膜として、ソルダーレジスト層を印刷形成し、信号パターン面を被覆する構成を採っている。ここで、この種の印刷配線板を、その印刷配線板面に所要の電子部品を搭載・実装して、実装回路装置の形成に使用する場合は、前記電子部品の入出力端子が接続される接続用パッドを選択的に露出させておく必要がある。そして、この接続用パッドは、通常肉盛りなどによって、前記ソルダーレジスト層面から突出させた形態を採っている。つまり、接続用パッドが微細で、かつ狭ピッチ化した場合、それらの接続用パッドを相互に絶縁離隔する形に、ソルダーレジスト層を印刷形成することが困難のため、肉盛りなどで突出させた構造を採っている。
【0007】
このように、印刷配線板面の接続用パッドが、絶縁層(ソルダーレジスト層)面から突出していると、この時点では、隣接する接続用パッド相互の絶縁離隔を確保し得るが、この接続用パッドに電子部品の入出力端子を対応させて、半田付けなどによって電気的および機械的な接続を行ったとき、隣接する接続用パッド同士間で、いわゆる半田ブリッジが発生し易いという問題がある。そして、この半田ブリッジ発生の問題は、接続用パッドが微細化し、あるいは狭ピッチ化した場合、さらに顕著となるので、高密度配線化もしくは高密度実装化の動向のうえで、由々しい問題を提起することになる。
【0008】
本発明は上記事情に対処してなされたもので、簡易なプロセスで、信頼性の高い高密度の配線および実装が可能な印刷配線板の製造方法の提供を目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明は、導電性基材の少なくとも一主面に金属膜を形成する工程と、前記金属膜の表面に第1の電気絶縁層を形成する工程と、前記金属膜の一部が露出するように前記第1の電気絶縁層に開口を形成して、前記第1の電気絶縁層にパターンを形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記開口内にめっき半田層を形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記開口内にかつ前記めっき半田層の表面に第1の導電性金属層を形成する工程と、前記第1の導電性金属層の表面に第2の電気絶縁層を形成する工程と、前記第1の導電性金属層に接続する接続孔を前記第2の電気絶縁層に形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記接続孔内に第2の導電性金属層を形成する工程と、前記第2の導電性金属層と接続されるように前記第2の電気絶縁層の表面に導電性層を形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記導電性層の表面に第3の導電性金属層を形成する工程と、前記第3の導電性金属層上に絶縁性シートを積層し、一体化する工程と、前記導電性基材および前記金属膜を除去する工程とを具備することを特徴とする印刷配線板の製造方法である。請求項2の発明は、前記第3の導電性金属層を形成する工程と前記絶縁性シートを積層し、一体化する工程との間に、前記第3の導電性金属層の表面に接続用バンプを形成する工程をさらに具備し、前記絶縁性シートを積層し、一体化する工程は、前記接続用バンプが前記絶縁性シートを介して他の配線板要素の配線パターンに対向するように、前記接続用バンプ上に前記絶縁性シート及び前記他の配線板要素を積層し、一体化する工程であることを特徴とする請求項記載の印刷配線板の製造方法である。
【0010】
請求項の発明は、導電性基材の少なくとも一主面に金属膜を形成する工程と、前記金属膜の表面に第1の電気絶縁層を形成する工程と、前記金属膜の一部が露出するように前記第1の電気絶縁層に開口を形成して、前記第1の電気絶縁層にパターンを形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記開口内に第1の導電性金属層を形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記開口内にかつ前記第1の導電性金属層の表面に第2の導電性金属層を形成する工程と、前記第2の導電性金属層の表面に第2の電気絶縁層を形成する工程と、前記第2の導電性金属層に接続する接続孔を前記第2の電気絶縁層に形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記接続孔内に第3の導電性金属層を形成する工程と、前記第3の導電性金属層と接続されるように前記第2の電気絶縁層の表面に導電性層を形成する工程と、前記導電性基材を一方の電極としてめっき処理を行い、前記導電性層の表面に第4の導電性金属層を形成する工程と、前記第4の導電性金属層上に絶縁性シートを積層し、一体化する工程と、前記導電性基材および前記金属膜を除去する工程と、前記金属膜の除去で露出した第1の導電性金属層を選択的にエッチングして除去する工程とを具備することを特徴とする印刷配線板の製造方法である。請求項の発明は、前記第4の導電性金属層を形成する工程と前記絶縁性シートを積層し、一体化する工程との間に、前記第4の導電性金属層の表面に接続用バンプを形成する工程をさらに具備し、前記絶縁性シートを積層し、一体化する工程は、前記接続用バンプが前記絶縁性シートを介して他の配線板要素の配線パターンに対向するように、前記接続用バンプ上に前記絶縁性シート及び前記他の配線板要素を積層し、一体化する工程であることを特徴とする請求項記載の印刷配線板の製造方法である。
【0011】
請求項の発明は、前記導電性基材は離型性良好な導電性基板であり、前記導電性基材および前記金属膜を除去する工程における前記導電性基板の除去は、剥離除去であることを特徴とする請求項1乃至6のいずれか1項に記載の印刷配線板の製造方法である。
【0012】
請求項の発明は、開口から成るパターンを有する第1の絶縁層と、前記開口内に形成された第1の導電性金属層と、前記開口内に形成され、かつ前記第1の導電性金属層の表面に密着しためっき半田層、表面が前記第1の導電性金属層の裏面に密着し、かつ前記第1の導電性金属層に接続する接続孔を有する第2の電気絶縁層と、前記接続孔内に形成され、表面が前記第1の導電性金属層の裏面に密着した第2の導電性金属層と、表面が前記第2の導電性金属層の裏面に密着した導電性層と、表面が前記導電性層の裏面に密着した第3の導電性金属層と、表面が前記第3の導電性金属層の裏面に密着した絶縁性シートとを具備することを特徴とする印刷配線板である。
【0013】
請求項の発明は、開口から成るパターンを有する第1の電気絶縁層と、前記開口内に形成され、かつ表面が前記第1の電気絶縁層の表面まで達していない第1の導電性金属層と、表面が前記第1の導電性金属層の裏面に密着し、かつ前記第1の導電性金属層に接続する接続孔を有する第2の電気絶縁層と、前記接続孔内に形成され、表面が前記第1の導電性金属層の裏面に密着した第2の導電性金属層と、表面が前記第2の導電性金属層の裏面に密着した導電性層と、表面が前記導電性層の裏面に密着した第3の導電性金属層と、表面が前記第3の導電性金属層の裏面に密着した絶縁性シートとを具備することを特徴とする印刷配線板である。
【0014】
請求項の発明は、前記第3の導電性金属層の裏面に形成され、かつ前記絶縁性シートを貫通した接続用バンプとをさらに具備することを特徴とする請求項6又は7記載の印刷配線板である。
【0015】
本発明において、導電性基材としては、たとえばステンレス鋼板,表面処理したステンレス鋼板など良好な離型性(剥離性)を有する薄板、あるいは銅板,もしくは表面処理した銅板などの導電性金属板が挙げられる。つまり、導電性基材は、電気めっき処理の過程で一方の電極を兼ねる支持体として機能するもので、最終的には剥離除去もしくはエッチング除去される。したがって、導電性基材は、このような機能・役割を考慮して、剥離除去して再使用する場合は、変形・破損など起こし難いやや厚めのものを、またエッチング除去する場合は、支持体としての機能を呈する程度の薄板を、それぞれ選択することが好ましい。また、前記導電性基材面に形成する金属膜は、その金属膜上に積層・形成する多層配線層を、導電性基材面側と分離する機能・役割からして、いわゆる剥離性もしくはエッチング除去し易い金属、たとえばCu,Ni,ソルダーなどが選択される。
【0016】
本発明において、前記導電性基材上の金属膜面などに、ポジパターンを電気メッキによって形成する際、ネガパターンを形成する各電気絶縁性のネガパターン形成材としは、たとえばシリコーン樹脂,フッ素樹脂,エポキシ樹脂,ポリカーボネート樹脂,ポリスルホン樹脂,ポリエステル樹脂,フェノキシ樹脂,フェノール樹脂,ポリイミド樹脂、もしくはこれらの樹脂を主成分として感光性を付与したものなどが挙げられる。そして、ネガパターンの形成は、たとえば樹脂層を塗布形成し、選択的な露光・現像を施す手段、樹脂層を塗布・硬化後、選択的な紫外線照射によって分解除去する手段、あるいはネガパターン樹脂層を印刷法などによって選択的に被着させる手段が挙げられる。また、このネガパターンマスクは、加圧一体化によって、印刷配線板を構成する絶縁体として機能させる。
【0017】
本発明において、電気絶縁性のネガパターンマスクを形成した導電性基材を一方の電極とし、その導電性基材面に設けた金属膜の露出面(ポジパターン形成面)にメッキする第1の金属,第2の金属および第3の金属としては、たとえば銅,銀,金,半田,ニッケル,錫,クロムなどの金属、もしくは半田−銅,錫−銅,金−銅,ニッケル−銅,金−ニッケル−銅,パラジウム−ニッケル−銅,白金−ニッケル−銅などの複合系などが挙げられる。このポジパターンの電気メッキによる形成に当たっては、最終的に導電性基材や金属膜をエッチング除去する場合、金属膜に対する選択的なエッチング性を有する金属層を下地として、また、第1の金属層もエッチング除去する場合は、第2の金属層に対する選択的なエッチング性を考慮して、それぞれ予めメッキ形成する。なお、金やニッケル層を第1もしくは第2の金属層として設けた場合は、ポジパターンの露出面がこれらの金属層で被覆された態様を採るため、ポジパターンの安定化や半田付け性などの向上も図られる。
【0018】
さらに、本発明において、各絶縁性のネガパターンに対し、ポジパターンに配線回路部をめっき法で形成するに当たっての下地層として機能する導電性層の形成は、たとえばスパッタ法や無電解めっき法などで行われる。そして、この導電性層は、所定領域に電気的に絶縁離隔した形態で選択的に形成されているならば、その態様はとくに限定されない。
【0019】
本発明において、ポジパターン面の所定位置に形設される導体バンプ(導体バンプ群)は、たとえば銀,金,銅,半田粉などの導電性粉末、これらの合金粉末もしくは複合(混合)金属粉末と、たとえばポリカーボネート樹脂,ポリスルホン樹脂,ポリエステル樹脂,エポキシ樹脂,メラミン樹脂,フェノキシ樹脂,フェノール樹脂,ポリイミド樹脂などのバインダー成分とを混合して調製された導電性組成物で構成される。そして、前記バンプ群の形設は、導電性組成物で形成する場合、たとえば比較的厚いメタルマスクを用いた印刷法により、アスペクト比の高い導体バンプを形成でき、その導体バンプ群の高さは一般的に、50〜 300μm 程度が望ましい。なお、バンプ群を導電性組成物で形成する場合は、メッキ法などの手段で行う場合に較べて、さらに工程など簡略化し得るので、低コスト化の点で有効である。
【0020】
本発明において、導体バンプの先端部が貫挿圧入され、貫通型の導体部(電気的な接続部)が構成される絶縁性プリプレグとしては、たとえばポリカーボネート樹脂,ポリスルホン樹脂,熱可塑性ポリイミド樹脂,ポリエーテルイミド樹脂,4フッ化ポリエチレン樹脂,4フッ化エチレン樹脂,6フッ化ポリプロピレン樹脂,ポリエーテルエーテルケトン樹脂などのシート類、あるいはガラスクロスやマット、有機合成繊維布やマット、あるいは紙などの補強材と組み合わせて成るシートが挙げられる。その他、ブタジェンゴム,ブチルゴム,天然ゴム,ネオプレンゴム,シリコーンゴムなどの生ゴムのシート類も使用し得る。
【0021】
【作用】
請求項1、請求項の発明では、主面の接続用パッド面に既に半田層が形成され、かつこの半田層は絶縁体層に埋め込まれ、平坦面を形成した構成を成している印刷配線板が得られる。つまり、微細な接続用パッドであっても、あるいは狭ピッチ間隔であっても、確実に相互が区画され、かつ半田の流出が抑制された構成を採った印刷配線板が容易に得られる。
【0022】
請求項、請求項の発明では、いわゆる電気めっきで所要の配線がパターンニングされるので、配線密度の高い微細な配線パターンを容易に形成し得るばかりでなく、導電性基材側の金属膜を除去した面では、たとえば接続用パッドが相互に確実に絶縁離隔され、かつその絶縁層に対して凹面を成しているため、半田の流出しによる隣接する接続用パッド間の半田ブリッジの発生も容易に回避し得る印刷配線板が得られる。
【0023】
請求項の発明では、製造工程の簡略化が図られる。
【0024】
請求項、請求項、請求項の発明では、前記請求項1、請求項、請求項、請求項の作用に加えて、より多層化した印刷配線板が、より簡略化された工程で容易に得られる。
【0025】
【実施例】
以下図1〜図15をそれぞれ参照して、本発明の実施例を説明する。
【0026】
実施例1
図1〜図14は本実施例の実施態様を模式的に示したものである。
【0027】
先ず、導電性基材1として、たとえば厚さ 1mmの導電性ステンレス鋼板を用意し、図1に断面的に示すごとく、この導電性ステンレス鋼板1面に、電気メッキもしくはスパッタによって厚さ 2〜 3μm 程度のCu金属膜2を形成した後、図2に断面的に示すごとく、厚さ50μm 程度の感光性絶縁フィルム3を張り合わせた。ここで、感光性絶縁フィルム3を張り合わせる代わりに、感光性樹脂層を塗布形成してもよい。
【0028】
次いで、前記感光性絶縁フィルム3について、選択的な露光・現像処理を施して、図3に断面的に示すようにパターニングを行った。その後、前記導電性ステンレス鋼板1を、一方の電極として半田メッキ液中に浸漬し、 1.8〜 2.5 A/dm2 程度の電流を流して電気メッキ処理を行って、図4に断面的に示すごとく、露出していた金属膜2面上にめっき半田層4を形成してから、さらに高速硫酸銅メッキ液中に浸漬し、20 A/dm2 程度の電流を流して電気メッキ処理を行って、図5に断面的に示すごとく、前記めっき半田層4上(配線パターン形成領域)に、選択的に厚さ35μm の銅層5を析出させて第1のポジパターン6を形成した。
【0029】
前記第1のポジパターン6形成面に、再び厚さ35μm 程度の感光性絶縁フィルム3′を張り合わせ、図6に断面的に示すように、第1のポジパターン6に接続するスルホールパターン7を形成し、このスルホールパターン7部を電気めっき処理によって銅で埋め込んだ。前記スルホールパターン7部銅で埋め込んだ後、厚さ35μm 程度の感光性絶縁フィルム3″を張り合わせ、選択的な露光・現像処理を施して、図7に断面的に示すごとく、ネガパターニングを行った。その後、前記絶縁性ネガパターニング3″面に、図8に断面的に示すごとく、たとえば NiOx から成る導電性層8をスパッタ法で形成し、ポジパターン面の導電性層8′をめっき核として、前記と同様の条件で電気銅めっき処理を行い、図9に断面的に示すごとく、第2のポジパターン6′を形成した。
【0030】
次いで、前記第2のポジパターン6′形成面に残存している導電性層8を、図10に断面的に示す選択的にソフトエッチングによって除去してから、2のポジパターン6′形成面に、図11に断面的に示すごとく、絶縁性のフィルム(絶縁性シート)9を積層・一体化する。なお、配線層数を多くする場合は、絶縁性シート9の積層・一体化に先だって、前記図6〜図10に図示した工程を適宜繰り返せばよい。このように、最終のポジパターン面を絶縁性シート9の積層・一体化で被覆した後、前記導電性基材1を剥離し、金属層2をソフトエッチング除去するか、あるいは導電性基材1および金属層2を順次剥離・除去することにより、図12に断面的に示すごとく、表面に半田層4を有する第1のポジパターン6が、絶縁体層2に平坦面を成して埋め込まれた印刷配線板が得られた。
【0031】
なお、前記製造方法において、製造工程の途中で内層配線を形成する場合は、その間に形成する絶縁体層にダミーのスルホールパターンを設け、金属層2を介して導電性基材1と電気的に接続させる構成を採ってもよい。
【0032】
また、前記印刷配線板の製造工程で、たとえば第2のポジパターン6′を形成した段階で、その第2のポジパターン6′面に、たとえばエポキシ樹脂をバインダーとして成る銀系の導電性ペーストを印刷し、この印刷された導電性ペーストが乾燥後、同一マスクを用い同一位置に再度印刷する方法を繰り返し、たとえば 180℃のオーブンで加熱・硬化させて、図13に断面的に示すごとく、高さ 0.3mm,底面径0.35mm 程度の円錐型の導体パンブ10を形成(形設)した。
【0033】
このように導体パンブ10を形成した印刷配線板素材11を、たとえばエポキシ樹脂系のプリプレグ層12を介して、図14に断面的に示すごとく、互いに導体パンブ10を対応させて積層し、加圧一体化した。この加圧一体化の過程で、前記導体パンブ10の先端側はそれぞれプリプレグ層12に圧入された、相互の先端部がいわゆる塑性変形して、電気的に信頼性の高い配線層間の接続を形成していた。
【0034】
上記でそれぞれ製造した構成の印刷配線板においては、表面の接続用パッドが75/75mm,ピッチ間隔0.15mmの場合でも、隣接する接続用パッド同士の絶縁は十分に確保されており、また、電子部品の入出力端子を半田付け接続したときも、半田ブリッジの発生は認められず、信頼性の高い実装が可能であった。
【0035】
実施例2
図1〜図15は本実施例の実施態様を模式的に示したものである。基本的には、実施例1の場合と共通するので、前記図1〜図14を援用する。
【0036】
先ず、導電性基材1として、たとえば厚さ 1mmの導電性ステンレス鋼板を用意し、図1に断面的に示すごとく、この導電性ステンレス鋼板1面に、電気メッキもしくはスパッタによって厚さ 2〜 3μm 程度のCu金属膜2を形成した後、図2に断面的に示すごとく、厚さ50μm 程度の感光性絶縁フィルム3を張り合わせた。ここで、感光性絶縁フィルム3を張り合わせる代わりに、感光性樹脂層を塗布形成してもよい。
【0037】
次いで、前記感光性絶縁フィルム3について、選択的な露光・現像処理を施して、図3に断面的に示すようにネガパターニングを行った。その後、前記導電性ステンレス鋼板1を、一方の電極としてNiメッキ液中に浸漬し、 2.5〜 3.0 A/dm2 程度の電流を流して電気メッキ処理を行って、図4に断面的に示すごとく、露出していた金属膜2面上にNi層4′を形成してから、さらに高速硫酸銅メッキ液中に浸漬し、20 A/dm2 程度の電流を流して電気メッキ処理を行って、図5に断面的に示すごとく、前記Ni層4′上(配線パターン形成領域)に、選択的に厚さ35μm の銅層5を析出させて第1のポジパターン6を形成した。ここで、Ni層4′は、銅層5に対して選択的なエッチングが可能な金属が選ばれる。
【0038】
前記第1のポジパターン6形成面に、再び厚さ35μm 程度の感光性絶縁フィルム3′を張り合わせ、図6に断面的に示すように、第1のポジパターン6に接続するスルホールパターン7を形成し、このスルホールパターン7部を電気めっき処理によって銅で埋め込んだ。前記スルホールパターン7部銅で埋め込んだ後、厚さ35μm 程度の感光性絶縁フィルム3″を張り合わせ、選択的な露光・現像処理を施して、図7に断面的に示すごとく、絶縁性のネガパターニングを行った。その後、前記絶縁性ネガパターニング3″面に、図8に断面的に示すごとく、たとえば NiOx から成る導電性層8をスパッタ法で形成し、ポジパターン面の導電性層8′をめっき核として、前記と同様の条件で電気銅めっき処理を行い、図9に断面的に示すごとく、第2のポジパターン6′を形成した。
【0039】
次いで、前記第2のポジパターン6′形成面に残存している導電性層8を、図10に断面的に示す選択的にソフトエッチングによって除去してから、第2のポジパターン6′形成面に、図11に断面的に示すごとく、絶縁性のフィルム(絶縁性シート)9を積層・一体化する。なお、配線層数を多くする場合は、絶縁性シート9の積層・一体化に先だって、前記図6〜図10に図示した工程を適宜繰り返せばよい。このように、最終のポジパターン面を絶縁性シート9の積層・一体化で被覆した後、前記導電性基材1を剥離し、金属層2をソフトエッチング除去するか、あるいは導電性基材1および金属層2を順次剥離・除去する。このようにして、第1のポジパターン6のNi層4′を露出させた後、Ni層4′を選択的にエッチング除去すると、図15に断面的に示すごとく、表面が絶縁体層2面よりも凹設化し、いわば絶縁体層2によってダムが設けられた形態の第1のポジパターン6を有する印刷配線板が得られた。
【0040】
なお、前記製造方法において、製造工程の途中で内層配線を形成する場合は、その間に形成する絶縁体層にダミーのスルホールパターンを設け、金属層2を介して導電性基材1と電気的に接続させる構成を採ってもよい。また、金属層2をソフトエッチング除去するとき、Ni層4′も同時に選択エッチング除去してもよい。
【0041】
また、前記印刷配線板の製造工程で、たとえば第2のポジパターン6′を形成した段階で、その第2のポジパターン6′面に、たとえばエポキシ樹脂をバインダーとして成る銀系の導電性ペーストを印刷し、この印刷された導電性ペーストが乾燥後、同一マスクを用い同一位置に再度印刷する方法を繰り返し、たとえば 180℃のオーブンで加熱・硬化させて、図13に断面的に示すごとく、高さ 0.3mm,底面径0.35mm 程度の円錐型の導体パンブ10を形成(形設)した。
【0042】
このように導体パンブ10を形成した印刷配線板素材11を、たとえばエポキシ樹脂系のプリプレグ層12を介して、互いに導体パンブ10を対応させて積層し、加圧一体化した。この加圧一体化の過程で、前記導体パンブ10の先端側はそれぞれプリプレグ層12に圧入された、相互の先端部がいわゆる塑性変形して、電気的に信頼性の高い配線層間の接続を形成していた。
【0043】
上記でそれぞれ製造した構成の印刷配線板においては、表面の接続用パッドが75/75mm,ピッチ間隔0.15mmの場合でも、隣接する接続用パッド同士の絶縁は十分に確保されており、また、電子部品の入出力端子を半田付け接続したときも、半田ブリッジの発生は認められず、信頼性の高い実装が可能であった。
【0044】
上記では、実施例として代表例を説明したが、本発明はこれらの実施例に限定されるものでなく、本発明の趣旨を逸脱しない範囲でいろいろの変形を採り得る。すなわち、導電性基材、金属層,絶縁性ネガパターン形成材,ポジパターン形成金属などは、前記実施例に例示したもの以外の組み合わせなど採っても同様の成果が得られる。
【0045】
【発明の効果】
上記説明から分かるように、本発明によれば、接続用パッド面に電子部品の入出力端子を半田付けするとき、平面方向への半田流出が抑制・防止されるため、半田ブリッジなどの発生が全面的に回避される印刷配線板を容易に得ることが可能である。換言すると、接続用パッドなど相互の絶縁が確実に確保される一方、実質的に半田付け部がダム化され、平面方向への流出が防止されていることに伴って、信頼性の高い実装回路装置の構成に適する印刷配線板を簡略な手段で得ることが可能となる。
【図面の簡単な説明】
【図1】本発明に係る製造方法の実施態様を模式的に示すもので,導電性基材面に金属層を形成した状態の断面図。
【図2】本発明に係る製造方法の実施態様を模式的に示すもので、金属層面に第1の絶縁性フィルム層を張り合わせた状態の断面図。
【図3】本発明に係る製造方法の実施態様を模式的に示すもので,第1の絶縁性ネガパターニングした状態の断面図。
【図4】本発明に係る製造方法の実施態様を模式的に示すもので、金属層面にめっき半田層を形成した状態の断面図。
【図5】本発明に係る製造方法の実施態様を模式的に示すもので、めっき半田層面に第1のポジパターンを形成した状態の断面図。
【図6】本発明に係る製造方法の実施態様を模式的に示すもので、第1のポジパターン形成面にスルホールパターンを形成する絶縁縁性フィルム層を張り合わせた状態の断面図。
【図7】本発明に係る製造方法の実施態様を模式的に示すもので,スルホールパターンを形成面に第2の絶縁縁性フィルム層を形成してネガパターニングした状態の断面図。
【図8】本発明に係る製造方法の実施態様を模式的に示すもので,第2の絶縁縁性フィルムのネガパターニング面に導電性層を形成した状態を示す断面図。
【図9】本発明に係る製造方法の実施態様を模式的に示すもので,第2の絶縁縁性フィルムのポジパターン上の導電性層面に第2のポジパターンを形成した状態の断面図。
【図10】本発明に係る製造方法の実施態様を模式的に示すもので、第2の絶縁縁性フィルムのポジパターン上の導電性層を除去した状態の断面図。
【図11】本発明に係る製造方法の実施態様を模式的に示すもので、第2のポジパターン形成面に絶縁性シートを積層・一体化した状態の断面図。
【図12】本発明に係る製造方法の実施態様を模式的に示すもので、導電性基材および金属膜を除去した状態の断面図。
【図13】本発明に係る製造方法の他の実施態様を模式的に示すもので、第2のポジパターン面に導電バンプを形成した状態の断面図。
【図14】本発明に係る製造方法のさらに他の実施態様を模式的に示すもので、第2のポジパターン面に形成した導電バンプを絶縁性プリプレグ層を介して対向させ、積層・一体化した状態の断面図。
【図15】本発明に係る製造方法のさらに他の実施態様を模式的に示すもので、導電性基材および金属膜を除去した状態の断面図。
【符号の説明】
1……導電性基材 2……金属膜 3,3′,3″……絶縁性シート層 4……めっき半田層 4′……めっき金属層 5……銅めっき層 6,6′……ポジパターン 7……スルホールパターン 8,8′……導電性層 9……絶縁性シート 10……導電バンプ
[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a printed wiring board, and more particularly, to provide a printed wiring board having a configuration in which wiring layers are connected by a through-type conductor portion, and capable of high-density wiring and mounting, with high yield. It relates to a method that can be manufactured.
[0002]
[Prior art]
In a double-sided printed wiring board or a multilayer printed wiring board, electrical connection between wiring layers such as a double-sided conductive pattern is performed as follows. That is, in the case of a double-sided printed wiring board, first, a drilling process (drilling process) is performed at a predetermined position of a double-sided copper foil-clad substrate, and a chemical plating process is performed on the entire surface including the inner wall surface of the drilled hole. . Thereafter, an electroplating process is further performed to increase the reliability by increasing the thickness of the metal layer on the inner wall surface of the hole, and electrical connection is made between the wiring layers.
[0003]
In the case of a multilayer printed wiring board, the copper foil stretched on both sides of the substrate is patterned, and then the copper foil is laminated and disposed on the patterning surface via an insulating sheet (for example, a prepreg). Next, after applying heat and pressure for integration, the multi-layer type is formed by electrical connection between wiring layers by drilling and plating, and patterning on the surface copper foil, as in the case of the double-sided printed wiring board described above. Obtained printed wiring board. In the case of a multilayer printed wiring board having more wiring layers, the multilayer printed wiring board can be manufactured by increasing the number of double-sided printed wiring boards inserted in the middle.
[0004]
In the method for manufacturing a printed wiring board, as a method for performing electrical connection between wiring layers without depending on a plating method, a hole is formed in a predetermined position of a double-sided copper foil-clad substrate, and a conductive paste is printed in the hole by a printing method or the like. A method is also used in which the resin component of the conductive paste poured into the hole is cured and the wiring layers are electrically connected.
[0005]
[Problems to be solved by the invention]
By the way, in response to demands for higher performance and compactness of electronic devices, highly reliable high-density wiring or fine wiring is also required for printed wiring boards. That is, to increase the functionality of a wiring circuit or a mounted circuit device, it is important to increase the wiring density or fine wiring of the printed wiring board, and to ensure the reliability of the circuit function easily. More specifically, for example, the minute wirings can be reliably separated while maintaining the required insulation, and the terminals of the electronic components to be mounted are connected to the connection pads of the printed wiring board. It is desired that electrical connection is achieved without causing a short circuit with the part.
[0006]
However, a method for manufacturing a printed wiring board using a copper foil-clad substrate as a raw material and means for patterning the copper foil by photolithography or photoetching has the following disadvantages. That is, in either case of the double-sided type or the multilayer wiring type, a configuration is adopted in which a solder resist layer is printed as a so-called protective film on the wiring pattern forming surface of the outermost layer and the signal pattern surface is covered. Here, when this type of printed wiring board is used to form a mounted circuit device by mounting and mounting required electronic components on the surface of the printed wiring board, the input / output terminals of the electronic components are connected. It is necessary to selectively expose the connection pads. And this connection pad has taken the form protruded from the said soldering resist layer surface by the normal buildup etc. In other words, when the connection pads are fine and have a narrow pitch, it is difficult to print and form the solder resist layer in such a manner that the connection pads are insulated from each other. It has a structure.
[0007]
Thus, if the connection pad on the printed wiring board surface protrudes from the insulating layer (solder resist layer) surface, at this point, it is possible to secure an insulation separation between adjacent connection pads. When an input / output terminal of an electronic component is made to correspond to a pad and an electrical and mechanical connection is made by soldering or the like, there is a problem that a so-called solder bridge is likely to occur between adjacent connection pads. This problem of solder bridge generation becomes more conspicuous when the connection pads are made finer or have a narrower pitch. This is a serious problem in the trend toward higher-density wiring or higher-density mounting. Will be raised.
[0008]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a printed wiring board capable of high-density wiring and mounting with high reliability by a simple process.
[0009]
[Means for Solving the Problems]
  The invention of claim 1 includes a step of forming a metal film on at least one principal surface of a conductive substrate, a step of forming a first electrical insulating layer on the surface of the metal film, and a portion of the metal film. Forming an opening in the first electrical insulating layer so as to be exposed, and forming a pattern in the first electrical insulating layer; and performing a plating process using the conductive substrate as one electrode; WithinPlating solder layerAnd a plating treatment using the conductive base material as one electrode, and in the opening andPlating solder layerForming a first conductive metal layer on the surface ofForming a second electrical insulating layer on a surface of the first conductive metal layer; forming a connection hole connected to the first conductive metal layer in the second electrical insulating layer; Performing a plating process using the conductive base material as one electrode to form a second conductive metal layer in the connection hole; and the second conductive metal layer to be connected to the second conductive metal layer. Forming a conductive layer on the surface of the electrically insulating layer, performing a plating process using the conductive base material as one electrode, and forming a third conductive metal layer on the surface of the conductive layer; Laminating and integrating an insulating sheet on the third conductive metal layer;A step of removing the conductive substrate and the metal film.MarkA printed wiring board manufacturing method. Invention of Claim 2BeforeBetween the step of forming the third conductive metal layer and the step of laminating and integrating the insulating sheets, a step of forming connection bumps on the surface of the third conductive metal layer And the step of laminating and integrating the insulating sheet includes the step of forming the connecting bump on the connecting bump so that the connecting bump faces a wiring pattern of another wiring board element via the insulating sheet. The insulating sheet and the other wiring board element are laminated and integrated.1It is a manufacturing method of the printed wiring board of description.
[0010]
  Claim3In the invention, a step of forming a metal film on at least one main surface of the conductive substrate, a step of forming a first electrical insulating layer on the surface of the metal film, and a part of the metal film are exposed. Forming an opening in the first electrical insulating layer and forming a pattern in the first electrical insulating layer, and performing a plating process using the conductive substrate as one electrode,On the secondForming a first conductive metal layer, and performing a plating process using the conductive base material as one electrode, and a second conductive metal layer in the opening and on the surface of the first conductive metal layer Forming a step;Forming a second electrical insulating layer on the surface of the second conductive metal layer; forming a connection hole in the second electrical insulating layer to connect to the second conductive metal layer; Performing a plating process using the conductive base material as one electrode to form a third conductive metal layer in the connection hole; and the second conductive metal layer so as to be connected to the third conductive metal layer. Forming a conductive layer on the surface of the electrically insulating layer, performing a plating process using the conductive base material as one electrode, and forming a fourth conductive metal layer on the surface of the conductive layer; Laminating and integrating an insulating sheet on the fourth conductive metal layer;Printing comprising: removing the conductive substrate and the metal film; and selectively etching and removing the first conductive metal layer exposed by removing the metal film. A method for manufacturing a wiring board. ContractClaim4In the invention, a connecting bump is formed on the surface of the fourth conductive metal layer between the step of forming the fourth conductive metal layer and the step of laminating and integrating the insulating sheets. And further comprising the step of laminating and integrating the insulating sheets, wherein the connecting bumps face the wiring patterns of other wiring board elements through the insulating sheet. The insulating sheet and the other wiring board element are laminated on a bump, and the process is a step of integrating them.3It is a manufacturing method of the printed wiring board of description.
[0011]
  Claim5In the present invention, the conductive substrate is a conductive substrate having good releasability,GuidanceThe method for producing a printed wiring board according to claim 1, wherein the removal of the conductive substrate in the step of removing the conductive base material and the metal film is a peeling removal. is there.
[0012]
  Claim6According to the present invention, a first insulating layer having a pattern of openings, a first conductive metal layer formed in the opening, and the first conductive metal layer formed in the opening. Adhered to the surfacePlating solder layerWhenA second electrical insulating layer having a connection hole connected to the back surface of the first conductive metal layer and connected to the first conductive metal layer; and a surface formed in the connection hole. A second conductive metal layer in close contact with the back surface of the first conductive metal layer, a conductive layer in which the surface is in close contact with the back surface of the second conductive metal layer, and a surface of the conductive layer. A third conductive metal layer in close contact with the back surface, and an insulating sheet whose surface is in close contact with the back surface of the third conductive metal layer;It is a printed wiring board characterized by comprising.
[0013]
  Claim7According to the present invention, there is provided a first electrical insulating layer having a pattern of openings, a first conductive metal layer formed in the opening and having a surface not reaching the surface of the first electrical insulating layer;A second electrical insulating layer having a connection hole connected to the back surface of the first conductive metal layer and connected to the first conductive metal layer; and a surface formed in the connection hole. A second conductive metal layer in close contact with the back surface of the first conductive metal layer, a conductive layer in which the surface is in close contact with the back surface of the second conductive metal layer, and a surface of the conductive layer. A third conductive metal layer in close contact with the back surface, and an insulating sheet whose surface is in close contact with the back surface of the third conductive metal layer;It is a printed wiring board characterized by comprising.
[0014]
  Claim8The invention of,PreviousA connection bump formed on the back surface of the third conductive metal layer and penetrating the insulating sheet is further provided.6 or 7It is a printed wiring board of description.
[0015]
In the present invention, examples of the conductive substrate include a thin metal plate having a good releasability (peelability) such as a stainless steel plate and a surface-treated stainless steel plate, or a conductive metal plate such as a copper plate or a surface-treated copper plate. It is done. That is, the conductive substrate functions as a support that also serves as one electrode in the course of the electroplating process, and is finally removed or removed by etching. Therefore, in consideration of such functions and roles, the conductive base material is a slightly thicker material that is unlikely to be deformed or damaged when it is peeled off and reused. It is preferable to select thin plates each exhibiting a function as In addition, the metal film formed on the surface of the conductive substrate is so-called peelable or etched because of the function and role of separating the multilayer wiring layer formed and formed on the metal film from the surface of the conductive substrate. Metals that are easy to remove, such as Cu, Ni, solder, etc., are selected.
[0016]
In the present invention, when forming a positive pattern on a metal film surface or the like on the conductive base material by electroplating, each electrically insulating negative pattern forming material for forming a negative pattern is, for example, a silicone resin or a fluororesin , Epoxy resin, polycarbonate resin, polysulfone resin, polyester resin, phenoxy resin, phenol resin, polyimide resin, or those having these resins as main components to which photosensitivity is imparted. The negative pattern can be formed, for example, by applying a resin layer and selectively exposing / developing the resin layer, applying and curing the resin layer, and then decomposing and removing by selective ultraviolet irradiation, or a negative pattern resin layer. There is a means for selectively depositing the film by a printing method or the like. Moreover, this negative pattern mask is made to function as an insulator which comprises a printed wiring board by pressure integration.
[0017]
In the present invention, a conductive base material on which an electrically insulating negative pattern mask is formed is used as one electrode, and the exposed surface (positive pattern forming surface) of the metal film provided on the conductive base material surface is plated first. Examples of the metal, the second metal, and the third metal include metals such as copper, silver, gold, solder, nickel, tin, and chromium, or solder-copper, tin-copper, gold-copper, nickel-copper, and gold. -Composite systems such as nickel-copper, palladium-nickel-copper, platinum-nickel-copper, and the like. In forming the positive pattern by electroplating, when the conductive substrate or the metal film is finally removed by etching, a metal layer having selective etching properties with respect to the metal film is used as a base, and the first metal layer. In the case of removing also by etching, in consideration of selective etching properties with respect to the second metal layer, plating is performed in advance. When the gold or nickel layer is provided as the first or second metal layer, the exposed surface of the positive pattern is covered with these metal layers, so that the positive pattern is stabilized or soldered. Is also improved.
[0018]
Furthermore, in the present invention, for each insulating negative pattern, the formation of the conductive layer functioning as a base layer in forming the wiring circuit portion on the positive pattern by the plating method is, for example, a sputtering method or an electroless plating method. Done in And if this electroconductive layer is selectively formed in the form electrically insulated and spaced apart by the predetermined area | region, the aspect will not be specifically limited.
[0019]
In the present invention, the conductor bumps (conductor bump group) formed at a predetermined position on the positive pattern surface are, for example, conductive powders such as silver, gold, copper, solder powder, alloy powders thereof, or composite (mixed) metal powders. And a conductive composition prepared by mixing a binder component such as a polycarbonate resin, a polysulfone resin, a polyester resin, an epoxy resin, a melamine resin, a phenoxy resin, a phenol resin, or a polyimide resin. And, when forming the bump group with a conductive composition, a conductor bump having a high aspect ratio can be formed by, for example, a printing method using a relatively thick metal mask, and the height of the conductor bump group is Generally, about 50 to 300 μm is desirable. In the case where the bump group is formed of a conductive composition, the process can be further simplified as compared with the case where the bump group is formed by means such as plating, which is effective in terms of cost reduction.
[0020]
In the present invention, as the insulating prepreg in which the tip end portion of the conductor bump is inserted and press-fitted to form a through-type conductor portion (electrical connection portion), for example, polycarbonate resin, polysulfone resin, thermoplastic polyimide resin, Reinforcing sheets such as etherimide resin, polytetrafluoroethylene resin, tetrafluoroethylene resin, hexafluoropolypropylene resin, polyetheretherketone resin, glass cloth and mat, organic synthetic fiber cloth and mat, or paper The sheet | seat which combines with a material is mentioned. In addition, raw rubber sheets such as butadiene rubber, butyl rubber, natural rubber, neoprene rubber, and silicone rubber can be used.
[0021]
[Action]
  Claim 1, claim6According to the invention, a printed wiring board having a configuration in which a solder layer is already formed on the connection pad surface of the main surface and this solder layer is embedded in an insulator layer to form a flat surface is obtained. That is, it is possible to easily obtain a printed wiring board having a configuration in which mutual connection is ensured and the outflow of solder is suppressed even when the connection pads are fine or the pitch is narrow.
[0022]
  Claim3, Claims7In the present invention, since the required wiring is patterned by so-called electroplating, not only can a fine wiring pattern with a high wiring density be easily formed, but also on the surface from which the metal film on the conductive substrate side is removed, For example, since the connection pads are reliably insulated from each other and have a concave surface with respect to the insulating layer, the occurrence of solder bridges between adjacent connection pads due to the outflow of solder can be easily avoided. A printed wiring board is obtained.
[0023]
  Claim5In this invention, the manufacturing process can be simplified.
[0024]
  Claim2, Claims4, Claims8In the invention of claim 1, the claim 1 and the claim3, Claims6, Claims7In addition to the above-described function, a printed wiring board having a more multilayered structure can be easily obtained by a simplified process.
[0025]
【Example】
Embodiments of the present invention will be described below with reference to FIGS.
[0026]
Example 1
1 to 14 schematically show an embodiment of this example.
[0027]
First, for example, a conductive stainless steel plate having a thickness of 1 mm is prepared as the conductive substrate 1, and as shown in a cross-sectional view in FIG. 1, the surface of the conductive stainless steel plate 1 has a thickness of 2 to 3 μm by electroplating or sputtering. After forming a Cu metal film 2 having a thickness of about 2, a photosensitive insulating film 3 having a thickness of about 50 μm was laminated as shown in a sectional view in FIG. Here, instead of laminating the photosensitive insulating film 3, a photosensitive resin layer may be formed by coating.
[0028]
Next, the photosensitive insulating film 3 was subjected to selective exposure / development processing and patterned as shown in a cross-sectional view in FIG. Thereafter, the conductive stainless steel plate 1 is immersed in a solder plating solution as one electrode, and 1.8 to 2.5 A / dm2As shown in a cross-sectional view in FIG. 4, a plating solder layer 4 is formed on the exposed metal film 2 surface, and then in a high-speed copper sulfate plating solution. Immerse, 20 A / dm2An electroplating process is performed by applying a current of about a degree, and as shown in a cross-sectional view in FIG. 5, a copper layer 5 having a thickness of 35 μm is selectively deposited on the plated solder layer 4 (wiring pattern forming region). A first positive pattern 6 was formed.
[0029]
A photosensitive insulating film 3 ′ having a thickness of about 35 μm is again laminated on the first positive pattern 6 forming surface, and a through hole pattern 7 connected to the first positive pattern 6 is formed as shown in a sectional view in FIG. 6. Then, 7 parts of this through hole pattern was embedded with copper by electroplating. After filling the through-hole pattern 7 parts with copper, a photosensitive insulating film 3 ″ having a thickness of about 35 μm was laminated and subjected to selective exposure / development processing, and negative patterning was performed as shown in a cross-sectional view in FIG. Thereafter, as shown in a cross-sectional view in FIG.xThe conductive layer 8 is formed by sputtering, and an electro copper plating process is performed under the same conditions as described above using the conductive layer 8 'on the positive pattern surface as a plating nucleus. As shown in a cross-sectional view in FIG. Two positive patterns 6 'were formed.
[0030]
Next, the conductive layer 8 remaining on the second positive pattern 6 'formation surface is removed by selective soft etching as shown in cross section in FIG. As shown in a sectional view in FIG. 11, an insulating film (insulating sheet) 9 is laminated and integrated. In addition, when increasing the number of wiring layers, the steps illustrated in FIGS. 6 to 10 may be repeated as appropriate prior to the lamination and integration of the insulating sheet 9. In this way, after the final positive pattern surface is covered by lamination and integration of the insulating sheet 9, the conductive base material 1 is peeled off and the metal layer 2 is removed by soft etching, or the conductive base material 1 is removed. Then, the first positive pattern 6 having the solder layer 4 on the surface is embedded in the insulator layer 2 as a flat surface by peeling and removing the metal layer 2 sequentially as shown in a cross-sectional view in FIG. A printed wiring board was obtained.
[0031]
In addition, in the said manufacturing method, when forming inner layer wiring in the middle of a manufacturing process, a dummy through hole pattern is provided in the insulator layer formed in the meantime, and it electrically connects with the electroconductive base material 1 through the metal layer 2 You may take the structure to connect.
[0032]
Further, in the process of manufacturing the printed wiring board, for example, when a second positive pattern 6 'is formed, a silver-based conductive paste using, for example, an epoxy resin as a binder is applied to the surface of the second positive pattern 6'. After the printed conductive paste is dried, the method of printing again at the same position using the same mask is repeated, for example, heated and cured in an oven at 180 ° C., and as shown in cross section in FIG. A conical conductor pump 10 having a height of 0.3 mm and a base diameter of 0.35 mm was formed (formed).
[0033]
The printed wiring board material 11 in which the conductor bumps 10 are formed in this way is laminated with the conductor bumps 10 corresponding to each other as shown in a cross-sectional view in FIG. 14, for example, via an epoxy resin prepreg layer 12. Integrated. In the process of this pressure integration, the leading ends of the conductor bumps 10 are press-fitted into the prepreg layer 12, respectively, and the leading ends of each are so-called plastically deformed to form an electrically reliable connection between the wiring layers. Was.
[0034]
In the printed wiring board having the structure manufactured above, even when the connection pads on the surface are 75/75 mm and the pitch interval is 0.15 mm, insulation between adjacent connection pads is sufficiently ensured. Even when the input / output terminals of the components were connected by soldering, no solder bridge was observed, and high-reliability mounting was possible.
[0035]
Example 2
1 to 15 schematically show an embodiment of this example. Since it is basically the same as in the case of the first embodiment, FIGS.
[0036]
First, for example, a conductive stainless steel plate having a thickness of 1 mm is prepared as the conductive substrate 1, and as shown in a cross-sectional view in FIG. 1, the surface of the conductive stainless steel plate 1 has a thickness of 2 to 3 μm by electroplating or sputtering. After forming a Cu metal film 2 having a thickness of about 2, a photosensitive insulating film 3 having a thickness of about 50 μm was laminated as shown in a sectional view in FIG. Here, instead of laminating the photosensitive insulating film 3, a photosensitive resin layer may be formed by coating.
[0037]
Next, the photosensitive insulating film 3 was subjected to selective exposure / development processing, and was subjected to negative patterning as shown in cross section in FIG. Thereafter, the conductive stainless steel plate 1 is immersed in a Ni plating solution as one electrode, and is 2.5 to 3.0 A / dm.2As shown in a cross-sectional view in FIG. 4, an Ni layer 4 ′ is formed on the exposed metal film 2 surface, and then in a high-speed copper sulfate plating solution. Immerse, 20 A / dm2As shown in a cross-sectional view in FIG. 5, a copper layer 5 having a thickness of 35 μm is selectively deposited on the Ni layer 4 ′ (wiring pattern forming region). A first positive pattern 6 was formed. Here, a metal that can be selectively etched with respect to the copper layer 5 is selected for the Ni layer 4 ′.
[0038]
A photosensitive insulating film 3 ′ having a thickness of about 35 μm is again laminated on the first positive pattern 6 forming surface, and a through hole pattern 7 connected to the first positive pattern 6 is formed as shown in a sectional view in FIG. 6. Then, 7 parts of this through hole pattern was embedded with copper by electroplating. After filling the through hole pattern 7 parts with copper, a photosensitive insulating film 3 ″ having a thickness of about 35 μm is laminated and subjected to selective exposure / development processing. As shown in a sectional view in FIG. Thereafter, as shown in a cross-sectional view in FIG.xThe conductive layer 8 is formed by sputtering, and an electro copper plating process is performed under the same conditions as described above using the conductive layer 8 'on the positive pattern surface as a plating nucleus. As shown in a cross-sectional view in FIG. Two positive patterns 6 'were formed.
[0039]
Next, the conductive layer 8 remaining on the surface where the second positive pattern 6 'is formed is removed by selective soft etching as shown in cross section in FIG. 10, and then the surface where the second positive pattern 6' is formed. In addition, as shown in a sectional view in FIG. 11, an insulating film (insulating sheet) 9 is laminated and integrated. When the number of wiring layers is increased, the steps illustrated in FIGS. 6 to 10 may be repeated as appropriate prior to the lamination and integration of the insulating sheet 9. In this way, after the final positive pattern surface is covered by lamination and integration of the insulating sheet 9, the conductive base material 1 is peeled off and the metal layer 2 is removed by soft etching, or the conductive base material 1 is removed. Then, the metal layer 2 is sequentially peeled and removed. When the Ni layer 4 'of the first positive pattern 6 is exposed in this way and then the Ni layer 4' is selectively removed by etching, the surface becomes the surface of the insulator layer 2 as shown in cross section in FIG. Thus, a printed wiring board having a first positive pattern 6 in which the dam is provided by the insulating layer 2 is obtained.
[0040]
In addition, in the said manufacturing method, when forming inner layer wiring in the middle of a manufacturing process, a dummy through hole pattern is provided in the insulator layer formed in the meantime, and it electrically connects with the electroconductive base material 1 through the metal layer 2 You may take the structure to connect. Further, when the metal layer 2 is removed by soft etching, the Ni layer 4 ′ may be removed by selective etching at the same time.
[0041]
Further, in the process of manufacturing the printed wiring board, for example, when a second positive pattern 6 'is formed, a silver-based conductive paste using, for example, an epoxy resin as a binder is applied to the surface of the second positive pattern 6'. After the printed conductive paste is dried, the method of printing again at the same position using the same mask is repeated, for example, heated and cured in an oven at 180 ° C., and as shown in cross section in FIG. A conical conductor pump 10 having a height of 0.3 mm and a base diameter of 0.35 mm was formed (formed).
[0042]
The printed wiring board material 11 on which the conductor bumps 10 were formed in this way was laminated with the conductor bumps 10 corresponding to each other via, for example, an epoxy resin prepreg layer 12, and pressure integrated. In the process of this pressure integration, the leading ends of the conductor bumps 10 are press-fitted into the prepreg layer 12, respectively, and the leading ends of each are so-called plastically deformed to form an electrically reliable connection between the wiring layers. Was.
[0043]
In the printed wiring board having the structure manufactured above, even when the connection pads on the surface are 75/75 mm and the pitch interval is 0.15 mm, insulation between adjacent connection pads is sufficiently ensured. Even when the input / output terminals of the components were connected by soldering, no solder bridge was observed, and high-reliability mounting was possible.
[0044]
In the above, representative examples have been described as examples, but the present invention is not limited to these examples, and various modifications can be made without departing from the spirit of the present invention. That is, the same results can be obtained even when the conductive base material, the metal layer, the insulating negative pattern forming material, the positive pattern forming metal, etc. are used in combinations other than those exemplified in the above embodiments.
[0045]
【The invention's effect】
As can be seen from the above description, according to the present invention, when the input / output terminal of the electronic component is soldered to the connection pad surface, the outflow of the solder in the planar direction is suppressed / prevented. It is possible to easily obtain a printed wiring board that can be avoided entirely. In other words, while ensuring mutual insulation such as connection pads, the soldering part is substantially dammed and the outflow in the plane direction is prevented, so that a highly reliable mounting circuit A printed wiring board suitable for the configuration of the apparatus can be obtained by simple means.
[Brief description of the drawings]
FIG. 1 schematically shows an embodiment of a production method according to the present invention, and is a cross-sectional view of a state in which a metal layer is formed on a conductive substrate surface.
FIG. 2 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which a first insulating film layer is bonded to a metal layer surface.
FIG. 3 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which a first insulating negative patterning is performed.
FIG. 4 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view of a state in which a plated solder layer is formed on the metal layer surface.
FIG. 5 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which a first positive pattern is formed on the plated solder layer surface.
FIG. 6 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which an insulating edge film layer for forming a through hole pattern is bonded to a first positive pattern forming surface.
FIG. 7 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which a second insulating edge film layer is formed on the surface on which a through hole pattern is formed and negative patterning is performed.
FIG. 8 is a sectional view schematically showing an embodiment of the manufacturing method according to the present invention and showing a state in which a conductive layer is formed on the negative patterning surface of the second insulating edge film.
FIG. 9 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which a second positive pattern is formed on the conductive layer surface on the positive pattern of the second insulating edge film.
FIG. 10 schematically shows an embodiment of the manufacturing method according to the present invention, and is a cross-sectional view in a state where a conductive layer on a positive pattern of a second insulating edge film is removed.
FIG. 11 schematically shows an embodiment of the manufacturing method according to the present invention, and is a sectional view showing a state in which an insulating sheet is laminated and integrated on a second positive pattern forming surface.
FIG. 12 schematically shows an embodiment of the production method according to the present invention, and is a cross-sectional view in a state where a conductive base material and a metal film are removed.
FIG. 13 schematically shows another embodiment of the manufacturing method according to the present invention, and is a cross-sectional view showing a state in which conductive bumps are formed on the second positive pattern surface.
FIG. 14 schematically shows still another embodiment of the production method according to the present invention.Sectional drawing of the state which made the conductive bump formed in the 2nd positive pattern surface oppose through an insulating prepreg layer, and was laminated | stacked and integrated.
FIG. 15 schematically shows still another embodiment of the production method according to the present invention.Sectional drawing of the state which removed the electroconductive base material and the metal film.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Conductive base material 2 ... Metal film 3, 3 ', 3 "... Insulating sheet layer 4 ... Plating solder layer 4' ... Plating metal layer 5 ... Copper plating layer 6, 6 '... Positive pattern 7 ... Thru hole pattern 8, 8 '... Conductive layer 9 ... Insulating sheet 10 ... Conductive bump

Claims (8)

導電性基材の少なくとも一主面に金属膜を形成する工程と、
前記金属膜の表面に第1の電気絶縁層を形成する工程と、
前記金属膜の一部が露出するように前記第1の電気絶縁層に開口を形成して、前記第1の電気絶縁層にパターンを形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記開口内にめっき半田層を形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記開口内にかつ前記めっき半田層の表面に第1の導電性金属層を形成する工程と、
前記第1の導電性金属層の表面に第2の電気絶縁層を形成する工程と、
前記第1の導電性金属層に接続する接続孔を前記第2の電気絶縁層に形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記接続孔内に第2の導電性金属層を形成する工程と、
前記第2の導電性金属層と接続されるように前記第2の電気絶縁層の表面に導電性層を形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記導電性層の表面に第3の導電性金属層を形成する工程と、
前記第3の導電性金属層上に絶縁性シートを積層し、一体化する工程と
前記導電性基材および前記金属膜を除去する工程と
を具備することを特徴とする印刷配線板の製造方法。
Forming a metal film on at least one principal surface of the conductive substrate;
Forming a first electrically insulating layer on the surface of the metal film;
Forming an opening in the first electrical insulating layer so that a part of the metal film is exposed, and forming a pattern in the first electrical insulating layer;
Performing a plating treatment using the conductive substrate as one electrode, and forming a plated solder layer in the opening;
Performing a plating treatment using the conductive substrate as one electrode, and forming a first conductive metal layer in the opening and on the surface of the plated solder layer;
Forming a second electrically insulating layer on the surface of the first conductive metal layer;
Forming a connection hole in the second electrically insulating layer to connect to the first conductive metal layer;
Plating with the conductive substrate as one electrode, and forming a second conductive metal layer in the connection hole;
Forming a conductive layer on the surface of the second electrically insulating layer so as to be connected to the second conductive metal layer;
Plating with the conductive substrate as one electrode, and forming a third conductive metal layer on the surface of the conductive layer; and
The insulating sheet is laminated to said third conductive metal layer, and a step of integrating,
Removing the conductive substrate and the metal film;
Method for manufacturing a printed wiring board characterized in that immediately Bei a.
前記第3の導電性金属層を形成する工程と前記絶縁性シートを積層し、一体化する工程との間に、前記第3の導電性金属層の表面に接続用バンプを形成する工程をさらに具備し、
前記絶縁性シートを積層し、一体化する工程は、前記接続用バンプが前記絶縁性シートを介して他の配線板要素の配線パターンに対向するように、前記接続用バンプ上に前記絶縁性シート及び前記他の配線板要素を積層し、一体化する工程であることを特徴とする請求項記載の印刷配線板の製造方法。
A step of forming connection bumps on the surface of the third conductive metal layer between the step of forming the third conductive metal layer and the step of laminating and integrating the insulating sheets; Equipped,
The step of laminating and integrating the insulating sheet includes the step of stacking and integrating the insulating sheet on the connecting bump so that the connecting bump faces the wiring pattern of another wiring board element via the insulating sheet. and laminating said other circuit board components, a method of manufacturing a printed wiring board according to claim 1, characterized in that the step of integrating.
導電性基材の少なくとも一主面に金属膜を形成する工程と、
前記金属膜の表面に第1の電気絶縁層を形成する工程と、
前記金属膜の一部が露出するように前記第1の電気絶縁層に開口を形成して、前記第1の電気絶縁層にパターンを形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記開口内に第1の導電性金属層を形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記開口内にかつ前記第1の導電性金属層の表面に第2の導電性金属層を形成する工程と、
前記第2の導電性金属層の表面に第2の電気絶縁層を形成する工程と、
前記第2の導電性金属層に接続する接続孔を前記第2の電気絶縁層に形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記接続孔内に第3の導電性金属層を形成する工程と、
前記第3の導電性金属層と接続されるように前記第2の電気絶縁層の表面に導電性層を形成する工程と、
前記導電性基材を一方の電極としてめっき処理を行い、前記導電性層の表面に第4の導電性金属層を形成する工程と、
前記第4の導電性金属層上に絶縁性シートを積層し、一体化する工程と
前記導電性基材および前記金属膜を除去する工程と、
前記金属膜の除去で露出した第1の導電性金属層を選択的にエッチングして除去する工程と
を具備することを特徴とする印刷配線板の製造方法。
Forming a metal film on at least one principal surface of the conductive substrate;
Forming a first electrically insulating layer on the surface of the metal film;
Forming an opening in the first electrical insulating layer so that a part of the metal film is exposed, and forming a pattern in the first electrical insulating layer;
Performing a plating treatment using the conductive substrate as one electrode, and forming a first conductive metal layer in the opening;
Performing a plating treatment using the conductive substrate as one electrode, and forming a second conductive metal layer in the opening and on the surface of the first conductive metal layer;
Forming a second electrically insulating layer on the surface of the second conductive metal layer;
Forming a connection hole in the second electrically insulating layer to connect to the second conductive metal layer;
Plating with the conductive substrate as one electrode, and forming a third conductive metal layer in the connection hole;
Forming a conductive layer on the surface of the second electrically insulating layer so as to be connected to the third conductive metal layer;
Plating with the conductive substrate as one electrode, and forming a fourth conductive metal layer on the surface of the conductive layer; and
The insulating sheet is laminated to said fourth conductive metal layer, and a step of integrating,
Removing the conductive substrate and the metal film;
Selectively etching and removing the first conductive metal layer exposed by removing the metal film;
Method for manufacturing a printed wiring board characterized in that immediately Bei a.
前記第4の導電性金属層を形成する工程と前記絶縁性シートを積層し、一体化する工程との間に、前記第4の導電性金属層の表面に接続用バンプを形成する工程をさらに具備し、
前記絶縁性シートを積層し、一体化する工程は、前記接続用バンプが前記絶縁性シートを介して他の配線板要素の配線パターンに対向するように、前記接続用バンプ上に前記絶縁性シート及び前記他の配線板要素を積層し、一体化する工程であることを特徴とする請求項記載の印刷配線板の製造方法。
A step of forming a connection bump on the surface of the fourth conductive metal layer between the step of forming the fourth conductive metal layer and the step of laminating and integrating the insulating sheets; Equipped,
The step of laminating and integrating the insulating sheet includes the step of stacking and integrating the insulating sheet on the connecting bump so that the connecting bump faces the wiring pattern of another wiring board element via the insulating sheet. 4. The method of manufacturing a printed wiring board according to claim 3, wherein the wiring board elements are laminated and integrated.
前記導電性基材は離型性良好な導電性基板であり、前記導電性基材および前記金属膜を除去する工程における前記導電性基板の除去は、剥離除去であることを特徴とする請求項1乃至のいずれか1項に記載の印刷配線板の製造方法。The conductive substrate is a good conductive substrate releasability, removal of the conductive substrate before Kishirube conductive substrate and the step of removing the metal film is characterized by a release removed The manufacturing method of the printed wiring board of any one of Claims 1 thru | or 4 . 開口から成るパターンを有する第1の絶縁層と、
前記開口内に形成された第1の導電性金属層と、
前記開口内に形成され、かつ前記第1の導電性金属層の表面に密着しためっき半田層と、
表面が前記第1の導電性金属層の裏面に密着し、かつ前記第1の導電性金属層に接続する接続孔を有する第2の電気絶縁層と、
前記接続孔内に形成され、表面が前記第1の導電性金属層の裏面に密着した第2の導電性金属層と、
表面が前記第2の導電性金属層の裏面に密着した導電性層と、
表面が前記導電性層の裏面に密着した第3の導電性金属層と、
表面が前記第3の導電性金属層の裏面に密着した絶縁性シートと
を具備することを特徴とする印刷配線板。
A first insulating layer having a pattern of openings;
A first conductive metal layer formed in the opening;
A plated solder layer formed in the opening and in close contact with the surface of the first conductive metal layer;
A second electrical insulating layer having a connection hole connected to the first conductive metal layer and having a surface closely attached to the back surface of the first conductive metal layer;
A second conductive metal layer formed in the connection hole, the surface of which is in close contact with the back surface of the first conductive metal layer;
A conductive layer whose surface is in close contact with the back surface of the second conductive metal layer;
A third conductive metal layer whose surface is in close contact with the back surface of the conductive layer;
Print wiring board surface you characterized by comprising an insulating sheet in close contact with the back surface of the third conductive metal layer.
開口から成るパターンを有する第1の電気絶縁層と、
前記開口内に形成され、かつ表面が前記第1の電気絶縁層の表面まで達していない第1の導電性金属層と、
表面が前記第1の導電性金属層の裏面に密着し、かつ前記第1の導電性金属層に接続する接続孔を有する第2の電気絶縁層と、
前記接続孔内に形成され、表面が前記第1の導電性金属層の裏面に密着した第2の導電性金属層と、
表面が前記第2の導電性金属層の裏面に密着した導電性層と、
表面が前記導電性層の裏面に密着した第3の導電性金属層と、
表面が前記第3の導電性金属層の裏面に密着した絶縁性シートと
を具備することを特徴とする印刷配線板。
A first electrically insulating layer having a pattern of openings;
A first conductive metal layer formed in the opening and having a surface not reaching the surface of the first electrically insulating layer;
A second electrical insulating layer having a connection hole connected to the first conductive metal layer and having a surface closely attached to the back surface of the first conductive metal layer;
A second conductive metal layer formed in the connection hole, the surface of which is in close contact with the back surface of the first conductive metal layer;
A conductive layer whose surface is in close contact with the back surface of the second conductive metal layer;
A third conductive metal layer whose surface is in close contact with the back surface of the conductive layer;
Print wiring board surface you characterized by comprising an insulating sheet in close contact with the back surface of the third conductive metal layer.
前記第3の導電性金属層の裏面に形成され、かつ前記絶縁性シートを貫通した接続用バンプと
をさらに具備することを特徴とする請求項6又は7記載の印刷配線板。
The printed wiring board according to claim 6 , further comprising a connection bump formed on the back surface of the third conductive metal layer and penetrating the insulating sheet.
JP1405495A 1995-01-31 1995-01-31 Printed wiring board manufacturing method and printed wiring board Expired - Fee Related JP3655336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1405495A JP3655336B2 (en) 1995-01-31 1995-01-31 Printed wiring board manufacturing method and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1405495A JP3655336B2 (en) 1995-01-31 1995-01-31 Printed wiring board manufacturing method and printed wiring board

Publications (2)

Publication Number Publication Date
JPH08204333A JPH08204333A (en) 1996-08-09
JP3655336B2 true JP3655336B2 (en) 2005-06-02

Family

ID=11850384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1405495A Expired - Fee Related JP3655336B2 (en) 1995-01-31 1995-01-31 Printed wiring board manufacturing method and printed wiring board

Country Status (1)

Country Link
JP (1) JP3655336B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074728A (en) * 1996-09-11 2000-06-13 Samsung Aerospace Industries, Ltd. Multi-layered circuit substrate
US6576848B1 (en) * 1996-11-22 2003-06-10 International Business Machines Corporation Integrated circuit chip wiring structure with crossover capability and method of manufacturing the same
JP2001230547A (en) * 2000-02-15 2001-08-24 Ibiden Co Ltd Method for manufacturing wiring board
JP2002026516A (en) * 2000-06-30 2002-01-25 Sumitomo Bakelite Co Ltd Multilayer interconnection board and its manufacturing method
KR100582079B1 (en) * 2003-11-06 2006-05-23 엘지전자 주식회사 A PCB and making method the same
JP4549692B2 (en) * 2004-02-27 2010-09-22 日本特殊陶業株式会社 Wiring board manufacturing method
JP4547164B2 (en) * 2004-02-27 2010-09-22 日本特殊陶業株式会社 Wiring board manufacturing method
JP4549693B2 (en) * 2004-02-27 2010-09-22 日本特殊陶業株式会社 Wiring board manufacturing method
JP2008192878A (en) * 2007-02-06 2008-08-21 Shinko Electric Ind Co Ltd Multilayer wiring substrate, and manufacturing method thereof
KR100925666B1 (en) * 2007-12-18 2009-11-10 대덕전자 주식회사 Method of fabricating solder bump for flip chip technology
JP5154963B2 (en) * 2008-02-04 2013-02-27 新光電気工業株式会社 Wiring board manufacturing method
KR101009110B1 (en) * 2008-11-12 2011-01-18 삼성전기주식회사 A printed circuit board having buried solder bump and a manufacturing method of the same
JP5371834B2 (en) * 2010-03-02 2013-12-18 日東電工株式会社 Wiring circuit structure and manufacturing method of semiconductor device using the same

Also Published As

Publication number Publication date
JPH08204333A (en) 1996-08-09

Similar Documents

Publication Publication Date Title
US5822850A (en) Circuit devices and fabrication Method of the same
JP4935139B2 (en) Multilayer printed wiring board
KR100720662B1 (en) Printed wiring board and its manufacturing method
JP3655336B2 (en) Printed wiring board manufacturing method and printed wiring board
US8461460B2 (en) Microelectronic interconnect element with decreased conductor spacing
JP5566771B2 (en) Multilayer wiring board
JP7358715B2 (en) printed circuit board
JP2008159973A (en) Electronic component module and circuit board with built-in components incorporating the module
TW201247072A (en) Method of manufacturing multilayer wiring substrate
JPH08139450A (en) Manufacturing method of printed-wiring board
CN107770946B (en) Printed wiring board and method for manufacturing the same
JP2001274554A (en) Printed wiring board and its manufacturing method
JPH08330736A (en) Multilayer board and manufacture thereof
JP4863076B2 (en) Wiring board and manufacturing method thereof
CN100356553C (en) Thin flm bearing belt of mounting electronic parts, its prodn. method and printing screen for coating welding resistance agent
JPH1070363A (en) Method for manufacturing printed wiring board
JP3694708B2 (en) Printed wiring board manufacturing method and printed wiring board
JP3474896B2 (en) Printed wiring board and manufacturing method thereof
JPH0714628A (en) Interconnector and wiring board
JP2004253648A (en) Printed circuit board and method for manufacturing the same, and multi-layer printed wiring board and method for manufacturing the same
JP3549063B2 (en) Manufacturing method of printed wiring board
JP4142933B2 (en) Wiring board manufacturing method
JP4139185B2 (en) Wiring board manufacturing method
JP3894640B2 (en) Wiring board manufacturing method
JP4626282B2 (en) Manufacturing method of resistance element built-in substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees