JP3624680B2 - Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device - Google Patents

Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device Download PDF

Info

Publication number
JP3624680B2
JP3624680B2 JP07605098A JP7605098A JP3624680B2 JP 3624680 B2 JP3624680 B2 JP 3624680B2 JP 07605098 A JP07605098 A JP 07605098A JP 7605098 A JP7605098 A JP 7605098A JP 3624680 B2 JP3624680 B2 JP 3624680B2
Authority
JP
Japan
Prior art keywords
steel pipe
cooling
cooling device
axial direction
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07605098A
Other languages
Japanese (ja)
Other versions
JPH11269548A (en
Inventor
学 福本
一男 岡村
道春 播木
征司 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07605098A priority Critical patent/JP3624680B2/en
Publication of JPH11269548A publication Critical patent/JPH11269548A/en
Application granted granted Critical
Publication of JP3624680B2 publication Critical patent/JP3624680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋼管を熱処理するに際し、鋼管の軸方向に生ずる外径の不均一性を抑制するための鋼管の内外面の冷却方法および内外面冷却装置に関する。
【0002】
【従来の技術】
鋼管の内外面冷却方法として、特開昭58−141332号公報に、水槽に鋼管を浸漬して回転させながら水槽内に設けたノズルから冷却水を供給することによって鋼管の内外面を同時に強制冷却する方法が開示されている。
【0003】
しかし、この方法は、鋼管の内外面を同時に冷却するに際し、水槽等の装置が大規模になり、長尺管の冷却には適さない。また浸漬して回転冷却することで外面冷却は鋼管の軸方向でほぼ同時にできても、内面冷却は冷却水の貫通時間の差により鋼管の軸方向で不均一となり、この影響は長尺管ほど大きいという問題がある。
【0004】
しかも、同公報の開示内容は、焼き曲がりの改善が目的であり、鋼管外径の不均一性を改善するというさらに高い目標を達成するものではない。
【0005】
また、特開昭58−52426号公報に、鋼管の冷却方法として板状のラミナー冷却水を回転する鋼管の全長にわたって流下させる外面冷却の方法が開示され、特公平2−8008号公報に、鋼管を回転させながら内外面から同時に冷却し、更に鋼管を軸方向に往復運動させる方法が開示されているが、いずれも鋼管の焼き曲がり防止を目的に開発された方法であり、本発明が解決しようとする焼入れ後の鋼管の軸方向の鋼管外径の不均一性を改善するという目標を達成するものではない。
【0006】
【発明が解決しようとする課題】
鋼管の製造プロセスでは、通常焼き入れ装置の後にサイザーやストレートナーといった外径矯正装置を有しており、これらにより前記外径の不均一をある程度除去できるが、過度の矯正は加工の影響による製品性能の低下が免れず、焼入れ後の鋼管外径の不均一を極力抑制する必要がある。
【0007】
本発明の目的は、炭素鋼や低合金鋼からなる種々の径および肉厚の長尺の鋼管の焼入れに際し、内面冷却水を供給するのと反対側(内面冷却水の出側)の鋼管端部付近に発生する焼入れ後の鋼管外径の不均一を抑制する鋼管の内外面の冷却方法および冷却装置を提供することにある。
【0008】
【課題を解決するための手段】
加熱された鋼管を中心軸の回りに回転させながら鋼管の軸方向に平行に設けた単一または複数の板状水幕で鋼管外面を同時に冷却し、該鋼管の端に設置した内面冷却装置から冷却水を供給して管内面を冷却する冷却方法では、外面冷却の鋼管周方向の不均一性により発生する管の曲がりを抑制する観点から、通常は冷却の周方向不均一が小さい内面冷却を外面冷却の開始時期と同じ、もしくはそれより先に開始する。ここに、外面冷却の開始時期とは板状水幕が鋼管に衝突する時期を言い、内面冷却の開始時期とは冷却装置から供給された冷却水が該冷却装置のある管端から管内に進入した時期をいう。この場合、冷却の周方向の不均一性を抑制することが期待できる反面、内面の冷却能力の鋼管の軸方向の不均一性とこれに起因する鋼管の軸方向の外径の不均一性が問題となる。
【0009】
以下に、内面の冷却能力の鋼管の軸方向の不均一性と、これに起因する鋼管の軸方向の外径の不均一性について述べる。
加熱した鋼管の内面を、鋼管の端(鋼管入側)に設置した冷却装置より冷却水を供給して冷却する場合、冷却水の温度は冷却水が鋼管内に進行するとともに上昇し、冷却水を供給するのと反対の管端(鋼管出側)では内面冷却水の温度の上昇に加えて鋼管の端が開放されているために冷却水の圧力が低下し、これに伴い冷却能力が鋼管の軸方向に低下する。この冷却能力の低下は、鋼管が長尺になるほど顕著となる。
【0010】
図2は、鋼管出側の内面の冷却水温度の冷却開始からの時間変化である。
同図に示すように、内面の冷却水の出側では、内面の冷却水の温度は最大60℃程度にまで上昇している。この時の入側の冷却水の温度は22℃である。
【0011】
図3は、鋼管入側、中間部、出側での鋼管内面における熱伝達率を測定した結果である。
同図に示すように、これより前記の内面の冷却水の温度上昇により鋼管出側ほど冷却能力が低下する。この冷却能力の低下により冷却後の鋼管外径は内面の冷却水の進行方向に従い、徐々に小さくなり、冷却能力の低下の著しい前述の開放端では特に外径が小さくなる。通常、これらの外径の不均一は、焼入れ後もしくは焼戻し後にホットストレートナー等の外径矯正装置にて除去されるが、鋼管の鋼種や外径、肉厚によっては充分除去されず外径公差内に収まらない場合や、公差内に収まる程度まで外径の不均一を除去できても矯正時に受けた機械的加工により製品の性能が低下する場合とがあり問題である。
【0012】
図4は、外径244.5mm、肉厚11mm、長さ24000mmの鋼管を内面冷却を3秒先行させて内外面冷却したときの外径分布である。
同図に示すように、製管後の外径に対して、出側部分で焼入れ後の外径がかなり小さくなっている。この程度の外径の不均一が生じた場合には、出側端部の2、3m を焼入れ後に切断しなければならず、歩留まり向上の観点からも解決しなければならない問題である。
【0013】
この問題に対して本発明者は、20m から30m の長尺の鋼管を内外面冷却する場合について実験および理論解析を繰り返した結果、下記の知見を得た。
(A) 内面冷却を開始する時期と外面冷却を開始する時期とを制御し、外面冷却を内面冷却に先行させることで前述の鋼管の軸方向の外径の不均一性を抑制でき、この外面冷却を内面冷却に先行させる時間差は、冷却する鋼管の外径や肉厚に応じて最適値が存在する。
【0014】
(B) 鋼管の材質にもよるが、概ね外径が200mm以上で肉厚が10mm以上の鋼管に対しては外面冷却を内面冷却に先行させた場合でも、懸念される曲がりは従来の冷却条件に対してほとんど大きくならない。
【0015】
(C) 図5は、外径244.5mm、肉厚11mm、長さ24000mmの鋼管を850℃から回転させながら、内外面を冷却した場合の鋼管の軸方向の焼入れ後の外径分布である。ここで、外面は2列の板状水幕流で流量1.5m/(m・min)で、内面は管入側から冷却水供給ノズルにより流量3000T/H 以上でそれぞれ冷却し、内面冷却開始は外面冷却開始より0、1、3、5秒先行している。また鋼管回転数は80rpm である。
【0016】
図6は、外面の冷却開始を内面の冷却より1、2、3、4秒それぞれ先行させ、それ以外の冷却条件は図5と同一とした場合の冷却後の外径分布である。
図5、図6に示すように、外面冷却を1秒から2秒程度内面冷却より先行して開始することで鋼管の軸方向の外径の不均一性が大幅に抑制されることが分かる。
【0017】
図7は、図5、図6の結果を整理し直したグラフを示し、冷却開始時間と径小率Kとの関係示すグラフであり、内外面の冷却の開始時間差に最適な時間差が存在する。なお、横軸のマイナスは、内面冷却を先行させる時間(秒)を示す
ここで、径小率Kは、鋼管の軸方向の外径の不均一性を表す指標であり、下記の(1)式のように定義される。
K(%)=(最大外径−最小外径)/(最大外径)×100 (1)
(D) 図8は、図5で示した内外面同時冷却処理に先立ち、鋼管出側から2m の範囲の鋼管外面を0.5秒から2秒先行させて冷却し、その後内面と外面全長を同時に冷却した場合の焼入れ後の鋼管の軸方向の外径分布である。
【0018】
同図に示すように、出側外面を0.5から2秒程度先行させて冷却することで鋼管の軸方向の外径の不均一性は大幅に抑制され、その効果は前記の外面全長を先行冷却する場合よりも大きくなる。
【0019】
(E) 図9は、各種の寸法の鋼管に対して、内面冷却を外面冷却より3秒先行させた場合の径小率Kを調べたものである。
同図に示すように、冷却する鋼管の外径が異なっても、それぞれある肉厚で径小率Kが大きくなる場合があり、各外径で径小率Kが大きくなる肉厚の鋼管寸法について、外面全長の冷却の開始時期を内面冷却の開始時期より1から2秒先行させた場合の径小率Kへの影響を調査した。
【0020】
図10は、従来冷却法である内面冷却を3秒先行させた場合と上記外面全長の冷却の開始時期を内面冷却の開始時期より1から2秒先行させた場合の径小率Kへの影響を比較したものである。
【0021】
同図に示すように、外径250mm程度の鋼管では外面冷却を1秒先行させた場合に、それより大きい外径を持つ鋼管では外面冷却を2秒先行させた場合に径小率Kを小さくでき、鋼管の軸方向の外径の不均一性を抑制できることが分かる。また、外径が150mm以下で肉厚が10mm程度の鋼管では内面冷却を先行しても元々径小率は小さく、外面冷却を先行する必要はない。
【0022】
(F) さらに、この5種の寸法の鋼管で、外面先行冷却の必要がない外径φ139.7mm×肉厚t10mmを除外した4種の寸法の内、最も焼き曲がりが懸念される外径177.8mm、肉厚10mmのものについて内面冷却を3秒先行した場合と外面冷却を1秒先行した場合の鋼管10m あたりの冷却後曲がり量を調査した。
【0023】
図11は、上記の調査結果を示す。
同図に示すように、外面冷却を先行させても曲がり量は許容される範囲に収めることができる。ここで、許容される曲がり量は、鋼管の搬送上問題がない10m あたり10mm以下としている。
【0024】
本発明は、以上の知見に基づいてなされたものであり、その要旨は、下記の(1) 〜(3) に示すとおりである。
(1) 加熱された鋼管を中心軸の回りに回転させながら鋼管の軸方向に平行に設けた外面冷却装置から冷却水を供給して鋼管の外面を軸方向に同時に冷却し、該鋼管の端に設置した内面冷却装置から鋼管内面に冷却水を供給して内面を冷却する鋼管の内外面の冷却方法において、外面冷却を内面冷却より先に開始することを特徴とする鋼管の内外面の冷却方法。
【0025】
(2) 加熱された鋼管を中心軸の回りに回転させながら鋼管の軸方向に平行に設けた外面冷却装置から冷却水を供給して鋼管の外面を軸方向に同時に冷却し、該鋼管の端に設置した内面冷却装置から鋼管内面に冷却水を供給して内面を冷却する鋼管の内外面の冷却方法において、全長にわたって同時に内外面を冷却するのに先立ち、鋼管の外面を内面冷却水が供給されるのと反対側の端から該鋼管の全長の100分の5から100分の15の長さの範囲で冷却することを特徴とする鋼管の内外面の冷却方法。
【0026】
(3) 鋼管を中心軸の回りに回転させる装置と、鋼管の軸方向に平行に設けた外面冷却装置と、鋼管の端から鋼管内面に向けて設置された内面冷却装置、および鋼管の軸方向に平行な方向に移動可能で複数の冷却装置を有する鋼管出側端部の外面冷却装置からなることを特徴とする鋼管の内外面冷却装置。
【0027】
【発明の実施の形態】
本発明の構成を図1(a)、(b)に示す。図1(a)は、処理工程の基本フローを示し、図1(b)は、冷却装置2の概要を示す。
【0028】
(1) 請求項1に記載する発明は、加熱炉1から搬出された加熱された鋼管12を回転装置7を使用して中心軸の回りに回転させながら鋼管の軸方向に平行に設けた外面冷却装置4から冷却水を供給して鋼管の外面を軸方向に同時に冷却し、該鋼管の端に設置した内面冷却装置5から鋼管内面に冷却水を供給して内面を冷却する鋼管の内外面の冷却方法において、外面冷却を内面冷却より先に開始する方法である。
【0029】
(2) 請求項2に記載する発明は、加熱炉1から搬出された加熱された鋼管12を鋼管回転装置7を使用して中心軸の回りに回転させながら鋼管の軸方向に平行に設けた外面冷却装置4から冷却水を供給して鋼管の外面を同時に冷却し、該鋼管の端に設置した内面冷却装置5から鋼管内面に冷却水を供給して内面を冷却する鋼管の内外面の冷却方法において、全長にわたって内外面を冷却するに先立ち、鋼管の外面を内面冷却水が供給されるのと反対側の端から該鋼管の全長の100分の5から100分の15の長さの範囲で鋼管出側の端部外面冷却装置8を使用して冷却する方法である。
【0030】
(3) 請求項3に記載する発明は、鋼管を中心軸の回りに回転させる鋼管の回転装置7と、鋼管の軸方向に平行に設けた外面冷却装置4と、鋼管の端から鋼管内面に向けて設置された内面冷却装置5、および鋼管の軸方向に平行な方向に移動可能で複数の冷却装置を有する鋼管出側の端部外部冷却装置8からなる冷却装置である。
【0031】
外面冷却装置4は、鋼管の外面に対して鋼管の軸方向に均一に同時に冷却水を供給できる装置であればよく、内面冷却装置5も鋼管の内面に対して鋼管の端から鋼管内面に冷却水を供給できる装置であればよい。
【0032】
たとえば、外面冷却装置としては鋼管上方から板状の冷却水が管軸を含む平面に沿って供給される装置であればよく、板状の冷却水を供給するノズルとしてはスリットノズルが好適である。内面冷却装置としては、安定した流れを確保するため、可能な限り長い直線管路をもつノズルを備えたものが好ましく、ノズル先端に整流板などを設けてもよい。更に、管内の水圧を確保するために、鋼管を外周から掴み、該鋼管の端を密閉状態にできる内面冷却装置が好適である。
鋼管の回転速度は、曲がり量抑制の点からは80rpm 以上が望ましく、装置コストを考慮すると110rpm 以下とするのが好ましい。
【0033】
前記装置に加えて、任意の鋼管長さの内面冷却水出側の鋼管の端部分の鋼管の全長の100分の5から100分の15の範囲を単独で冷却可能な鋼管出側の端部外部冷却装置8が必要である。鋼管の全長の100分の5から100分の15の範囲とした理由は、100分の5未満であれば、内面冷却能力の低下している範囲の冷却を補助するという本来の目的を十分達成できず、100分の15を超えると、内面冷却能力の低下していない範囲まで冷却を補助することになり、冷却過大となり、外径が大きくなり外径不均一性が問題となるからである。
好ましい範囲は、100分の8から100分の12の範囲である。
【0034】
鋼管出側の端部外面冷却装置8は、鋼管の軸方向に平行に移動可能な搬送ローラ9の上に複数個のスプレーノズル17を数十センチの間隔で設置し、冷却する鋼管12の長さに応じてそれを移動して該鋼管の全長の100分の5から100分の15の範囲を冷却できるようにしたものであればよく、鋼管の両側から冷却できるように装置2台を一対とした装置が好適である。
【0035】
図12は、鋼管出側端冷却装置8の構成をさらに詳しく示す概念図である。
図12に示すように、鋼管出側の端部外面冷却の操作方法は、鋼管12が冷却装置に搬送される前に給水口15から貯水タンク14に水を必要量注入しておき、鋼管が冷却装置内に搬送されると同時に冷却装置架台13を搬送ローラ9により移動させ、スプレーノズル17が鋼管長さの100分の5から100分の15程度を冷却できる位置で停止させ、鋼管の回転装置7によって回転された鋼管の回転が定常に達した時点でポンプ16により加圧された水を流調弁11を開放してスプレーノズル17に供給し、冷却水を噴射して鋼管12を1から2秒程度冷却すればよく、続いて、スプレーノズル17からの供給停止と同時に外面冷却と内面冷却を開始する。
【0036】
内面冷却および外面冷却は、図1(b)に示す冷却水制御装置10にプリセットされた設定時期に従って、それぞれ流下水遮断樋6および流調弁11を開閉することにより行われる。
【0037】
外面冷却の先行時間について以下に述べる。
外面冷却の先行時間は、内面冷却水の流量が3000T/H 以上の流量で、鋼管外径が250mm以下のもので1秒程度、鋼管外径がそれ以上のものでは2秒程度が好ましい。
【0038】
なお、内面冷却を適正に行うには、3000T/H 以上の流量が必要である。
鋼管出側端における外面冷却の先行時間は、上記に示した鋼管出側端冷却装置8のように、通常の外面冷却と同程度の冷却能力を持つものであれば上記と同様の条件でよく、0.5秒から2秒程度が好ましい。
【0039】
【実施例】
加熱炉で950℃に加熱された鋼管を冷却装置へ搬送し、鋼管が冷却装置内の所定の位置に定置された後、鋼管の回転装置によって回転数80rpm にて鋼管を回転させ、数秒後に鋼管の回転が定常に達した時点で冷却を開始した。
【0040】
このとき外面冷却はスリットノズルからの流下水により行ない、内面冷却は噴射ノズルからの通水によって行った。
内面冷却水量は3300〜4400T/H 、外面冷却水量は1.5m/(m・min)に設定した。
【0041】
同様に加熱、搬送された鋼管が80rpm で定常回転に達したのち、すでに鋼管出側端に移動された鋼管出側端外面冷却装置により鋼管長さの10分の1の範囲で0.5秒から2秒出側端外面を冷却し、出側端外面の冷却停止と同時に内面冷却と外面冷却が開始されるようにした。出側端外面冷却装置としては、図12に示した装置を使用した。
【0042】
表1に、冷却条件と評価結果を示す。
なお、外面冷却水量の単位は、m/(m ・min)であり、鋼管の長さ1m 当り、1min.当りの冷却水量mであり、外面冷却の先行時間がマイナスの場合は内面冷却の先行時間を示す。
【0043】
表1に結果を示すように、外面冷却を先行させると径小率は、0.30%以下になるが、鋼管出側端部の冷却を先行させると0.10%以下となり、さらに良くなった。内面冷却を先行させると、径小率は、0.30%を超えて悪化した。
【0044】
【表1】

Figure 0003624680
【0045】
【発明の効果】
本発明にれば、鋼管出側端部付近に発生する焼入れ後の鋼管外径の不均一を抑制することができる。
【図面の簡単な説明】
【図1】本発明の方法および装置を示す図であり、図1(a)は、処理工程を示すブロック図であり、図1(b)は、方法および装置の概要を示す概念図である。
【図2】内面冷却水の出側における水温と経過時間との関係を示すグラフである。
【図3】内面冷却水の鋼管入側、中間部および出側における鋼管内面温度と鋼管内面熱伝達率との関係を示すグラフである。
【図4】内面冷却を3秒先行して焼き入れた場合と焼き入れない場合における鋼管入側端からの距離と外径との関係を示すグラフである。
【図5】内面冷却の先行時間を変化させたときの鋼管入側端からの距離と外径との関係を示すグラフである。
【図6】外面冷却の先行時間を変化させたときの鋼管入側端からの距離と外径との関係を示すグラフである。
【図7】冷却開始時間と径小率Kとの関係示すグラフである。
【図8】出側鋼管端から2m の範囲で、外面冷却を先行させたときの鋼管入側端からの距離と外径との関係を示すグラフである。
【図9】内面冷却を3秒先行させたときの鋼管寸法(肉厚、外径)と焼入れ後の径小率Kとの関係を示すグラフである。
【図10】内面3秒先行冷却、外面1秒先行冷却および外面2秒先行冷却時の鋼管寸法(肉厚×外径)と径小率Kとの関係を示すグラフである。
【図11】外径177.8mm、肉厚10mmの鋼管について内面3秒先行冷却および外面1秒先行冷却における径小率Kと焼き曲がり量との関係を比較したグラフである。
【図12】鋼管出側端部の外面冷却装置の構成を示す概念図である。
【符号の説明】
1:加熱炉、 2:冷却装置、
3:高架水槽 4:外面冷却装置、
5:内面冷却装置、 6:流下水遮断樋、
7:回転装置、 8:鋼管出側端部の外面冷却装置、
9:搬送ローラ、 10:冷却水制御装置、
11:流調弁、 12:鋼管、
13:冷却装置架台、 14:貯水タンク
15:給水口、 16:ポンプ、
17:スプレーノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cooling the inner and outer surfaces of a steel pipe and an inner and outer surface cooling device for suppressing non-uniformity of the outer diameter that occurs in the axial direction of the steel pipe when heat treating the steel pipe.
[0002]
[Prior art]
As a method for cooling the inner and outer surfaces of a steel pipe, Japanese Patent Application Laid-Open No. 58-141332 discloses a method of forcibly cooling the inner and outer surfaces of a steel pipe simultaneously by supplying cooling water from a nozzle provided in the water tank while immersing the steel pipe in a water tank and rotating it. A method is disclosed.
[0003]
However, this method is not suitable for cooling a long pipe because an apparatus such as a water tank becomes large-scale when the inner and outer surfaces of the steel pipe are simultaneously cooled. Moreover, even if the outer surface cooling can be performed almost simultaneously in the axial direction of the steel pipe by immersion and rotating cooling, the inner surface cooling becomes uneven in the axial direction of the steel pipe due to the difference in the penetration time of the cooling water. There is a problem of being big.
[0004]
Moreover, the disclosed content of the publication is intended to improve the bending, and does not achieve the higher goal of improving the non-uniformity of the outer diameter of the steel pipe.
[0005]
Japanese Patent Laid-Open No. 58-52426 discloses a method of cooling the outer surface of a steel pipe that flows down the entire length of the rotating steel pipe as a cooling method of the steel pipe, and Japanese Patent Publication No. 2-8008 discloses a steel pipe. The methods of simultaneously cooling the inner and outer surfaces while rotating the steel pipe and reciprocating the steel pipe in the axial direction are disclosed, but all of them are methods developed for the purpose of preventing the steel pipe from being bent. The objective of improving the non-uniformity of the steel pipe outer diameter in the axial direction of the steel pipe after quenching is not achieved.
[0006]
[Problems to be solved by the invention]
In the manufacturing process of steel pipes, there is usually an outer diameter straightening device such as a sizer or straightener after the quenching device, which can remove the non-uniformity of the outer diameter to some extent, but excessive correction is a product due to the effect of processing It is necessary to suppress as much as possible the non-uniformity of the outer diameter of the steel pipe after quenching.
[0007]
The object of the present invention is to end the steel pipe end on the opposite side (outside of the internal cooling water) from the supply of the internal cooling water when quenching long steel pipes of various diameters and thicknesses made of carbon steel or low alloy steel. An object of the present invention is to provide a cooling method and a cooling device for the inner and outer surfaces of a steel pipe that suppress unevenness of the outer diameter of the steel pipe after quenching that occurs near the portion.
[0008]
[Means for Solving the Problems]
While rotating the heated steel pipe around the central axis, the outer surface of the steel pipe is simultaneously cooled by a single or a plurality of plate-shaped water curtains provided in parallel to the axial direction of the steel pipe, and from the inner surface cooling device installed at the end of the steel pipe In the cooling method of supplying cooling water to cool the inner surface of the pipe, from the viewpoint of suppressing the bending of the pipe caused by the nonuniformity of the steel pipe in the circumferential direction of the outer surface, the inner surface cooling is usually small in the circumferential direction of the cooling. Start at the same time as the start of external cooling or earlier. Here, the start timing of the outer surface cooling refers to the timing when the plate-shaped water curtain collides with the steel pipe, and the start timing of the inner surface cooling refers to the cooling water supplied from the cooling device entering the pipe from the end of the cooling device. The time when. In this case, it can be expected to suppress the non-uniformity in the circumferential direction of the cooling, but the non-uniformity in the axial direction of the steel pipe due to the cooling capacity of the inner surface and the non-uniformity in the outer diameter in the axial direction of the steel pipe due to this. It becomes a problem.
[0009]
Below, the non-uniformity in the axial direction of the steel pipe in the cooling capacity of the inner surface and the non-uniformity in the outer diameter in the axial direction of the steel pipe resulting from this will be described.
When cooling the inner surface of a heated steel pipe by supplying cooling water from a cooling device installed at the end of the steel pipe (on the steel pipe entry side), the temperature of the cooling water rises as the cooling water advances into the steel pipe. In addition to the rise in the temperature of the internal cooling water, the end of the steel pipe is opened at the pipe end opposite to the pipe supply side (steel pipe outlet side), so the pressure of the cooling water decreases, and the cooling capacity is reduced accordingly. It decreases in the axial direction. This decrease in cooling capacity becomes more pronounced as the steel pipe becomes longer.
[0010]
FIG. 2 is a time change from the start of cooling of the cooling water temperature on the inner surface of the steel pipe outlet side.
As shown in the figure, on the outlet side of the cooling water on the inner surface, the temperature of the cooling water on the inner surface rises to a maximum of about 60 ° C. At this time, the temperature of the cooling water on the inlet side is 22 ° C.
[0011]
FIG. 3 shows the results of measuring the heat transfer coefficient on the inner surface of the steel pipe at the steel pipe entry side, intermediate portion, and exit side.
As shown in the figure, the cooling capacity decreases as the temperature of the cooling water on the inner surface rises. Due to the decrease in the cooling capacity, the outer diameter of the steel pipe after cooling gradually decreases in accordance with the traveling direction of the cooling water on the inner surface, and the outer diameter becomes particularly small at the aforementioned open end where the cooling capacity is significantly decreased. Normally, these non-uniformities in the outer diameter are removed by an outer diameter straightening device such as a hot straightener after quenching or tempering, but depending on the steel type, outer diameter, and wall thickness of the steel pipe, the outer diameter tolerance is not sufficiently removed. However, even if the outer diameter non-uniformity can be removed to the extent that it is within the tolerance, the mechanical performance received during the correction may deteriorate the performance of the product.
[0012]
FIG. 4 shows an outer diameter distribution when a steel pipe having an outer diameter of 244.5 mm, a wall thickness of 11 mm, and a length of 24000 mm is cooled by inner and outer surfaces with the inner surface cooling advanced for 3 seconds.
As shown in the figure, the outer diameter after quenching is considerably smaller at the outlet side than the outer diameter after pipe making. When such non-uniformity of the outer diameter occurs, it is a problem that a few meters at the exit end must be cut after quenching, and must be solved from the viewpoint of yield improvement.
[0013]
As a result of repeating experiments and theoretical analysis on the case of cooling the inner and outer surfaces of a long steel pipe having a length of 20 m to 30 m, the present inventor obtained the following knowledge.
(A) By controlling the timing for starting the inner surface cooling and the timing for starting the outer surface cooling, the outer surface cooling is preceded by the inner surface cooling, so that the non-uniformity of the outer diameter in the axial direction of the steel pipe can be suppressed. There is an optimum value for the time difference that causes cooling to precede internal cooling, depending on the outer diameter and thickness of the steel pipe to be cooled.
[0014]
(B) Although depending on the material of the steel pipe, even when the outer surface cooling is preceded by the inner surface cooling for a steel pipe having an outer diameter of 200 mm or more and a wall thickness of 10 mm or more, the bending to be concerned is the conventional cooling condition. However, it does not become large.
[0015]
(C) FIG. 5 is an outer diameter distribution after quenching in the axial direction of the steel pipe when the inner and outer surfaces are cooled while rotating a steel pipe having an outer diameter of 244.5 mm, a wall thickness of 11 mm, and a length of 24,000 mm from 850 ° C. . Here, the outer surface is cooled with a flow rate of 1.5 m 3 / (m · min) with two rows of plate-like water curtains, and the inner surface is cooled at a flow rate of 3000 T / H or more from the inlet side by a cooling water supply nozzle. The start is 0, 1, 3, 5 seconds ahead of the start of external cooling. The steel pipe rotation speed is 80 rpm.
[0016]
FIG. 6 shows the outer diameter distribution after cooling when cooling of the outer surface is preceded by cooling of the inner surface for 1, 2, 3, and 4 seconds, respectively, and the other cooling conditions are the same as those in FIG.
As shown in FIGS. 5 and 6, it can be seen that the outer diameter non-uniformity in the axial direction of the steel pipe is greatly suppressed by starting the outer surface cooling for about 1 to 2 seconds prior to the inner surface cooling.
[0017]
FIG. 7 is a graph obtained by rearranging the results of FIGS. 5 and 6, and is a graph showing the relationship between the cooling start time and the small diameter ratio K. There is an optimal time difference in the cooling start time difference between the inner and outer surfaces. . The minus on the horizontal axis indicates the time (seconds) to precede the inner surface cooling. Here, the small diameter ratio K is an index representing the non-uniformity of the outer diameter in the axial direction of the steel pipe, and the following (1) It is defined as an expression.
K (%) = (maximum outer diameter−minimum outer diameter) / (maximum outer diameter) × 100 (1)
(D) FIG. 8 shows that the outer surface of the steel pipe in the range of 2 m 2 from the outlet side of the steel pipe is cooled for 0.5 second to 2 seconds prior to the simultaneous cooling process on the inner and outer surfaces shown in FIG. It is the outer diameter distribution of the axial direction of the steel pipe after hardening when it cools simultaneously.
[0018]
As shown in the figure, non-uniformity of the outer diameter in the axial direction of the steel pipe is greatly suppressed by cooling the outer surface of the exit side for about 0.5 to 2 seconds, and the effect is that the overall length of the outer surface is reduced. It becomes larger than the case of pre-cooling.
[0019]
(E) FIG. 9 shows the small diameter ratio K in the case where the inner surface cooling is preceded by the outer surface cooling for 3 seconds with respect to the steel pipes having various dimensions.
As shown in the figure, even if the outer diameters of the steel pipes to be cooled are different, the small diameter ratio K may increase at a certain thickness, and the thickness of the steel pipe dimensions at which the small diameter ratio K increases at each outer diameter. The effect on the small diameter ratio K was investigated when the start time of cooling of the entire outer surface was preceded by 1 to 2 seconds before the start time of inner surface cooling.
[0020]
FIG. 10 shows the influence on the small diameter ratio K when the internal cooling which is the conventional cooling method is preceded by 3 seconds and when the cooling start timing of the entire outer surface is preceded by 1 to 2 seconds from the start timing of the internal cooling. Is a comparison.
[0021]
As shown in the figure, when the outer surface cooling is preceded by 1 second for a steel pipe having an outer diameter of about 250 mm, the smaller diameter ratio K is reduced when the outer surface cooling is preceded by 2 seconds for a steel pipe having a larger outer diameter. It can be seen that the non-uniformity of the outer diameter of the steel pipe in the axial direction can be suppressed. Further, in a steel pipe having an outer diameter of 150 mm or less and a wall thickness of about 10 mm, even if the inner surface cooling is preceded, the small diameter ratio is originally small, and it is not necessary to precede the outer surface cooling.
[0022]
(F) Further, with these five types of dimensions, the outer diameter 177 of which the most feared to bend out of the four dimensions excluding the outer diameter φ139.7 mm × thickness t10 mm, which does not require the outer surface precedent cooling, is provided. The amount of bending after cooling per 10 m 2 of the steel pipe when the inner surface cooling was preceded by 3 seconds and the outer surface cooling was preceded by 1 second was investigated for the one having a thickness of .8 mm and a thickness of 10 mm.
[0023]
FIG. 11 shows the results of the above investigation.
As shown in the figure, even if the outer surface cooling is preceded, the bending amount can be within an allowable range. Here, the allowable amount of bending is set to 10 mm or less per 10 m 2 which does not cause a problem in conveying the steel pipe.
[0024]
This invention is made | formed based on the above knowledge, and the summary is as showing to following (1)-(3).
(1) While cooling the heated steel pipe around the central axis, cooling water is supplied from an outer surface cooling device provided in parallel to the axial direction of the steel pipe to simultaneously cool the outer surface of the steel pipe in the axial direction. In the cooling method of the inner and outer surfaces of the steel pipe, in which cooling water is supplied to the inner surface of the steel pipe from the inner surface cooling device installed on the inner surface, the outer surface cooling is started before the inner surface cooling. Method.
[0025]
(2) While cooling the heated steel pipe around the central axis, cooling water is supplied from an outer surface cooling device provided in parallel to the axial direction of the steel pipe to simultaneously cool the outer surface of the steel pipe in the axial direction. In the cooling method of the inner and outer surfaces of the steel pipe that cools the inner surface by supplying cooling water to the inner surface of the steel pipe from the inner surface cooling device installed in the inner surface, the inner surface cooling water is supplied to the outer surface of the steel pipe prior to simultaneously cooling the inner and outer surfaces over the entire length. A method for cooling the inner and outer surfaces of a steel pipe, characterized in that cooling is performed in a range of 5/100 to 15/100 of the total length of the steel pipe from the opposite end.
[0026]
(3) A device for rotating the steel pipe around the central axis, an outer surface cooling device provided parallel to the axial direction of the steel pipe, an inner surface cooling device installed from the end of the steel pipe toward the inner surface of the steel pipe, and the axial direction of the steel pipe A steel pipe inner / outer surface cooling device comprising an outer surface cooling device at a steel pipe outlet end portion that is movable in a direction parallel to the plurality of cooling devices.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
The configuration of the present invention is shown in FIGS. FIG. 1A shows a basic flow of the processing steps, and FIG. 1B shows an outline of the cooling device 2.
[0028]
(1) The invention described in claim 1 is an outer surface provided in parallel with the axial direction of the steel pipe while rotating the heated steel pipe 12 carried out of the heating furnace 1 around the central axis using the rotating device 7. The inner and outer surfaces of the steel pipe that cools the inner surface by supplying cooling water from the cooling device 4 to simultaneously cool the outer surface of the steel pipe in the axial direction and supplying the cooling water to the inner surface of the steel pipe from the inner surface cooling device 5 installed at the end of the steel pipe. In this cooling method, the outer surface cooling is started before the inner surface cooling.
[0029]
(2) The invention described in claim 2 is provided in parallel to the axial direction of the steel pipe while rotating the heated steel pipe 12 carried out of the heating furnace 1 around the central axis using the steel pipe rotating device 7. Cooling of the inner and outer surfaces of the steel pipe which supplies cooling water from the outer surface cooling device 4 to cool the outer surface of the steel pipe at the same time and supplies cooling water to the inner surface of the steel pipe from the inner surface cooling device 5 installed at the end of the steel pipe In the method, prior to cooling the inner and outer surfaces over the entire length, the outer surface of the steel pipe ranges from 5/100 to 15/100 length of the entire length of the steel pipe from the end opposite to the inner surface where cooling water is supplied. In this method, cooling is performed using the outer surface cooling device 8 at the end of the steel pipe.
[0030]
(3) The invention described in claim 3 includes a steel pipe rotating device 7 for rotating the steel pipe around the central axis, an outer surface cooling device 4 provided parallel to the axial direction of the steel pipe, and an end of the steel pipe from the end of the steel pipe to the inner surface of the steel pipe. This is a cooling device comprising an inner surface cooling device 5 installed toward the end, and an end external cooling device 8 on the steel tube outlet side that is movable in a direction parallel to the axial direction of the steel pipe and has a plurality of cooling devices.
[0031]
The outer surface cooling device 4 may be any device that can supply cooling water uniformly and simultaneously to the outer surface of the steel pipe in the axial direction of the steel pipe, and the inner surface cooling device 5 also cools the inner surface of the steel pipe from the end of the steel pipe to the inner surface of the steel pipe. Any device capable of supplying water may be used.
[0032]
For example, the outer surface cooling device may be a device that supplies plate-shaped cooling water from above the steel pipe along a plane including the tube axis, and a slit nozzle is suitable as the nozzle that supplies the plate-shaped cooling water. . In order to ensure a stable flow, the inner surface cooling device is preferably provided with a nozzle having a straight pipeline as long as possible, and a rectifying plate or the like may be provided at the nozzle tip. Furthermore, in order to ensure the water pressure in the pipe, an inner surface cooling device that can grip the steel pipe from the outer periphery and seal the end of the steel pipe is preferable.
The rotational speed of the steel pipe is desirably 80 rpm or more from the viewpoint of suppressing the bending amount, and is preferably 110 rpm or less in consideration of the apparatus cost.
[0033]
In addition to the above-mentioned device, the end of the steel pipe that can be cooled independently in the range of 5/100 to 15/100 of the total length of the steel pipe at the end of the steel pipe at the inner cooling water discharge side of any steel pipe length An external cooling device 8 is required. The reason why the range of 5/100 to 15/100 of the total length of the steel pipe is less than 5/100 is sufficient to achieve the original purpose of assisting cooling in the range where the inner surface cooling capacity is reduced. This is because if it exceeds 15/100, cooling is assisted to the extent that the inner surface cooling capacity is not reduced, resulting in excessive cooling, increasing the outer diameter, and non-uniformity of the outer diameter becomes a problem. .
A preferred range is from 8/100 to 12/100.
[0034]
The steel pipe exit side end outer surface cooling device 8 includes a plurality of spray nozzles 17 disposed at intervals of several tens of centimeters on a transport roller 9 movable in parallel to the axial direction of the steel pipe, and the length of the steel pipe 12 to be cooled. It is only necessary to move it according to the circumstances so that the range of 5/100 to 15/100 of the total length of the steel pipe can be cooled. The apparatus described above is preferable.
[0035]
FIG. 12 is a conceptual diagram showing the configuration of the steel pipe outlet side cooling device 8 in more detail.
As shown in FIG. 12, the operation method for cooling the outer surface of the end of the steel pipe is such that a necessary amount of water is injected from the water supply port 15 into the water storage tank 14 before the steel pipe 12 is transferred to the cooling device. At the same time as being transported into the cooling device, the cooling device mount 13 is moved by the transport roller 9 and the spray nozzle 17 is stopped at a position where it can cool about 5/100 to 15/100 of the length of the steel pipe, and the rotation of the steel pipe When the rotation of the steel pipe rotated by the apparatus 7 reaches a steady state, the water pressurized by the pump 16 is opened to the flow control valve 11 and supplied to the spray nozzle 17, and cooling water is injected to make the steel pipe 12 1. From the spray nozzle 17 and then the outer surface cooling and the inner surface cooling are started simultaneously.
[0036]
The inner surface cooling and the outer surface cooling are performed by opening and closing the sewage blocking bar 6 and the flow control valve 11, respectively, according to the preset timing preset in the cooling water control apparatus 10 shown in FIG.
[0037]
The preceding time for cooling the outer surface will be described below.
The leading time of the outer surface cooling is preferably about 1 second when the flow rate of the internal cooling water is 3000 T / H or more, the outer diameter of the steel pipe is 250 mm or less, and about 2 seconds when the outer diameter of the steel pipe is more than that.
[0038]
In order to properly cool the inner surface, a flow rate of 3000 T / H or more is required.
The leading time of the outer surface cooling at the steel pipe outlet side end may be the same as above as long as it has a cooling capability comparable to that of the normal outer surface cooling as in the steel pipe outlet side cooling device 8 shown above. About 0.5 to 2 seconds is preferable.
[0039]
【Example】
A steel pipe heated to 950 ° C. in a heating furnace is conveyed to a cooling device, and after the steel pipe is placed at a predetermined position in the cooling device, the steel pipe is rotated at a rotational speed of 80 rpm by a steel pipe rotating device. Cooling was started when the rotation of the motor reached a steady state.
[0040]
At this time, the outer surface cooling was performed by flowing water from the slit nozzle, and the inner surface cooling was performed by passing water from the spray nozzle.
The inner surface cooling water amount was set to 3300-4400 T / H, and the outer surface cooling water amount was set to 1.5 m 3 / (m · min).
[0041]
Similarly, after the heated and transported steel pipe reaches steady rotation at 80 rpm, the steel pipe outlet end outer surface cooling device which has already been moved to the steel pipe outlet end 0.5 second in the range of one tenth of the steel pipe length. The outer surface of the outgoing side end was cooled for 2 seconds from the start, and the inner side cooling and the outer side cooling were started simultaneously with the cooling stop of the outer side of the outgoing side end. As the outlet end outer surface cooling device, the device shown in FIG. 12 was used.
[0042]
Table 1 shows cooling conditions and evaluation results.
The unit of the amount of cooling water on the outer surface is m 3 / (m · min), and 1 min. Per 1 m of the length of the steel pipe. When the cooling water amount per unit is m 3 and the leading time of the outer surface cooling is negative, the leading time of the inner surface cooling is indicated.
[0043]
As shown in Table 1, when the outer surface cooling is preceded, the small diameter ratio becomes 0.30% or less, but when the cooling of the steel pipe outlet side end is preceded, it becomes 0.10% or less, which is further improved. It was. When the internal cooling was preceded, the small diameter ratio deteriorated by exceeding 0.30%.
[0044]
[Table 1]
Figure 0003624680
[0045]
【The invention's effect】
According to the present invention, it is possible to suppress non-uniformity of the outer diameter of the steel pipe after quenching that occurs in the vicinity of the steel pipe outlet end.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method and apparatus of the present invention, FIG. 1 (a) is a block diagram showing processing steps, and FIG. 1 (b) is a conceptual diagram showing an outline of the method and apparatus. .
FIG. 2 is a graph showing the relationship between the water temperature and the elapsed time on the outlet side of the inner surface cooling water.
FIG. 3 is a graph showing the relationship between the steel pipe inner surface temperature and the steel pipe inner surface heat transfer coefficient at the steel pipe inlet side, intermediate portion and outlet side of the inner cooling water.
FIG. 4 is a graph showing the relationship between the distance from the steel pipe entry side end and the outer diameter when the inner surface cooling is quenched for 3 seconds and when it is not quenched.
FIG. 5 is a graph showing the relationship between the distance from the steel pipe entry side end and the outer diameter when the leading time for inner surface cooling is changed.
FIG. 6 is a graph showing the relationship between the distance from the steel pipe entry side end and the outer diameter when the leading time of outer surface cooling is changed.
FIG. 7 is a graph showing the relationship between the cooling start time and the small diameter ratio K.
FIG. 8 is a graph showing the relationship between the distance from the steel pipe inlet side end and the outer diameter when the outer surface cooling is preceded in the range of 2 m 2 from the outlet side steel pipe end.
FIG. 9 is a graph showing the relationship between the steel pipe dimensions (thickness, outer diameter) and the small diameter ratio K after quenching when internal cooling is preceded by 3 seconds.
FIG. 10 is a graph showing a relationship between a steel pipe size (wall thickness × outer diameter) and a small diameter ratio K at the time of inner surface 3 seconds pre-cooling, outer surface 1 second pre-cooling, and outer surface 2 seconds pre-cooling.
FIG. 11 is a graph comparing the relationship between the small diameter ratio K and the amount of bending in a steel pipe having an outer diameter of 177.8 mm and a wall thickness of 10 mm in an inner surface pre-cooling of 3 seconds and an outer surface of pre-cooling of 1 second.
FIG. 12 is a conceptual diagram showing a configuration of an outer surface cooling device at a steel pipe outlet end portion.
[Explanation of symbols]
1: heating furnace, 2: cooling device,
3: Elevated water tank 4: Outer surface cooling device,
5: Inner surface cooling device, 6: Flowing water cutoff tank,
7: Rotating device, 8: Outer surface cooling device for steel pipe outlet side end,
9: Conveying roller, 10: Cooling water control device,
11: Flow control valve, 12: Steel pipe,
13: Cooling device mount, 14: Water storage tank 15: Water supply port, 16: Pump,
17: Spray nozzle

Claims (3)

加熱された鋼管を中心軸の回りに回転させながら鋼管の軸方向に平行に設けた外面冷却装置から冷却水を供給して鋼管の外面を軸方向に同時に冷却し、該鋼管の端に設置した内面冷却装置から鋼管内面に冷却水を供給して内面を冷却する鋼管の内外面の冷却方法において、外面冷却を内面冷却より先に開始することを特徴とする鋼管の内外面の冷却方法。While rotating the heated steel pipe around the central axis, cooling water was supplied from an outer surface cooling device provided in parallel to the axial direction of the steel pipe to simultaneously cool the outer surface of the steel pipe in the axial direction and installed at the end of the steel pipe. A method for cooling the inner and outer surfaces of a steel pipe, wherein cooling water is supplied from the inner surface cooling device to the inner surface of the steel pipe to cool the inner surface, wherein the outer surface cooling is started before the inner surface cooling. 加熱された鋼管を中心軸の回りに回転させながら鋼管の軸方向に平行に設けた外面冷却装置から冷却水を供給して鋼管の外面を軸方向に同時に冷却し、該鋼管の端に設置した内面冷却装置から鋼管内面に冷却水を供給して内面を冷却する鋼管の内外面の冷却方法において、全長にわたって同時に内外面を冷却するのに先立ち、鋼管の外面を内面冷却水が供給されるのと反対側の端から該鋼管の全長の100分の5から100分の15の長さの範囲で冷却することを特徴とする鋼管の内外面の冷却方法。While rotating the heated steel pipe around the central axis, cooling water was supplied from an outer surface cooling device provided in parallel to the axial direction of the steel pipe to simultaneously cool the outer surface of the steel pipe in the axial direction and installed at the end of the steel pipe. In the cooling method of the inner and outer surfaces of the steel pipe that cools the inner surface by supplying cooling water to the inner surface of the steel pipe from the inner surface cooling device, the inner surface cooling water is supplied to the outer surface of the steel pipe prior to simultaneously cooling the inner and outer surfaces over the entire length. And cooling the inner and outer surfaces of the steel pipe, wherein the cooling is performed in a range of 5/100 to 15/100 of the total length of the steel pipe from the opposite end. 鋼管を中心軸の回りに回転させる装置と、鋼管の軸方向に平行に設けた外面冷却装置と、鋼管の端から鋼管内面に向けて設置された内面冷却装置、および鋼管の軸方向に平行な方向に移動可能で複数の冷却装置を有する鋼管出側端部の外面冷却装置からなることを特徴とする鋼管の内外面冷却装置。A device for rotating the steel pipe around the central axis, an outer surface cooling device provided parallel to the axial direction of the steel pipe, an inner surface cooling device installed from the end of the steel pipe toward the inner surface of the steel pipe, and parallel to the axial direction of the steel pipe A steel pipe inner / outer surface cooling device comprising an outer surface cooling device at a steel pipe outlet end portion that is movable in a direction and has a plurality of cooling devices.
JP07605098A 1998-03-24 1998-03-24 Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device Expired - Fee Related JP3624680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07605098A JP3624680B2 (en) 1998-03-24 1998-03-24 Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07605098A JP3624680B2 (en) 1998-03-24 1998-03-24 Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device

Publications (2)

Publication Number Publication Date
JPH11269548A JPH11269548A (en) 1999-10-05
JP3624680B2 true JP3624680B2 (en) 2005-03-02

Family

ID=13593967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07605098A Expired - Fee Related JP3624680B2 (en) 1998-03-24 1998-03-24 Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device

Country Status (1)

Country Link
JP (1) JP3624680B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230747B2 (en) 2015-02-06 2022-01-25 Jfe Steel Corporation Method of quenching steel pipe, apparatus for quenching steel pipe, method of manufacturing steel pipe and facility for manufacturing steel pipe

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321178A (en) * 2006-05-30 2007-12-13 Sumitomo Metal Ind Ltd Method for cooling steel tube
CN103146901B (en) * 2013-03-27 2015-11-18 湖北新冶钢有限公司 Steel pipe water quenching method
CN106040758A (en) * 2016-05-26 2016-10-26 马鞍山市安工大工业技术研究院有限公司 Online accelerated cooling method for production of hot rolled seamless steel tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11230747B2 (en) 2015-02-06 2022-01-25 Jfe Steel Corporation Method of quenching steel pipe, apparatus for quenching steel pipe, method of manufacturing steel pipe and facility for manufacturing steel pipe

Also Published As

Publication number Publication date
JPH11269548A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
KR101662601B1 (en) Processing apparatus of the metal corrugated pipe with a heat treatment and rust preventive oil coating step
WO2007139158A1 (en) Cooling method of steel pipe
JP3624680B2 (en) Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device
JP2003094106A (en) Method and device for cooling steel plate
JP2610019B2 (en) Cooling method of hot steel plate
EP0079621B1 (en) Method and apparatus for cooling steel pipes
JPH1034226A (en) Method for cooling high-temperature metallic sheet and device therefor
JPH01165723A (en) Bright annealing method for pipe coil and in-pipe purging device
JP2006152393A (en) Steel tube cooling method
JP6904370B2 (en) Gas jet cooling device and cooling method
KR101988284B1 (en) Materials treatment apparatus
JP2640398B2 (en) Cooling control method of steel pipe in roller hearth heat treatment furnace
JPH07224326A (en) Water cooling method and device after heat treatment of stainless channel steel
JPH01154825A (en) Bending method for stainless steel pipe
JP4945853B2 (en) Heat treatment method and apparatus for steel sheet
JP2002275537A (en) Hearth roll type annealing furnace for continuously annealing pipe
JPS62161918A (en) Heat treatment line for steel pipe
JPH0617119A (en) Method and equipment for heat treatment for hot extruded steel tube
JPH1121628A (en) Method and equipment for cooling steel tube
JP2005248302A (en) Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending
JPS6059286B2 (en) Metal tube cooling method and device
CN1705759A (en) Cooling device for steel strip
JPS63186830A (en) Method for cooling steel pipe
JPH06192740A (en) Method for heat-treating thick walled cast steel pipe
JPS6410571B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees