JP3627278B2 - 半導体量子デバイスの製造方法 - Google Patents
半導体量子デバイスの製造方法 Download PDFInfo
- Publication number
- JP3627278B2 JP3627278B2 JP7141895A JP7141895A JP3627278B2 JP 3627278 B2 JP3627278 B2 JP 3627278B2 JP 7141895 A JP7141895 A JP 7141895A JP 7141895 A JP7141895 A JP 7141895A JP 3627278 B2 JP3627278 B2 JP 3627278B2
- Authority
- JP
- Japan
- Prior art keywords
- quantum
- substrate
- etching
- semiconductor
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Drying Of Semiconductors (AREA)
Description
【産業上の利用分野】
本発明は、半導体量子デバイスの製造方法に関し、特に周囲がすべて誘電体膜で囲まれる完全な量子細線や量子ドットを安価に作成することを可能とする方法に関する。
【0002】
【従来の技術】
半導体エレクトロニクスの分野においては、電子を半導体結晶中におけるその波長(ド・ブローイ波長)と同程度の幅を有する半導体層に閉じ込めることにより電子の自由度を制限し、これにより生ずる量子効果を利用して新しい動作原理にもとづく半導体量子デバイスを作成する試みが行われている。半導体結晶中における電子の波長は約10nmであるから、電子を幅10nm程度の半導体の細線(量子細線)中に閉じ込めると、電子はこの細線中を散乱をほとんど受けずに進行することができるようになり、波の位相が保持され易くなる。また、電子を一辺が10nm程度の箱(量子箱)に閉じ込めると、極低温下で電子の熱振動が奪われたのと同じ状態を室温で実現できるようになる。これら量子細線や量子箱を平面上に多数配列させた伝導層を作り、この層の電子数をゲート電極の作用で増減させると、高速性、低雑音性に格段に優れた量子細線トランジスタを作成することができる。また、これら量子細線や量子箱をレーザの発光層に多数組み込むと、小さい注入電流でもシャープなスペクトルを有し、高効率で高周波特性に優れた半導体レーザ素子を得ることができる。
【0003】
これら量子細線や量子箱については、形状効果も検討されている。たとえば、月刊セミコンダクターワールド1991年9月号p.102〜107(プレスジャーナル社刊)には、底辺長さ40nmの3角形断面を有する量子細線が、1辺23nmの正方形断面を有する量子細線とほぼ等しい量子化状態を達成できることが示されている。この三角状量子細線は、十分に幅の狭い(100)面を上面とするAlGaAs層からなる台座の上にMOCVD法により面方位依存性を利用してGaAsを選択成長させることにより形成される。
【0004】
また、1990年7月19日付の日刊工業新聞には、量子箱デバイス作成のための基礎研究として、GaAs基板上にSiOx薄膜を形成し、このSiOx薄膜に3角形の開口を設けた状態でMOCVDを行うことにより、一辺の長さ500nmの微小な3角形ピラミッド形状のGaAs結晶を成長させた旨が記載されている。量子箱による量子効果が現れるためには、前述したように通常は一辺が10nm程度の微小な半導体層が必要であるが、正四面体空間であれば一辺の長さが1桁大きい100nm程度であっても、量子効果が現れることが示されている。
【0005】
【発明が解決しようとする課題】
ところで、これら量子細線や量子箱は、超格子における人工的なポテンシャル周期の設計の考え方を基本として発展してきたため、従来から研究あるいは実用化されてきた半導体量子デバイスのほとんどは、GaAs等の化合物半導体の薄膜を利用したものである。しかし、化合物半導体の基板はシリコン(Si)基板よりも価格が高く、しかも現状ではSi基板のように8インチもの大口径基板を入手することができない。また、MOCVD装置等の製造装置コストも通常のSiデバイス用製造装置コストよりかなり高くつく。かかる事情から、一般に化合物半導体を用いた半導体量子デバイスは量産性、経済性に難点を残している。
【0006】
そこで本発明は、GaAs等の化合物半導体材料はもちろん、Si系材料を用いることが可能な半導体量子デバイスの製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の半導体量子デバイスの製造方法は、上述の目的を達成するために提案されるものであり、深層領域に誘電体層を形成し、該誘電体層より浅い表層領域に半導体層を形成する工程と、前記半導体層上にダミーパターンを形成する工程と、前記ダミーパターンが形成された半導体層上に、斜めイオン注入を行い、異方的にエッチバックすることにより、該ダミーパターンの一方の側面壁に、サイドウォール状にエッチング・マスクを形成する工程と、前記エッチング・マスクを介して前記半導体層を前記誘電体層が露出するまで等方的にエッチングし、該エッチング・マスクとの界面におけるパターン幅を実質的に無視し得る電子閉じ込め領域を形成する工程と、前記エッチング・マスクを除去する工程とを有する。
【0008】
ここで、前記電子閉じ込め領域の形状は、等方的エッチング条件下でエッチング・マスクの直下に生じたアンダカットの最先端がエッチングの進行につれて該マスクの幅方向から中心に向かって接近し、遂にはエッチング・マスクとの界面におけるパターン幅が実質的に無くなることにより達成されるものである。したがって、エッチング・マスクが帯状であれば略三角形の断面形状を有する、すなわち三角柱状の量子細線が得られる。また、エッチング・マスクが多角形であればその角数に応じた数の稜を持つ錐体に近い形状の量子箱が得られる。たとえば、エッチング・マスクが正方形であれば、四角錐に近い形状の量子箱が得られる。ただし、等方的なエッチング条件下ではマスク下へのエッチング種の回り込みが多いため、実際に達成される量子箱の形状は、円錐、ないし円錐と角錐の中間的なものとなる。
いずれにしても、下地の誘電体膜が露出する時期と、エッチング・マスクとの界面におけるパターン幅が実質的に無くなる時期とが略々一致するように上記半導体層の厚さを設定しておけば、効率良い半導体量子デバイスの製造が可能となる。
【0009】
なお、等方的エッチングは、所定のエッチング溶液を用いたウェット・エッチングにより行うことができる。あるいは、プラズマ中に発生させる化学種の選択、基板バイアスの無印加、ダウンフロー型プラズマ装置の使用といった様に、イオン衝撃を極力排除してラジカル・モードが優先するようなエッチング条件を採用すれば、ドライエッチングにより行うこともできる。
【0011】
前記半導体層の形成方法は、前記誘電体膜をシリコン基板にO+をイオン注入することにより該シリコン基板の深層領域に形成し、該誘電体膜よりも浅い表層領域をもって半導体層を構成することも可能である。この場合、深層領域に形成される誘電体膜はSiOx膜となる。これは、SIMOX (Separation by Implanted Oxygen)として知られる誘電体分離技術の応用である。
【0013】
ダミー・パターンをシリコン系材料にて構成した場合には、たとえばO + の一方向斜めイオン注入を行うことにより該パターンの一方の側壁を重点的に酸化してサイドウォール状のSiOx膜を形成し、これを異方的にエッチバックすることによりサイドウォールを形成する。この方法によると、ダミー・パターンの寸法はリソグラフィの解像度による制約を受けるが、サイドウォールは、斜めイオン注入により行われることから、微細な寸法をもって形成される。この後にダミー・パターンを選択的に除去し、残ったサイドウォールをエッチング・マスクとして半導体層をエッチングすれば、微細な量子細線や量子箱を容易に形成することができる。
【0014】
【作用】
本発明で形成される電子閉じ込め領域は、断面形状が三角形の量子細線または錐体状の量子箱であるため、断面形状が四角形の量子細線または立方体状の量子箱に比べて適用されるデザイン・ルールが緩いものであっても同等の量子効果を発現させることができる。特に、この電子閉じ込め領域の構成材料となる半導体層としてシリコン系材料を用いれば、SIMOXといった既存のシリコン・プロセスの応用でこれを容易に形成することができ、技術的にもコスト的にも極めて有利である。また、本発明では電子閉じ込め領域が誘電体膜上に形成されるので、形成後に基体の全面を誘電体膜で被覆すれば、電子閉じ込め領域の周囲はすべて誘電体で囲まれることになる。したがって、量子細線に関して言えば、単に基板の一部を掘り下げて形成されていた様な従来型のものとは異なる完全な量子細線を得ることができ、トランジスタやレーザ素子の性能向上を図ることが可能となる。
【0015】
【実施例】
以下、本発明の具体的な実施例について説明する。
【0016】
参考例1
本発明の参考となる参考例1は、SOI基板上にレジスト・マスクを形成し、これを介して島状シリコン(Si)層を等方的にエッチングすることにより量子細線または量子箱を形成した例である。本参考例のプロセスを図1ないし図7を参照しながら説明する。
【0017】
まず、図1に示されるように、Si基板1に凸部2を形成した。この凸部2は、Si基板1上に形成された図示されないレジスト・マスクを介し、たとえばシャロー・トレンチ・エッチングの要領でSi基板1を異方的にドライエッチングすることにより形成した。 次に、図2に示されるように、基体の全面を平坦化する誘電体膜としてSiOx系絶縁膜3を形成した。このSiOx系絶縁膜3は、SOG(スピン・オン・グラス)の塗布、O3 −TEOS(テトラエトキシシラン)系による常圧CVD、H2O −TEOSプラズマCVD等、優れた段差被覆性と高い平坦性を達成可能な手法により形成することができる。本参考例では、O3 −TEOS系にさらにTMB(トリメチルホウ酸)とTMP(トリメチルリン酸)を添加したガス系を用いて常圧CVDを行うことにより、BPSG膜を形成した。
【0018】
次に、図2に示される基体の表裏を反転させ、図3に示されるように別のSi基板4に上記SiOx系絶縁膜3の表面を接触させるごとく貼り合わせた。
【0019】
続いて、上記Si基板1を裏面側から研磨した。この研磨は、たとえば公知のCMP(化学機械研磨)法により行い、SiOx系絶縁膜3が露出した時点で終了した。この結果、図4に示されるように、Si基板1の上記凸部2がSiOx系絶縁膜3の溝部3gの中に島状に埋め込まれた形で残り、島状Si層2bとなった。ここまでのプロセスは、貼り合わせSOIの典型的な手順にしたがっている。
【0020】
この後、レジスト・マスクを介して上記凸部2を等方的にエッチングするのであるが、このときのレジスト・マスクの形状に応じて量子細線と量子箱のいずれをも共通プロセスにて形成することができる。そこで、以降は図5ないし図7を参照しながらこれら両方のプロセスをまとめて説明する。なお、図5ないし図7において、(a)の図は量子細線、(b)の図は量子箱の形成プロセスそれぞれ表す。
【0021】
まず、基体の全面に電子ビーム・レジスト材料を塗布し、電子ビーム・リソグラフィによるパターン直接描画と現像処理を経て図5の(a)に示されるような幅約10nmの帯状のレジスト・マスク5w(添字wは量子細線形成用であることを表す。)、または(b)に示されるような一辺約10nmの正方形のレジスト・マスク5d(添字dは量子箱形成用であることを表す。)を上記島状Si層2bの上に形成した。
次に、上記レジスト・マスク5w,5dをそれぞれマスクとし、SiOx系絶縁膜3に対して選択比を確保できる条件にて島状Si層2bを等方的にエッチングし、図6の(a)に示されるような略三角形の断面形状を有する量子細線2w、あるいは(b)に示されるような略円錐形の量子箱2dを形成した。上記等方的なエッチングは、HF/HNO3 混合溶液を用いたウェット・エッチング、またはマイクロ波ダウンフロー型プラズマ・エッチング装置とCF4 /O2 混合ガスを用いたドライエッチングのいずれによっても良好に行うことができた。なお、上記量子箱2dの形状は、エッチング条件やレジスト・パターンの寸法によっては四角錐、ないし円錐と四角錐の中間的な形状をとることもあった。
次に、アッシングまたは剥離液を用いた通常のレジスト除去プロセスにしたがってレジスト・マスク5w,5dを除去した。なお、このようにして得られた量子細線2wまたは量子箱2dは、この後さらに等方性エッチングを行えば、その寸法を一層減少させることが可能である。
最後に図示されない誘電体膜で基体の全面を被覆し、周囲が完全に誘電体膜で囲まれた量子細線2dまたは量子箱2dを形成することができた。
【0022】
参考例2
本参考例では、SIMOX基板上にレジスト・マスクを形成し、これを介してシリコン基板の表層部を等方的にエッチングすることにより規則的に配列された量子細線または量子箱を形成した例である。本参考例のプロセスを図8ないし図12を参照しながら説明する。なお、図10ないし図12においては、(a)の図が量子細線の形成プロセス、(b)の図が量子箱の形成プロセスに対応している。
【0023】
まず、図8に示されるようにSi基板11に酸素イオン注入を行い、図9に示されるように該Si基板11の深層部に埋め込みSiOx層12を形成した。これは、公知のSIMOX法の応用である。本実施例では、上記埋め込みSiOx層12より上層側のSi基板11の部分、すなわち表層部11s(図9参照。)が後工程において量子細線や量子箱に加工されるので、上記イオン注入は上記表層部11sの所望の厚さに応じて酸素イオンの飛程を制御しながら行う必要がある。
【0024】
以後のプロセスは、参考例1と同様である。すなわち、図10に示されるように、上記表層部11sの上に規則的に配列された帯状のレジスト・マスク12wまたは正方形のレジスト・マスク12dを形成した。次に、図11に示されるように上記表層部11sを等方的にエッチングして量子細線11wまたは量子箱11dを形成した。さらに、図12に示されるようにレジスト・マスク12w,12dを除去した。
【0025】
参考例3
本参考例では、参考例2で述べたSIMOX基板上におけるエッチング・マスク形成の変形例として、シリコン化合物系材料のエッチバックによるサイドウォール形成を適用した。本参考例のプロセスについて、図13ないし図16を参照しながら説明する。
【0026】
まず、公知のSIMOX法により埋め込みSiOx層22を形成したSi基板22の表層部21sの上に、ダミー・パターン23を形成した。このダミー・パターン23は、上記表層部21s上に堆積されたポリシリコン層,アモルファス・シリコン層,あるいはSiOx層を電子ビーム・リソグラフィおよび異方性エッチングを経てパターニングすることにより形成可能である。本参考例では、後工程でこのダミー・パターン23を除去する際の表層部21sに対するエッチング選択比を確保する観点から、SiOx層を用いた。ここで、ダミー・パターン23の幅は約90nm、高さは約10〜20nm、形成間隔は約180nmとした。さらに、基体の全面にコンフォーマルなSiN膜24を堆積させた。図13には、ここまでのプロセスを終了した状態が示されている。
【0027】
次に、たとえばマグネトロンRIE装置とCF4 ,C2 F6 といった公知のフルオロカーボン系ガスを用いて上記SiN膜24をエッチバックし、図14に示されるように、上記ダミー・パターン23の側壁面上にサイドウォール24swを形成した。
この後、図15に示されるようにCHF3 /O2 等のガス系を用いて上記ダミー・パターン23を選択的に除去し、表層部21sの上にサイドウォール24swのみを残した状態とした。
【0028】
この後、上記サイドウォール24swをマスクとした上記表層部21sの等方性エッチングを前述のように行い、図16に示されるような量子細線21wまたは量子箱21dを形成した。
【0029】
実施例
本発明を適用した実施例は、上記サイドウォール状のエッチング・マスク形成の変形例として、サイドウォールを斜めイオン注入によるダミー・パターンの部分的酸化により形成した例である。本実施例のプロセスを図17ないし図20を参照しながら説明する。
【0030】
まず、図17に示されるように、公知のSIMOX法により埋め込みSiOx層22を形成したSi基板22の表層部21sの上に、ダミー・パターン23を形成した。このダミー・パターン23は、上記表層部21s上にポリシリコン層あるいはアモルファス・シリコン層を堆積させてこれを電子ビーム・リソグラフィによりパターニングするか、あるいは上記表層部21sの厚さ方向の一部をシャロー・トレンチ・エッチングの要領で掘り下げることにより形成した。なお、後者の場合には、表層部21sの厚さを上記堀り下げ分を見込んで厚めに設定しておく必要があるため、これに応じてSIMOX基板作成時の酸素イオンの飛程を選択する。
次に、酸素の斜めイオン注入を行った。これにより、上記ダミー・パターン23の上面と一方の側壁面、および表層部21sのうちダミー・パターン23による入射イオンの遮蔽を受けない領域が選択的に酸化され、SiOx層25が形成された。
【0031】
次に、Si系材料に対して高選択比を確保できる条件で上記SiOx層25の異方性エッチングを行い、図18に示されるように、上記ダミー・パターン23の一方の側壁面上にサイドウォール25swを形成した。
【0032】
次に、上記サイドウォール25swおよび埋め込みSiOx層22に対して選択比を確保できる条件で、上記ダミー・パターン23と上記表層部21sの異方性エッチングを行った。この結果、図19に示されるように、サイドウォール25swの下に垂直壁を有する表層部21sのパターンが形成された。
この後、上記サイドウォール25swをマスクとした上記表層部21sのパターンの等方性エッチングを短時間で行い、図20に示されるような量子細線21wまたは量子箱21dを形成した。
【0033】
以上、本発明を実施例にもとづいて説明したが、本発明は上述の実施例に何ら限定されるものではなく、基板構造の細部、基板の各部を構成する材料や形成方法等は適宜変更が可能である。また、上記実施例ではシリコン・プロセスで形成できる半導体量子デバイスについてのみ説明したが、化合物半導体を用いる半導体量子デバイスも同様の考え方にもとづき作成することができる。
【0034】
【発明の効果】
以上の説明からも明らかなように、本発明によれば従来主として化合物半導体プロセスにもとづいて作成されていた半導体量子デバイスを、基本的にシリコン・プロセスにより形成することができる。しかも、本デバイスに含まれる量子細線や量子箱は、周囲が完全に誘電体膜で囲まれるために、極めて効率の良い電子閉じ込め効果を発揮する。したがって、材料コストや製造装置コストを低く抑え、かつ確立された既存の製造技術を用いながら、信頼性の高い半導体量子デバイスを安価に大量生産することが可能となる。
【図面の簡単な説明】
【図1】貼り合わせSOI基板上に量子細線または量子箱を形成する本発明の実施例において、Si基板上に凸部を形成した状態を示す模式的斜視図である。
【図2】図1の基体の全面にSiOx系絶縁膜を平坦に堆積させた状態を示す模式的斜視図である。
【図3】図2の基体の表裏を反転させ、SiOx系絶縁膜に接して別のSi基板を貼り合わせた状態を示す模式的斜視図である。
【図4】最初のSi基板を裏面側から研磨して島状Si層を形成した状態を示す模式的斜視図である。
【図5】図4の島状Si層の上にレジスト・マスクを形成した状態を示す模式的斜視図であり、(a)の図は量子細線形成用、(b)の図は量子箱形成用のものをそれぞれ表す。
【図6】図5のレジスト・マスクを介して島状Si層をエッチングして電子閉じ込め領域を形成した状態を示す模式的斜視図であり、(a)の図は該電子閉じ込め領域として量子細線、(b)の図は量子箱を形成した状態をそれぞれ表す。
【図7】図6のレジスト・マスクを除去した状態を示す模式的斜視図である。
【図8】SIMOX基板上に量子細線または量子箱を形成する本発明の実施例において、Si基板上に酸素のイオン注入を行っている状態を示す模式的斜視図である。
【図9】上述のイオン注入によりSi基板の深層部に埋め込みSiOx層を形成した状態を示す模式的斜視図である。
【図10】図9のSi基板上にレジスト・マスクを形成した状態を示す模式的斜視図であり、(a)の図は量子細線形成用、(b)の図は量子箱形成用のものをそれぞれ表す。
【図11】図10のレジスト・マスクを介して島状Si層をエッチングし、電子閉じ込め領域を形成した状態を示す模式的斜視図であり、(a)の図は該電子閉じ込め領域として量子細線、(b)の図は量子箱を形成した状態をそれぞれ表す。
【図12】図11のレジスト・マスクを除去した状態を示す模式的斜視図である。
【図13】SIMOX基板上に量子細線または量子箱を形成する本発明の他の実施例において、Si基板上に形成されたダミー・パターンを被覆してSiN膜を形成した状態を示す模式的断面図である。
【図14】図13のSiN膜をエッチバックしてダミー・パターンの側壁面上にサイドウォールを形成した状態を示す模式的断面図である。
【図15】図14のダミー・パターンを選択的に除去した状態を示す模式的断面図である。
【図16】図15のサイドウォールをマスクとしてSi基板の表層部をエッチングし、量子細線または量子箱を形成した状態を示す模式的断面図である。
【図17】SIMOX基板上に量子細線または量子箱を形成する本発明のさらに他の実施例において、ダミー・パターンの形成されたSi基板に対して酸素の斜めイオン注入を行い、該ダミー・パターンとSi基板の表層部に部分的にSiOx層を形成した状態を示す模式的断面図である。
【図18】図17のSiOx層を異方的にエッチングし、ダミー・パターンの片方の側壁面上にサイドウォールを形成した状態を示す模式的断面図である。
【図19】図18のダミー・パターンとSi基板の表層部を異方性エッチングし、表層部からなるパターンを形成した状態を示す模式的断面図である。
【図20】図19のサイドウォールをマスクとして上記表層部のパターンを等方的にエッチングし、量子細線または量子箱を形成した状態を示す模式的断面図である。
【符号の説明】
1,11,21 Si基板
2 凸部
2b 島状Si層
2w,11w,21w 量子細線
2d,11d,21d 量子箱
3 SiOx系絶縁膜
3g 溝部
5w,12w レジスト・マスク(量子細線形成用)
5d,12d レジスト・マスク(量子箱形成用)
12,22 埋め込みSiOx膜
23 ダミー・パターン
24 SiN膜
24sw,25sw サイドウォール
25 SiOx層
Claims (4)
- 深層領域に誘電体層を形成し、該誘電体層より浅い表層領域に半導体層を形成する工程と、
前記半導体層上にダミーパターンを形成する工程と、
前記ダミーパターンが形成された半導体層上に、斜めイオン注入を行い、異方的にエッチバックすることにより、該ダミーパターンの一方の側面壁に、サイドウォール状にエッチング・マスクを形成する工程と、
前記エッチング・マスクを介して前記半導体層を前記誘電体層が露出するまで等方的にエッチングし、該エッチング・マスクとの界面におけるパターン幅を実質的に無視し得る電子閉じ込め領域を形成する工程と、
前記エッチング・マスクを除去する工程とを有する半導体量子デバイスの製造方法。 - 前記電子閉じ込め領域が三角形の断面形状を有する量子細線である請求項1記載の半導体量子デバイスの製造方法。
- 前記電子閉じ込め領域が錐体状の量子箱である請求項1記載の半導体量子デバイスの製造方法。
- 前記半導体層をシリコン系材料を用いて形成する請求項1記載の半導体量子デバイスの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7141895A JP3627278B2 (ja) | 1995-03-29 | 1995-03-29 | 半導体量子デバイスの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7141895A JP3627278B2 (ja) | 1995-03-29 | 1995-03-29 | 半導体量子デバイスの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08274297A JPH08274297A (ja) | 1996-10-18 |
JP3627278B2 true JP3627278B2 (ja) | 2005-03-09 |
Family
ID=13459951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7141895A Expired - Fee Related JP3627278B2 (ja) | 1995-03-29 | 1995-03-29 | 半導体量子デバイスの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3627278B2 (ja) |
-
1995
- 1995-03-29 JP JP7141895A patent/JP3627278B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08274297A (ja) | 1996-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6063688A (en) | Fabrication of deep submicron structures and quantum wire transistors using hard-mask transistor width definition | |
US5330879A (en) | Method for fabrication of close-tolerance lines and sharp emission tips on a semiconductor wafer | |
US5963841A (en) | Gate pattern formation using a bottom anti-reflective coating | |
CN100573849C (zh) | 用于形成具有鳍状结构的半导体元件的方法 | |
US7672558B2 (en) | Silicon optical device | |
US6177331B1 (en) | Method for manufacturing semiconductor device | |
EP1358669B1 (en) | Dynamic memory based on single electron storage | |
JPH03116753A (ja) | 高度に平面化された集積回路構造を作るための方法 | |
US6291310B1 (en) | Method of increasing trench density for semiconductor | |
JP3572713B2 (ja) | 半導体量子細線デバイスの製造方法 | |
JP3182892B2 (ja) | 量子素子の製造方法 | |
KR0161430B1 (ko) | 스페이서를 이용한 트렌치 형성방법 | |
JPH11284064A (ja) | トランジスタの浅いトレンチ分離体を化学的機械的研磨を用いないで作成する方法 | |
JP3748726B2 (ja) | 量子細線の製造方法 | |
JP3627278B2 (ja) | 半導体量子デバイスの製造方法 | |
KR19980085035A (ko) | 라운딩된 프로파일을 갖는 트렌치 형성방법 및 이를 이용한 반도체장치의 소자분리방법 | |
JP3811323B2 (ja) | 量子細線の製造方法 | |
KR100417195B1 (ko) | 반도체 소자의 제조방법 | |
KR100641494B1 (ko) | 반도체 소자 제조방법 | |
KR20010060552A (ko) | 플래쉬 메모리 소자 제조방법 | |
KR100753098B1 (ko) | 채널길이를 증가시킨 반도체 소자 및 그의 제조 방법 | |
JP2811880B2 (ja) | ドライエッチング方法 | |
JPH09135017A (ja) | 量子デバイスの製造方法 | |
KR0130610B1 (ko) | GaAs/AlGaAs기판을 이용한 양자세선 제작방법 | |
JPH05267640A (ja) | 微構造形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041116 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041129 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |