JP2005248302A - Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending - Google Patents

Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending Download PDF

Info

Publication number
JP2005248302A
JP2005248302A JP2004063954A JP2004063954A JP2005248302A JP 2005248302 A JP2005248302 A JP 2005248302A JP 2004063954 A JP2004063954 A JP 2004063954A JP 2004063954 A JP2004063954 A JP 2004063954A JP 2005248302 A JP2005248302 A JP 2005248302A
Authority
JP
Japan
Prior art keywords
steel pipe
seamless steel
cooling
thin
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004063954A
Other languages
Japanese (ja)
Inventor
Takayuki Kasai
貴之 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2004063954A priority Critical patent/JP2005248302A/en
Publication of JP2005248302A publication Critical patent/JP2005248302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a long, large diameter, and thin-walled seamless steel pipe having little bending in a longitudinal direction. <P>SOLUTION: In a heat-treatment for annealing the seamless steel pipe 2 produced with a Mannesman method, while rotating the seamless steel pipe 6 at ≥5 rpm around the center axis, the outer surface is cooled from the upper and the lower directions with a cooling device 5 by shifting at ≤0.5 m/min speed in the axial direction of the seamless steel pipe 2. The above seamless steel pipe 2 is the long, large diameter, and thin-walled seamless steel pipe having ≥3 m length (L), ≥70 mm outer diameter (D) and ≥10 the ratio (D/t) of the outer diameter (D)/the thickness (t). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、長手方向に曲がりの少ない長尺大径薄肉継目無鋼管の製造方法に関するものである。   The present invention relates to a method for producing a long, large-diameter, thin-walled seamless steel pipe with little bending in the longitudinal direction.

継目無鋼管の製造方法としてマンネスマン法がある。この製法で製造された継目無鋼管は、以下の工程:熱間加工(アッセル圧延)→冷間加工(コールドビルガー圧延)→熱処理(ひずみ取り焼鈍)→矯正→端面加工→検査で製造される。   There is a Mannesmann method as a method for producing a seamless steel pipe. The seamless steel pipe manufactured by this manufacturing method is manufactured by the following processes: hot working (Assel rolling) → cold working (cold billger rolling) → heat treatment (strain relief annealing) → correction → end face processing → inspection.

この継目無鋼管の製造工程の他に、焼入れや焼戻しなどの熱処理等が行われており、その熱処理においては、加熱後に水冷による冷却が行われている。   In addition to the manufacturing process of the seamless steel pipe, heat treatment such as quenching and tempering is performed. In the heat treatment, cooling by water cooling is performed after heating.

さらに、硬さ調整および残留ひずみ除去をするため、熱間加工後に継目無鋼管を所定温度で加熱、冷却する熱処理が行われている。このような熱処理工程のラインとしては、回転ロールを用いて鋼管をその軸中心に回転させながら長手方向へ連続的に移送して、熱処理用の加熱装置および冷却装置を連続的に通過させ、これにより加熱・冷却を連続的に行うようにした熱処理ラインが従来から広く用いられている。   Furthermore, in order to adjust hardness and remove residual strain, heat treatment is performed to heat and cool the seamless steel pipe at a predetermined temperature after hot working. As a line for such a heat treatment process, a steel pipe is continuously rotated in the longitudinal direction while rotating about its axis using a rotating roll, and continuously passes through a heating device and a cooling device for heat treatment. Conventionally, a heat treatment line in which heating and cooling are continuously performed has been widely used.

上述のような熱処理ラインにおいて、一度に大量に供給された鋼管を熱処理するためには、鋼管の長さに対応した長さと幅を持つ炉が必要であり、炉の大きさを大型にするための設備投資が莫大となるという問題があった。   In the heat treatment line as described above, in order to heat treat a steel pipe supplied in a large amount at a time, a furnace having a length and a width corresponding to the length of the steel pipe is required. To increase the size of the furnace There was a problem that the capital investment of the company became enormous.

特に、構造上、加熱炉の全長に比べて、全長が短い冷却装置の場合には、空冷では冷却が不十分であり、加熱炉出口において水冷による急速冷却を行う必要性があった。   In particular, in the case of a cooling device having a short overall length compared to the total length of the heating furnace, air cooling is not sufficient for cooling, and it is necessary to perform rapid cooling by water cooling at the heating furnace outlet.

また、冷却水による急冷を行う際、継目無鋼管の周方向に不均一な冷却をすると継目無鋼管に変形が生じて、外径と肉厚の比が大きい継目無鋼管の場合、継目無鋼管の曲がりが大きくなるという問題が生じていた。   Also, when performing rapid cooling with cooling water, if the cooling is uneven in the circumferential direction of the seamless steel pipe, the seamless steel pipe is deformed, and in the case of a seamless steel pipe with a large ratio of outer diameter to wall thickness, the seamless steel pipe There was a problem that the bend of became large.

さらに、曲がりが大きい継目無鋼管が後工程の矯正工程に供給されると、矯正工程により、矯正による残留応力を製品の鋼管に内在させてしまうことが問題となっていた。   Furthermore, when a seamless steel pipe having a large bend is supplied to a subsequent straightening process, the straightening process causes a residual stress due to straightening to be inherent in the steel pipe of the product.

このため、継目無鋼管の焼入等における水冷においては、継目無鋼管の外表面および内表面に冷却水を噴霧する冷却装置により、周方向で均一な冷却を行う方法や拘束ロールを用いて矯正しつつ熱処理を行う方法等により、冷却時の曲がりを抑制することが行われている。   For this reason, in water cooling in the quenching of seamless steel pipes, etc., correction is performed by using a cooling device that sprays cooling water on the outer and inner surfaces of the seamless steel pipe and by using a method of performing uniform cooling in the circumferential direction or using restraining rolls. However, the bending at the time of cooling is suppressed by a method of performing a heat treatment or the like.

従来の鋼管の熱処理方法として、移動式円環状冷却媒体噴射ノズルにて鋼管の円周上の表面を均一冷却を行う装置(特許文献1)が開示されている。   As a conventional heat treatment method for a steel pipe, an apparatus (Patent Document 1) that uniformly cools the surface on the circumference of a steel pipe with a movable annular cooling medium spray nozzle is disclosed.

また、拘束ロールにより加熱炉内部および冷却時において鋼管の変形を矯正する方法(特許文献2)が開示されている。   Moreover, the method (patent document 2) which correct | amends the deformation | transformation of a steel pipe in the inside of a heating furnace at the time of cooling with a restraint roll is disclosed.

さらに、熱処理を行う前に、鋼管を回転させながらその長さ方向に進行させて、加熱装置と冷却装置とからなる鋼管曲がり矯正装置を配設した熱処理ライン(特許文献3)が開示されている。   Furthermore, a heat treatment line (Patent Document 3) is disclosed in which a steel pipe bending straightening device including a heating device and a cooling device is disposed by rotating the steel pipe in the length direction before the heat treatment. .

しかし、これらの装置及び方法では、一度に大量に供給された継目無鋼管を熱処理することができず、経済的にコスト高になるという問題が生じていた。   However, in these apparatuses and methods, the seamless steel pipes supplied in large quantities at a time cannot be heat-treated, resulting in a problem that the cost is increased economically.

従来の熱間加工(アッセル圧延)→冷間加工(コールドビルガー圧延)→熱処理(ひずみ取り焼鈍)→矯正→端面加工→検査の工程では、熱処理後に継目無鋼管の弓曲がりや先曲がりを真っ直ぐにするために、強い矯正が必要となっている。   Conventional hot working (Assel rolling) → cold working (cold Birger rolling) → heat treatment (strain relief annealing) → straightening → end face processing → inspection, straightening the bow and forward bend of the seamless steel pipe after heat treatment In order to do so, a strong correction is required.

しかしながら、このような強い矯正では、矯正による残留応力を継目無鋼管に内在させてしまい、特に、長さが3m以上、外径が70mm以上で、かつ、外径と肉厚の比、即ち、外径/肉厚が10以上の長尺大径薄肉継目無鋼管に関しては、矯正時に、この残留応力によるひずみの影響で真直度不良が発生したりしていた。
特開昭51−103011号公報 特開昭52−077812号公報 特開昭62−161918号公報
However, in such a strong straightening, the residual stress due to the straightening is inherent in the seamless steel pipe, in particular, the length is 3 m or more, the outer diameter is 70 mm or more, and the ratio between the outer diameter and the wall thickness, that is, For long, large-diameter, thin-walled seamless steel pipes having an outer diameter / thickness of 10 or more, straightness failure occurs due to the strain caused by this residual stress during correction.
Japanese Patent Laid-Open No. 51-103011 JP 52-0777812 A JP 62-161918 A

前述のように曲がりのある継目無鋼管に対しての熱処理時における周方向の冷却不均一に対処するための従来の方法は、いずれも熱処理設備が大型となり、設備の高コスト化を招くとともに、保守に煩雑な手間を要する等の問題があった。   As described above, the conventional methods for dealing with the uneven cooling in the circumferential direction at the time of heat treatment for a seamless steel pipe having a bend are both large in heat treatment equipment, leading to high equipment costs, There were problems such as requiring troublesome maintenance.

また一方、真直度が低下してしまった継目無鋼管について、冷間で再矯正することにより、要求規格内に真直度を収めることも可能ではあるが、冷間での再矯正は、相当な手間を要することを避けられないのが実情である。また、再矯正による更なる残留応力の蓄積が発生し、2次加工(切断・施削)において残留応力の悪影響(真円度不良)が増大する恐れがある。   On the other hand, it is possible to keep straightness within the required standard by re-correcting the seamless steel pipe whose straightness has decreased, but re-correction in the cold is considerable. The fact is that it is inevitable that it takes time and effort. Further, the residual stress is further accumulated due to re-correction, and there is a possibility that the adverse effect (roundness defect) of the residual stress may increase in the secondary processing (cutting / cutting).

本発明は、以上の事情を背景としてなされたものであり、回転ローラにより、長尺大径薄肉継目無鋼管を回転させながら、長手方向に移送させて冷却水を上下方向より噴霧する冷却装置で曲がりの少ない長尺大径薄肉継目無鋼管の周方向の均一冷却を実現させる製造方法である。   The present invention has been made against the background of the above circumstances, and is a cooling device that sprays cooling water from above and below by rotating in a longitudinal direction while rotating a long large-diameter thin-walled seamless steel pipe by a rotating roller. This is a manufacturing method that realizes uniform cooling in the circumferential direction of a long large-diameter thin-walled seamless steel pipe with little bending.

本発明の製造工程は、熱間加工(アッセル圧延)→冷間加工(コールドビルガー圧延)→熱処理(ひずみ取り焼鈍)→矯正→端面加工→検査の工程からなるもので、熱処理工程における長尺大径薄肉継目無鋼管の曲がりを少なくすることを目的とする。   The manufacturing process of the present invention consists of hot working (Assel rolling) → cold working (cold billger rolling) → heat treatment (strain relief annealing) → correction → end face processing → inspection process. The purpose is to reduce the bending of the thin-walled seamless steel pipe.

すなわち、上記の課題を解決するための本発明の手段は、本発明の曲がりの少ない長尺大径薄肉継目無鋼管の製造方法の第一の構成では、マンネスマン法により製造された継目無鋼管を焼鈍する熱処理において、継目無鋼管を中心軸回りに5rpm以上で回転させながら、継目無鋼管の軸方向に0.5m/min以下の速度で移動させ、冷却装置にて上下方向より外表面を冷却させることを特徴とする。   That is, the means of the present invention for solving the above-mentioned problem is that in the first configuration of the manufacturing method of the long large-diameter thin-walled seamless steel pipe with less bending according to the present invention, the seamless steel pipe manufactured by the Mannesmann method is used. In the annealing heat treatment, the seamless steel pipe is moved at a speed of 0.5 m / min or less in the axial direction of the seamless steel pipe while rotating it at 5 rpm or more around the central axis, and the outer surface is cooled in the vertical direction by a cooling device. It is characterized by making it.

本発明の第二の構成は、第一の構成において、前記継目無鋼管は、長さ(L)3m以上、外径(D)70mm以上で且つ外径(D)、肉厚(t)の比(D/t)が10以上の長尺大径薄肉継目無鋼管であることを特徴とする。   According to a second configuration of the present invention, in the first configuration, the seamless steel pipe has a length (L) of 3 m or more, an outer diameter (D) of 70 mm or more, an outer diameter (D), and a wall thickness (t). It is a long large-diameter thin-walled seamless steel pipe having a ratio (D / t) of 10 or more.

本発明の製造方法は、回転ローラにより長尺大径薄肉継目無鋼管を回転させながら、長手方向に進行させて冷却水を上下方向より噴霧する冷却装置により、長尺大径薄肉継目無鋼管の曲がりを防止することができる。   The production method of the present invention is a method for producing a long large-diameter thin-walled seamless steel pipe by using a cooling device that advances in the longitudinal direction and sprays cooling water from above and below while rotating the long large-diameter thin-walled seamless steel pipe by a rotating roller. Bending can be prevented.

本発明により、従来の熱処理方法では曲がりが大きくなる長尺の薄肉継目無鋼管についても、加熱後の冷却水による急冷により、曲がりを大幅に低減でき、寸法精度に優れた継目無鋼管を製造することができる。   According to the present invention, even for a long thin seamless steel pipe whose bending is increased by the conventional heat treatment method, the bending can be significantly reduced by rapid cooling with cooling water after heating, and a seamless steel pipe having excellent dimensional accuracy is manufactured. be able to.

また、この熱処理方法は、一度に大量に供給された長尺大径薄肉継目無鋼管を熱処理することができ、設備コストの上昇を招くことなく、さらに、曲がりに伴う工程即ち、矯正工程が不要になり、製造コストを大幅に削減することができる。   In addition, this heat treatment method can heat long, large-diameter, thin-walled seamless steel pipes that are supplied in large quantities at a time, and does not increase the equipment cost. Further, there is no need for a process associated with bending, that is, a correction process. Therefore, the manufacturing cost can be greatly reduced.

本発明の製造方法は、成形された長尺大径薄肉継目無鋼管は、高温に加熱された後、上下方向にほぼ等間隔で複数設けられたそれぞれの冷却ノズルから冷却水の噴射により、それぞれの冷却ノズルの配置された同一の位置で上下方向に均一に冷却されるために、冷却による継目無鋼管の円周方向の温度差がなくなり、変形及び曲がりが防止される結果、作業効率を著しく高めて高品質の継目無鋼管を製造することができる。   In the production method of the present invention, the formed long large-diameter thin-walled seamless steel pipe is heated to a high temperature, and then injected by cooling water from a plurality of cooling nozzles provided at approximately equal intervals in the vertical direction, respectively. The cooling nozzles are uniformly cooled in the vertical direction at the same position where the cooling nozzles are arranged, so there is no temperature difference in the circumferential direction of the seamless steel pipe due to cooling, and deformation and bending are prevented, resulting in significantly improved work efficiency. High quality seamless steel pipe can be manufactured.

以下にこの発明の詳細を実施の一例を示す図1、図2、図3に基づいて説明する。図1は、熱処理工程の側面図である。図2は、継目無鋼管を回転させる状態の側面図、図3は、冷却ノズルで継目無鋼管を冷却させる状態の側面図である。図1、図2及び図3において、1は、継目無鋼管を長手方向に移動させる搬送ロール、2は継目無鋼管、3は搬送テーブル、4は加熱炉、5は冷却装置、6は継目無鋼管2の回転支持ロール、7は冷却ノズル。   Details of the present invention will be described below with reference to FIGS. 1, 2, and 3 showing an example of implementation. FIG. 1 is a side view of the heat treatment step. FIG. 2 is a side view of the state where the seamless steel pipe is rotated, and FIG. 3 is a side view of the state where the seamless steel pipe is cooled by the cooling nozzle. 1, 2, and 3, 1 is a transport roll for moving a seamless steel pipe in the longitudinal direction, 2 is a seamless steel pipe, 3 is a transport table, 4 is a heating furnace, 5 is a cooling device, and 6 is a seamless A rotating support roll for the steel pipe 2, 7 is a cooling nozzle.

本発明の長尺大径薄肉継目無鋼管をマンネスマン法により熱間加工して成形する。その後、冷間圧延(コールドビルガー圧延)にて所定の寸法(径、肉厚)に仕上げる。図1に示すとおり、全長50m、幅2mの熱処理炉の全長方向に平行に複数本の継目無鋼管2を搬送テーブル3に並べて配置し、搬送ロール1により搬送テーブル3を進行させ、加熱炉4で所定の温度まで加熱する。その際、図2に示すように、搬送テーブル3に配置された複数本の継目無鋼管2を搬送テーブル3の回転ロール6により回転させながら加熱することにより、加熱による偏熱がなくなり、加熱炉4内での曲がりを低減でき、また自重による変形も防止できる。継目無鋼管2は、回転ロール6により回転速度を5rpmで回転させながら図の左方の冷却装置5へ継目無鋼管2の軸方向に0.5m/min以下の一定の速度で移送される。移送速度を0.5m/min以下の速度にすることにより、冷却装置5を通過後の継目無鋼管2の温度が常温まで低下する。   The long large-diameter thin-walled seamless steel pipe of the present invention is hot-worked and formed by the Mannesmann method. Then, it finishes to a predetermined dimension (diameter, thickness) by cold rolling (cold billger rolling). As shown in FIG. 1, a plurality of seamless steel pipes 2 are arranged in parallel on a transfer table 3 in parallel with the full length direction of a heat treatment furnace having a total length of 50 m and a width of 2 m. To heat to a predetermined temperature. At that time, as shown in FIG. 2, by heating the plurality of seamless steel pipes 2 arranged on the transport table 3 while being rotated by the rotating roll 6 of the transport table 3, there is no uneven heat due to heating, and the heating furnace The bending within 4 can be reduced, and deformation due to its own weight can also be prevented. The seamless steel pipe 2 is transported at a constant speed of 0.5 m / min or less in the axial direction of the seamless steel pipe 2 to the cooling device 5 on the left side of the figure while rotating at a rotational speed of 5 rpm by a rotating roll 6. By setting the transfer speed to 0.5 m / min or less, the temperature of the seamless steel pipe 2 after passing through the cooling device 5 is lowered to room temperature.

移送速度が0.5m/minの速度を越えると冷却水による冷却が不十分で継目無鋼管2は、冷却されない。回転速度を5rpm以上にすることにより、継目無鋼管周方向での冷却による偏熱を低減することができる。回転速度が5rpm以下であると、継目無鋼管周方向での冷却による偏熱が大きくなり、継目無鋼管2の曲がりが大きくなる。   If the transfer speed exceeds 0.5 m / min, the cooling with the cooling water is insufficient and the seamless steel pipe 2 is not cooled. By setting the rotation speed to 5 rpm or more, it is possible to reduce the uneven heat due to cooling in the circumferential direction of the seamless steel pipe. When the rotational speed is 5 rpm or less, the heat deviation due to cooling in the circumferential direction of the seamless steel pipe increases, and the bending of the seamless steel pipe 2 increases.

加熱炉4を通過した後、図3に示すように回転ロール6により回転させながら、一定の速度で移送される継目無鋼管2は、径30mmの金属製円筒管に30mmの間隔に配置された径5mmの冷却ノズル7を上下に設けた冷却装置5で、直ちに継目無鋼管2の上下方向から冷却ノズル7の冷却水が噴射され、所定の温度まで冷却されることにより、継目無鋼管2の周方向での冷却が均一となり、冷却時の真直度の劣化を防止することができる。   After passing through the heating furnace 4, the seamless steel pipe 2 transferred at a constant speed while being rotated by a rotating roll 6 as shown in FIG. 3 was arranged in a metal cylindrical pipe having a diameter of 30 mm at intervals of 30 mm. In the cooling device 5 provided with the cooling nozzle 7 having a diameter of 5 mm above and below, the cooling water of the cooling nozzle 7 is immediately injected from the vertical direction of the seamless steel pipe 2 and cooled to a predetermined temperature. Cooling in the circumferential direction becomes uniform, and straightness deterioration during cooling can be prevented.

外径(D)96.2mm、肉厚(t)4.8mm(D/t=20.0)、長さ(L)4.2mの軸受鋼であるSUJ2からなる継目無鋼管を加熱炉にて720℃、0.8h加熱し、回転速度5rpmで回転させながら、継目無鋼管の軸方向に0.5m/minの速度で移動させ、冷却装置の上下方向から冷却水で冷却した。   A seamless steel pipe made of SUJ2, which is a bearing steel with an outer diameter (D) of 96.2 mm, a wall thickness (t) of 4.8 mm (D / t = 20.0), and a length (L) of 4.2 m, is used as a heating furnace. While being heated at 720 ° C. for 0.8 h and rotating at a rotation speed of 5 rpm, it was moved in the axial direction of the seamless steel pipe at a speed of 0.5 m / min, and cooled with cooling water from the vertical direction of the cooling device.

(従来法1)
また、従来法として実施例1と同一材質及び同一寸法の継目無鋼管を用いて加熱炉にて720℃、0.8h継目無鋼管を隙間なく並べ加熱し、回転を与えずに継目無鋼管の軸方向に0.6m/minの速度で移動させ、冷却装置の上方向から冷却水で冷却した。
(Conventional method 1)
Also, as a conventional method, seamless steel pipes of the same material and the same dimensions as in Example 1 were used to heat the 720 ° C., 0.8 h seamless steel pipes without any gaps in a heating furnace, and the seamless steel pipes were rotated without giving rotation. It was moved in the axial direction at a speed of 0.6 m / min and cooled with cooling water from above the cooling device.

外径(D)70.2mm、肉厚(t)6.8mm(D/t=10.3)、長さ(L)4.3mの構造用鋼であるSCr420からなる継目無鋼管を加熱炉にて680℃、1.2h加熱し、回転速度5rpmで回転させながら、継目無鋼管の軸方向に0.5m/minの速度で移動させ、冷却装置の上下方向から冷却水で冷却した。   A seamless steel pipe made of SCr420, which is a structural steel having an outer diameter (D) of 70.2 mm, a wall thickness (t) of 6.8 mm (D / t = 10.3), and a length (L) of 4.3 m. While being heated at 680 ° C. for 1.2 hours and rotating at a rotational speed of 5 rpm, it was moved in the axial direction of the seamless steel pipe at a speed of 0.5 m / min and cooled with cooling water from the vertical direction of the cooling device.

(従来法2)
また、従来法として継目無鋼管を隙間なく並べ、回転を与えずに継目無鋼管の軸方向に0.6m/minの速度で移動させ、冷却装置の上方向から冷却水で冷却した実施例3と同一材質及び同一寸法の継目無鋼管を用いて比較した。
(Conventional method 2)
In addition, as a conventional method, the seamless steel pipes are arranged without gaps, moved in the axial direction of the seamless steel pipes at a speed of 0.6 m / min without giving rotation, and cooled with cooling water from above the cooling device. Comparison was made using seamless steel pipes of the same material and dimensions.

外径(D)75.5mm、肉厚(t)11.6mm(D/t=6.5)、長さ(L)4.1mの構造用鋼であるSUJ2からなる継目無鋼管を加熱炉にて680℃、1.2h加熱し、回転速度5rpmで回転させながら、継目無鋼管の軸方向に0.5m/minの速度で移動させ、冷却装置の上下方向から冷却水で冷却した。   A seamless steel pipe made of SUJ2, a structural steel having an outer diameter (D) of 75.5 mm, a wall thickness (t) of 11.6 mm (D / t = 6.5), and a length (L) of 4.1 m, is used as a heating furnace. While being heated at 680 ° C. for 1.2 hours and rotating at a rotational speed of 5 rpm, it was moved in the axial direction of the seamless steel pipe at a speed of 0.5 m / min and cooled with cooling water from the vertical direction of the cooling device.

(従来法3)
また、従来法として継目無鋼管を隙間なく並べ、回転を与えずに継目無鋼管の軸方向に0.6m/minの速度で移動させ、上方向から冷却水で冷却した実施例4と同一材質及び同一寸法の継目無鋼管を用いて比較した。
(Conventional method 3)
Also, as a conventional method, the seamless steel pipes are arranged without gaps, moved in the axial direction of the seamless steel pipes at a speed of 0.6 m / min without giving rotation, and cooled with cooling water from above, and the same material as in Example 4 Comparison was made using seamless steel pipes of the same dimensions.

(比較例1)
外径(D)96.2mm、肉厚(t)4.8mm(D/t=20.0)、長さ(L)4.2mの軸受鋼であるSUJ2からなる継目無鋼管を加熱炉にて720℃、0.8h加熱し、回転速度6rpmで回転させながら、継目無鋼管の軸方向に1.5m/minの速度で移動させ、冷却装置の上下方向から冷却水で冷却した。
(Comparative Example 1)
A seamless steel pipe made of SUJ2, which is a bearing steel with an outer diameter (D) of 96.2 mm, a wall thickness (t) of 4.8 mm (D / t = 20.0), and a length (L) of 4.2 m, is used as a heating furnace. While being heated at 720 ° C. for 0.8 h and rotating at a rotation speed of 6 rpm, it was moved in the axial direction of the seamless steel pipe at a speed of 1.5 m / min, and cooled with cooling water from the vertical direction of the cooling device.

(比較例2)
外径(D)96.2mm、肉厚(t)4.8mm(D/t=20.0)、長さ(L)4.2mの軸受鋼であるSUJ2からなる継目無鋼管を加熱炉にて720℃、0.8h加熱し、回転速度3rpmで回転させながら、継目無鋼管の軸方向に0.8m/minの速度で移動させ、冷却装置の上下方向から冷却水で冷却した。
(Comparative Example 2)
A seamless steel pipe made of SUJ2, which is a bearing steel with an outer diameter (D) of 96.2 mm, a wall thickness (t) of 4.8 mm (D / t = 20.0), and a length (L) of 4.2 m, is used as a heating furnace. While being heated at 720 ° C. for 0.8 h and rotating at a rotation speed of 3 rpm, it was moved in the axial direction of the seamless steel pipe at a speed of 0.8 m / min and cooled with cooling water from the vertical direction of the cooling device.

表1に、本発明の工程による継目無鋼管の真直度と、従来法である継目無鋼管を回転させずに上方向からの冷却による継目無鋼管の真直度と、比較例として移送速度を変化させた継目無鋼管の真直度を示した。なお、真直度は、鋼管長さ1m当たりの平均曲がり量(mm/m)で表わすものとする。   Table 1 shows the straightness of the seamless steel pipe according to the process of the present invention, the straightness of the seamless steel pipe by cooling from above without rotating the conventional seamless steel pipe, and the transfer speed as a comparative example. The straightness of the seamless steel pipe was shown. The straightness is represented by an average bending amount (mm / m) per 1 m of the steel pipe length.

Figure 2005248302
Figure 2005248302

本発明の目的とする長尺大径薄肉継目無鋼管の真直度は、外径(D)、肉厚(t)の比(D/t)が10〜15の場合、真直度を2mm/m以下に、また外径(D)、肉厚(t)の比(D/t)が15〜20の場合、真直度を3mm/m以下に抑えることを目標とした。   The straightness of the long, large-diameter, thin-walled seamless steel pipe that is the object of the present invention is 2 mm / m when the ratio (D / t) of the outer diameter (D) to the wall thickness (t) is 10-15. Below, when the ratio (D / t) of the outer diameter (D) and the wall thickness (t) is 15 to 20, the aim was to suppress the straightness to 3 mm / m or less.

表1において、本発明である継目無鋼管を回転速度5rpmで回転させながら、0.5m/minの速度で移送させて上下方向から冷却する外径(D)、肉厚(t)の比(D/t)が20である実施例1による真直度は、2.1mm/mで目標とする3mm/mより上回っていた。   In Table 1, while rotating the seamless steel pipe of the present invention at a rotation speed of 5 rpm, the ratio of the outer diameter (D) and the wall thickness (t) is transferred at a speed of 0.5 m / min and cooled from the vertical direction ( The straightness of Example 1 with D / t) of 20 was 2.1 mm / m, which was higher than the target of 3 mm / m.

また、外径(D)、肉厚(t)の比(D/t)が10.3である実施例2は、1.7mm/mで目標とする2mm/mより上回っていた。   Further, Example 2 in which the ratio (D / t) of the outer diameter (D) to the wall thickness (t) was 10.3 was 1.7 mm / m, which was higher than the target of 2 mm / m.

さらに、外径(D)、肉厚(t)の比(D/t)が6.5である実施例3は、1.2mm/mで目標とする2mm/mより上回っていた。   Further, Example 3 in which the ratio (D / t) of the outer diameter (D) to the wall thickness (t) was 6.5 was 1.2 mm / m, which was higher than the target of 2 mm / m.

これらいずれの実施例は、目標とする真直度を上回っており、長手方向の曲がりに対して著しい効果があった。   Any of these examples exceeded the target straightness, and had a significant effect on bending in the longitudinal direction.

従来法である継目無鋼管を回転させないで0.6m/minの速度で移送させて上方向からの冷却水で冷却する外径(D)、肉厚(t)の比(D/t)が20である従来法1による真直度は、4.2mm/mで目標とする2mm/mより大幅に曲がっていた。   The ratio (D / t) of the outer diameter (D) and the wall thickness (t), in which the seamless steel pipe, which is a conventional method, is transferred at a speed of 0.6 m / min without being rotated and cooled with the cooling water from above. The straightness according to the conventional method 1, which is 20, was 4.2 mm / m, which was significantly bent from the target of 2 mm / m.

また、外径(D)、肉厚(t)の比(D/t)が10.3である従来法2は、4.2mm/mで目標とする3mm/mより曲がっていた。   Further, the conventional method 2 in which the ratio (D / t) of the outer diameter (D) to the wall thickness (t) is 10.3 is 4.2 mm / m, which is bent from the target of 3 mm / m.

さらに、外径(D)、肉厚(t)の比(D/t)が6.5である従来法3は、2.2mm/mで目標とする2mm/mより僅か曲がっていた。このことから、回転させないで上方向からの冷却水で冷却する方法は、長手方向の曲がりに対して効果がなかった。   Further, the conventional method 3 in which the ratio (D / t) of the outer diameter (D) to the wall thickness (t) is 6.5 was slightly bent from the target 2 mm / m at 2.2 mm / m. For this reason, the method of cooling with cooling water from above without rotating it was ineffective for bending in the longitudinal direction.

比較例である継目無鋼管を回転速度6rpmで回転させながら、1.5m/minの速度で移送させて上下方向からの冷却水で冷却する外径(D)、肉厚(t)の比(D/t)が20である比較例1による真直度は、3.4mm/mで目標とする3mm/mより少し曲がっていた。   While rotating the seamless steel pipe as a comparative example at a rotational speed of 6 rpm, it is transferred at a speed of 1.5 m / min and cooled with cooling water from above and below, and the ratio of the outer diameter (D) and the wall thickness (t) ( The straightness according to Comparative Example 1 in which D / t was 20 was 3.4 mm / m, which was slightly bent from the target of 3 mm / m.

また、継目無鋼管を回転速度6rpmで回転させながら、0.8m/minの速度で移送させて上下方向からの冷却水で冷却する外径(D)、肉厚(t)の比(D/t)が20である比較例2は、4.3mm/mで目標とする3mm/mより大幅に曲がっていた。   In addition, while rotating the seamless steel pipe at a rotational speed of 6 rpm, it is transferred at a speed of 0.8 m / min and cooled with cooling water from above and below, and the ratio of the outer diameter (D) and the wall thickness (t) (D / Comparative Example 2 in which t) was 20 was significantly bent from the target 3 mm / m at 4.3 mm / m.

従って、比較例では、移送速度を0.5m/minの速度を越えて移送すると回転速度と同様に長手方向の曲がりに対して効果がなかった。   Therefore, in the comparative example, when the transfer speed was transferred exceeding 0.5 m / min, there was no effect on the bending in the longitudinal direction as in the case of the rotation speed.

熱処理工程の側面図である。It is a side view of a heat treatment process. 継目無鋼管を回転させる状態の側面図である。It is a side view of the state which rotates a seamless steel pipe. 冷却水で継目無鋼管を冷却させる状態の側面図である。It is a side view of the state which cools a seamless steel pipe with cooling water.

符号の説明Explanation of symbols

1………搬送ロール
2………継目無鋼管
3………搬送テーブル
4………加熱炉
5………冷却装置
6………回転ロール
7………冷却ノズル

DESCRIPTION OF SYMBOLS 1 ......... Conveyance roll 2 ......... Seamless steel pipe 3 ......... Conveyance table 4 ......... Heating furnace 5 ......... Cooling device 6 ......... Rotating roll 7 ......... Cooling nozzle

Claims (2)

マンネスマン法により製造された継目無鋼管を焼鈍する熱処理において、継目無鋼管を中心軸回りに5rpm以上で回転させながら、継目無鋼管の軸方向に0.5m/min以下の速度で移動させ、冷却装置にて上下方向より外表面を冷却させることを特徴とする曲がりの少ない長尺大径薄肉継目無鋼管の製造方法。   In a heat treatment for annealing a seamless steel pipe manufactured by the Mannesmann method, the seamless steel pipe is moved at a speed of 0.5 m / min or less in the axial direction of the seamless steel pipe while being rotated at a speed of 5 rpm or more around the central axis, and cooled. A method for producing a long, large-diameter, thin-walled seamless steel pipe with less bending, characterized in that the outer surface is cooled in the vertical direction by an apparatus. 前記継目無鋼管は、長さ(L)3m以上、外径(D)70mm以上で且つ外径(D)、肉厚(t)の比(D/t)が10以上の長尺大径薄肉継目無鋼管であることを特徴とする請求項1記載の曲がりの少ない長尺大径薄肉継目無鋼管の製造方法。
The seamless steel pipe has a long large diameter thin wall having a length (L) of 3 m or more, an outer diameter (D) of 70 mm or more, and a ratio (D / t) of the outer diameter (D) and the thickness (t) of 10 or more. 2. The method for producing a long large-diameter thin-walled seamless steel pipe with little bending according to claim 1, wherein the pipe is a seamless steel pipe.
JP2004063954A 2004-03-08 2004-03-08 Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending Pending JP2005248302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063954A JP2005248302A (en) 2004-03-08 2004-03-08 Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063954A JP2005248302A (en) 2004-03-08 2004-03-08 Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending

Publications (1)

Publication Number Publication Date
JP2005248302A true JP2005248302A (en) 2005-09-15

Family

ID=35029061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063954A Pending JP2005248302A (en) 2004-03-08 2004-03-08 Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending

Country Status (1)

Country Link
JP (1) JP2005248302A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959784A (en) * 2015-06-12 2015-10-07 内蒙古包钢钢联股份有限公司 Preparation method of P91 seamless steel pipe
WO2019189158A1 (en) * 2018-03-28 2019-10-03 日本製鉄株式会社 Seamless steel pipe heat treatment/purification-directed facility
CN113528790A (en) * 2021-07-23 2021-10-22 浙江永立钢业有限公司 Heat treatment device for producing large-caliber high-temperature corrosion-resistant alloy seamless pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104959784A (en) * 2015-06-12 2015-10-07 内蒙古包钢钢联股份有限公司 Preparation method of P91 seamless steel pipe
WO2019189158A1 (en) * 2018-03-28 2019-10-03 日本製鉄株式会社 Seamless steel pipe heat treatment/purification-directed facility
CN113528790A (en) * 2021-07-23 2021-10-22 浙江永立钢业有限公司 Heat treatment device for producing large-caliber high-temperature corrosion-resistant alloy seamless pipe

Similar Documents

Publication Publication Date Title
JP4453657B2 (en) Cold-finished seamless steel pipe
JP4894855B2 (en) Seamless pipe manufacturing method
RU2493925C2 (en) Method and device for continuous slab forming
WO2010122847A1 (en) Method of producing seamless pipe and apparatus for performing the same
JP6432614B2 (en) Cold rolling method and manufacturing method of metal tube
JP5020863B2 (en) Steel bar manufacturing equipment
US3979231A (en) Method for producing large diameter steel pipes
JP2005248302A (en) Method for producing long, large diameter, and thin-walled seamless steel pipe having little bending
JP5073534B2 (en) Steel bar manufacturing method
JP2009084635A (en) Method for quenching annular body using continuous quenching furnace
KR20160077420A (en) Method for manufacturing soft steel wire rod
JP6156314B2 (en) Mandrel bar cooling method and cooling equipment
JP2006219725A (en) Method for producing bearing race
JPH04168221A (en) Manufacture of austenitic stainless seamless steel tube
JPS6187824A (en) Uniform cooling method of high temperature metal pipe
JP3661434B2 (en) Controlled cooling method for hot rolled steel sheet
JPH0734926B2 (en) Method for manufacturing austenitic stainless steel seamless steel pipe
JPS5976615A (en) Method and device for descaling steel material in low pressure
JP4455274B2 (en) Heat treatment method for thin steel pipe
JPH06145793A (en) Method for preventing decarburization of seamless steel tube
JP2867910B2 (en) How to prevent carburization of seamless steel pipes
JPH1099902A (en) Method for rolling fine wire rod and apparatus for rolling fine wire rod
JP3006486B2 (en) Manufacturing method of austenitic stainless steel seamless pipe
JP7131536B2 (en) Method for manufacturing seamless steel pipe
JPS62161918A (en) Heat treatment line for steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20081209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Effective date: 20090121

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217