JP4945853B2 - Heat treatment method and apparatus for steel sheet - Google Patents

Heat treatment method and apparatus for steel sheet Download PDF

Info

Publication number
JP4945853B2
JP4945853B2 JP2001122955A JP2001122955A JP4945853B2 JP 4945853 B2 JP4945853 B2 JP 4945853B2 JP 2001122955 A JP2001122955 A JP 2001122955A JP 2001122955 A JP2001122955 A JP 2001122955A JP 4945853 B2 JP4945853 B2 JP 4945853B2
Authority
JP
Japan
Prior art keywords
plate
steel plate
induction heating
cooling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001122955A
Other languages
Japanese (ja)
Other versions
JP2002317227A (en
Inventor
晃夫 藤林
善道 日野
章 多賀根
宏 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001122955A priority Critical patent/JP4945853B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to TW090131315A priority patent/TW528808B/en
Priority to PCT/JP2001/011086 priority patent/WO2002050317A1/en
Priority to CN2008101885933A priority patent/CN101463414B/en
Priority to KR1020037007910A priority patent/KR100549451B1/en
Priority to CNB018208444A priority patent/CN100513589C/en
Priority to DE60133936T priority patent/DE60133936D1/en
Priority to EP01271125A priority patent/EP1359230B1/en
Publication of JP2002317227A publication Critical patent/JP2002317227A/en
Application granted granted Critical
Publication of JP4945853B2 publication Critical patent/JP4945853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【0001】
【発明の属する技術分野】
本発明は、誘導加熱装置を用いた鋼板の熱処理方法およびその装置に関する。
【0002】
【従来の技術】
鋼材は、一般に焼入れおよびその後の焼戻し処理により、高強度・高靱性を得るプロセスが熱処理として行われている。特に、焼戻し処理は、ガス等の燃焼をエネルギー源とした炉による熱処理が一般的である。
例えば、特開平9−256053号公報には、温度パターンを工夫して能率を上げる技術が提案されている。この技術では、炉内で鋼材を連続的に搬送して熱処理する場合において、鋼材の進行方法に向かって炉の設定温度を変化させ、炉の入側を高温に、出側を低温に設定する。さらにこの技術では、炉の入側を目的とする熱処理温度より200℃以上高く設定し、炉の出側に向かって段階的に設定炉温を低下させ、炉の出口前での炉の設定温度を目的とする熱処理温度±20℃以内とするというものである。
【0003】
また、特開平4−358022号公報記載の技術のように温度上昇速度を大きくとることで能率を上げる方法もある。この技術は、焼戻し中の昇温速度を1℃/秒以上とすることにより、昇温中における転位の回復、組織・析出物の粗大化、固溶炭素原子の析出を防止し、強度、靱性を高めることができるというものである。
【0004】
一方、誘導加熱を用いる加熱方法も、熱延鋼板の加熱方法としては提案されている。例えば、特開平9−225517号公報では、熱延鋼板の製造プロセスにおいて、仕上圧延機入側で、粗圧延された粗バーを誘導加熱で加熱する方法が提案されている。この技術は、一定速度で通過する粗バーの温度が、長手方向で一様になるように、加熱するものである。
【0005】
また、特開昭51−148611号公報には、誘導加熱による鋼材の熱処理方法が提案されている。この技術は、鋼管の熱処理に用いられている高周波焼入れ装置を焼戻しにも適用し、鋼管の焼入れにより生じた表面硬化層に対して、高温で焼戻すことにより軟化を図るというものである。
【0006】
【発明が解決しようとする課題】
しかし、特開平9−256053号公報記載の技術のように、ガス燃焼による加熱方式では、ガス燃焼炉による鋼材の熱処理において、熱の伝達は輻射や対流によるため、急速な加熱はできなかった。また、ガス燃焼炉では現実的に表層部のみの加熱は困難であり、表層部と板厚中央部の温度は、板厚50mm以下の厚鋼板ではほとんど差がないまま、温度が上昇していた。
【0007】
一方、鋼板を全周覆ったコイルの中を通過させながら鋼板の加熱を行うソレノイド型誘導加熱方式では、周波数を変更することで表層部のみを加熱することは可能であるが、鋼板の表層部に電流が流れて発熱するために、電流が集中する鋼板の側端部は、鋼板の幅方向中央部付近に比べて温度が高くなる。その様相を模式的に図10に示す。搬送ロール3上を送られてソレノイド型誘導加熱装置1を通過した厚鋼板2の幅方向の温度分布(図10中A−A’の表面温度分布)は図11のように板端部の温度が板幅中央部に比べて高くなっており、板幅方向端部の過加熱が問題となっていた。この過加熱は、板端部の材質異常を引き起こし、均質な材料を得る際の問題であった。あるいは、鋼板に熱処理後の冷却中や冷却後に熱歪が発生する問題があった。
【0008】
本発明は、上記の課題を解決するためになされたもので、鋼板の板側端部の過加熱を防止し、鋼板全体が均質な材料となるような熱処理方法およびそれを実現する熱処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1に記載の鋼板の熱処理方法は、鋼板を間隔を離して設置した複数の誘導加熱装置の中を通過させながら加熱する鋼板の熱処理方法において、
最前段の誘導加熱装置の入側から最終段の誘導加熱装置の出側にかけて連続的に設置した冷却手段により、鋼板の加熱中または加熱直後にその鋼板の板側端部を冷却することを特徴とするものである。
【0010】
本発明では、誘導加熱装置の内部で鋼板を加熱中に、または鋼板が誘導加熱装置を通過した加熱直後に、鋼板の板側端部を冷却することにしているので、板側端部の過加熱を防止することができ、その結果板幅方向の温度分布が均等なものとなり、鋼板全体が均質な材料となる。また、鋼板の各部に大きな温度差がないので、熱歪による鋼板の変形がなく、能率の良い熱処理が可能であり、かつ品質の良い鋼板が得られる。
なお、誘導加熱装置にはトランスバース型とソレノイド型があるが、いずれの形式でも本発明を適用することができる。
【0011】
本発明の請求項2に記載の鋼板の熱処理方法は、鋼板の板側端部を衝風冷却または接触冷却することを特徴とする。
【0012】
冷却媒体に水を用いると、誘導加熱装置のコイル内部またはコイルに近い部分では、コイルからの漏電によりスパークが発生するおそれがあり、鋼板にスパーク疵が付いたりするので、これを避けるために、冷却媒体に水を使わない方法、すなわち衝風冷却または接触冷却とするものである。衝風冷却は空気を板側端部に吹き付けて冷却する方法であり、接触冷却は冷却した部材、例えばロール等を板側端部に接触させて冷却する方法である。また、コイルから離れた箇所、すなわち誘導加熱装置間では適切な水切り手段で水の流入を防止すれば、板側端部を水冷することも可能である。
【0013】
本発明の請求項3に記載の鋼板の熱処理方法は、複数の誘導加熱装置を間隔を離して設置した鋼板の熱処理装置において、鋼板の板幅方向の温度分布を測定し、その温度分布に基づいて、次以降の誘導加熱装置の投入電力、鋼板の搬送速度、板側端部の冷却手段の冷却力のうち1つ以上を調節することにより、目標温度に鋼板を熱処理することを特徴とする。
【0014】
本発明では、複数の誘導加熱装置を間隔を離して設置した鋼板の熱処理装置で熱処理を行うもので、その場合、鋼板の板幅方向の温度分布をモニターし、その温度分布に基づいて、次以降の誘導加熱装置の投入電力、あるいは鋼板の搬送速度、あるいは板側端部の冷却手段の冷却力を調節することにより、目標温度に鋼板を熱処理するものである。鋼板の温度コントロールは、誘導加熱装置の投入電力、鋼板の搬送速度、板側端部の冷却手段の冷却力のいずれか1つ以上を調節することで可能である。もちろん、鋼板のサイズ(板厚、板幅等)が変更になった場合にはこれらのパラメータを変更する。なお、冷却手段の冷却力は、衝風冷却の場合、冷却する空気の流量であり、接触冷却の場合、例えば水冷ロール内に流す冷却水の流量である。
本発明によれば、効率のよい、板側端部の過加熱のない、均一な加熱が可能であり、目標温度への到達時間も短くてすむ。
【0015】
本発明の請求項4に記載の鋼板の熱処理装置は、間隔を離して設置した複数の誘導加熱装置と、鋼板を各誘導加熱装置の中を通過させる搬送手段と、最前段の誘導加熱装置の入側から最終段の誘導加熱装置の出側にかけて連続的に設置され、鋼板の板側端部を冷却する複数に分割された冷却手段と、鋼板の板幅方向の温度分布を測定する温度計と、を備えたことを特徴とする。
【0016】
このように熱処理装置を構成することによって、前述した本発明の熱処理方法を効率よく実施することができる。
【0017】
また、本発明の鋼板の熱処理装置において、冷却手段は、鋼板の板側端部に対向する部分に噴射孔を有する空気噴射管を含むものである。
【0018】
誘導加熱装置を鋼板が通過する際に過加熱されるのは、図11に示すように鋼板の側端部であって、温度が高い部分は板端面から板厚の1.5〜2倍程度の幅の部分である。したがって、板側端部の板厚全体に空気が当たるように噴射して冷却するようにする。
【0019】
また、空気噴射管を、鋼板の板側端部が入り込むコ字状の断面を有するものとし、そのコ字状の凹部に噴射孔を設けたものでもよい。
【0020】
鋼板のサイズに対応させるため、冷却手段は、鋼板の板幅方向に拡縮自在になっている。
【0021】
また、冷却手段は、鋼板の板側端部に押し付けられた水冷ロールを含むものである。この水冷ロールによって板側端部を接触冷却することができる。
【0022】
また、冷却手段は、前記誘導加熱装置間において、鋼板の板側端部を水冷する水スプレーノズルと、水の誘導加熱装置への侵入を防止する水切り手段とを含むものである。
【0023】
前述したように、誘導加熱装置のコイルから離れた箇所では水を使う冷却方法も可能である。水冷の場合、コイル内への水の侵入を防止する必要があるので、誘導加熱装置間において、水切り手段として、例えば水切りロールおよび空気噴射ノズルを前後に配設し、この水切り手段の間で水スプレーノズルより水を噴射して板側端部を水冷するようにしている。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。図1は本発明による鋼板の製造ラインの説明図である。熱間圧延機4によって熱間圧延された厚鋼板2に対して、水冷装置5による焼入れ処理を施す。その後、矯正装置6で歪みを矯正して、誘導加熱装置7によってオンライン熱処理を行う。なお、本発明はオンライン熱処理に限定されるものではなく、オフラインに誘導加熱装置を設置してもよい。
誘導加熱装置7としては、トランスバース型とソレノイド型があり、ここでは、ソレノイド型の誘導加熱装置を用いているが、トランスバース型においても本発明の効果は同様に得られる。トランスバース型は、図9(a)に示すように、上下一対のコイル8を鋼板2の表面および裏面にほぼ平行に配置したものであり、ソレノイド型は、図9(b)に示すように、コイル8を鋼板2の板幅方向の全周を包囲するように巻回してなるものである。図中、9は電源である。ソレノイド型は、表層部から加熱されるため、表層部と内部は温度差がある。トランスバース型は、板厚方向の温度分布が均一な状態で温度上昇する特徴がある。両者は、用途、目的、コスト等を考慮して選択され、あるいは組み合わせて使用される。
【0025】
この誘導加熱装置7は、図2に示すように、例えば、6つのソレノイド型誘導加熱装置7−1〜7−6の中を被加熱物である厚鋼板2が通過するような装置構成となっている。1段目のソレノイド型誘導加熱装置7−1の前および最終段のソレノイド型誘導加熱装置7−6の後と各ソレノイド型誘導加熱装置の間には、被加熱物の搬送をサポートするローラ10が配置され、これらのローラ10によりローラテーブルを構成している。このローラテーブルの各ローラ10は、ローラ回転数を細かく制御できるので、被加熱物である鋼板2の板幅、板厚、処理量に応じて、各ソレノイド型誘導加熱装置7−1〜7−6の投入電力や鋼板2が通過する時間を、細かく制御することによって、細かい温度制御が可能である。11は温度計である。
【0026】
ここで誘導加熱装置を分割して多段の加熱装置にしている理由は、3つある。その第1は、誘導加熱装置を分割すると本実施例のように加熱途中で板幅方向の温度分布をモニターすることが可能であるので、過加熱の具合をみながら以降のソレノイド型誘導加熱装置の出力を調整することが可能である。結果としてより過加熱を少なくすることが可能となるからである。第2は、鋼板の先後端部の非定常加熱部分が少なくなるからである。すなわち、1つのコイルで昇温量を多くするとそのコイルを通過する時間が長くなる。そのため、コイルの中に鋼板先端が入り、コイル内を充満するまで負荷変動が大きくなり、鋼板先端部の温度の上昇が定常部すなわちコイル内に鋼板が充満している状態の定常部の温度上昇に比べて小さくなる。したがって、コイル長は短い方が負荷変動を受ける鋼板先端部長さと鋼板後端部長さが短くなる。第3は、鋼板の板側端部は、端部からの放熱があるので板中央部に比べて、自然放冷されやすいである。したがって、ある温度まで加熱する場合、同じ投入電力で加熱することを想定しても、コイルを複数に分けて、コイル間に隙間を開け、間欠的に昇温させたほうが、すなわち時間をかけて昇熱したほうが、板側端部の過加熱は小さくなるからである。
【0027】
各ソレノイド型誘導加熱装置の間には、被加熱物の幅方向温度分布を計測する温度計11を設置し、板幅中央部付近の測温結果に基づき誘導加熱装置7−1から7−6の出力を調整し、あるいは被加熱物の通過(または搬送)速度を調整するなどの制御を行うこともできる。特に、厚鋼板の熱処理においては、品質上の観点から表面の温度の推移を正確に把握する必要がある。そのためには、温度計11は必要で、板側端部の過加熱の度合いを知る上で板幅方向の温度分布を計測可能な走査型温度計や多点温度計が望ましい。
【0028】
このような設備構成の誘導加熱装置において、板側端部の冷却は次のように行っている。図3に一例として第1のソレノイド型誘導加熱装置7−1と第2のソレノイド型誘導加熱装置7−2間における板側端部の冷却装置12を示すが、他のソレノイド型誘導加熱装置間においても同様の冷却装置を設けることができる。この冷却装置12の全体的な概要は図2に示すようになっている。図3において、第1のソレノイド型誘導加熱装置7−1のコイルの間口には鋼板2が通過する板側端部の対向するそれぞれの位置に、例えばセラミックス製の空気噴射管12aが設けられ、その空気噴射管12aの板側端部に対向する面には、例えば直径3mmφの孔13が40mm×40mmで開けられていて、この空気噴射管12aには空気を供給する空気供給管14が接続されている。空気噴射管12aは断面が四角形の中空管で構成されているが、特に断面形状は限定されない。また、噴射孔13は冷却用空気が板側端部の板厚全面に均一に当たるように設けることが望ましい。空気の流量は流量調整弁によってコントロールされ、板側端部に噴射孔13から噴射される空気の流量、いわゆる風量密度が制御可能で、その制御によって冷却能力を自由に変更できるものとなっている。
【0029】
また、各ソレノイド型誘導加熱装置間にはコイル内の空気噴射管12aと同じような噴射孔13を有する空気噴射管12bが板の側端部に対向するそれぞれの位置に設けられていて、コイル内の空気噴射管12aと接続され、両空気噴射管12a、12bは、板の幅方向に進退(拡縮)自在なように取り付けられている。そして、誘導加熱装置間の空気噴射管12bにもコイル内の空気噴射管12aと同じ径、同じピッチで噴射孔13が設けられ、空気供給管14から空気が供給される。さらに、最終段のソレノイド型誘導加熱装置7−6の出側にも上記空気噴射管12a、12bと同様の空気噴射管12c(図2参照)が連接されている。これらの空気噴射管12a、12b、12cは板幅方向に進退(拡縮)自在に取り付けられているので、板幅に応じて、空気噴射管12a、12b、12cの噴射孔13と、被冷却体である鋼板2の板端部との距離が既定値に保たれるように調整可能である。なお、空気噴射管12a、12b、12cは、鋼板のガイドの役目も兼ねていて、常に鋼板がコイルの中央部を通るように鋼板を案内する役目も果たしている。
【0030】
また、板側端部面ばかりでなく、板表面あるいは板裏面のエッジ部分を冷却するには、例えば図4に示すように、鋼板2の板側端部が入り込むようなコ字状の断面を有する空気噴射管15とし、この空気噴射管15のコ字状の凹部に板側端部面および板表裏面のエッジ部を冷却する噴射孔13a、13b、13cを設けたものでもよい。
前述した空気噴射管12a、12b、12c、または15は、コイル内(誘導加熱装置内)または誘導加熱装置間もしくは最終段の誘導加熱装置の出側に、鋼板の両側に1組以上設置してあればよい。
【0031】
これらの空気噴射管は、コイルからの磁場によって誘導電流が発生し発熱することがないように、例えばセラミックで構成している。また、冷却媒体として空気を採用しているが、これは次の理由による。水の方が冷却能力が高く、冷却媒体には適しているが、冷却水が、ソレノイド型誘導加熱装置のコイルに近づくと漏電してコイルからスパークが発生し、被加熱物にスパーク疵が付く。したがって、冷却媒体として水を用いることは避けたほうが望ましい。
ただし、例えば適切な水切り手段で冷却水の漏出を完全に遮断すれば、部分的には、例えば誘導加熱装置間でコイルから離れた位置に部分的に水冷を採用することは可能である。その例を図5に示す。この図は板側端部を水スプレーノズル16から噴射する冷却水で水冷すると共に、噴射された冷却水がコイル近傍に流入しないように空気噴射ノズル17を設けて空気を噴射して冷却水の水切りを行い、さらに、コイル入側・出側には板側端部に密接する水切りロール18を設置して、水切りを行っている。
【0032】
その他の冷却手段としては、図6に示すような内部を水冷した竪ロール(水冷ロール)19を板側端部に押し付けて、板側端部を接触冷却によって冷却する方法もある。また、水冷ロールに代えて、内部水冷構造のガイドシュートすることもできる。
また、冷却手段は、第1のソレノイド型誘導加熱装置以降に取り付けるのが好ましい。第1のソレノイド型誘導加熱装置の前ではまだ、板温度が上がっていないため、室温である冷却媒体を噴射しても冷却効果は期待できないためである。
【0033】
【実施例】
本発明の実施例として、前述のソレノイド型の誘導加熱装置を厚鋼板の製造ラインに適用した例について説明する。なお、6台のソレノイド型誘導加熱装置のうち5台の誘導加熱装置7−1〜7−5のコイルの長手方向の長さ(鋼板の長手方向に対応する寸法)は80cm、7−6の誘導加熱装置のコイルの長手方向の長さ(鋼板の長手方向に対応する寸法)は120cm、各コイル間の距離は100cmである。通過可能な板幅は最大4600mm、板は最大100mmである。
【0034】
この誘導加熱装置に、熱間圧延を施した板厚40mm、板幅3000mm、長さ20mの厚鋼板を、水冷により30℃まで加速冷却する焼入れ処理を行い、続いて、水冷中に発生した歪みを矯正機で除去して平坦にした。その後、6台のソレノイド誘導加熱装置7−1〜7−6を通して、焼戻し温度である650℃まで板中央部の温度が昇熱されるように熱処理を施した。このとき、ソレノイド型誘導加熱装置7−1〜7−6の投入電力、厚鋼板の通板速度を、表1に示すように設定した。なお、各ソレノイド型誘導加熱装置の周波数は1000Hz一定である。また、コイル内空気噴射管12aおよび各ソレノイド型誘導加熱装置間の空気噴射管12b並びに装置出側の空気噴射管12cに供給する空気の圧力を同表に示す。本実施例では、第1のソレノイド型誘導加熱装置のコイル内から第4と第5のソレノイド型誘導加熱装置間までの各空気噴射管から空気を噴射している。したがって、第5のソレノイド型誘導加熱装置のコイル内以降の各空気噴射管からは空気は噴射していない。
【0035】
【表1】

Figure 0004945853
【0036】
本実施例の板長手方向中央部(鋼板先端から10m)で、鋼板幅方向中央部の表面▲1▼と板厚中心▲2▼および板側端部の角▲3▼と板厚方向中心部▲4▼の4点の温度履歴を図7に示す。鋼板幅方向中央部の表面▲1▼は、ソレノイド型誘導加熱装置を通過する毎に温度が上昇するが、コイル間(誘導加熱装置間)では板厚方向に熱が拡散して温度は下がる。一方、鋼板幅方向中央部の板厚中心▲2▼は表面からの熱が拡散するに従って誘導加熱コイル内およびコイル間で温度は上昇し、最終コイルを通過後、約650℃に昇温された。
【0037】
一方、板長手方向中央部(鋼板先端から10m)で、板側端部の角▲3▼と板厚方向中心部▲4▼の温度履歴は、それぞれ鋼板幅方向中央部の表面▲1▼と板厚中心▲2▼と比べて若干温度が上がるものの最終的には鋼板幅方向中央部の表面▲1▼と板厚中心▲2▼と同じ650℃まで昇温し、板側端部に過加熱は生じなかった。その結果、各部の到達温度が所定の焼戻し温度である650℃となったので、この鋼板は板幅、板厚、板長方向に均質になった。なお、焼鈍後常温まで冷却された段階でも熱歪の発生はなく、フラットな板となった。
【0038】
このとき、熱処理パターンと板側端部の空気噴射による冷却条件は次のように決定した。熱処理パターンは、処理する鋼板の板幅、板厚、板の搬送速度によってあらかじめ数値計算によって板幅方向中央部付近の昇温カーブを、所要の最終加熱温度によって求めておく。なお、各ソレノイド型誘導加熱装置間に設けた温度計によって、計算による目標温度と実績温度に差が生じた場合には次以降のソレノイド型誘導加熱装置の投入電力を調整した。
【0039】
また、板側端部の冷却条件は、前述の板幅方向中央部の所要温度履歴に対する加熱パターン(各ソレノイド型誘導装置の投入電力パターン)で板側端部付近を加熱した場合の温度履歴を数値計算で求め、そのとき、板側端部の角▲3▼の温度が許される温度上限以下となるように空気噴射圧力を調整して、各空気噴射管から噴射する空気の流量を調整した。なお、このとき空気噴射管の空気圧力と冷却能力の関係はあらかじめ求めておいて、数値計算モデルに組み込んでおく。この場合も、各ソレノイド型誘導加熱装置間に設けた温度計の指示値によって以降の冷却条件を変更すべく空気噴射条件を逐次変更することが望ましい。
【0040】
このようにして、加熱パターンと冷却条件を決めれば、過加熱のない、かつ効率的な加熱を実現可能である。もちろん、この一連の条件決定の手順は、板厚や通過速度によって決定すればよい。また数値計算で毎回計算しなくても、条件をテーブルとして記憶しておき、そのテーブル値に従って条件を変更調整してもよい。
【0041】
[比較例]
前記実施例で、空気噴射を行わなかった場合を比較例として以下説明する。この比較例では、前記実施例と同様に、熱間圧延を施した板厚40mm、板幅3000mm、長さ20mの厚鋼板を、水冷により30℃まで加速冷却する焼入れ処理を行い、続いて、水冷中に発生した歪みを矯正機で除去して平坦にした。その後、6台のソレノイド型誘導加熱装置7−1〜7−6を通して、焼戻し温度である650℃まで板中央部の温度が昇熱されるように熱処理を施した。このとき、ソレノイド型誘導加熱装置7−1〜7−6の投入電力、厚鋼板の通板速度を、表1に示すように設定した。なお、各ソレノイド型誘導加熱装置の周波数は1000Hz一定である。そして、この比較例では、各空気噴射管12a、12b、12cから空気を噴射せず、連続的な誘導加熱を行った。
【0042】
この比較例の板長手方向中央部(鋼板先端から10m)で、鋼板幅方向中央部の表面▲1▼’と板厚中心▲2▼’および板側端部の角▲3▼’と板厚方向中心部▲4▼’の4点の温度履歴を図8に示す。鋼板幅方向中央部の表面▲1▼’は、ソレノイド型誘導加熱装置を通過する毎に温度が急激に上昇するが、コイル間(誘導加熱装置間)では板厚方向に熱が拡散して温度は下がる。一方、鋼板幅方向中央部の板厚中心▲2▼’は表面からの熱が拡散するに従って誘導加熱コイル内およびコイル間で温度は上昇し、最終コイルを通過後、約650℃に昇温された。
【0043】
一方、板長手方向中央部(鋼板先端から10m)で、板側端部の角▲3▼’と板厚方向中心部▲4▼’の温度履歴は、それぞれ鋼板幅方向中央部の表面▲1▼’と板厚中心▲2▼’と比べて大きく温度が高く、最終的には鋼板幅方向中央部の表面▲1▼’と板厚中心▲2▼’の目標温度650℃より約100℃高い750℃まで上昇した。その結果、板側端部は、所定の焼戻し温度である650℃を100℃オーバーし、750℃までなったので、この部分は変態が発生し、得られた組織が当初予定の組織と全く異なったものとなった。この鋼板は板幅方向に不均質になった。なお、焼鈍後常温まで冷却された段階でも熱による変形が発生して歪んだ板となった。
【0044】
この板側端部の過加熱は、熱処理パターンや通過速度を変更することで多少軽減するが、極端に速度を落としてゆっくり加熱するか、投入パワーを下げて加熱するしか方法がなく、能率よく熱処理を施すことはできない。
【0045】
【発明の効果】
以上のように、本発明によれば、鋼板を誘導加熱装置の中を通過させながら加熱するものにおいて、鋼板の加熱中または加熱直後にその鋼板の板側端部を冷却するものであるから、板側端部の過加熱を防止でき、鋼板全体を均一な温度に加熱することができる。そのため、能率の良い熱処理が可能であり、かつ均質な材料が得られる。また、熱歪による鋼板の変形もなく、フラットな鋼板が得られる。
【図面の簡単な説明】
【図1】本発明による鋼板の製造ラインの概要図である。
【図2】本発明の熱処理装置の概要図である。
【図3】図2の冷却装置の概要図である。
【図4】本発明の他の冷却装置の概要図である。
【図5】本発明のさらに他の冷却装置の概要図である。
【図6】本発明の別の冷却装置の概要図である。
【図7】実施例における鋼板各部位の温度履歴図である。
【図8】比較例における鋼板各部位の温度履歴図である。
【図9】誘導加熱装置のトランスバース型とソレノイド型の説明図である。
【図10】従来のソレノイド型誘導加熱装置による熱処理装置の概要図である。
【図11】図10のソレノイド型誘導加熱装置で鋼板を熱処理した場合の板幅方向の温度分布を示す図である。
【符号の説明】
1 ソレノイド型誘導加熱装置
2 鋼板
3 搬送ロール
4 熱間圧延機
5 水冷装置
6 矯正機
7 誘導加熱装置
7−1〜7−6 ソレノイド型誘導加熱装置
8 コイル
9 電源
10 ローラ
11 温度計
12 冷却装置
12a、12b、12c 空気噴射管
13 噴射孔
14 空気供給管
15 空気噴射管
16 水スプレーノズル
17 空気噴射ノズル
18 水切りロール
19 水冷ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat treatment method and apparatus for a steel sheet using an induction heating apparatus.
[0002]
[Prior art]
A process for obtaining high strength and high toughness is generally performed as a heat treatment for steel materials by quenching and subsequent tempering treatment. In particular, the tempering process is generally a heat treatment in a furnace using combustion of gas or the like as an energy source.
For example, Japanese Patent Laid-Open No. 9-256053 proposes a technique for improving efficiency by devising a temperature pattern. In this technology, when steel material is continuously conveyed and heat-treated in the furnace, the set temperature of the furnace is changed toward the steel material progression method, the furnace entrance side is set to a high temperature, and the exit side is set to a low temperature. . Furthermore, in this technique, the temperature at the furnace entrance is set to 200 ° C. higher than the intended heat treatment temperature, the furnace temperature is gradually reduced toward the furnace exit, and the furnace set temperature before the furnace outlet is set. The heat treatment temperature for the purpose is within ± 20 ° C.
[0003]
In addition, there is a method of increasing efficiency by taking a large temperature rise rate as in the technique described in Japanese Patent Laid-Open No. 4-358022. This technology prevents the recovery of dislocations, coarsening of structures and precipitates, and precipitation of solute carbon atoms by increasing the rate of temperature increase during tempering to 1 ° C / second or more. Can be increased.
[0004]
On the other hand, a heating method using induction heating has also been proposed as a method for heating a hot-rolled steel sheet. For example, Japanese Patent Application Laid-Open No. 9-225517 proposes a method of heating a rough bar that has been roughly rolled on the entry side of the finishing mill in an inductive heating process in the manufacturing process of a hot-rolled steel sheet. In this technique, the temperature of the coarse bar passing at a constant speed is heated so as to be uniform in the longitudinal direction.
[0005]
Japanese Patent Application Laid-Open No. 51-148611 proposes a heat treatment method for steel by induction heating. In this technique, the induction hardening apparatus used for the heat treatment of the steel pipe is also applied to the tempering, and the hardened surface generated by quenching the steel pipe is softened by tempering at a high temperature.
[0006]
[Problems to be solved by the invention]
However, as in the technique described in Japanese Patent Application Laid-Open No. 9-256053, in the heating method by gas combustion, in the heat treatment of the steel material by the gas combustion furnace, heat transfer is caused by radiation or convection, so that rapid heating cannot be performed. In addition, in the gas combustion furnace, it is actually difficult to heat only the surface layer portion, and the temperature of the surface layer portion and the central portion of the plate thickness has risen with almost no difference between the thick steel plates having a thickness of 50 mm or less. .
[0007]
On the other hand, in the solenoid type induction heating method in which the steel sheet is heated while passing through a coil covering the entire circumference of the steel sheet, it is possible to heat only the surface layer part by changing the frequency, but the surface layer part of the steel sheet Therefore, the temperature of the side end portion of the steel plate on which the current concentrates is higher than that in the vicinity of the central portion in the width direction of the steel plate. This aspect is schematically shown in FIG. The temperature distribution in the width direction (surface temperature distribution of AA ′ in FIG. 10) of the thick steel plate 2 sent on the transport roll 3 and passed through the solenoid type induction heating device 1 is the temperature at the end of the plate as shown in FIG. Is higher than the central portion of the plate width, and overheating of the end portion in the plate width direction has been a problem. This overheating causes a material abnormality at the end of the plate and is a problem when obtaining a homogeneous material. Alternatively, the steel plate has a problem that thermal strain is generated during or after cooling after the heat treatment.
[0008]
The present invention has been made to solve the above-described problems, and provides a heat treatment method and a heat treatment apparatus that realizes the heat treatment method that prevents overheating of the plate side end portion of the steel plate and makes the entire steel plate a homogeneous material. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In the heat treatment method for a steel plate according to claim 1 of the present invention, the steel plate is heated while passing through a plurality of induction heating devices installed at intervals.
Foremost From the entrance side of the induction heating device Of the last stage induction heating device The sheet-side end of the steel sheet is cooled during or immediately after the heating of the steel sheet by the cooling means continuously installed on the exit side.
[0010]
In the present invention, the plate side end of the steel plate is cooled while the steel plate is heated inside the induction heating device or immediately after the steel plate passes through the induction heating device. Heating can be prevented, and as a result, the temperature distribution in the plate width direction becomes uniform, and the entire steel plate becomes a homogeneous material. Moreover, since there is no big temperature difference in each part of a steel plate, there is no deformation | transformation of the steel plate by a thermal strain, efficient heat processing is possible, and a quality steel plate is obtained.
The induction heating apparatus includes a transverse type and a solenoid type, but the present invention can be applied to any type.
[0011]
The heat treatment method for a steel sheet according to claim 2 of the present invention is characterized in that the plate side end of the steel sheet is subjected to blast cooling or contact cooling.
[0012]
When water is used as the cooling medium, sparks may occur due to electric leakage from the coil inside or near the coil of the induction heating device. The method does not use water as a cooling medium, that is, blast cooling or contact cooling. Air blast cooling is a method of cooling by blowing air to the plate side end, and contact cooling is a method of cooling by bringing a cooled member such as a roll into contact with the plate side end. Moreover, if the inflow of water is prevented by a suitable draining means at a location away from the coil, that is, between induction heating devices, the plate-side end portion can be water-cooled.
[0013]
According to a third aspect of the present invention, there is provided a heat treatment method for a steel sheet, in a heat treatment apparatus for a steel sheet in which a plurality of induction heating apparatuses are installed at intervals, the temperature distribution in the sheet width direction of the steel sheet is measured, and the temperature distribution is Then, the steel sheet is heat-treated at a target temperature by adjusting one or more of the following input power of the induction heating device, the conveying speed of the steel sheet, and the cooling power of the cooling means at the plate end. .
[0014]
In the present invention, heat treatment is performed by a steel plate heat treatment apparatus in which a plurality of induction heating devices are installed at intervals. In this case, the temperature distribution in the sheet width direction of the steel sheet is monitored, and based on the temperature distribution, The steel sheet is heat-treated to the target temperature by adjusting the subsequent input power of the induction heating device, the conveying speed of the steel sheet, or the cooling power of the cooling means at the edge of the sheet side. The temperature control of the steel plate can be performed by adjusting any one or more of the input power of the induction heating device, the conveying speed of the steel plate, and the cooling power of the cooling means at the plate side end. Of course, these parameters are changed when the size (plate thickness, plate width, etc.) of the steel plate is changed. The cooling power of the cooling means is a flow rate of air to be cooled in the case of blast cooling, and is a flow rate of cooling water to be flowed into a water cooling roll in the case of contact cooling.
According to the present invention, efficient and uniform heating without overheating of the plate side end portion is possible, and the time to reach the target temperature can be shortened.
[0015]
A steel plate heat treatment apparatus according to claim 4 of the present invention, a plurality of induction heating devices installed at intervals, a conveying means for passing the steel plate through each induction heating device, Forefront From the entrance side of the induction heating device Of the last stage induction heating device A cooling means that is continuously installed over the exit side and is divided into a plurality of cooling means for cooling the plate side end of the steel plate, and a thermometer that measures the temperature distribution in the plate width direction of the steel plate. .
[0016]
By configuring the heat treatment apparatus in this way, the heat treatment method of the present invention described above can be efficiently performed.
[0017]
Moreover, in the steel plate heat treatment apparatus of the present invention, the cooling means includes an air injection tube having injection holes in a portion facing the plate side end of the steel plate.
[0018]
When the steel plate passes through the induction heating device, it is overheated at the side end portion of the steel plate as shown in FIG. 11, and the high temperature portion is about 1.5 to 2 times the plate thickness from the plate end surface. This is the width part. Therefore, it cools by injecting so that air may hit the whole plate | board thickness of a board side edge part.
[0019]
Further, the air injection tube may have a U-shaped cross section into which the plate-side end portion of the steel plate enters, and an injection hole may be provided in the U-shaped recess.
[0020]
In order to correspond to the size of the steel plate, the cooling means is freely expandable / contractable in the plate width direction of the steel plate.
[0021]
Moreover, a cooling means contains the water-cooling roll pressed against the board side edge part of the steel plate. The plate-side end can be contact-cooled by this water-cooled roll.
[0022]
Further, the cooling means includes a water spray nozzle for water cooling the plate side end portion of the steel plate between the induction heating devices, and a draining means for preventing water from entering the induction heating device.
[0023]
As described above, a cooling method using water at a location away from the coil of the induction heating device is also possible. In the case of water cooling, since it is necessary to prevent water from entering the coil, for example, a water draining roll and an air injection nozzle are arranged before and after the water draining means between the induction heating devices. Water is sprayed from the spray nozzle to cool the plate side end.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a steel sheet production line according to the present invention. The thick steel plate 2 hot-rolled by the hot rolling mill 4 is subjected to a quenching process by the water-cooling device 5. Thereafter, the straightening device 6 corrects the distortion, and the induction heating device 7 performs online heat treatment. In addition, this invention is not limited to online heat processing, You may install an induction heating apparatus offline.
As the induction heating device 7, there are a transverse type and a solenoid type. Here, a solenoid type induction heating device is used, but the effect of the present invention can be obtained in the transverse type as well. As shown in FIG. 9 (a), the transverse type has a pair of upper and lower coils 8 arranged substantially parallel to the front and back surfaces of the steel plate 2. The solenoid type is shown in FIG. 9 (b). The coil 8 is wound so as to surround the entire circumference of the steel plate 2 in the plate width direction. In the figure, 9 is a power source. Since the solenoid type is heated from the surface layer portion, there is a temperature difference between the surface layer portion and the inside. The transverse type is characterized in that the temperature rises with a uniform temperature distribution in the thickness direction. Both are selected in consideration of use, purpose, cost, etc., or used in combination.
[0025]
As shown in FIG. 2, the induction heating device 7 has a configuration in which, for example, the thick steel plate 2 as the object to be heated passes through the six solenoid induction heating devices 7-1 to 7-6. ing. A roller 10 that supports the conveyance of an object to be heated before the first-stage solenoid induction heating device 7-1 and between the last-stage solenoid induction heating device 7-6 and between each solenoid induction heating device. These rollers 10 constitute a roller table. Since each roller 10 of this roller table can finely control the number of roller rotations, each solenoid type induction heating device 7-1 to 7- according to the plate width, plate thickness, and throughput of the steel plate 2 to be heated. Fine temperature control is possible by finely controlling the input power of 6 and the time for which the steel plate 2 passes. 11 is a thermometer.
[0026]
There are three reasons why the induction heating device is divided into multi-stage heating devices. First, if the induction heating device is divided, it is possible to monitor the temperature distribution in the plate width direction during heating as in the present embodiment, so that the subsequent solenoid type induction heating device can be observed while checking the degree of overheating. Can be adjusted. This is because it is possible to reduce overheating as a result. The second reason is that the number of unsteady heating portions at the front and rear ends of the steel sheet is reduced. That is, if the amount of temperature increase is increased with one coil, the time for passing through the coil becomes longer. Therefore, the load fluctuation increases until the steel plate tip enters the coil and fills the inside of the coil, and the temperature rise at the steel plate tip is the steady portion, that is, the steady portion where the steel plate is full. Smaller than Therefore, the shorter the coil length, the shorter the steel plate front end length and the steel plate rear end length subjected to load fluctuations. Thirdly, the plate-side end of the steel plate is more likely to be naturally cooled than the plate central portion because heat is radiated from the end. Therefore, when heating to a certain temperature, even if it is assumed that heating is performed with the same input power, it is more time-consuming to divide the coil into a plurality of parts, open a gap between the coils, and raise the temperature intermittently. This is because the overheating of the end portion on the plate side becomes smaller when the temperature is raised.
[0027]
Between each solenoid type induction heating device, a thermometer 11 for measuring the temperature distribution in the width direction of the object to be heated is installed, and the induction heating devices 7-1 to 7-6 are based on the temperature measurement results near the center of the plate width. It is also possible to perform control such as adjusting the output or adjusting the passing (or conveying) speed of the object to be heated. In particular, in the heat treatment of thick steel plates, it is necessary to accurately grasp the transition of the surface temperature from the viewpoint of quality. For this purpose, the thermometer 11 is necessary, and a scanning thermometer or a multipoint thermometer capable of measuring the temperature distribution in the plate width direction is desirable in order to know the degree of overheating of the plate side end.
[0028]
In the induction heating apparatus having such an equipment configuration, the plate side end is cooled as follows. As an example, FIG. 3 shows a cooling device 12 at the plate side end between the first solenoid type induction heating device 7-1 and the second solenoid type induction heating device 7-2, but between the other solenoid type induction heating devices. A similar cooling device can be provided. An overall outline of the cooling device 12 is as shown in FIG. In FIG. 3, for example, a ceramic air injection pipe 12 a is provided at each of the opposing positions of the plate-side end portion through which the steel plate 2 passes at the opening of the coil of the first solenoid type induction heating device 7-1. For example, a hole 13 having a diameter of 3 mmφ is formed by 40 mm × 40 mm on the surface of the air injection pipe 12a facing the plate side end, and an air supply pipe 14 for supplying air is connected to the air injection pipe 12a. Has been. The air injection tube 12a is a hollow tube having a square cross section, but the cross sectional shape is not particularly limited. The injection holes 13 are desirably provided so that the cooling air uniformly strikes the entire plate thickness at the plate side end. The flow rate of air is controlled by a flow rate adjusting valve, and the flow rate of air injected from the injection hole 13 at the plate side end, so-called air volume density, can be controlled, and the cooling capacity can be freely changed by the control. .
[0029]
In addition, air injection pipes 12b having injection holes 13 similar to the air injection pipes 12a in the coils are provided between the solenoid induction heating devices at respective positions facing the side end portions of the plates. The air jet pipes 12a and 12b are connected to the inner air jet pipe 12a, and are attached so as to freely advance and retreat (expand / contract) in the width direction of the plate. The air injection pipe 12b between the induction heating devices is also provided with injection holes 13 having the same diameter and the same pitch as the air injection pipe 12a in the coil, and air is supplied from the air supply pipe 14. Further, an air injection pipe 12c (see FIG. 2) similar to the air injection pipes 12a and 12b is connected to the outlet side of the final-stage solenoid type induction heating device 7-6. Since these air injection pipes 12a, 12b, and 12c are attached so as to freely advance and retreat (expand and contract) in the plate width direction, the injection holes 13 of the air injection pipes 12a, 12b, and 12c and the object to be cooled are selected according to the plate width. It is possible to adjust so that the distance from the plate end of the steel plate 2 is maintained at a predetermined value. The air injection pipes 12a, 12b, and 12c also serve as a guide for the steel plate, and also serve to guide the steel plate so that the steel plate always passes through the central portion of the coil.
[0030]
Further, in order to cool not only the plate-side end surface but also the edge portion of the plate surface or the plate back surface, for example, as shown in FIG. 4, a U-shaped cross section in which the plate-side end portion of the steel plate 2 enters. The air injection pipe 15 may be provided, and the U-shaped concave portion of the air injection pipe 15 may be provided with injection holes 13a, 13b, and 13c for cooling the plate-side end surface and the edge portions of the front and rear surfaces of the plate.
One or more air jet tubes 12a, 12b, 12c, or 15 described above are installed in the coil (in the induction heating device), between the induction heating devices, or on the exit side of the induction heating device in the final stage, on both sides of the steel plate. I just need it.
[0031]
These air injection tubes are made of, for example, ceramic so that an induced current is not generated by a magnetic field from a coil and does not generate heat. In addition, air is used as the cooling medium for the following reason. Water has a higher cooling capacity and is suitable as a cooling medium. However, when the cooling water approaches the coil of the solenoid induction heating device, electric leakage occurs and sparks are generated from the coil, and a spark haze is attached to the object to be heated. . Therefore, it is desirable to avoid using water as the cooling medium.
However, for example, if the leakage of the cooling water is completely blocked by an appropriate draining means, it is possible to partially adopt the water cooling, for example, at a position away from the coil between the induction heating devices. An example is shown in FIG. In this figure, the plate-side end is water-cooled with cooling water sprayed from the water spray nozzle 16, and an air spray nozzle 17 is provided so that the sprayed cooling water does not flow into the vicinity of the coil, and air is jetted to cool the cooling water. Draining is performed, and further, a draining roll 18 that is in close contact with the end portion on the plate side is installed on the coil entry side and exit side to drain the water.
[0032]
As another cooling means, there is also a method of cooling the plate-side end portion by contact cooling by pressing a water roll 19 (water-cooled roll) 19 which is water-cooled inside as shown in FIG. 6 against the plate-side end portion. Moreover, it can replace with a water cooling roll and can also carry out the guide chute | shoot of an internal water cooling structure.
The cooling means is preferably attached after the first solenoid induction heating device. This is because the plate temperature has not yet risen before the first solenoid type induction heating device, and therefore a cooling effect cannot be expected even if a cooling medium at room temperature is injected.
[0033]
【Example】
As an embodiment of the present invention, an example in which the above-described solenoid-type induction heating apparatus is applied to a thick steel plate production line will be described. Of the six solenoid type induction heating devices, five induction heating devices 7-1 to 7-5 have lengths in the longitudinal direction (dimensions corresponding to the longitudinal direction of the steel plate) of 80 cm and 7-6. The length of the coil of the induction heating device in the longitudinal direction (the dimension corresponding to the longitudinal direction of the steel plate) is 120 cm, and the distance between the coils is 100 cm. The maximum plate width that can pass is 4600mm. Thickness Is a maximum of 100 mm.
[0034]
This induction heating apparatus is subjected to a quenching process in which a steel plate having a thickness of 40 mm, a plate width of 3000 mm, and a length of 20 m subjected to hot rolling is accelerated and cooled to 30 ° C. by water cooling, followed by distortion generated during water cooling. Was removed with a straightening machine and flattened. Then 6 solenoids Type Through induction heating devices 7-1 to 7-6, heat treatment was performed so that the temperature at the center of the plate was raised to 650 ° C., which is a tempering temperature. At this time, the input power of the solenoid induction heating devices 7-1 to 7-6 and the plate passing speed of the thick steel plate were set as shown in Table 1. In addition, the frequency of each solenoid type induction heating apparatus is constant at 1000 Hz. Further, the pressure of the air supplied to the air injection pipe 12b between the in-coil air injection pipe 12a and each solenoid type induction heating device and the air injection pipe 12c on the outlet side of the apparatus is shown in the same table. In this embodiment, air is injected from each air injection pipe from the coil of the first solenoid type induction heating device to between the fourth and fifth solenoid type induction heating devices. Therefore, air is not injected from each air injection pipe after the inside of the coil of the fifth solenoid type induction heating device.
[0035]
[Table 1]
Figure 0004945853
[0036]
In the central portion in the longitudinal direction of the plate (10 m from the front end of the steel plate) of the present example, the surface (1) and the thickness center (2) and the corner (3) and the central portion in the thickness direction of the plate side end in the width direction of the steel plate. FIG. 7 shows the temperature history of the four points (4). The surface {circle around (1)} of the central portion in the width direction of the steel sheet increases in temperature every time it passes through the solenoid induction heating device, but heat diffuses in the thickness direction between the coils (between the induction heating devices) and the temperature decreases. On the other hand, the plate thickness center {circle around (2)} in the central portion in the width direction of the steel plate rises in temperature between the induction heating coil and between the coils as the heat from the surface diffuses, and is raised to about 650 ° C. after passing through the final coil. .
[0037]
On the other hand, at the central part in the longitudinal direction of the plate (10 m from the front end of the steel plate), the temperature history of the corner (3) and the central portion (4) in the thickness direction of the plate side are respectively Although the temperature rises slightly compared to the thickness center (2), the temperature is finally raised to 650 ° C., which is the same as the surface (1) and the thickness center (2) at the center in the width direction of the steel plate. Heating did not occur. As a result, the reached temperature of each part reached 650 ° C., which is a predetermined tempering temperature, so that this steel plate became uniform in the plate width, plate thickness, and plate length directions. In addition, there was no generation of thermal strain even at the stage of cooling to room temperature after annealing, and a flat plate was obtained.
[0038]
At this time, the heat treatment pattern and the cooling conditions by air injection at the plate side end were determined as follows. In the heat treatment pattern, a temperature increase curve near the center in the plate width direction is determined by a required final heating temperature by numerical calculation in advance according to the plate width, plate thickness, and plate conveyance speed of the steel plate to be processed. In addition, when there was a difference between the calculated target temperature and the actual temperature by the thermometer provided between each solenoid type induction heating device, the input power of the solenoid type induction heating device after the next was adjusted.
[0039]
In addition, the cooling condition of the plate side end portion is the temperature history when the plate side end portion is heated with the heating pattern for the required temperature history in the center portion in the plate width direction (the input power pattern of each solenoid type induction device). It was calculated by numerical calculation, and at that time, the air injection pressure was adjusted so that the temperature at the corner (3) at the end on the plate side was lower than the allowable upper temperature limit, and the flow rate of air injected from each air injection tube was adjusted. . At this time, the relationship between the air pressure of the air injection pipe and the cooling capacity is obtained in advance and incorporated in the numerical calculation model. In this case as well, it is desirable to sequentially change the air injection conditions in order to change the subsequent cooling conditions according to the indicated value of the thermometer provided between the solenoid induction heating devices.
[0040]
Thus, if a heating pattern and cooling conditions are determined, efficient heating without overheating can be realized. Of course, this series of condition determination procedures may be determined according to the plate thickness and the passing speed. Further, the condition may be stored as a table without being calculated every time in numerical calculation, and the condition may be changed and adjusted according to the table value.
[0041]
[Comparative example]
A case where air injection is not performed in the above embodiment will be described below as a comparative example. In this comparative example, as in the previous example, a steel plate having a thickness of 40 mm, a plate width of 3000 mm, and a length of 20 m subjected to hot rolling was subjected to a quenching process of accelerated cooling to 30 ° C. by water cooling, The distortion generated during water cooling was removed by a straightening machine and flattened. Thereafter, heat treatment was performed through six solenoid induction heating devices 7-1 to 7-6 so that the temperature at the center of the plate was raised to 650 ° C., which is a tempering temperature. At this time, the input power of the solenoid induction heating devices 7-1 to 7-6 and the plate passing speed of the thick steel plate were set as shown in Table 1. In addition, the frequency of each solenoid type induction heating apparatus is constant at 1000 Hz. And in this comparative example, air was not injected from each air injection pipe 12a, 12b, 12c, but continuous induction heating was performed.
[0042]
In the center portion in the longitudinal direction of the plate (10 m from the front end of the steel plate) of this comparative example, the surface (1) 'and the thickness center (2)' in the central portion in the width direction of the steel plate and the corner (3) 'and the plate thickness at the plate side end portion. FIG. 8 shows temperature histories at four points in the direction center portion (4). The surface {circle around (1)} at the center in the width direction of the steel sheet rises abruptly every time it passes through the solenoid induction heating device, but heat diffuses in the thickness direction between the coils (between the induction heating devices). Go down. On the other hand, the plate thickness center {circle around (2)} in the central portion in the width direction of the steel plate rises in temperature between the induction heating coil and between the coils as the heat from the surface diffuses, and is raised to about 650 ° C. after passing through the final coil. It was.
[0043]
On the other hand, at the central part in the longitudinal direction of the plate (10 m from the front end of the steel plate), the temperature history of the corner (3) 'at the plate side end and the central portion (4) in the thickness direction is the surface of the central portion in the width direction of the steel plate (1). Compared to the target temperature 650 ° C at the center of the surface ▲ 1 ▼ and the center of the plate thickness ▲ 2 ▼, it is about 100 ℃. It rose to a high 750 ° C. As a result, the plate-side end portion exceeded the predetermined tempering temperature of 650 ° C. by 100 ° C. and reached 750 ° C., so this portion was transformed, and the obtained structure was completely different from the originally planned structure. It became a thing. This steel plate became heterogeneous in the plate width direction. Even when it was cooled to room temperature after annealing, it was deformed by heat and became a distorted plate.
[0044]
This overheating of the side edge of the plate is somewhat reduced by changing the heat treatment pattern and passing speed, but there is only a method of heating slowly by reducing the speed extremely or by lowering the input power, efficiently. It cannot be heat treated.
[0045]
【Effect of the invention】
As described above, according to the present invention, the steel plate is heated while passing through the induction heating device, and the steel plate side end of the steel plate is cooled during or immediately after the heating of the steel plate, Overheating of the plate side end can be prevented, and the entire steel plate can be heated to a uniform temperature. Therefore, efficient heat treatment is possible and a homogeneous material can be obtained. Further, a flat steel plate can be obtained without deformation of the steel plate due to thermal strain.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a steel sheet production line according to the present invention.
FIG. 2 is a schematic view of a heat treatment apparatus according to the present invention.
FIG. 3 is a schematic diagram of the cooling device of FIG. 2;
FIG. 4 is a schematic view of another cooling device of the present invention.
FIG. 5 is a schematic view of still another cooling device of the present invention.
FIG. 6 is a schematic view of another cooling device of the present invention.
FIG. 7 is a temperature history diagram of each part of the steel plate in the example.
FIG. 8 is a temperature history diagram of each part of a steel plate in a comparative example.
FIG. 9 is an explanatory view of a transverse type and a solenoid type of the induction heating device.
FIG. 10 is a schematic view of a heat treatment apparatus using a conventional solenoid induction heating apparatus.
11 is a view showing a temperature distribution in the plate width direction when the steel plate is heat-treated by the solenoid type induction heating device of FIG.
[Explanation of symbols]
1 Solenoid induction heating device
2 Steel plate
3 Transport roll
4 Hot rolling mill
5 Water cooling device
6 Straightener
7 Induction heating device
7-1 to 7-6 Solenoid type induction heating device
8 coils
9 Power supply
10 Laura
11 Thermometer
12 Cooling device
12a, 12b, 12c Air injection pipe
13 Injection hole
14 Air supply pipe
15 Air injection pipe
16 Water spray nozzle
17 Air injection nozzle
18 Draining roll
19 Water-cooled roll

Claims (9)

鋼板を間隔を離して設置した複数の誘導加熱装置の中を通過させながら加熱する鋼板の熱処理方法において、
最前段の誘導加熱装置の入側から最終段の誘導加熱装置の出側にかけて連続的に設置した冷却手段により、鋼板の加熱中または加熱直後にその鋼板の板側端部を冷却することを特徴とする鋼板の熱処理方法。
In the heat treatment method of the steel plate that is heated while passing through a plurality of induction heating devices installed with the steel plates spaced apart,
Cooling means installed continuously from the entrance side of the induction heating device in the foremost stage to the exit side of the induction heating device in the last stage cools the plate side end of the steel plate during or immediately after heating. A heat treatment method for the steel sheet.
前記冷却手段は、鋼板の板側端部を衝風冷却または接触冷却することを特徴とする請求項1記載の鋼板の熱処理方法。  The steel plate heat treatment method according to claim 1, wherein the cooling means cools a plate side end of the steel plate by blast cooling or contact cooling. 鋼板の板幅方向の温度分布を測定し、その温度分布に基づいて、次以降の誘導加熱装置の投入電力、鋼板の搬送速度、前記冷却手段の冷却力のうち1つ以上を調節することにより、目標温度に鋼板を熱処理することを特徴とする請求項1または2記載の鋼板の熱処理方法。  By measuring the temperature distribution in the sheet width direction of the steel sheet, and adjusting one or more of the input power of the subsequent induction heating device, the conveying speed of the steel sheet, and the cooling power of the cooling means based on the temperature distribution The method for heat-treating a steel plate according to claim 1 or 2, wherein the steel plate is heat-treated at a target temperature. 間隔を離して設置した複数の誘導加熱装置と、
鋼板を各誘導加熱装置の中を通過させる搬送手段と、
最前段の誘導加熱装置の入側から最終段の誘導加熱装置の出側にかけて連続的に設置され、鋼板の板側端部を冷却する複数に分割された冷却手段と、
鋼板の板幅方向の温度分布を測定する温度計と、
を備えたことを特徴とする鋼板の熱処理装置。
A plurality of induction heating devices installed at intervals, and
Conveying means for passing the steel plate through each induction heating device;
A cooling means that is continuously installed from the entrance side of the induction heating device in the foremost stage to the exit side of the induction heating device in the last stage, and is divided into a plurality of parts for cooling the plate side end of the steel sheet,
A thermometer for measuring the temperature distribution in the plate width direction of the steel plate;
A heat treatment apparatus for steel sheet, comprising:
前記冷却手段は、鋼板の板側端部に対向する部分に噴射孔を有する空気噴射管を含むことを特徴とする請求項4記載の鋼板の熱処理装置。  The said cooling means contains the air injection pipe which has an injection hole in the part facing the board side edge part of a steel plate, The heat processing apparatus of the steel plate of Claim 4 characterized by the above-mentioned. 前記冷却手段は、鋼板の板側端部が入り込むコ字状の断面の凹部に噴射孔を有する空気噴射管を含むことを特徴とする請求項4記載の鋼板の熱処理装置。  The said cooling means includes the air injection pipe which has an injection hole in the recessed part of the U-shaped cross section into which the board side edge part of a steel plate enters, The heat processing apparatus of the steel plate of Claim 4 characterized by the above-mentioned. 前記冷却手段は、鋼板の板幅方向に拡縮自在になっていることを特徴とする請求項4〜6のいずれかに記載の鋼板の熱処理装置。  The steel sheet heat treatment apparatus according to any one of claims 4 to 6, wherein the cooling means is freely expandable and contractable in the sheet width direction of the steel sheet. 前記冷却手段は、鋼板の板側端部に押し付けられた水冷ロールを含むことを特徴とする請求項4記載の鋼板の熱処理装置。  The steel sheet heat treatment apparatus according to claim 4, wherein the cooling means includes a water cooling roll pressed against a plate side end of the steel plate. 前記冷却手段は、前記誘導加熱装置間において、鋼板の板側端部を水冷する水スプレーノズルと、水の誘導加熱装置への侵入を防止する水切り手段とを含むことを特徴とする請求項4記載の鋼板の熱処理装置。  5. The cooling means includes a water spray nozzle that cools a plate-side end of a steel plate between the induction heating apparatuses, and a draining means that prevents water from entering the induction heating apparatus. The steel plate heat treatment apparatus as described.
JP2001122955A 2000-12-18 2001-04-20 Heat treatment method and apparatus for steel sheet Expired - Fee Related JP4945853B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2001122955A JP4945853B2 (en) 2001-04-20 2001-04-20 Heat treatment method and apparatus for steel sheet
PCT/JP2001/011086 WO2002050317A1 (en) 2000-12-18 2001-12-18 Production method for steel plate and equipment therefor
CN2008101885933A CN101463414B (en) 2000-12-18 2001-12-18 Production method for steel plate
KR1020037007910A KR100549451B1 (en) 2000-12-18 2001-12-18 Production method for steel plate and equipment therefor
TW090131315A TW528808B (en) 2000-12-18 2001-12-18 Method for manufacturing a steel plate and apparatus thereof
CNB018208444A CN100513589C (en) 2000-12-18 2001-12-18 Producing method for steel plate and equipment therefor
DE60133936T DE60133936D1 (en) 2000-12-18 2001-12-18 METHOD FOR PRODUCING A STEEL PLATE AND EQUIPMENT THEREFOR
EP01271125A EP1359230B1 (en) 2000-12-18 2001-12-18 Production method for steel plate and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001122955A JP4945853B2 (en) 2001-04-20 2001-04-20 Heat treatment method and apparatus for steel sheet

Publications (2)

Publication Number Publication Date
JP2002317227A JP2002317227A (en) 2002-10-31
JP4945853B2 true JP4945853B2 (en) 2012-06-06

Family

ID=18972586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001122955A Expired - Fee Related JP4945853B2 (en) 2000-12-18 2001-04-20 Heat treatment method and apparatus for steel sheet

Country Status (1)

Country Link
JP (1) JP4945853B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752526B2 (en) * 2006-02-07 2011-08-17 Jfeスチール株式会社 Continuous heating furnace and control method thereof
JP5861831B2 (en) 2011-07-28 2016-02-16 Jfeスチール株式会社 Steel plate heating device
CA3007365C (en) * 2015-12-04 2023-07-18 James WISWALL Methods of cooling an electrically conductive sheet during transverse flux induction heat treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116843B1 (en) * 1964-05-26 1966-09-24
JPS519176B2 (en) * 1971-08-04 1976-03-24
JPS6092428A (en) * 1983-10-25 1985-05-24 Chugai Ro Kogyo Kaisha Ltd Apparatus for induction-heating metallic strip
JPH01232685A (en) * 1988-03-11 1989-09-18 Mitsubishi Heavy Ind Ltd Induction heating device for steel plate
JPH04362143A (en) * 1991-06-05 1992-12-15 Daido Steel Co Ltd Continuous heater for metallic strip
JPH081230A (en) * 1994-06-15 1996-01-09 Nippon Steel Corp Method for cooling hot rolled steel sheet

Also Published As

Publication number Publication date
JP2002317227A (en) 2002-10-31

Similar Documents

Publication Publication Date Title
US10697034B2 (en) System and method for producing a hardened and tempered structural member
EP1359230B1 (en) Production method for steel plate and equipment therefor
KR20040049855A (en) Method of manufacturing steel plate
JP2010234446A (en) Method of cooling hot-rolled steel plate
JP4945853B2 (en) Heat treatment method and apparatus for steel sheet
CN115156314A (en) Cooling device and cooling method for thick steel plate, and thick steel plate manufacturing facility and manufacturing method
JP3925149B2 (en) Continuous heat treatment equipment for thick steel plates.
JP4066652B2 (en) Heat treatment method and apparatus for steel
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
JP5332072B2 (en) Heat treatment method and apparatus for thick steel plate
JP5015386B2 (en) Heat treatment method for thick steel plate
JP4066603B2 (en) Heat treatment method for steel
JP7266426B2 (en) Workpiece tempering method and machine parts obtained by this method
JP4490789B2 (en) Continuous annealing method for steel sheet
JP2009256707A (en) Method and apparatus for cooling bar-like or tubular metallic material
JP2004143528A (en) Method and apparatus for heat treatment of steel plate
JP3945161B2 (en) Heat treatment method for thick steel plate
JP4747465B2 (en) Stainless steel sheet manufacturing method and manufacturing apparatus
JP2003013134A (en) Manufacturing method for steel sheet, and facility therefor
JP2005296978A (en) Method and equipment for manufacturing thick steel plate
US7857919B2 (en) Process for producing steel product and production facility therefor
JPH09143567A (en) Production of high strength steel tube
JPH06330177A (en) Heat treatment apparatus for round corner part of large diameter square steel tube
JPS6228002A (en) Method and apparatus for heating web in rolling of wide flange beam
JP2006241537A (en) Heat treatment method for steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4945853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees