JP3651301B2 - スポット溶接制御装置およびその制御方法 - Google Patents

スポット溶接制御装置およびその制御方法 Download PDF

Info

Publication number
JP3651301B2
JP3651301B2 JP05272699A JP5272699A JP3651301B2 JP 3651301 B2 JP3651301 B2 JP 3651301B2 JP 05272699 A JP05272699 A JP 05272699A JP 5272699 A JP5272699 A JP 5272699A JP 3651301 B2 JP3651301 B2 JP 3651301B2
Authority
JP
Japan
Prior art keywords
welding
electrodes
welded
pair
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05272699A
Other languages
English (en)
Other versions
JP2000005882A (ja
Inventor
光憲 神定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP05272699A priority Critical patent/JP3651301B2/ja
Publication of JP2000005882A publication Critical patent/JP2000005882A/ja
Application granted granted Critical
Publication of JP3651301B2 publication Critical patent/JP3651301B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接中の電極間変位量を経時的に検出することによって高品質のスポット溶接ができるようにしたスポット溶接制御装置およびその制御方法に関する。
【0002】
【従来の技術】
従来から、スポット溶接の品質を管理、向上させるため様々な方法が提案されている。これらの方法の中には、溶接電流通電中(ナゲット生成過程)の被溶接部材の熱膨張の状況からスポット溶接の状態(信頼性)を調べる方法がある。
【0003】
例えば、特公昭48−41422号公報、特公昭53−4057号公報に開示されている発明では、溶接電流通電中の熱膨張による被溶接部材の最大変位量Hmax によりナゲット径を推定し、このナゲット径から溶接の信頼性を測っている。
【0004】
また、例えば米国特許3400242号公報、特公昭53−4057号公報に開示されている発明では、熱膨張による被溶接部材の変位速度dh/dtにより溶接時に形成されるナゲット径を推定し、この推定したナゲット径から溶接の信頼性を測っている。
【0005】
さらに、特開平7−232279号公報に開示されている発明は、溶接電流通電終了後の被溶接部材の収縮状況を検出し、これによって、溶接の信頼性を測ろうとしている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記したいずれの方法でも、被溶接部材と電極との接触状態が正規の状態から外れて行なわれた場合には、溶接中の散りの発生や初期接触抵抗値のバラツキ、または近傍に存在する溶接済み打点への溶接電流の分流などが原因となって、推定したナゲット径から溶接の信頼性を定量的に測ることは困難になる。
【0007】
たとえば、図12(A)に示すように被溶接部材W同士が隙間がある状態で溶接された場合には、電極間変位量の経時変化は、図12(B)に示すように正規の状態(被溶接部材間に隙間がなく、電極が溶接部材に垂直に当接している状態)で得られる最大変位量Hmax よりもかなり小さな最大変位量hmax を呈する経時変化となる。
【0008】
また、図13(A)に示すように被溶接部材Wに対して電極1が傾いた状態、すなわち打角が不適当な状態で溶接された場合にも、電極間変位量の経時変化は、図13(B)に示すように正規の状態で得られる最大変位量Hmax よりもかなり小さな最大変位量hmax を呈する経時変化となる。
【0009】
さらに、上記のいずれの場合にも、電極間変位速度dh/dtは、正規の状態で得られる電極間変位速度dh/dtよりも小さな値になる。
【0010】
したがって、上記した従来のいずれの方法によっても、被溶接部材Wに隙間があったり、打角が不適当な状態で溶接された場合には、最終的に溶接品質に問題がないような溶接が行なわれた場合であっても溶接不良と判定されてしまうことになる。
【0011】
また、上記した従来の方法は、溶接中に得られた電極間変位量から、事後的に溶接の信頼性を測るものであるから、溶接結果から得られた溶接条件のフィードバックは、次の溶接作業から可能となる。したがって、従来の方法では最低でも一個の溶接品が不良になることを容認しなければならない。
【0012】
本発明は、このような従来の技術の問題を解消するために成されたものであり、その第1の目的は、被溶接部材と電極との接触状態の如何に拘らず、検出された電極間変位量の経時的な変化からナゲット径の推定(溶接の信頼性または溶接品質に等価)を正確にすることができ、その推定されたナゲット径に基づいて、高品質の溶接に必要となる最適な溶接条件を算出できるようにするスポット溶接制御装置およびその制御方法を提供することである。
【0013】
また、本発明の第2の目的は、被溶接部材と電極との接触状態の如何に拘らず、刻々と検出される電極間変位量の変化状態に基づいて、最適な溶接条件をリアルタイムで設定することができるようにしたスポット溶接制御装置およびその制御方法を提供することである。
【0014】
【課題を解決するための手段】
上記第1の目的を達成するための本発明は、次のように構成される。
【0015】
請求項1に記載の発明は、被溶接部材を加圧しながら通電する一対の電極と、前記一対の電極の電極間変位量を基準位置から連続的に検出する電極間変位量検出手段と、前記電極間変位量検出手段によって検出された電極間変位量に基づいて前記被溶接部材の溶接状態を判定する溶接状態判定手段とを有し、前記溶接状態判定手段は、前記電極間変位量検出手段によって連続的に検出された電極間変位量の内、一部の区間の電極間変位量に基づいて前記被溶接部材の溶接状態を判定することを特徴とする。
【0016】
請求項2に記載の発明は、請求項1に記載のスポット溶接制御装置において、前記電極間変位量検出手段は、前記一対の電極の内の固定側の電極の先端が前記被溶接部材に接触している状態の下で、前記一対の電極の内の加圧側の電極の先端が所望の加圧力で前記被溶接部材を加圧する位置を加圧位置として設定し、当該加圧位置から前記一対の電極の電極間変位量を連続的に検出することを特徴とする。
【0017】
請求項3に記載の発明は、請求項2に記載のスポット溶接制御装置において、前記電極間変位量検出手段によって検出された前記加圧位置における電極間距離から前記被溶接部材の加圧状態を検出し、当該加圧状態に応じて前記被溶接部材の溶接条件を設定する溶接条件設定手段と、前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とをさらに有することを特徴とする。
【0019】
請求項に記載の発明は、被溶接部材を加圧しながら通電する一対の電極と、前記電極の磨耗量を検出する磨耗量検出手段と、前記一対の電極の電極間変位量を基準位置から連続的に検出する電極間変位量検出手段と、前記電極間変位量検出手段によって検出された電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正し、補正された電極間変位量に基づいて前記被溶接部材の溶接状態を判定する溶接状態判定手段とを有し、前記溶接状態判定手段は、前記電極間変位量検出手段によって連続的に検出された電極間変位量の内、一部の区間の電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正し、補正された電極間変位量に基づいて前記被溶接部材の溶接状態を判定することを特徴とする。
【0020】
請求項に記載の発明は、請求項に記載のスポット溶接制御装置において、前記電極間変位量検出手段は、前記一対の電極の内の固定側の電極の先端が前記被溶接部材に接触している状態の下で、前記一対の電極の内の加圧側の電極の先端が所望の加圧力で前記被溶接部材を加圧する位置を加圧位置として設定し、当該加圧位置から前記一対の電極の電極間変位量を連続的に検出することを特徴とする。
【0021】
請求項に記載の発明は、請求項に記載のスポット溶接制御装置において、前記電極間変位量検出手段によって検出された前記加圧位置における電極間距離から前記被溶接部材の加圧状態を検出し、当該加圧状態に応じて前記被溶接部材の溶接条件を設定する溶接条件設定手段と、前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とをさらに有することを特徴とする。
【0023】
請求項に記載の発明は、一対の電極により被溶接部材を加圧しながら通電し、通電中における前記一対の電極の電極間変位量を基準位置から連続的に検出し、連続的に検出された電極間変位量の内、一部の区間の電極間変位量に基づいて前記被溶接部材の溶接状態を判定することを特徴とする。
【0025】
上記第2の目的を達成するための本発明は、次のように構成される。
【0026】
請求項に記載の発明は、被溶接部材を加圧しながら通電する一対の電極と、前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、予め設定された基準電極間変位量を記憶する基準電極間変位量記憶手段と、前記電極間変位量検出手段によって検出された電極間変位量と前記基準電極間変位量記憶手段に記憶されている基準電極間変位量とを比較する比較手段と、記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有し、前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであり、前記溶接条件の溶接電流、通電時間、加圧力には、優先順位と重み付けが設定されていることを特徴とする。
【0027】
請求項に記載の発明は、被溶接部材を加圧しながら通電する一対の電極と、前記電極の磨耗量を検出する磨耗量検出手段と、前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、予め設定された基準電極間変位量を記憶する基準電極間変位量記憶手段と、前記電極間変位量検出手段によって検出された電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正して前記基準電極間変位量記憶手段に記憶されている基準電極間変位量と比較する比較手段と、前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有し、前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであり、前記溶接条件の溶接電流、通電時間、加圧力には、優先順位と重み付けが設定されていることを特徴とする。
【0028】
請求項10に記載の発明は、請求項または請求項に記載のスポット溶接制御装置において、前記溶接条件設定手段は、前記電極間変位量検出手段によって検出される電極間変位量が前記基準電極間変位量記憶手段に記憶されている基準電極間変位量と一致するように溶接条件を設定することを特徴とする。
【0029】
請求項11に記載の発明は、被溶接部材を加圧しながら通電する一対の電極と、前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、前記電極間変位量検出手段によって検出された電極間変位量から回帰直線を算出する回帰直線算出手段と、基準電極間変位量に基づく基準回帰直線を記憶する基準回帰直線記憶手段と、前記回帰直線算出手段によって算出された回帰直線と前記基準回帰直線記憶手段に記憶されている基準回帰直線とを比較する比較手段と、前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有することを特徴とする。
【0030】
請求項12に記載の発明は、被溶接部材を加圧しながら通電する一対の電極と、前記電極の磨耗量を検出する磨耗量検出手段と、前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、前記電極間変位量検出手段によって検出された電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正し、補正後の電極間変位量から回帰直線を算出する回帰直線算出手段と、基準電極間変位量に基づく基準回帰直線を記憶する基準回帰直線記憶手段と、前記回帰直線算出手段によって算出された回帰直線と前記基準回帰直線記憶手段に記憶されている基準回帰直線とを比較する比較手段と、前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有することを特徴とする。
【0031】
請求項13に記載の発明は、請求項11または請求項12に記載のスポット溶接制御装置において、前記溶接条件設定手段は、前記回帰直線算出手段によって算出された回帰直線が前記基準回帰直線記憶手段に記憶されている基準回帰直線と一致するように溶接条件を設定することを特徴とする。
【0032】
請求項14に記載の発明は、請求項11ないし請求項13のいずれか1項に記載のスポット溶接制御装置において、前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであることを特徴とする。
【0033】
請求項15に記載の発明は、請求項11ないし請求項13のいずれか1項に記載のスポット溶接制御装置において、前記電極間変位量検出手段によって検出された電極間変位量または前記通電制御手段によって行なわれた溶接が適正であるかどうかを表示する表示手段をさらに有することを特徴とする。
【0034】
請求項16に記載の発明は、請求項14または請求項15に記載のスポット溶接制御装置において、前記溶接条件の溶接電流、通電時間、加圧力には、優先順位と重み付けが設定されていることを特徴とする。
【0037】
請求項17に記載の発明は、一対の電極により被溶接部材を加圧しながら通電し、通電中における前記一対の電極の電極間変位量を連続的に検出し、検出された電極間変位量から回帰直線を算出し、算出された回帰直線と予め設定された基準回帰直線とを比較し、比較結果から前記被溶接部材の溶接条件を設定し、設定された溶接条件に基づいて前記一対の電極の通電状態を制御することを特徴とする。
【0038】
請求項18に記載の発明は、一対の電極の磨耗量を検出し、一対の電極により被溶接部材を加圧しながら通電し、通電中における前記一対の電極の電極間変位量を連続的に検出し、検出された電極間変位量を検出された磨耗量によって補正し、補正後の電極間変位量から回帰直線を算出し、算出された回帰直線と予め設定された基準回帰直線とを比較し、比較結果から前記被溶接部材の溶接条件を設定し、設定された溶接条件に基づいて前記一対の電極の通電状態を制御することを特徴とする。
【0039】
請求項19に記載の発明は、請求項17または請求項18に記載のスポット溶接制御方法において、前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであることを特徴とする。
【0040】
【発明の効果】
以上のように構成された本発明は次のような効果を奏する。
【0041】
請求項1、請求項2または請求項7に記載の発明によれば、一対の電極の電極間変位量を基準位置から連続的に検出し、この検出された電極間変位量の内の一部の区間の電極間変位量に基づいて前記被溶接部材の溶接状態を判定するようにしたので、被溶接部材の加圧状態の如何に拘らず、溶接状態の正確な判定が可能になる。
【0042】
請求項3に記載の発明によれば、検出された被溶接部材の厚さに応じて溶接条件を設定するようにしたので、被溶接部材の加圧状態の如何に拘らず、より適した溶接条件の下で溶接をすることができるようになる。
【0043】
請求項4または請求項5に記載の発明によれば、電極の磨耗量を検出して電極間変位量を補正するようにし、一対の電極の電極間変位量を基準位置から連続的に検出し、この検出された電極間変位量に基づいて前記被溶接部材の溶接状態を判定するようにしたので、被溶接部材の加圧状態および電極の磨耗の程度の如何に拘らず、溶接状態の正確な判定が可能になる。
【0044】
請求項に記載の発明によれば、電極の磨耗量を検出して電極間変位量を補正するようにし、検出された被溶接部材の加圧状態に応じて溶接条件を設定するようにしたので、被溶接部材の加圧状態および電極の磨耗の程度の如何に拘らず、より適した溶接条件の下で溶接をすることができるようになる。
【0045】
請求項8または請求項10に記載の発明によれば、検出された電極間変位量と記憶されている基準電極間変位量とを比較することによって溶接条件を設定し、その溶接条件を、優先順位や重み付けにより、溶接電流、通電時間、電極の加圧力のいずれかまたはこれらの任意の組み合わせによって設定するようにしたので、時々刻々と変化する溶接状態に対してリアルタイムで溶接条件を変更することができるようになり、常に適した溶接をすることができるようになる。
【0046】
請求項9または請求項10に記載の発明によれば、電極の磨耗量を検出して検出された電極間変位量を補正するようにし、溶接条件を、優先順位や重み付けにより、溶接電流、通電時間、電極の加圧力のいずれかまたはこれらの任意の組み合わせによって設定するようにしたので、最適な溶接をすることができるようになる。
【0047】
請求項11、請求項13または請求項17に記載の発明によれば、検出された電極間変位量から算出した回帰直線と記憶されている基準回帰直線とを比較することによって溶接条件を設定するようにしたので、時々刻々と変化する溶接状態に対してリアルタイムで溶接条件を変更することができるようになり、常に適した溶接をすることができるようになる。
【0048】
請求項12または請求項18に記載の発明によれば、電極の磨耗量を検出して検出された電極間変位量を補正するようにしたので、最適な溶接をすることができるようになる。
【0049】
請求項14、請求項16または請求項19に記載の発明によれば、溶接条件を、溶接電流、通電時間、電極の加圧力のいずれかまたはこれらの任意の組み合わせによって設定することができるようになる。
【0050】
請求項15に記載の発明によれば、電極間変位量または溶接が適正であるかどうかを表示するようにしたので、溶接状態を随時確認することができるようになる。
【0051】
【発明の実施の形態】
つぎに、本発明のスポット溶接制御装置およびスポット溶接制御方法を図面に基づいて詳細に説明する。
【0052】
図1は、本発明にかかるスポット溶接制御装置とその装置によって動作が制御される溶接ガンの概略図である。
【0053】
スポット溶接制御装置は、溶接ガン10の動作を制御する溶接ガン制御装置20、溶接ガン10の動作状態を検出するセンサ部30から構成される。
【0054】
溶接ガン制御装置20は、データ処理装置22、演算装置24と記憶装置26から構成される。
【0055】
データ処理装置22は、センサ部30から出力される検出情報(可動電極位置データおよび電極先端検出信号)を入力し、この検出情報から電極間変位量の経時変化(電極間変位量データ)を演算装置24や記憶装置26に出力したり、記憶装置26に記憶されている溶接ガン10の動作プログラムに基づいて、可動電極加圧指令および可動電極解放指令を出力したりする。
【0056】
演算装置24は、データ処理装置22からの検出情報や記憶装置26に記憶されている各種のデータ(初期位置、基準位置、加圧位置、基準加圧位置、電極間変位量データ、基準データ)により、可動電極12の磨耗量、固定電極14の磨耗量、これらの磨耗量に対する補正量、溶接状態の判定などの演算をする。
【0057】
記憶装置26は、データ処理装置22からの検出情報を記憶したり、可動電極14の初期位置(原位置)、基準位置、加圧位置、基準加圧位置を記憶したり、可動電極12および固定電極14の磨耗量に対する補正量を記憶したり、データ処理装置20から出力される電極間変位量の経時変化に関するデータを電極間変位量データ(基準データと比較されるデータ)として記憶したり、溶接ガン10の動作プログラムやスポット溶接が適切に行なわれた(充分な径のナゲットが生成された)ことを判定するために予め設定されている基準データを記憶したりするものである。
【0058】
なお、基準データは、正規の状態(被溶接部材間に隙間がなく、両電極が被溶接部材を垂直に加圧している状態)で得られる電極間変位量の経時変化とその最大変位量Hmax からなるデータであり、たとえば、図12(B)、図13(B)の点線で示してあるようなデータである。
【0059】
演算装置24は、記憶装置26に記憶された電極間変位量データと基準データとを比較して、この比較結果から溶接状態の信頼性が十分であるか、溶接品質に問題がないかを判定することになる。この判定の結果、溶接品質に問題があると判断された場合には、最適な溶接条件を作成し、この溶接条件を次回以降の溶接条件とする。作成された溶接条件は、溶接電流を制御する外部装置に設定される。
【0060】
センサ部30は、電極間変位量検出手段として機能するエンコーダ32と、電極の磨耗量や基準位置を決定するために使用される電極先端検出センサ34とを有している。
【0061】
エンコーダ32は、溶接ガン10の可動電極12の位置を検出するセンサであり、この位置は、可動電極12を昇降させるサーボモータ34の回転量から検出される。
【0062】
電極先端検出センサ36は、可動電極12の先端位置を検出するセンサであって、予め設定されている初期位置(原位置)から電極先端検出センサ36によって可動電極12の先端が検出されるまでの可動電極12の変位量(後で示す可動電極位置データ(1))から可動電極12の磨耗量を検出するために用いられるものである。
【0063】
次に、図1のスポット溶接制御装置の動作について説明する。
【0064】
スポット溶接制御装置は、以下の手順で溶接ガン10の動作を制御する。
【0065】
《電極の磨耗量に基づく補正量の算出》
スポット溶接制御装置は、溶接をする前に可動電極12と固定電極14の磨耗量を検出し、これらの磨耗量に基づいて可動電極12に設定されている初期位置(原位置)を補正する。すなわち、可動電極12と固定電極14は、溶接を重ねるごとにその先端部分が磨耗する。磨耗した可動電極12と固定電極14から得られた電極間変位量データは、新品の可動電極12と固定電極14を用いて得られる電極間変位量データとは異なってしまうため、正確に溶接状態を判定することが困難になる。可動電極12と固定電極14の磨耗量に基づく補正は、こうした不具合を防ぐため行なわれるものである。
【0066】
以下、電極の磨耗量を検出して補正する具体的な手順を説明する。
【0067】
まず、データ処理装置22から可動電極加圧指令を出力してサーボモータ34を動作させ、可動電極12の先端が電極先端検出センサ36で検出されるまで現在設定されている初期位置(原位置)から可動電極12を下降させる。このときのサーボモータ34の回転量、すなわち可動電極12の初期位置からの変位量は、エンコーダ32によって検出され、可動電極位置データ(1)としてデータ処理装置22を介して演算装置24に入力される。
【0068】
演算装置24は、記憶装置26に記憶されている新品の可動電極12の可動電極位置データ(1)と今測定された可動電極位置データ(1)とを比較し、両可動電極位置データ(1)の値が相違していた場合には、その差値(磨耗量)を可動電極12の補正量として記憶装置26に記憶する。
【0069】
可動電極12の補正量を算出した後、再度データ処理装置22から可動電極加圧指令を出力してサーボモータ34を動作させ、可動電極12の先端が固定電極14の先端に当接するまで可動電極12を下降させる。このときのサーボモータ34の回転量、すなわち可動電極12の初期位置からの変位量は、エンコーダ32によって検出され、可動電極位置データ(2)としてデータ処理装置12を介して演算装置24に入力される。
【0070】
演算装置24は、記憶装置26に記憶されている新品の可動電極12と固定電極14による可動電極位置データ(2)と今測定された可動電極位置データ(2)とを比較し、両可動電極位置データ(2)の値が相違していた場合には、その差値(可動電極12と固定電極14の磨耗量の和)を求め、この差値から前回求めた可動電極12のみの補正量(磨耗量)を差し引いて固定電極14の磨耗量を求める。これを固定電極14の補正量として記憶装置26に記憶する。
【0071】
《電極間変位量データの測定を開始する基準位置の設定》
以上の手順によって両電極12,14の補正量を算出した後、電極間変位量データの測定を開始する基準位置に可動電極14を設定する。
【0072】
以下、基準位置の設定の具体的な手順について説明する。
【0073】
まず、演算装置24は、記憶装置26に記憶されている新品の可動電極12が初期位置から新品の固定電極14に接触するまでの変位量と、これから溶接しようとしている被溶接部材の総板厚と、可動電極12と固定電極14の補正量とから基準位置を算出する。この基準位置は、新品の可動電極12が初期位置から新品の固定電極14に接触するまでの変位量から被溶接部材の総板厚を引いて、これに可動電極12と固定電極14の補正量を加えることによって求められる。つまり、基準位置は、新品の可動電極12と固定電極14を用いた場合に、可動電極12の先端が被溶接部材を加圧することなく接触する位置であり、被溶接部材が正規に加圧される場合の可動電極12の位置である。この基準位置は、記憶装置26に記憶される。
【0074】
なお、溶接ガン10の懐開口部に被溶接部材を置かずに、基準位置から可動電極12を下降させ、可動電極12が固定電極14を所定の加圧力で加圧する可動電極12の位置、すなわち固定電極14の先端位置は、基準加圧位置として記憶装置26に記憶される。
【0075】
演算装置24によって基準位置の算出が終了したら、被溶接部材を溶接ガン10の懐開口部内で固定電極14に接触させた状態で固定し、データ処理装置22から可動電極加圧指令を出力してサーボモータ34を動作させ、可動電極14の先端が被溶接部材に加圧することなく接触する位置、すなわち、算出された基準位置まで可動電極14を下降させる。
【0076】
《被溶接部材の加圧位置の適否判定》
次に、この基準位置を基準として、実際に被溶接部材が所望の加圧力で加圧されるように可動電極12をさらに下降させる。このとき、サーボモータ34はトルク制御する。したがって、可動電極12は、被溶接部材を所望の加圧力(トルク)で加圧したところで自然に停止することになる。この下降位置(加圧位置)を検出することによって、被溶接部材が両電極12,14にどのような状態(正規の状態、打角が不適当な状態または被溶接部材間に隙間がある状態)で加圧されているかを知ることができる。したがって、検出された加圧位置に応じて溶接条件(加圧力、溶接電流、通電時間)が補正される。また、検出された加圧位置が著しく不適切であるときには、被溶接部材の種類が予定の種類と異なっている可能性があるか、その他のトラブルの発生が予想されることから、溶接作業が中止される。
【0077】
以下、被溶接部材の加圧位置の適否を判定する手順について具体的に説明する。
【0078】
データ処理装置22から可動電極加圧指令を出力してサーボモータ34を動作させ、基準位置まで下降している可動電極12をさらに一定の加圧力で下降させる。このときの基準位置から可動電極12が被溶接部材を一定の加圧力で加圧して停止するまでの可動電極12の変位量はエンコーダ32によって検出され、この変位量と基準位置とから可動電極12の位置が加圧位置として算出される。この加圧位置は記憶装置26に記憶される。
【0079】
次に演算装置24は、記憶装置26に記憶されている基準加圧位置(換言すれば、固定電極14の先端位置)に、溶接される被溶接部材の総板厚を加えさらに許容値を加えて得られる第1基準位置と、記憶装置26に記憶されている加圧位置とが比較され、加圧位置が第1基準位置を越えている場合(加圧位置が第1基準位置より可動電極側にある場合)には被溶接部材間に隙間がある状態であるか、あるいは打角が不適当な状態であると考えられるので、記憶装置26に記憶されている溶接条件の内、その状態に最も適した溶接条件を選んで溶接電流を制御する外部装置(図示せず)にその溶接条件を設定する。
【0080】
また、演算装置24は、記憶装置26に記憶されている基準加圧位置に、溶接される被溶接部材の総板厚を加え、この値から許容値を差し引いて得られる第2基準位置と、記憶装置26に記憶されている加圧位置とを比較し、加圧位置が第2基準位置を越えている場合(加圧位置が第2基準位置より固定電極側にある場合)には、被溶接部材の総板厚よりも小さい間隔で可動電極12と固定電極14とが対峙していることになるので、可動電極12または固定電極14に異常があるか、被溶接部材に対する溶接条件が不良であると判断し、「異常」を出力して溶接を中断する。
【0081】
《スポット溶接》
上記の処理によって設定された溶接条件(加圧力、溶接電流、通電時間)に基づき、溶接ガン10は被溶接部材を溶接条件にしたがった加圧力で加圧し、溶接電流を制御する外部装置は溶接条件にしたがった溶接電流をその条件で設定された通電時間だけ溶接ガン10に供給する。
【0082】
《スポット溶接の判定》
スポット溶接が行なわれている時の可動電極12の変位状況は、時系列的な電極間変位量データとしてデータ処理装置22に入力され、記憶装置26に記憶される。演算装置24は、記憶装置26に記憶された時系列的な電極間変位量データと両電極12,14の補正量から、概念的には図2に示すようなグラフを作成する。
【0083】
図2に示すグラフは、通電時間tに対して基準位置(aに示す位置)からの可動電極12の電極間変位量hをプロットして得られるものである。可動電極12は、基準位置から被溶接部材を加圧するために固定電極14に向けて下降し、被溶接部材を一定の加圧力で加圧したところ(加圧位置)で停止する。
【0084】
図2に示したように、正規の状態で加圧された場合には、電極間変位量hは点q(加圧位置)から始まる曲線1に示すように変化して、変化の途中に最大変位量Hmax に達する。また、被溶接部材間に隙間がある場合には、電極間変位量hは、正規の状態で加圧される場合よりも上(可動電極側)の点p(加圧位置)から始まる曲線2に示すように変化して、変化の途中に最大変位量Hmax に達する。さらに、被溶接部材と両電極12,14との打角が不適当であった場合には、電極間変位量hは、点Pよりもさらに上(可動電極側)の点o(加圧位置)から始まる曲線3に示すように変化して、変化の途中に最大変位量Hmax に達する。
【0085】
このように、正規の状態で加圧された場合、被溶接部材間に隙間がある場合、被溶接部材と両電極12,14との打角が不適当であった場合には、加圧位置(q,p,o)がそれぞれ異なるが、いずれの場合にも、被溶接部材への通電が開始され、被溶接部材が溶け始める通電時間T以降では、電極間変位量は同じような変化をし、変化の途中に最大変位量Hmax に達する。
【0086】
したがって、このような特徴を利用し、通電時間T以降に測定された電極間変位量データと基準データとを比較することによって、適正な溶接が行なわれたかどうかを正確に判定することがとができる。
【0087】
すなわち、通電時間T以降に測定された電極間変位量データに記憶装置26に記憶されている基準データを重ね、基準データの一定の範囲内(予め定められた許容範囲内)に電極間変位量データが収まれば、適切な溶接が行なわれたものと判断し、そうでない場合には、適切でない溶接が行なわれたものと判断し、基準データとのずれの大きさに応じて次回以降に用いる溶接条件を設定する。
【0088】
このように、本実施の形態においては、基準位置を基準として電極間変位量データをとっている。ところが従来は、本実施の形態における加圧位置を基準として電極間変位量データをとっているので、とられたデータは、図12(B)、図13(B)の点線で示してあるような基準データから大きく外れた曲線となってしまう。本実施の形態では、基準位置を基準として電極間変位量データをとることによって、両データのレベルを合わせ、基準データと比較できるようにしているのである。
【0089】
次に、以上に述べた本実施の形態の処理を図3のフローチャートに基づいて説明する。
【0090】
演算装置24は、記憶装置26から溶接条件を読み込み(S1)、この条件に基づいて被溶接部材を加圧する加圧力、溶接電流、通電時間という具体的な溶接条件を設定する(S2)。次に、可動電極12の先端を基準位置(正規な状態の下で被溶接部材に接触する位置)まで移動し(S3)、基準位置からさらに可動電極12を下降させて被溶接部材を加圧し(S4)、可動電極12の基準位置からの変位量により可動電極12の加圧位置を算出する(S5)。
【0091】
続いて、この加圧位置が、第1基準位置または第2基準位置を越えていないかどうかが判断され(S6)、この判断の結果、加圧位置が第1基準位置と第2基準位置との間にあれば、正規の状態であるから、設定された溶接条件によりスポット溶接を行なう(S7)。そして、溶接中の電極間変位量を一定の時間間隔で通電時間が終了するまで連続的に検出し、記憶装置26に記憶させる(S8〜S10)。通電終了時間になったら、通電を終了して(S11)、ガンを開放し、スポット溶接作業を終了する(S12)。
【0092】
一方、ステップS6で、加圧位置が、第1基準位置を越えている(加圧位置が第1基準位置より可動電極側にある)と判断された場合には、電極間の距離が正規の状態のときよりも広いので(S13)、加圧位置が溶接条件の補正ができる範囲内である場合には(S14)、設定された溶接条件(加圧力、溶接電流、通電時間)を加圧位置に合わせて補正する(S15)。また、加圧位置が、第2基準位置を越えている(加圧位置が第2基準位置より固定電極側にある)と判断された場合には、電極間の距離が正規の状態のときよりも狭いので(S13)、可動電極12または固定電極14に異常があるか、被溶接部材に対する溶接条件が不良であると判断し、「異常」を出力して溶接を中断する。なお、加圧位置が、第1基準位置を越えている(加圧位置が第1基準位置より可動電極側にある)と判断された場合でも、加圧位置が溶接条件の補正ができる範囲を大きく越えている場合には、適切な溶接をすることができないので、「異常」を出力して溶接を中断する(S13,S14,S16)。
【0093】
このように、本実施の形態では、通電時間T以降に測定された電極間変位量データと基準データとを比較することによって、正規の状態で加圧された場合、被溶接部材間に隙間がある場合、被溶接部材と両電極12,14との打角が不適当であった場合のいずれの場合でも、適正な溶接が行なわれたかどうかが正確に判定できることになる。
【0094】
以上の実施の形態では、電極間変位量を基準位置を基準としてサンプリングし、そのサンプリングしたデータから溶接が適切に行なわれたかどうかを判断したり、次回以降の溶接条件を変更したりしているが、次に示す実施の形態では、電極間変位量は従来通りの手法でサンプリングし、そのサンプリングしたデータから被溶接物の膨張速度、飽和熱膨張量、飽和時間、収縮速度などをリアルタイムに算出して現在行なわれつつある溶接の電流密度の大きさを推定し、その推定に基づいて溶接条件をリアルタイムに変更している。
【0095】
以下に第2の実施の形態を図面に基づいて詳細に説明する。
【0096】
図4は、第2の実施の形態におけるスポット溶接制御装置とその装置によって動作が制御される溶接ガンの概略図である。
【0097】
スポット溶接制御装置には、第1の実施の形態とは異なり、溶接ガン10の電極間に溶接電流を供給する溶接電流制御装置40が設けられ、これに伴って溶接ガン制御装置20には、溶接電流制御装置40との情報を授受するための外部入出力装置28が設けられている。
【0098】
なお、溶接ガン制御装置20は、溶接条件を演算された推定電流密度に基づいて自動的に修正する自動修正モード、溶接条件を作業者が手動で修正する手動修正モードを選択できるようになっており、この選択は、溶接ガン制御装置20に設けられている図示しないコントロールパネルのボタン操作によって行なう。
【0099】
データ処理装置22は、センサ部30から出力される検出情報(可動電極位置データおよび電極先端検出信号)を入力し、この検出情報から電極間変位量の経時変化を演算装置24や記憶装置26に出力したり、記憶装置26に記憶されている溶接ガン10の動作プログラムに基づいて、可動電極加圧指令および可動電極解放指令を出力したりする。
【0100】
出力される検出情報の内、可動電極位置データは、外部入出力装置28を介して図示しないロボット制御装置に出力され、それに接続されている教示ペンダントや作業者用の表示装置に溶接中の熱膨張量の経時変化が数値としてまたグラフとして表示され、溶接状態をリアルタイムに確認することができるようになっている。溶接ガン制御装置20が手動修正モードに設定されている場合には、作業者は、この教示ペンダントの表示に基づいて、手動操作で溶接条件を変更することになる。
【0101】
演算装置24は、データ処理装置22からの検出情報や記憶装置26に記憶されている各種のデータ(初期位置、基準位置、加圧位置、基準加圧位置、電極間変位量データ、基準電極間変位量、回帰モデル、電極先端径、適正電流密度)により、回帰直線の算出、推定電流密度の算出、溶接状態(溶接品質)のリアルタイムな判定などを行なう。
【0102】
記憶装置26は、データ処理装置22からの検出情報を記憶したり、可動電極14の初期位置(原位置)、基準位置、加圧位置、基準加圧位置を記憶したり、可動電極12および固定電極14の磨耗量に対する補正量を記憶したり、データ処理装置20から出力される電極間変位量の経時変化に関するデータを電極間変位量データ(基準データと比較されるデータ)として記憶したり、溶接ガン10の動作プログラムやスポット溶接が適切に行なわれた(充分な径のナゲットが生成された)ことを判定するために予め設定されている基準電極間変位量や基準回帰直線としての回帰モデルを記憶したり、溶接条件を変更する必要があるかどうかを判断するための適正電流密度を記憶したりするものである。なお、基準電極間変位量及び回帰モデルは、図9に示すような電極間変位量の経時的変化に関するデータである。
【0103】
演算装置24は、記憶装置26に記憶された電極間変位量データから図8に示すような回帰直線を算出し、算出された回帰直線から現在どのような溶接が行なわれつつあるかを認識するための推定電流密度を演算し、これを適正電流密度と比較して、この比較結果から、このままの溶接条件で溶接しても信頼性の十分な溶接ができるか、または溶接条件を変更しないと信頼性の十分な溶接作業をすることができないかを判定することになる。この判定の結果、信頼性の十分な溶接作業をすることができないと判断された場合には、最適な溶接条件を作成し、作成された溶接条件は、リアルタイムに外部入出力装置28を介して溶接電流制御装置40に設定される。
【0104】
溶接電流制御装置40は、設定された溶接条件にしたがって、可動電極12と固定電極14とによって挟まれた被溶接部材に電流を流し、スポット溶接をする。
【0105】
図5は、溶接条件のリアルタイムな修正や溶接品質の判定の処理を示すフローチャートであり、図6は、図5のフローチャートにおける推定電流密度算出のサブルーチンフローチャートであり、図7は、図5のフローチャートにおける溶接条件最適化処理のサブルーチンフローチャートである。
【0106】
《推定電流密度算出》
まず、可動電極12と固定電極14とによって被溶接部材を加圧する。このとき、可動電極12と固定電極14が所定の打角で被溶接部材を加圧するようにする。なお、打角は被溶接部材面に対して垂直な方向を0゜としたときに5゜程度の傾きならば溶接品質には悪影響を与えない。加圧位置まで可動電極12が下降したら、予め決められた溶接条件により通電が開始される(S21)。
【0107】
通電が始まると被溶接部材は膨張して可動電極12をその加圧力に抗して押し上げるが、このときの可動電極12と固定電極14との間隔の変化量、すなわち、電極間変位量が可動電極12の変位量としてエンコーダ32によって測定される。この電極間変位量は、連続的に、または0.5msecあるいは1〜5msec程度のごく僅かな時間間隔ごとにサンプリングされ(S22)、この測定結果は記憶装置26に記憶される(S23)。なお、サンプリング間隔はこのような時間間隔に限定されるものではなく、後述する回帰直線の算出時間間隔に合わせて適宜設定すると良い。
【0108】
そして、測定した電極間変位量から、一定の時間間隔twidth ごとに回帰直線を求め、求めた回帰直線の傾きと切片を記憶する。ここで求める回帰直線は、図8に示すように、横軸を時間軸T、縦軸を変位量hとした2次元平面における直線である。また、回帰直線の切片とは、回帰直線の時間軸上0の切片である。
【0109】
これにより得られる回帰直線は、h=θ1×T+HT0となる。ここで、式中、hは電極間変位量、Tは時間、θ1は回帰直線の傾き、HT0は回帰直線の切片の値である。なお、回帰直線を一定時間間隔ごとに算出しているのは、得られた回帰直線に基づいて、現在行なわれつつある溶接状態をリアルタイムで判定するためである(S24)。
【0110】
次に、このようにして求められた回帰直線により、可動電極12と固定電極14から被溶接部材に供給される電流の密度、すなわち推定電流密度を算出する。この推定電流密度の算出は、図6のフローチャートに示すような手順によって行なわれる(S25)。
【0111】
まず、演算装置24は、記憶装置26に記憶されている現在使用中の可動電極12と固定電極14との電極先端径と現在行なわれつつある溶接に使用されている溶接条件(加圧力、溶接電流、通電時間、板厚など)を読み出すとともに(S41,S42)、演算装置24でカウントされている溶接作業(通電)が開始されてから今現在までの通電経過時間を読み出して(S43)、これらのデータ(電極先端径、加圧力、溶接電流、通電時間、板厚)の内の少なくとも1つ以上のデータと、通電経過時間及び算出された上記の回帰直線に基づいて、記憶装置26に予め記憶されている回帰モデルの中で、現在の溶接状態に最も近似または適合する回帰モデルが存在するかどうかを探索する(S44)。適合する回帰モデルが存在する場合には、その回帰モデルから推定電流密度を算出し、一方、近似する回帰モデルが存在する場合には、その回帰モデルを補間して推定電流密度を算出する(S45)。
【0112】
《溶接条件最適化》
このようにして推定電流密度の算出が終了すると、演算装置24は、記憶装置26に予め記憶してある現在の溶接条件に対する適正電流密度を読み出して、演算された推定電流密度とこの適正電流密度(許容範囲が設けてある)とを比較し、演算された推定電流密度が適正電流密度の範囲内であれば、溶接条件として設定されている通電時間まで、S22〜S25までの処理を繰り返し、現在設定されている溶接条件にしたがって溶接作業を継続する(S26,S30)。
【0113】
一方、演算された推定電流密度が適正電流密度の範囲内でなければ、溶接ガン制御装置20が溶接条件の自動修正モードに設定されているかどうかが判断され(S27)、自動修正モードに設定されていなければ、演算装置24は演算した推定電流密度を記憶装置26に記憶させる。また、自動修正モードに設定されていれば、現在の溶接条件を最適な溶接条件に変更するための溶接条件最適化処理が行なわれる。この溶接条件最適化処理は、図7のフローチャートに示すような手順によって行なわれる(S29)。
【0114】
演算装置24は、記憶装置26に記憶されている溶接条件最適化の溶接パラメータを読み込む。この溶接条件最適化の溶接パラメータは、溶接条件を変更する場合の適用の優先順位、適用の重み付け、溶接条件最適化の有効/無効の状態に関するものである。たとえば溶接条件を変更するための要素として、溶接電流、通電時間、加圧力、電極先端径が設定されている場合には、ある回帰モデルに対しては、たとえば、それらの優先順位を「溶接電流」が1番、「通電時間」が2番、「加圧力」が3番、「電極先端径」が4番、適用の重み付けを「溶接電流」が20%、「通電時間」が30%、「加圧力」が10%、「電極先端径」が40%というように設定されている。なお、溶接条件最適化が「有効」に設定されている場合には、溶接条件が変更されるが、それが「無効」に設定されている場合には、溶接条件は変更されない(S51)。
【0115】
読み込んだ溶接パラメータの優先順位に溶接電流を変更すべき指令が含まれている場合には(S52)、その溶接電流に設定されている重み付けに応じたフィードバック量を決定し、現在の溶接電流値を変更する。たとえば、上記の例では、「溶接電流」の重み付けが20%であるので、現在の溶接電流値を20%上昇させる(S53,S54)。
【0116】
また、読み込んだ溶接パラメータの優先順位に通電時間を変更すべき指令が含まれている場合には(S55)、その通電時間に設定されている重み付けに応じたフィードバック量を決定し、現在の通電時間を変更する。たとえば、上記の例では、「通電時間」の重み付けが30%であるので、現在の通電時間を30%長くする(S56,S57)。
【0117】
さらに、読み込んだ溶接パラメータの優先順位に加圧力を変更すべき指令が含まれている場合には(S58)、その加圧力に設定されている重み付けに応じたフィードバック量を決定し、現在の加圧力を変更する。たとえば、上記の例では、「加圧力」の重み付けが10%であるので、現在の加圧力を10%上昇させる(S59,S60)。
【0118】
そして、読み込んだ溶接パラメータの優先順位に電極先端径(チップドレス開始)の指令が含まれている場合には(S61)、ロボットを制御する制御装置にチップドレス指令を出力して、可動電極12と固定電極14の電極チップをドレスする(S62)。
【0119】
たとえば、図5のフローチャートのS25のステップで算出された回帰直線が+Bランクに示す回帰モデルの曲線に近かった場合には、現在行なわれつつある溶接の推定電流密度は、適正電流密度からはずれている(多過ぎる)ので、図10に示すような溶接条件の変更が指示される。つまり、溶接電流値をやや減少させ、通電時間をやや減少させ、加圧力をやや増加させるという指令が出される。
【0120】
この回帰モデルの場合に、優先順位として、「溶接電流」が1番、「通電時間」が2番、「加圧力」が3番、適用の重み付けとして、「溶接電流」が20%、「通電時間」が30%、「加圧力」が10%というように設定されているとすれば、現在の溶接条件における溶接電流が20%減少され、通電時間が30%減少され、また加圧力が10%増加されることになる。
【0121】
また、算出された回帰直線が−Cランクに示す回帰モデルの曲線に近かった場合には、現在行なわれつつある溶接の推定電流密度は、適正電流密度からはずれている(少な過ぎる)ので、図10に示すような溶接条件の変更が指示される。つまり、溶接電流値を増加させ、チップドレスを行なうべき指令が出される。
【0122】
この回帰モデルの場合に、優先順位として、「溶接電流」が1番、「電極先端径」が2番、適用の重み付けとして、「溶接電流」が50%、「電極先端径」が50%というように設定されているとすれば、現在の溶接条件における溶接電流が50%増加され、可動電極12と固定電極14の電極チップを研磨するチップドレスが行なわれることになる。このような溶接条件は、各回帰モデル毎に設けられている。
【0123】
このようにして溶接条件の変更が行なわれた後に、この変更された溶接条件の下で再び回帰直線が算出され、この回帰直線に基づく新たな溶接条件が算出される。このように溶接条件の変更を頻繁に繰り返し、図9の理想的な回帰モデル(Aランク)に近い状態で溶接が行なわれるようにしている。
【0124】
なお、入熱速度が遅い場合(回帰直線の傾きが小さい場合)に、溶接電流を増加しているのは、入熱速度が速くなるように(回帰直線の傾きが大きくなるように)するためであり、また、入熱速度が速い場合(回帰直線の傾きが大きい場合)に、溶接電流を減少させ、加圧力を増加させているのは、入熱速度が遅くなるように(回帰直線の傾きが小さくなるように)するためである。これにより、散りの発生が抑制され、最短時間で理想の溶接を行うことができるようになる。
【0125】
本実施の形態で溶接をした場合の効果をさらに詳しく説明する。
【0126】
たとえば、図12及び図13に示したように、被溶接部材間に隙間がある状態または打角がある状態で同一の溶接条件で溶接した場合の電極間変位量の経時変化をグラフ化すると、図11に示すようなグラフになる。
【0127】
図11では、電極チップ先端の直径が8.0mmのものを使用して打角および被溶接部材間の隙間(板隙)の大きさを変えて、それぞれ3点づつ実際にスポット溶接を行ったときの、電極間変位量と時間の関係を示すグラフであり、図中φの値は各サンプルにおいて溶接後、溶接部の破壊検査によって溶接状態の適否を判定するための指標となるナゲット径を実測した値である。なお、打角および板隙以外の通電条件などは同じである。
【0128】
この図から明らかなように、打角や板隙が変わることにより、膨脹時の変位量や、図8に示してある仮想飽和点に達する時間が異なることが分かる。そして仮想飽和点に達する時間(仮想飽和時間)は入熱速度と相関関係がある。すなわち、仮想飽和時間が長い程入熱速度が遅く、このため、ナゲット径が痩せている(小さい)ことが分かる。このような傾向は打角や板隙によらず、入熱速度とナゲット径の大きさに相関関係のあることを示している。したがって、入熱速度がわかればどの程度溶接電流を増加すれば適切な溶接をすることができるかが想定できるのである。なお、図11においてサンプルデータは、各打角および板隙の条件ごとに3つのデータを示しているが、図面を見易くするために、図中、回帰直線や仮想飽和点、仮想飽和時間を示す点線については各条件ごとに1つのサンプルデータについてのみ示した。他のサンプルデータについても同様の傾向である。
【0129】
この図11から分かる溶接時の熱膨張の傾向について説明する。
【0130】
まず、板隙は、複数の板材を重ね合わせて溶接する場合、その隙間は、被溶接部材と両電極12,14との間、および被溶接部材同士の間に発生する。ここで、図11のAおよびBのサンプルデータを参照すると、打角0゜のときには、板隙のない方(板隙0mm)が板隙がある方(板隙5mm)より電極間変位量が多くなる傾向がある。これは、打角0゜で板隙があった場合には、通電開始により板材が溶融、軟化し馴染んでくるため、電極間変位量、その変位量の増加割合、すなわち傾きが共に減少しているものと考えられる。
【0131】
これに対し、データCおよびDで示した打角5゜の場合には、板隙のない方が変位量、傾き共に減少している。この傾向は、前述したように板隙がある場合に溶接を行うとこれが馴染むために、変位量が減少するといった考え方からすると逆の傾向である。このような打角5゜のときの傾向は、板隙がある場合には、被溶接部材のそれぞれが個別に曲げ強度を持ち、打角が5゜程度であれば両電極12,14の加圧力によって比較的容易に変形するため、通電直前の板隙(この場合は被溶接部材間の隙間)は両電極12,14の加圧力によって吸収され、結果的に板隙がない状態で溶接されたものと同等になることから生じると考えられる。ただし、打角が傾いていることから生じる被溶接部材と両電極12,14との接触不良(被溶接部材表面と各電極との隙間)は加圧力だけでは免れることができないので、上記AやBのサンプルより変位量、傾き共に減少していると考えられる。
【0132】
一方、板隙が初めから0であると、その強度は各被溶接部材が全体として一体となっているために剛性が高くなり、被溶接部材が変形しにくいため、打角が傾いているために生じている接触不良は、板隙が初めからあり、被溶接部材が加圧力によって僅かに変形し得る場合(Cのサンプル)よりも悪い状態で溶接が始まり、結果的に打角が傾いている影響を大きく受けて、Cのサンプルよりも変位量が少なくまた傾きも小さくなったものと考えられる。
【0133】
したがって、単純に打角や板隙からはナゲット径がどの様になるかを推定することは困難であるが、本発明を適用することで、上述したように、打角や板隙がどの様な状態であっても、最終的には理想的な溶接状態で溶接されたのと同じ溶接を行なうことができる。
【0134】
以上のように溶接条件の変更が繰り返されながら通電時間が経過すると(S30)、溶接電流制御装置40は電極への通電を停止し(S31)、溶接作業を終了する。
【0135】
《スポット溶接の判定》
スポット溶接が行なわれている時の可動電極12の変位状況は、時系列的な電極間変位量データとしてデータ処理装置22に入力され、記憶装置26に記憶される。演算装置24は、記憶装置26に記憶された時系列的な電極間変位量データから、概念的には図11に示すようなグラフを作成する。このグラフから傾きが0である回帰直線と実際に得られた電極間変位量データとの交点を求め、溶接時における熱膨張の飽和点を算出し(S32)、この飽和点から被溶接物の膨張速度、飽和熱膨張量、飽和時間、収縮時間を算出し、これらを記憶装置26に予め理想的な溶接モデルとして記憶されている被溶接物の膨張速度、飽和熱膨張量、飽和時間、収縮時間と比較して、溶接品質を判定している。
【0136】
なお、記憶装置26に予め記憶されている基準電極間変位量に基づいて判定する場合には、電極間変位量データと基準電極間変位量とが比較され、一致していれば、溶接品質が良好であると判断することになる(S33)。
【0137】
そして、溶接ガン制御装置20が自動修正モードに設定されていれば(S34)、図11に示したような溶接経過を示す熱膨張推移グラフ、算出された推定電流密度、熱膨張飽和点、溶接品質判定結果を教示ペンダントや作業用の表示装置に表示させる(S35)。一方、自動修正モードに設定されていなければ、自動修正モードの場合に表示される項目に加えて、溶接条件を作業者が手動で変更できるようにするためのナビゲーションの表示がされる。したがって、作業者はこの表示を見ながら溶接条件を変更することになる(S36)。
【図面の簡単な説明】
【図1】 本発明にかかるスポット溶接制御装置とその装置によって動作が制御される溶接ガンの概略図である。
【図2】 可動電極の電極間変位量hの経時変化を示す電極間変位量データを示す図である。
【図3】 図1のスポット溶接制御装置の動作を示すフローチャートである。
【図4】 第2の実施の形態におけるスポット溶接制御装置とその装置によって動作が制御される溶接ガンの概略図である。
【図5】 図4のスポット溶接制御装置の動作を示すフローチャートである。
【図6】 図5のフローチャートの内の「推定電流密度算出」のサブルーチンフローチャートである。
【図7】 図5のフローチャートの内の「溶接条件最適化処理」のサブルーチンフローチャートである。
【図8】 回帰直線の算出過程の説明に供する図である。
【図9】 回帰モデルの一例を示す図である。
【図10】 溶接条件の設定変更過程の説明に供する図である。
【図11】 打角や隙間の有無による電極間変位量の相違を示す図である。
【図12】 溶接部材間に隙間がある場合の電極間変位量の変化状態を示す図である。
【図13】 電極チップの打角が傾いた場合の電極間変位量の変化状態を示す図である。
【符号の説明】
10…溶接ガン
12…可動電極
14…固定電極
20…溶接ガン制御装置
30…センサ部
32…エンコーダ
34…サーボモータ
40…溶接電流制御装置

Claims (19)

  1. 被溶接部材を加圧しながら通電する一対の電極と、
    前記一対の電極の電極間変位量を基準位置から連続的に検出する電極間変位量検出手段と、
    前記電極間変位量検出手段によって検出された電極間変位量に基づいて前記被溶接部材の溶接状態を判定する溶接状態判定手段とを有し、
    前記溶接状態判定手段は、前記電極間変位量検出手段によって連続的に検出された電極間変位量の内、一部の区間の電極間変位量に基づいて前記被溶接部材の溶接状態を判定することを特徴とするスポット溶接制御装置。
  2. 前記電極間変位量検出手段は、前記一対の電極の内の固定側の電極の先端が前記被溶接部材に接触している状態の下で、前記一対の電極の内の加圧側の電極の先端が所望の加圧力で前記被溶接部材を加圧する位置を加圧位置として設定し、当該加圧位置から前記一対の電極の電極間変位量を連続的に検出することを特徴とする請求項1に記載のスポット溶接制御装置。
  3. 前記電極間変位量検出手段によって検出された前記加圧位置における電極間距離から前記被溶接部材の加圧状態を検出し、当該加圧状態に応じて前記被溶接部材の溶接条件を設定する溶接条件設定手段と、
    前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とをさらに有することを特徴とする請求項2に記載のスポット溶接制御装置。
  4. 被溶接部材を加圧しながら通電する一対の電極と、
    前記電極の磨耗量を検出する磨耗量検出手段と、
    前記一対の電極の電極間変位量を基準位置から連続的に検出する電極間変位量検出手段と、
    前記電極間変位量検出手段によって検出された電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正し、補正された電極間変位量に基づいて前記被溶接部材の溶接状態を判定する溶接状態判定手段とを有し、
    前記溶接状態判定手段は、前記電極間変位量検出手段によって連続的に検出された電極間変位量の内、一部の区間の電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正し、補正された電極間変位量に基づいて前記被溶接部材の溶接状態を判定することを特徴とするスポット溶接制御装置。
  5. 前記電極間変位量検出手段は、前記一対の電極の内の固定側の電極の先端が前記被溶接部材に接触している状態の下で、前記一対の電極の内の加圧側の電極の先端が所望の加圧力で前記被溶接部材を加圧する位置を加圧位置として設定し、当該加圧位置から前記一対の電極の電極間変位量を連続的に検出することを特徴とする請求項に記載のスポット溶接制御装置。
  6. 前記電極間変位量検出手段によって検出された前記加圧位置における電極間距離から前記被溶接部材の加圧状態を検出し、当該加圧状態に応じて前記被溶接部材の溶接条件を設定する溶接条件設定手段と、
    前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とをさらに有することを特徴とする請求項に記載のスポット溶接制御装置。
  7. 一対の電極により被溶接部材を加圧しながら通電し、
    通電中における前記一対の電極の電極間変位量を基準位置から連続的に検出し、
    連続的に検出された電極間変位量の内、一部の区間の電極間変位量に基づいて前記被溶接部材の溶接状態を判定することを特徴とするスポット溶接制御方法。
  8. 被溶接部材を加圧しながら通電する一対の電極と、
    前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、
    予め設定された基準電極間変位量を記憶する基準電極間変位量記憶手段と、
    前記電極間変位量検出手段によって検出された電極間変位量と前記基準電極間変位量記憶手段に記憶されている基準電極間変位量とを比較する比較手段と、
    前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、
    前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有し、
    前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであり、
    前記溶接条件の溶接電流、通電時間、加圧力には、優先順位と重み付けが設定されていることを特徴とするスポット溶接制御装置。
  9. 被溶接部材を加圧しながら通電する一対の電極と、
    前記電極の磨耗量を検出する磨耗量検出手段と、
    前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、
    予め設定された基準電極間変位量を記憶する基準電極間変位量記憶手段と、
    前記電極間変位量検出手段によって検出された電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正して前記基準電極間変位量記憶手段に記憶されている基準電極間変位量と比較する比較手段と、
    前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、
    前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有し、
    前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであり、
    前記溶接条件の溶接電流、通電時間、加圧力には、優先順位と重み付けが設定されていることを特徴とするスポット溶接制御装置。
  10. 前記溶接条件設定手段は、前記電極間変位量検出手段によって検出される電極間変位量が前記基準電極間変位量記憶手段に記憶されている基準電極間変位量と一致するように溶接条件を設定することを特徴とする請求項または請求項に記載のスポット溶接制御装置。
  11. 被溶接部材を加圧しながら通電する一対の電極と、
    前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、
    前記電極間変位量検出手段によって検出された電極間変位量から回帰直線を算出する回帰直線算出手段と、
    基準電極間変位量に基づく基準回帰直線を記憶する基準回帰直線記憶手段と、
    前記回帰直線算出手段によって算出された回帰直線と前記基準回帰直線記憶手段に記憶されている基準回帰直線とを比較する比較手段と、
    前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、
    前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有することを特徴とするスポット溶接制御装置。
  12. 被溶接部材を加圧しながら通電する一対の電極と、
    前記電極の磨耗量を検出する磨耗量検出手段と、
    前記一対の電極の電極間変位量を連続的に検出する電極間変位量検出手段と、
    前記電極間変位量検出手段によって検出された電極間変位量を前記磨耗量検出手段によって検出された磨耗量によって補正し、補正後の電極間変位量から回帰直線を算出する回帰直線算出手段と、
    基準電極間変位量に基づく基準回帰直線を記憶する基準回帰直線記憶手段と、
    前記回帰直線算出手段によって算出された回帰直線と前記基準回帰直線記憶手段に記憶されている基準回帰直線とを比較する比較手段と、
    前記比較手段による比較結果から前記被溶接部材の溶接条件を設定する溶接条件設定手段と、
    前記溶接条件設定手段によって設定された溶接条件に基づいて前記一対の電極の通電状態を制御する通電制御手段とを有することを特徴とするスポット溶接制御装置。
  13. 前記溶接条件設定手段は、前記回帰直線算出手段によって算出された回帰直線が前記基準回帰直線記憶手段に記憶されている基準回帰直線と一致するように溶接条件を設定することを特徴とする請求項11または請求項12に記載のスポット溶接制御装置。
  14. 前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであることを特徴とする請求項11ないし請求項13のいずれか1項に記載のスポット溶接制御装置。
  15. 前記電極間変位量検出手段によって検出された電極間変位量または前記通電制御手段によって行なわれた溶接が適正であるかどうかを表示する表示手段をさらに有することを特徴とする請求項11ないし請求項13のいずれか1項に記載のスポット溶接制御装置。
  16. 前記溶接条件の溶接電流、通電時間、加圧力には、優先順位と重み付けが設定されていることを特徴とする請求項14または請求項15に記載のスポット溶接制御装置。
  17. 一対の電極により被溶接部材を加圧しながら通電し、通電中における前記一対の電極の電極間変位量を連続的に検出し、検出された電極間変位量から回帰直線を算出し、算出された回帰直線と予め設定された基準回帰直線とを比較し、比較結果から前記被溶接部材の溶接条件を設定し、設定された溶接条件に基づいて前記一対の電極の通電状態を制御することを特徴とするスポット溶接制御方法。
  18. 一対の電極の磨耗量を検出し、一対の電極により被溶接部材を加圧しながら通電し、通電中における前記一対の電極の電極間変位量を連続的に検出し、検出された電極間変位量を検出された磨耗量によって補正し、補正後の電極間変位量から回帰直線を算出し、算出された回帰直線と予め設定された基準回帰直線とを比較し、比較結果から前記被溶接部材の溶接条件を設定し、設定された溶接条件に基づいて前記一対の電極の通電状態を制御することを特徴とするスポット溶接制御方法。
  19. 前記溶接条件は、前記一対の電極から前記被溶接部材への溶接電流を変化させること、またはその通電時間を変化させること、あるいは、前記一対の電極が前記被溶接部材を加圧する加圧力を変化させることのいずれかまたはこれらの複数の組み合わせであることを特徴とする請求項17または請求項18に記載のスポット溶接制御方法。
JP05272699A 1998-04-20 1999-03-01 スポット溶接制御装置およびその制御方法 Expired - Fee Related JP3651301B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05272699A JP3651301B2 (ja) 1998-04-20 1999-03-01 スポット溶接制御装置およびその制御方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10919898 1998-04-20
JP10-109198 1998-04-20
JP05272699A JP3651301B2 (ja) 1998-04-20 1999-03-01 スポット溶接制御装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2000005882A JP2000005882A (ja) 2000-01-11
JP3651301B2 true JP3651301B2 (ja) 2005-05-25

Family

ID=26393377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05272699A Expired - Fee Related JP3651301B2 (ja) 1998-04-20 1999-03-01 スポット溶接制御装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP3651301B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179803A (ja) * 1984-09-28 1986-04-23 Toshiba Corp ガスタ−ビンの静翼
JP2002035946A (ja) * 2000-07-18 2002-02-05 Mazda Motor Corp スポット溶接方法およびその装置
JP5055797B2 (ja) * 2006-03-16 2012-10-24 日産自動車株式会社 溶接品質判定装置および溶接品質判定方法
JP6224648B2 (ja) 2015-04-28 2017-11-01 ファナック株式会社 スポット溶接の品質診断システム
JP6780386B2 (ja) * 2016-09-05 2020-11-04 日本製鉄株式会社 スポット溶接方法
JP7311394B2 (ja) * 2019-10-29 2023-07-19 ファナック株式会社 スポット溶接システム
WO2023223604A1 (ja) * 2022-05-19 2023-11-23 Jfeスチール株式会社 抵抗スポット溶接における鋼板間の隙間判定方法及び隙間判定装置
JP7306603B1 (ja) * 2022-05-19 2023-07-11 Jfeスチール株式会社 抵抗スポット溶接における鋼板間の隙間判定方法及び隙間判定装置

Also Published As

Publication number Publication date
JP2000005882A (ja) 2000-01-11

Similar Documents

Publication Publication Date Title
US6232572B1 (en) Spot welding control system and control method
JP4233584B2 (ja) スポット溶接ロボットの位置決め方法
EP1145795B1 (en) Welding joining equipment for resistance welding
KR100306366B1 (ko) 점용접방법
JP2003500213A (ja) 抵抗スポット溶接システム状態の決定
JP6240133B2 (ja) 溶接を行う打点の位置を測定するスポット溶接システム
JP3651301B2 (ja) スポット溶接制御装置およびその制御方法
JP4880021B2 (ja) 溶接ワーク位置検出方法
JP2000288743A (ja) 抵抗溶接機用制御装置
JP3651310B2 (ja) 溶接ロボットの制御装置
JP5290661B2 (ja) スポット溶接装置の電極消耗量計測方法及び電極消耗量計測装置
EP3698911A1 (en) Welding system and operation method thereof
JPH0716791B2 (ja) 抵抗スポット溶接方法
JP3709807B2 (ja) 溶接状態判定方法、およびその装置
JPH11768A (ja) スポット溶接制御装置
JP2000079482A (ja) 抵抗溶接におけるナゲット径の推定方法、および抵抗溶接の制御方法
JP3603808B2 (ja) 抵抗溶接におけるナゲット径の推定方法
JP7435505B2 (ja) 抵抗スポット溶接方法、および、抵抗スポット溶接装置
JP3221305B2 (ja) 抵抗溶接機の制御装置
KR19990000244A (ko) 동저항값을 이용한 점 용접기의 전류 제어 장치 및 방법
JP3223065B2 (ja) 抵抗溶接の予備通電制御装置および予備通電条件決定方法
JPH09216072A (ja) 抵抗溶接機の制御装置
US20240011756A1 (en) Estimation method for nugget diameter and determination method
JP5055797B2 (ja) 溶接品質判定装置および溶接品質判定方法
JP3266390B2 (ja) 抵抗溶接機におけるワーク厚検出方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees