JP3632081B2 - 光信号監視装置 - Google Patents

光信号監視装置 Download PDF

Info

Publication number
JP3632081B2
JP3632081B2 JP2001372166A JP2001372166A JP3632081B2 JP 3632081 B2 JP3632081 B2 JP 3632081B2 JP 2001372166 A JP2001372166 A JP 2001372166A JP 2001372166 A JP2001372166 A JP 2001372166A JP 3632081 B2 JP3632081 B2 JP 3632081B2
Authority
JP
Japan
Prior art keywords
optical
optical signal
signal
input
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001372166A
Other languages
English (en)
Other versions
JP2003174416A (ja
Inventor
秀之 外林
渉 中條
健 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2001372166A priority Critical patent/JP3632081B2/ja
Publication of JP2003174416A publication Critical patent/JP2003174416A/ja
Application granted granted Critical
Publication of JP3632081B2 publication Critical patent/JP3632081B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光信号が本来のものから変化してしまったのか否かを監視する光信号監視装置に関し、特に、光信号レベルの状態で、その監視を実行できるようにする光信号監視装置に関する。
【0002】
光通信の高速化を図る技術が進められている。この高速化を実現するためには、光信号が本来のものから変化してしまったのか否かを監視する技術についても、その高速化を図る必要がある。
【0003】
【従来の技術】
送信されてきた光信号が本来のものから変化してしまったのか否かを監視する方法として、送信側で、送信する光信号に対してパリティビットを付加する構成を採って、受信側で、受信した光信号を電気信号に変換し、その変換した電気信号の持つ1のビット数を数えることで、送信されてきた光信号が本来のものから変化してしまったのか否かを監視するという方法が広く用いられている。
【0004】
すなわち、送信側で、送信する光信号に対して、1を持つビットの数が奇数(あるいは偶数)となるようにとパリティビットを付加する構成を採って、受信側で、受信した光信号を電気信号に変換し、その変換した電気信号の持つ1のビット数を数えて、それが奇数(あるいは偶数)であるのか否かをチェックすることで、送信されてきた光信号が本来のものから変化してしまったのか否かを監視するという方法が広く用いられている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来技術では、監視対象となる光信号を一旦電気信号に変換し、その変換した電気信号の持つ1のビット数を数えて、それが奇数や偶数であるのか否かをチェックすることで、監視対象となる光信号が本来のものから変化してしまったのか否かを監視するという方法を採っている。
【0006】
すなわち、従来技術では、監視対象となる光信号を一旦電気信号に変換することで、監視対象となる光信号が本来のものから変化してしまったのか否かを監視するという方法を採っている。
【0007】
これから、従来技術に従っていると、光通信のさらなる高速化が実現されるときに、そのような高速な光通信で送信されてくる光信号については監視できなくなるという問題がある。
【0008】
本発明はかかる事情に鑑みてなされたものであって、光信号レベルの状態で、監視対象の光信号が本来のものから変化してしまったのか否かを監視できるようにする新たな光信号監視装置の提供を目的とする。
【0009】
【課題を解決するための手段】
この目的を達成するために、本発明の光信号監視装置は、1を持つビットの数が奇数となるようにとパリティビットが付加された光信号を監視対象とするときにあって、(1)監視対象の光信号のビット長に応じた段数構成(監視対象の光信号のビット長が2n ビットである場合にはn段で構成される。ここで、nは2以上の整数を表す)の光演算手段で構成され、最前段の光演算手段については監視対象の光信号を入力とし、それ以外の光演算手段については前段の光演算手段の出力する光信号を入力として、それぞれの光演算手段が、入力光信号を2つに分岐し、その一方を入力光信号の1ビット分遅延させるとともに、入力光信号の“1/2”の周期を持つ光クロック信号に同期させて、遅延させた入力光信号と遅延させない入力光信号とのビット対応のEOR演算を実行して、その演算結果の光信号を出力することで構成される第1の手段と、(2)最後段の光演算手段の出力する1ビットの光信号の信号値を監視する第2の手段とを備えるように構成する。
【0010】
このように構成される本発明の光信号監視装置では、例えば、光信号部分が3ビットの光信号(1ビットのパリティビットが付加される)を監視対象とするときには、第1の手段は、
監視対象の光信号を入力として、監視対象の光信号を2つに分岐し、その一方を監視対象の光信号の1ビット分遅延させるとともに、監視対象の光信号の“1/2”の周期を持つ光クロック信号に同期させて、遅延させた入力光信号と遅延させない入力光信号とのビット対応のEOR演算を実行して、その演算結果の光信号(2ビット)を出力する第1の光演算手段と、
第1の光演算手段の出力する光信号を入力として、入力光信号を2つに分岐し、その一方を入力光信号の1ビット分(監視対象の光信号の2ビット分)遅延させるとともに、入力光信号の“1/2”の周期を持つ光クロック信号(監視対象の光信号の“1/4”の周期を持つ光クロック信号)に同期させて、遅延させた入力光信号と遅延させない入力光信号とのビット対応のEOR演算を実行して、その演算結果の光信号(1ビット)を出力する第2の光演算手段とで、
構成される。
【0011】
この構成に従って、第1の光演算手段は、例えば、“1011(最下位ビットはパリティビット)”という監視対象の光信号を入力すると、図1の上段に示すように、監視対象の光信号の“1/2”の周期を持つ光クロック信号に同期させて、“1011”とそれを1ビット分遅延させた“1011”とのビット対応のEOR演算を実行することで、“10”という光信号を得て、それを出力する。
【0012】
この第1の光演算手段の出力する光信号を受けて、第2の光演算手段は、図1の下段に示すように、入力光信号の“1/2”の周期を持つ光クロック信号に同期させて、“10”とそれを1ビット分遅延させた“10”とのビット対応のEOR演算を実行することで、“1”という光信号を得て、それを出力する。
【0013】
また、この構成に従って、第1の光演算手段は、例えば、“1110(最下位ビットはパリティビット)”という監視対象の光信号を入力すると、図2の上段に示すように、監視対象の光信号の“1/2”の周期を持つ光クロック信号に同期させて、“1110”とそれを1ビット分遅延させた“1110”とのビット対応のEOR演算を実行することで、“01”という光信号を得て、それを出力する。
【0014】
この第1の光演算手段の出力する光信号を受けて、第2の光演算手段は、図2の下段に示すように、入力光信号の“1/2”の周期を持つ光クロック信号に同期させて、“01”とそれを1ビット分遅延させた“01”とのビット対応のEOR演算を実行することで、“1”という光信号を得て、それを出力する。
【0015】
このように、第1の手段は、監視対象の光信号が正規のものである場合には“1”という光信号を出力するので、第2の手段は、第1の手段が“1”という光信号を出力するのか否かを監視することで、監視対象の光信号が本来のものから変化してしまったのか否かを監視する。
【0016】
このようにして、本発明によれば、光信号レベルの状態で、監視対象の光信号が本来のものから変化してしまったのか否かを監視できるようになり、これにより、高速の光通信システムの構築を実現できるようになる。
【0017】
【発明の実施の形態】
以下、実施の形態に従って本発明を詳細に説明する。
【0018】
図3に、本発明の光信号監視装置1を備える光通信システムの一例を図示する。
【0019】
この図に示すように、本発明の光信号監視装置1は、例えば、光通信ラインを伝送されてくる奇数パリティビットを持つ光信号(1を持つビットの数が奇数となるようにとパリティビットが付加された光信号)を中継する全光学構成中継器2の出力する光信号を監視対象として、その光信号が本来のものから変化してしまったのか否かを監視する処理を行うものである。
【0020】
図4に、本発明の光信号監視装置1の一実施形態例を図示する。ここで、この実施形態例では、1ビットの奇数パリティビットが付加された8ビットの光信号を監視対象とすることを想定している。
【0021】
この図に示す本発明の光信号監視装置1は、全光学構成で構成される第1の光演算機構10−1と、全光学構成で構成される第2の光演算機構10−2と、全光学構成で構成される第3の光演算機構10−3と、受光素子と電子回路とで構成される監視機構20とを備える。
【0022】
この第1の光演算機構10−1は、監視対象の光信号(全光学構成中継器2の出力する光信号)を入力として、入力光信号を2つに分岐し、その一方を遅延用光ファイバ30を使って入力光信号の1ビット分遅延させるとともに、もう一方を遅延させない処理を行う全光学構成の光分岐遅延機構11−1と、監視対象の光信号の“1/2”の周期を持つ光クロック信号(図中の▲1▼に示すもの)を信号光入力とし、光分岐遅延機構11−1により遅延された光信号と遅延されなかった光信号とを制御光入力とする全光学構成のSMZ−SOA(対称マッハーツェンダー型半導体光増幅器)12−1とで構成されて、4ビットの光信号を出力する処理を行う。
【0023】
第2の光演算機構10−2は、第1の光演算機構10−1の出力する光信号を入力として、入力光信号を2つに分岐し、その一方を遅延用光ファイバ30を使って入力光信号の1ビット分(監視対象の光信号の2ビット分)遅延させるとともに、もう一方を遅延させない処理を行う全光学構成の光分岐遅延機構11−2と、入力光信号の“1/2”の周期を持つ光クロック信号(図中の▲2▼に示すもので、監視対象の光信号の“1/4”の周期を持つ光クロック信号)を信号光入力とし、光分岐遅延機構11−2により遅延された光信号と遅延されなかった光信号とを制御光入力とする全光学構成のSMZ−SOA12−2とで構成されて、2ビットの光信号を出力する処理を行う。
【0024】
第3の光演算機構10−3は、第2の光演算機構10−2の出力する光信号を入力として、入力光信号を2つに分岐し、その一方を遅延用光ファイバ30を使って入力光信号の1ビット分(監視対象の光信号の4ビット分)遅延させるとともに、もう一方を遅延させない処理を行う全光学構成の光分岐遅延機構11−3と、入力光信号の“1/2”の周期を持つ光クロック信号(図中の▲3▼に示すもので、監視対象の光信号の“1/8”の周期を持つ光クロック信号)を信号光入力とし、光分岐遅延機構11−3により遅延された光信号と遅延されなかった光信号とを制御光入力とする全光学構成のSMZ−SOA12−3とで構成されて、1ビットの光信号を出力する処理を行う。
【0025】
監視機構20は、第3の光演算機構10−3の出力する1ビットの光信号を電気信号に変換するとともに、第3の光演算機構10−3の使用する光クロック信号(図中の▲3▼に示す光クロック信号)を電気信号に変換して、その光クロック信号の電気変換信号と同期をとりつつ、第3の光演算機構10−3の出力する光信号の電気変換信号のレベル値が“1”であるのか否かをチェックして、そのレベル値が“1”を示すときには監視対象の光信号が本来のものである旨を出力し、そのレベル値が“0”を示すときには監視対象の光信号が本来のものでないことを出力する処理を行う。
【0026】
ここで、光クロック信号については、例えば、注入同期レーザ(レーザ光の発振周波数を設定できるレーザ)を複数用意して、それらの注入同期レーザの発生する光信号を用いることで実現したり、監視対象の光信号の“1/2”の周期を持つレーザ光を発振するレーザを1つ用意するとともに、光スイッチを多段に接続することで構成される光分周回路を用意して、それらの光スイッチにより分周される光信号を用いることで実現する。
【0027】
各SMZ−SOA12−1,2,3は、2つのSOA(半導体光増幅器)50を備える構成を採って、その一方のSOA50に対して、光クロック信号を信号光として入力するとともに、ファイバアンプ40で増幅される遅延された方の光信号を制御光として入力し、もう一方のSOA50に対して、光クロック信号を信号光として入力するとともに、ファイバアンプ40で増幅される遅延されなかった方の光信号を制御光として入力して、マッハーツェンダーの干渉計構成に従って信号光に干渉を起こさせて、光学フィルタ60(制御光を遮断し、信号光を透過させるフィルタ特性を持つ)を使ってその干渉光を取り出す処理を行う。
【0028】
SMZ−SOA12−1,2,3を構成するSOA50は、図5に示すように、制御光のパワーが大きいときには、制御光のパワーが小さいときに比べて、信号光の出力パワーが小さくなるという増幅特性を持つ。
【0029】
このSOA50の増幅特性に従って、図6に示すように、遅延されなかった方の光信号を増幅するファイバアンプ40の出力点をA、その光信号を入力とするSOA50の入力点をα、出力点をγと表し、遅延された方の光信号を増幅するファイバアンプ40の出力点をB、その光信号を入力とするSOA50の入力点をβ、出力点をδと表すならば、各SMZ−SOA12−1,2,3は、図7に示すような出力特性を持つ。
【0030】
すなわち、A点の光信号(制御光)が1で、B点の光信号(制御光)が1のときには、α点の光パワー(制御光)が大で、β点の光パワー(制御光)が大となるので、γ点の光信号(信号光)は0で、δ点の光信号(信号光)は0となり、これにより干渉は発生せずに、SMZ−SOA12−1,2,3は0を出力する。
【0031】
一方、A点の光信号(制御光)が1で、B点の光信号(制御光)が0のときには、α点の光パワー(制御光)が大で、β点の光パワー(制御光)が小となるので、γ点の光信号(信号光)は0で、δ点の光信号(信号光)は1となり、これにより干渉は発生せずに、SMZ−SOA12−1,2,3は1を出力する。
【0032】
一方、A点の光信号(制御光)が0で、B点の光信号(制御光)が1のときには、α点の光パワー(制御光)が小で、β点の光パワー(制御光)が大となるので、γ点の光信号(信号光)は1で、δ点の光信号(信号光)は0となり、これにより干渉は発生せずに、SMZ−SOA12−1,2,3は1を出力する。
【0033】
一方、A点の光信号(制御光)が0で、B点の光信号(制御光)が0のときには、α点の光パワー(制御光)が小で、β点の光パワー(制御光)が小となるので、γ点の光信号(信号光)は1で、δ点の光信号(信号光)は1となり、これにより干渉が発生して、SMZ−SOA12−1,2,3は0を出力する。
【0034】
このことから分かるように、各SMZ−SOA12−1,2,3は、遅延されなかった方の光信号と遅延された方の光信号のビット対応のEOR演算を実行して、その演算結果の光信号を出力するように動作することになる。
【0035】
次に、このように構成される本発明の光信号監視装置1の実行する光信号の監視処理について説明する。
【0036】
(1)例えば、監視対象の光信号として、“10011000(最下位ビットはパリティビット)”という光信号が入力されるとする。
【0037】
この監視対象の光信号“10011000”の入力を受けて、第1の光演算機構10−1は、図8の上段に示すように、監視対象の光信号の“1/2”の周期を持つ光クロック信号(図4の▲1▼に示す光クロック信号)に同期させて、“10011000”とそれを1ビット分遅延させた“10011000”とのビット対応のEOR演算を実行することで、“1110”という光信号を得て、それを出力する。
【0038】
この第1の光演算機構10−1の出力する光信号“1110”を受けて、第2の光演算機構10−2は、図8の中段に示すように、入力光信号の“1/2”の周期を持つ光クロック信号(図4の▲2▼に示す光クロック信号)に同期させて、“1110”とそれを1ビット分遅延させた“1110”とのビット対応のEOR演算を実行することで、“01”という光信号を得て、それを出力する。
【0039】
この第2の光演算機構10−2の出力する光信号“01”を受けて、第3の光演算機構10−3は、図8の下段に示すように、入力光信号の“1/2”の周期を持つ光クロック信号(図4の▲3▼に示す光クロック信号)に同期させて、“01”とそれを1ビット分遅延させた“01”とのビット対応のEOR演算を実行することで、“1”という光信号を得て、それを出力する。
【0040】
この第3の光演算機構10−3の出力する光信号“1”を受けて、監視機構20は、上述した処理に従って監視対象の光信号が本来のものであることを検出して、その旨を出力する。
【0041】
一方、この監視対象の光信号“10011000”が通信ライン上で、例えば“1011000”というものに化けてしまったとする。
【0042】
このときには、第1の光演算機構10−1は、図9の上段に示すように“0110”という光信号を出力し、これを受けて、第2の光演算機構10−2は、図9の中段に示すように“11”という光信号を出力し、これを受けて、第3の光演算機構10−3は、図9の下段に示すように“0”という光信号を出力するので、監視機構20は、上述した処理に従って監視対象の光信号が本来のものでないことを検出して、その旨を出力する。
【0043】
(2)また、例えば、監視対象の光信号として、“11010011(最下位ビットはパリティビット)”という光信号が入力されるとする。
【0044】
この監視対象の光信号“11010011”の入力を受けて、第1の光演算機構10−1は、図10の上段に示すように、監視対象の光信号の“1/2”の周期を持つ光クロック信号(図4の▲1▼に示す光クロック信号)に同期させて、“11010011”とそれを1ビット分遅延させた“11010011”とのビット対応のEOR演算を実行することで、“0100”という光信号を得て、それを出力する。
【0045】
この第1の光演算機構10−1の出力する光信号“0100”を受けて、第2の光演算機構10−2は、図10の中段に示すように、入力光信号の“1/2”の周期を持つ光クロック信号(図4の▲2▼に示す光クロック信号)に同期させて、“0100”とそれを1ビット分遅延させた“0100”とのビット対応のEOR演算を実行することで、“10”という光信号を得て、それを出力する。
【0046】
この第2の光演算機構10−2の出力する光信号“10”を受けて、第3の光演算機構10−3は、図8の下段に示すように、入力光信号の“1/2”の周期を持つ光クロック信号(図4の▲3▼に示す光クロック信号)に同期させて、“10”とそれを1ビット分遅延させた“10”とのビット対応のEOR演算を実行することで、“1”という光信号を得て、それを出力する。
【0047】
この第3の光演算機構10−3の出力する光信号“1”を受けて、監視機構20は、上述した処理に従って監視対象の光信号が本来のものであることを検出して、その旨を出力する。
【0048】
一方、この監視対象の光信号“11010011”が通信ライン上で、例えば“1110011”というものに化けてしまったとする。
【0049】
このときには、第1の光演算機構10−1は、図11の上段に示すように“0000”という光信号を出力し、これを受けて、第2の光演算機構10−2は、図11の中段に示すように“00”という光信号を出力し、これを受けて、第3の光演算機構10−3は、図11の下段に示すように“0”という光信号を出力するので、監視機構20は、上述した処理に従って監視対象の光信号が本来のものでないことを検出して、その旨を出力する。
【0050】
このようにして、本発明の光信号監視装置1は、光信号レベルの状態で、監視対象の光信号が本来のものから変化してしまったのか否かを監視できるようになる。
【0051】
以上に説明した実施形態例では、最下位ビットにパリティビットの付加された光信号を監視対象としたが、本発明は、最上位ビットにパリティビットの付加された光信号に対しても、そのまま適用可能である。
【0052】
また、実施形態例では、1ビットで構成されるパリティビットの付加された光信号を監視対象としたが、本発明は、複数ビットで構成されるパリティビットの付加された光信号に対しても、そのまま適用可能である。
【0053】
【発明の効果】
以上説明したように、本発明によれば、光信号レベルの状態で、監視対象の光信号が本来のものから変化してしまったのか否かを監視できるようになり、これにより、高速の光通信システムの構築を実現できるようになる。
【図面の簡単な説明】
【図1】本発明の動作説明図である。
【図2】本発明の動作説明図である。
【図3】本発明を備える光通信システムの一例である。
【図4】本発明の一実施形態例である。
【図5】SOAの増幅特性の説明図である。
【図6】SMZ−SOAの動作説明図である。
【図7】SMZ−SOAの動作説明図である。
【図8】実施形態例の動作説明図である。
【図9】実施形態例の動作説明図である。
【図10】実施形態例の動作説明図である。
【図11】実施形態例の動作説明図である。
【符号の説明】
1 光信号監視装置
10−1 第1の光演算機構
11−1 光分岐遅延機構
12−1 SMZ−SOA
10−2 第2の光演算機構
11−2 光分岐遅延機構
12−2 SMZ−SOA
10−3 第3の光演算機構
11−3 光分岐遅延機構
12−3 SMZ−SOA
20 監視機構
30 遅延用光ファイバ
40 ファイバアンプ
50 SOA
60 光学フィルタ

Claims (2)

  1. 1を持つビットの数が奇数となるようにとパリティビットが付加された光信号を監視する光信号監視装置であって、
    監視対象の光信号のビット長が2n ビット(nは2以上の整数)であるときにn段構成の光演算手段で構成され、最前段の光演算手段については監視対象の光信号を入力とし、それ以外の光演算手段については前段の光演算手段の出力する光信号を入力として、それぞれの光演算手段が、入力光信号を2つに分岐し、その一方を入力光信号の1ビット分遅延させるとともに、入力光信号の“1/2”の周期を持つ光クロック信号に同期させて、遅延させた入力光信号と遅延させない入力光信号とのビット対応のEOR演算を実行して、その演算結果の光信号を出力することで構成される手段と、
    最後段の光演算手段の出力する1ビットの光信号の信号値を監視する手段とを備えることを、
    特徴とする光信号監視装置
  2. 請求項1記載の光信号監視装置において、
    上記光演算手段は、上記光クロック信号を信号光入力とし、上記遅延させた光信号と上記遅延させない光信号とを制御光入力とする対称マッハーツェンダー型半導体光増幅器で構成されることを、
    特徴とする光信号監視装置
JP2001372166A 2001-12-06 2001-12-06 光信号監視装置 Expired - Lifetime JP3632081B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372166A JP3632081B2 (ja) 2001-12-06 2001-12-06 光信号監視装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372166A JP3632081B2 (ja) 2001-12-06 2001-12-06 光信号監視装置

Publications (2)

Publication Number Publication Date
JP2003174416A JP2003174416A (ja) 2003-06-20
JP3632081B2 true JP3632081B2 (ja) 2005-03-23

Family

ID=19181102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372166A Expired - Lifetime JP3632081B2 (ja) 2001-12-06 2001-12-06 光信号監視装置

Country Status (1)

Country Link
JP (1) JP3632081B2 (ja)

Also Published As

Publication number Publication date
JP2003174416A (ja) 2003-06-20

Similar Documents

Publication Publication Date Title
Seo et al. Transparent optical networks with time-division multiplexing
EP1379042B1 (en) Multiplexer
JP3000551B2 (ja) 光電式周波数分割器回路及びその操作方法
US6396607B1 (en) Multi-wavelength all-optical regenerators (MARS)
JP2882469B2 (ja) 光ネットワーク装置
JP3632081B2 (ja) 光信号監視装置
Sauer et al. A soliton ring network
JPH06224962A (ja) データ識別回路及びこれを用いた並列データ受信器
US8000605B2 (en) Synchronous OTDM: gapped clock creation and duty cycle multiplication
US5822106A (en) Synchronization of digital systems using optical pulses and mdoulators
JP2003179584A (ja) ネットワークシステムの同期方法
Bergman et al. Advances in multichannel multiGbytes/s bit-parallel WDM single fiber link
JP2001305497A (ja) オールパス光学フィルタを有する装置
US7197249B2 (en) Method and system for synchronizing optical clocks
Liboiron-Ladouceur et al. Bit-parallel message exchange and data recovery in optical packet switched interconnection networks
JP2749901B2 (ja) 光信号可変遅延装置を用いた光クロックの遅延方法
US6594053B1 (en) Apparatus for controlling cycles of optical pulse stream based on time correlation
Mack et al. Synchronously loaded optical packet buffer
JPH10303812A (ja) バイナリ信号の整形方法および装置
JP5212411B2 (ja) 光信号再生装置及び光信号再生方法
JP2001358653A (ja) 光パルス周期圧縮装置
JPH08163027A (ja) 光信号受信処理回路
JP2001094199A (ja) 光クロック抽出回路及び光通信システム
Mack et al. End-to-end asynchronous optical packet transmission, scheduling, and buffering
KR970008299B1 (ko) 알지/엔알지(rz/nrz) 광변환기

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Ref document number: 3632081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term