JP4490789B2 - Continuous annealing method for steel sheet - Google Patents

Continuous annealing method for steel sheet Download PDF

Info

Publication number
JP4490789B2
JP4490789B2 JP2004318311A JP2004318311A JP4490789B2 JP 4490789 B2 JP4490789 B2 JP 4490789B2 JP 2004318311 A JP2004318311 A JP 2004318311A JP 2004318311 A JP2004318311 A JP 2004318311A JP 4490789 B2 JP4490789 B2 JP 4490789B2
Authority
JP
Japan
Prior art keywords
cooling
zone
steel plate
steel sheet
continuous annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004318311A
Other languages
Japanese (ja)
Other versions
JP2006124817A (en
Inventor
圭一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2004318311A priority Critical patent/JP4490789B2/en
Publication of JP2006124817A publication Critical patent/JP2006124817A/en
Application granted granted Critical
Publication of JP4490789B2 publication Critical patent/JP4490789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

この発明は、高強度の薄鋼板の熱処理を行う鋼板連続焼鈍設備を用いた鋼板の連続焼鈍処理方法に関する。 The present invention relates to a method for continuously annealing a steel sheet using a steel sheet continuous annealing facility for performing heat treatment of a high strength thin steel sheet.

冷間圧延後の薄鋼板は、加工性を向上させるために、加熱・均熱帯、1次および2次冷却帯、再加熱・過時効帯、最終冷却帯を連続して設けた連続焼鈍設備で熱処理が施される。この熱処理では、通常、前記鋼板はその材質に応じて、700〜900℃の温度域に加熱・均熱され、前段側の1次冷却帯および後段側の2次冷却帯で、所要の冷却速度で冷却された後、400℃程度の温度で過時効処理されて、ハンドリング可能な温度域まで最終冷却される。   In order to improve workability, the thin steel sheet after cold rolling is a continuous annealing facility that is continuously provided with heating / soaking, primary and secondary cooling zones, reheating / overaging zones, and final cooling zones. Heat treatment is applied. In this heat treatment, the steel sheet is usually heated and soaked in a temperature range of 700 to 900 ° C. depending on the material, and a required cooling rate is obtained in the primary cooling zone on the front side and the secondary cooling zone on the rear side. Then, it is over-aged at a temperature of about 400 ° C. and finally cooled to a temperature range where it can be handled.

ところで、例えば、軟質の薄鋼板とは異なり、自動車の軽量化などのために使用される高強度鋼板、例えば、強度が600MPaクラスのハイテン材になると、加熱・均熱後に、冷却速度が一定以上の急速調整冷却を必要とする。このような急速調整冷却を可能とする、前段側の1次冷却帯の冷却装置としては、鋼板表面の非酸化および均一冷却が可能で、設備費も比較的安価という利点を有するガスジェット冷却方法を用いた冷却装置が開示されている(例えば、特許文献1、2参照)。また、後段側の2次冷却帯の冷却装置としては、内部冷却された多段ロールに鋼板を押し付けながら通過させて冷却するロール冷却装置や水などの冷却媒体を用いた高冷却能の浸漬冷却装置などが知られている。
特開平4−160120号公報(第2頁〜第4頁) 特開2002−3956号公報([0006]〜[0018])
By the way, for example, unlike a soft thin steel plate, a high strength steel plate used for weight reduction of an automobile, for example, a high strength material having a strength of 600 MPa class, the heating rate is higher than a certain level after heating and soaking. Requires rapid adjustment cooling. As a cooling device for the primary cooling zone on the front stage side that enables such rapid adjustment cooling, a gas jet cooling method that has the advantage that non-oxidation and uniform cooling of the steel sheet surface is possible and the equipment cost is relatively low Has been disclosed (for example, see Patent Documents 1 and 2). Moreover, as a cooling device for the secondary cooling zone on the rear stage side, a roll cooling device that cools an internally cooled multi-stage roll while pressing the steel plate while pressing it, or a high cooling ability immersion cooling device that uses a cooling medium such as water. Etc. are known.
JP-A-4-160120 (pages 2 to 4) JP 2002-3156 A ([0006] to [0018])

しかし、高強度鋼板に要求される強度、伸びなどの機械的特性は年々高度なものとなり、それに伴って製造方法も複雑化してきている。特に、強度が1000MPaクラス以上の高強度鋼板(超ハイテン材)では、加熱・均熱後の急冷開始温度と急冷終了温度およびその間の冷却速度をより厳密に管理する必要がある。2次冷却にロール冷却装置を用いる場合のハイテン材、超ハイテン材の冷却条件の一例を表1に示す。なお、表1の冷却終了温度は、2次冷却のロール冷却終了温度を示す。   However, mechanical properties such as strength and elongation required for high-strength steel sheets are becoming higher year by year, and the manufacturing methods are becoming more complicated. In particular, in a high-strength steel plate (super high-tensile material) having a strength of 1000 MPa class or more, it is necessary to more strictly manage the quenching start temperature and quenching end temperature after heating and soaking, and the cooling rate therebetween. Table 1 shows an example of cooling conditions for the high-tensile and ultra-high-tensile materials when a roll cooling device is used for secondary cooling. The cooling end temperature in Table 1 indicates the roll cooling end temperature of the secondary cooling.

Figure 0004490789
Figure 0004490789

表1から、組織がオーステナイトとベイナイトからなる高強度鋼板を製造するためには、フェライト組織を出現させないために、約800〜500℃の温度範囲のフェライト変態域を急冷し、かつ、マルテンサイト組織を出現させないために、急冷後、約400℃の過時効温度までを徐冷する必要がある。前記特許文献1、2に開示されたガスジェット冷却装置では、同じ冷却ユニットが直列に配置されているだけであるため、また、一般に高強度鋼板の均熱終了温度は、組織の均一化および焼入れ性確保のため850〜900℃程度に設定され、この均熱終了温度から800〜500℃の温度域をフェライト組織が出現しないために必要な冷却速度で急冷しようとすると、冷却終了温度が低くなり過ぎる虞があり、また、冷却初期の900〜800℃の急冷を要しない温度域までも急冷することになって、冷却装置が必要以上に大掛かりなものとなり、冷却効率が低下する。   From Table 1, in order to produce a high-strength steel sheet whose structure is composed of austenite and bainite, the ferrite transformation region in the temperature range of about 800 to 500 ° C. is quenched in order to prevent the ferrite structure from appearing, and the martensite structure In order not to appear, it is necessary to gradually cool to an overaging temperature of about 400 ° C. after rapid cooling. In the gas jet cooling devices disclosed in Patent Documents 1 and 2, since only the same cooling unit is arranged in series, generally, the soaking end temperature of the high-strength steel plate is equalized and quenched. If the temperature is set to about 850 to 900 ° C. in order to ensure the heat resistance, and the rapid cooling is performed at a cooling rate necessary for preventing the ferrite structure from appearing in the temperature range of 800 to 500 ° C. from the soaking end temperature, the cooling end temperature is lowered. In addition, there is a risk that the cooling device will be rapidly cooled to a temperature range that does not require rapid cooling at 900 to 800 ° C. in the initial stage of cooling, and the cooling device becomes larger than necessary, resulting in a reduction in cooling efficiency.

一方、均熱終了後の鋼板を、1次冷却帯では殆んど冷却せずに2次冷却帯のロール冷却装置で急冷する場合には、冷却能力は高いものの、高温からのロール冷却では鋼板の熱収縮が大きいため、反りや波形状が発生し、冷却ロールとの幅方向の均一接触が得られにくく均一冷却が困難となる。また、均熱終了後、2次冷却帯の浸漬冷却装置で水焼入れすることにより高強度鋼板を製造する場合には、急冷開始温度、即ち、均熱終了温度を高くする方が好ましいが、水焼入れ時の鋼板の温度降下が速いため、鋼板幅方向形状が歪み、平坦な高強度鋼板を得ることが困難となる。さらに、均熱終了後の鋼板を、ガスジェット冷却装置で、従来の水焼き入れ開始温度よりも低い、400℃以下の温度域まで急冷した後に水焼入れしようとする場合には、従来のガスジェット冷却装置では冷却能力が不足して急冷条件を満たせず、所望の高強度鋼板を製造することは困難である。仮に、この水焼入れによる方法で所望の高強度鋼板が製造可能となっても、前記ガスジェット冷却装置の冷却能力不足を解消して水焼入れ開始温度を従来よりも低くするためには、ガスジェット冷却装置を最大冷却能力状態にして、ライン速度、即ち、鋼板通過速度を遅くして冷却時間を長く確保する必要があり、生産性が低下するようになる。このように、従来の冷却装置を用いた連続焼鈍設備で熱処理により、均熱後の冷却速度がとくに指定されない軟質鋼板から、変態温度域での厳密な冷却速度の管理が要求される高強度鋼板(超ハイテン材)までの多種類の薄鋼板製品を製造することは非常に困難となっている。   On the other hand, when the steel plate after the soaking is quenched with the roll cooling device in the secondary cooling zone without being cooled in the primary cooling zone, the cooling capacity is high, but the steel plate is not used for roll cooling from a high temperature. Since the heat shrinkage is large, warping and corrugation occur, and uniform contact with the cooling roll in the width direction is difficult to obtain, making uniform cooling difficult. In addition, when a high-strength steel sheet is produced by water quenching with an immersion cooling device in the secondary cooling zone after the soaking is completed, it is preferable to increase the rapid cooling start temperature, that is, the soaking end temperature. Since the temperature drop of the steel sheet during quenching is fast, the shape in the width direction of the steel sheet is distorted, making it difficult to obtain a flat high-strength steel sheet. Further, when the steel plate after the soaking is quenched with a gas jet cooling device to a temperature range of 400 ° C. or lower, which is lower than the conventional water quenching start temperature, In the cooling device, the cooling capacity is insufficient and the rapid cooling condition is not satisfied, and it is difficult to manufacture a desired high strength steel plate. Even if the desired high-strength steel sheet can be produced by this water quenching method, in order to eliminate the lack of cooling capacity of the gas jet cooling device and lower the water quenching start temperature than before, a gas jet It is necessary to set the cooling device to the maximum cooling capacity state, to slow down the line speed, that is, the steel plate passage speed, and to secure a long cooling time, and the productivity is lowered. In this way, high-strength steel sheets that require strict control of the cooling rate in the transformation temperature range from soft steel sheets that do not have a specified cooling rate after soaking by heat treatment in a continuous annealing facility using a conventional cooling device. It is very difficult to manufacture a wide variety of thin steel sheet products up to (super high tensile material).

この発明は、上記のような問題に鑑みてなされたもので、その課題は、組織がオースティナイトとベイナイトからなる1000MPa以上の高強度鋼板(超ハイテン材)を製造するために必要な熱処理を、生産性を損なわずに行なうことができる連続焼鈍設備を用いた鋼板の連続焼鈍処理方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and the problem is that a heat treatment necessary for producing a high-strength steel plate (super high-tensile material) having a structure of austenite and bainite and having a thickness of 1000 MPa or more is provided. An object of the present invention is to provide a method for continuously annealing a steel sheet using a continuous annealing facility that can be performed without impairing productivity.

前記の課題を解決するために、この発明では以下の構成を採用したのである。   In order to solve the above problems, the present invention employs the following configuration.

即ち、少なくとも、加熱帯と、均熱帯と、10℃/s以下の冷却速度で鋼板を冷却する前段側の緩冷可能な冷却ユニットと30℃/s以上の冷却速度で鋼板を冷却する後段側の急冷可能な冷却ユニットからなるガスジェット冷却装置が配設された1次冷却帯と、2次冷却帯と、過時効帯とを備えた連続焼鈍設備を用いて、組織がオースティナイトとベイナイトからなる1000MPa以上の高強度鋼板を製造する鋼板の連続焼鈍処理方法において、鋼板を前記加熱帯により850〜900℃に加熱し、前記均熱帯により均熱した後、前記1次冷却帯におけるガスジェット冷却装置の前段側の冷却ユニットにより、ロール冷却を行う場合には800℃から500℃間を、また液体浸漬冷却を行う場合には800℃から400℃間を、30℃/s以上の冷却速度で急冷し、さらに前記2次冷却帯により2次冷却し、その後前記過時効帯により過時効処理を施すことを特徴とする組織がオースティナイトとベイナイトからなる1000MPa以上の高強度鋼板を製造する鋼板の連続焼鈍処理方法である。 That is, at least a heating zone, a soaking zone, a cooling unit on the front side that cools the steel plate at a cooling rate of 10 ° C./s or less, and a rear stage side that cools the steel plate at a cooling rate of 30 ° C./s or more. The structure is austenite and bainite using a continuous annealing facility having a primary cooling zone, a secondary cooling zone, and an overaging zone provided with a gas jet cooling device comprising a cooling unit capable of rapid cooling. In the continuous annealing treatment method of a steel plate for producing a high-strength steel plate of 1000 MPa or more, the steel plate is heated to 850 to 900 ° C. by the heating zone, soaked by the soaking zone, and then the gas jet in the primary cooling zone the front side of the cooling unit of the cooling device, between 500 ° C. from 800 ° C. in the case of performing the roll cooling and between 400 ° C. from 800 ° C. in the case of performing the liquid immersion cooling, 30 ° C. / s High strength of 1000 MPa or more, wherein the structure is composed of austenite and bainite, characterized by rapid cooling at the above cooling rate, secondary cooling by the secondary cooling zone, and subsequent overaging treatment by the overaging zone It is the continuous annealing processing method of the steel plate which manufactures a steel plate.

ここで、1次冷却帯におけるガスジェット冷却装置の前段側とは冷却装置の中程から上流側を言い、後段側とは同中程から下流側を言う。また、緩冷とは、上記所要の冷却速度を得るために、冷却装置の各冷却ユニットを、例えば、冷媒ガス流量を等しくするなど、等しい冷却能力にして冷却する場合よりも小さな冷却能力にして冷却することを意味し、急冷とはこの逆で、上記所要の冷却速度を得るために大きな冷却能力で冷却することを意味する。 Here, the front stage side of the gas jet cooling apparatus in the primary cooling zone refers to the middle side to the upstream side of the cooling apparatus, and the rear stage side refers to the middle stage to the downstream side. Also, the mildly in order to obtain the desired cooling rate, each cooling unit of the cooling device, for example, to equalize the coolant gas flow, and a small cooling capacity than if cooling in the same cooling capacity It means cooling, and conversely with rapid cooling, it means cooling with a large cooling capacity in order to obtain the required cooling rate .

このようにすれば、前述の、鋼板組織がオーステナイトとベイナイトからなる高強度鋼板(ハイテン材、超ハイテン材)を製造する場合、上記1次冷却帯のガスジェット冷却装置の前段側の冷却ユニットで、通常900℃程度の均熱温度から約800℃までを緩冷却し、後段側の冷却ユニットで約800〜500℃まで温度範囲で急速冷却することが可能となり、上記鋼板組織を実現するために必要な冷却速度で1次冷却を行うことができる。なお、1次冷却終了後、500℃から400℃程度の過時効温度までの温度域は、2次冷却帯に通常設置される内部水冷したロール冷却装置で冷却することができる。このようにして必要とする鋼板組織が得られ、また、1次冷却終了温度を約500℃の低温にできるため、2次冷却帯でのロール冷却による鋼板の変形も生じ難く、鋼板組織と安定した鋼板形状を同時に満足する熱処理を施すことができる。   In this way, when manufacturing a high-strength steel plate (high-tensile material, ultra-high-tensile material) having a steel sheet structure composed of austenite and bainite, the cooling unit on the front side of the gas jet cooling device in the primary cooling zone is used. In order to realize the above steel sheet structure, it is possible to cool slowly from a soaking temperature of about 900 ° C. to about 800 ° C., and to cool rapidly in a temperature range from about 800 to 500 ° C. in a subsequent cooling unit. Primary cooling can be performed at the required cooling rate. In addition, the temperature range from 500 degreeC to the overaging temperature of about 400 degreeC after completion | finish of primary cooling can be cooled with the internal water-cooled roll cooling apparatus normally installed in a secondary cooling zone. Thus, the necessary steel sheet structure can be obtained, and the primary cooling end temperature can be lowered to about 500 ° C., so that deformation of the steel sheet due to roll cooling in the secondary cooling zone hardly occurs, and the steel sheet structure is stable. It is possible to perform heat treatment that satisfies the steel plate shape at the same time.

また、前記ロール冷却装置とともに、2次冷却帯に通常並設される、冷却媒体として水などを使用する浸漬冷却装置を用いて高強度鋼板を製造する場合、前記後段側の急冷可能な冷却ユニットにより、1次冷却帯で約500℃の低温域まで冷却できるため低温域から浸漬冷却を行うことができ、鋼板の変形が抑制される。従って、2次冷却として浸漬冷却を行なうことによっても所望の高強度鋼板(超ハイテン材)を製造することが可能となる。さらに、冷却装置自体も、特に前段側で過剰な冷却能力を具備する必要がないため、全体として冷却装置が必要以上に大型化せずに済む。   In addition, when manufacturing a high-strength steel sheet using an immersion cooling device that uses water or the like as a cooling medium that is usually arranged in parallel with the roll cooling device, the cooling unit on the rear stage side can be rapidly cooled. Therefore, since it can cool to a low temperature range of about 500 ° C. in the primary cooling zone, immersion cooling can be performed from the low temperature range, and deformation of the steel sheet is suppressed. Therefore, a desired high-strength steel plate (super high-tensile material) can be manufactured also by performing immersion cooling as secondary cooling. Furthermore, since the cooling device itself does not need to have an excessive cooling capacity particularly on the front side, the cooling device as a whole does not need to be unnecessarily large.

続焼鈍設備のガスジェット冷却装置は、前記後段側の急冷可能な冷却ユニットが、前記前段側の緩冷可能な冷却ユニットの冷却能力に対して、少なくとも2倍の冷却能力を有することが好ましい。 Gas jet cooling apparatus continuous annealing equipment is quenchable cooling unit of the latter stage side, with respect to cooling capacity of mildly possible cooling unit of the preceding stage, it is preferred to have at least 2 times the cooling capacity .

ここで、2倍の冷却能力とは、厳密には、熱処理対象とする範囲の同一厚さの鋼板に対して、800〜500℃の温度域における抜熱流束が2倍であること、即ち、各冷却ユニットの冷却媒体ガスの温度が同じ場合には、各冷却ユニットの最大出力ガス流量時に得られる800〜500℃の温度域における最大平均噴流熱伝達率の比が2倍であることを意味する。   Here, strictly speaking, the double cooling capacity means that the heat removal flux in the temperature range of 800 to 500 ° C. is twice that of the steel sheet having the same thickness within the range to be heat-treated, that is, When the temperature of the cooling medium gas in each cooling unit is the same, it means that the ratio of the maximum average jet heat transfer coefficient in the temperature range of 800 to 500 ° C. obtained at the maximum output gas flow rate of each cooling unit is twice. To do.

このようにすれば、連続焼鈍処理の対象上限厚の鋼板に対しても、高強度鋼板の組織形成に必要な約800〜500℃まで温度範囲での所要の冷却を満たし、かつ、2次冷却として浸漬冷却を行う場合でも、通板速度をその上限値からあまり低下させず冷却開始温度をさらに下げることができるため、鋼板の冷却変形が抑制されて安定した形状の高強度鋼板(超ハイテン材)の製造が可能となる。   If it does in this way, the required cooling in a temperature range is satisfied to about 800-500 degreeC required for structure | tissue formation of a high strength steel plate also to the steel plate of the upper limit thickness of object of a continuous annealing process, and it is secondary cooling. Even when immersion cooling is performed, since the cooling start temperature can be further lowered without significantly reducing the plate passing speed from its upper limit value, a high-strength steel plate having a stable shape with suppressed cooling deformation of the steel plate (ultra-high tensile steel material) ) Can be manufactured.

また、連続焼鈍設備のガスジェット冷却装置は、前記冷却装置の入側および出側、ならびに入側冷却ユニットと出側冷却ユニット間の中間位置にそれぞれ鋼板の表面温度計を設けることが好ましい。 The gas jet cooling device for a continuous annealing facility, the inlet side and outlet side of the cooling device, as well as to an intermediate position Rukoto provided surface thermometer of the steel sheet between the outlet side cooling unit and the inlet side cooling unit preferable.

このように、冷却装置の入出側のみならず、中間位置にも表面温度計を設置することにより、高強度鋼板の組織形成に必要な冷却速度をより精度よく制御することが可能となる。   Thus, by installing the surface thermometer not only at the entrance / exit side of the cooling device but also at the intermediate position, it becomes possible to control the cooling rate necessary for the formation of the structure of the high-strength steel sheet with higher accuracy.

この発明によれば、1000MPa以上の高強度鋼板の組織を実現するために必要な冷却速度に適合した効率のよい冷却が可能となる。また、後段側の急冷可能な冷却ユニットにより、処理対象の最大厚さの鋼板に対しても、1次冷却終了温度を低温にできるため、2次冷却帯でのロール冷却や浸漬冷却時に、鋼板の変形が抑制され、鋼板組織と安定した鋼板形状を同時に満足する熱処理を施すことができる。それにより、組織がオースティナイトとベイナイトからなる1000MPa以上を有する高強度鋼板(超ハイテン材)を製造するために必要な連続焼鈍処理を、生産性を損なわずに行なうことができる。 According to this invention , efficient cooling adapted to the cooling rate necessary for realizing a structure of a high-strength steel sheet of 1000 MPa or more is possible. Also, the cooling unit capable of rapid cooling on the rear stage side can lower the primary cooling end temperature even for the steel plate of the maximum thickness to be processed, so that the steel plate is used during roll cooling or immersion cooling in the secondary cooling zone. Therefore, heat treatment that satisfies the steel sheet structure and the stable steel sheet shape at the same time can be performed. Thereby, the continuous annealing treatment required for producing a high-strength steel plate (super high-tensile material) having a structure of austenite and bainite and having 1000 MPa or more can be performed without impairing productivity.

以下に、この発明の実施形態を添付の図1から図4に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying FIGS.

図1は、薄鋼板の連続焼鈍炉1の要部を示したもので、入側設備から表面清浄処理などの前処理が施された鋼板は、加熱帯2aで再結晶温度以上の温度域、例えば、高強度鋼板の場合には、850〜900℃の温度域に加熱された後、均熱帯2bで組織の均一化および焼入れ性確保等のために均熱され、急冷帯3の前段側の1次冷却帯3aおよび2次冷却帯3bで所要の冷却速度で急冷される。そして、2次冷却帯3bで、液体浸漬冷却装置により常温まで急冷された場合の鋼板は、再加熱帯4で過時効温度にまで再加熱された後、過時効帯5でこの温度に保持された後、最終冷却帯6でハンドリング可能な温度にまで冷却される。   FIG. 1 shows a main part of a continuous annealing furnace 1 for a thin steel plate. A steel plate that has been subjected to a pretreatment such as a surface cleaning treatment from an entry-side facility has a temperature range above the recrystallization temperature in the heating zone 2a, For example, in the case of a high-strength steel plate, after being heated to a temperature range of 850 to 900 ° C., it is soaked in the soaking zone 2b for uniforming the structure and ensuring hardenability, etc. The primary cooling zone 3a and the secondary cooling zone 3b are rapidly cooled at a required cooling rate. And the steel plate when rapidly cooled to room temperature by the liquid immersion cooling device in the secondary cooling zone 3b is reheated to the overaging temperature in the reheating zone 4 and then held at this temperature in the overaging zone 5. Then, it is cooled to a temperature that can be handled in the final cooling zone 6.

図2に示すように、炉殻F内に収容された前記1次冷却帯3aには、4段の冷却ユニット7a、7b、7c、7dが通板方向に沿って配設され、前段側の冷却ユニット7a、7bおよび後段側の冷却ユニット7c、7dには、ガス噴射用のノズルが、鋼板の全幅にわたって均一冷却が可能なように、同じノズル密度(ノズル個数/鋼板冷却面積)で、例えば、格子状または千鳥状に、鋼板の両面から冷却できるように多数配置されている。各冷却ユニット7a〜7dの各ノズルから、例えば、前記焼鈍炉の一般的な非酸化性雰囲気ガスであるHNXガス(組成:H2ガス5〜10%、N2ガス95〜90%)を冷却媒体として、この冷媒ガスが均等に噴射されるように、各ノズルはヘッダーを介してファン8a〜8dに接続されている。前記冷却媒体の非酸化性ガスは循環使用されるため、鋼板に吹き付けられた戻りのガスは、ガス冷却装置9により所定の冷却媒体温度にまで冷却された後に、各ファン8a〜8dから各冷却ユニット7a〜7dにそれぞれ供給される。各ファン8a〜8dの冷却媒体ガスの吐出側には、流量調整器(図示省略)がそれぞれ設けられている。冷却ユニット7aの入側、冷却ユニット7bの出側および冷却ユニット7dの出側には鋼板表面温度計10a、10b、10cがそれぞれ設置されている。前記1次冷却帯3aに引き続いて設けられた2次冷却帯3bには、水冷等により内部が冷却されたロール11aを多段に配置したロール冷却装置11および水などを冷却媒体とした液体浸漬装置12が並設され、高強度鋼板の要求特性に応じて使い分けられる。   As shown in FIG. 2, in the primary cooling zone 3a accommodated in the furnace shell F, four stages of cooling units 7a, 7b, 7c, 7d are arranged along the plate passing direction, The cooling units 7a and 7b and the rear cooling units 7c and 7d have the same nozzle density (nozzle number / steel plate cooling area), for example, so that the nozzle for gas injection can be uniformly cooled over the entire width of the steel plate. Many are arranged in a lattice or zigzag so as to be cooled from both sides of the steel plate. From each nozzle of each cooling unit 7a to 7d, for example, HNX gas (composition: H2 gas 5 to 10%, N2 gas 95 to 90%) which is a general non-oxidizing atmosphere gas of the annealing furnace is used as a cooling medium. The nozzles are connected to the fans 8a to 8d through headers so that the refrigerant gas is injected evenly. Since the non-oxidizing gas of the cooling medium is circulated, the return gas sprayed on the steel sheet is cooled to a predetermined cooling medium temperature by the gas cooling device 9 and then cooled from the fans 8a to 8d. It is supplied to each of the units 7a to 7d. A flow rate regulator (not shown) is provided on the cooling medium gas discharge side of each of the fans 8a to 8d. Steel plate surface thermometers 10a, 10b, and 10c are installed on the inlet side of the cooling unit 7a, the outlet side of the cooling unit 7b, and the outlet side of the cooling unit 7d, respectively. The secondary cooling zone 3b provided subsequent to the primary cooling zone 3a includes a roll cooling device 11 in which rolls 11a whose interior is cooled by water cooling or the like are arranged in multiple stages, and a liquid dipping device using water as a cooling medium. 12 are juxtaposed and can be used according to the required characteristics of the high-strength steel sheet.

前段側の冷却ユニット7a、7bは緩冷可能なように形成され、後段側の冷却ユニット7c、7dは急冷可能なように形成されている。即ち、冷却ユニット7a、7bの最大冷却能力は、とくに高強度鋼板(超ハイテン材)を製造するために冷却速度のコントロールが必要な(900〜500℃の)温度域を、所定の冷却時間で各冷却ユニット7a〜7dを等しい冷却能力(平均冷却能力)にして冷却する場合よりも小さな冷却能力となるように設計されている。この逆に、冷却ユニット7c、7dの最大冷却能力は、前記平均冷却能力よりも大きくなるように設計されている。具体的には、各冷却ユニット7a〜7dのノズル構成は同一にして、冷却ユニット7a、7bのファン8a、8bの容量(最大出力ガス流量)に対して、冷却ユニット7c、7dのファン8c、8dの容量(最大出力ガス流量)を大きくすることにより、前段側での緩冷および後段側での急冷が可能となる。さらに、後段側で、循環使用される冷媒ガスのガス冷却装置9、9による冷却後の温度、即ち冷却ユニット7c、7dへ吐出する冷媒ガス温度がより低くなるように、前記ガス冷却装置9、9の熱交換能力を大きくする装置構成にすれば、後段側の冷却ユニット7c、7dでより効果的な急冷を実現することができる。   The cooling units 7a and 7b on the front stage side are formed so as to be slowly cooled, and the cooling units 7c and 7d on the rear stage side are formed so as to be capable of rapid cooling. That is, the maximum cooling capacity of the cooling units 7a and 7b is a temperature range (900 to 500 ° C.) that requires a cooling rate control in order to produce a high-strength steel plate (super high-tensile material) in a predetermined cooling time. The cooling units 7a to 7d are designed to have a cooling capacity smaller than that in the case of cooling with the same cooling capacity (average cooling capacity). Conversely, the maximum cooling capacity of the cooling units 7c and 7d is designed to be greater than the average cooling capacity. Specifically, the nozzle configuration of each of the cooling units 7a to 7d is the same, and the fans 8c of the cooling units 7c and 7d with respect to the capacity (maximum output gas flow rate) of the fans 8a and 8b of the cooling units 7a and 7b, By increasing the capacity (maximum output gas flow rate) of 8d, it is possible to perform slow cooling on the front side and rapid cooling on the rear side. Further, on the rear stage side, the gas cooling device 9, the temperature after cooling by the gas cooling devices 9, 9 of the refrigerant gas circulated, that is, the refrigerant gas discharged to the cooling units 7 c, 7 d becomes lower. If the apparatus configuration in which the heat exchange capacity of 9 is increased, more effective rapid cooling can be realized by the cooling units 7c and 7d on the rear stage side.

前記冷却ユニット7aの入側、冷却ユニット7bの出側および冷却ユニット7dの出側にそれぞれ設置された鋼板表面温度計10a、10b、10cからの測温データは、鋼板寸法(板厚)および通板速度とともに演算器に取り込まれ、冷却ユニット7bの出側(前段側冷却ユニット出側)、および冷却ユニット7dの出側(後段側冷却ユニットの出側)のそれぞれの目標温度と比較され、その偏差に基づいて、各冷却ユニット7a〜7dのファン8a〜8dの冷媒ガスの吐出流量が、目標出側温度との偏差が解消するように制御され、冷却能力が調整される。なお、前記温度偏差と制御すべき冷媒ガスの吐出流量は、予め、鋼板寸法(板厚)および通板速度に対応させて算出しておくことができる。   Temperature measurement data from the steel plate surface thermometers 10a, 10b, and 10c installed on the inlet side of the cooling unit 7a, the outlet side of the cooling unit 7b, and the outlet side of the cooling unit 7d, respectively, It is taken into the computing unit together with the plate speed, and compared with the respective target temperatures of the outlet side of the cooling unit 7b (front side cooling unit outlet side) and the outlet side of the cooling unit 7d (outside side of the rear stage cooling unit), Based on the deviation, the refrigerant gas discharge flow rates of the fans 8a to 8d of the cooling units 7a to 7d are controlled so that the deviation from the target outlet temperature is eliminated, and the cooling capacity is adjusted. The temperature deviation and the discharge flow rate of the refrigerant gas to be controlled can be calculated in advance in correspondence with the steel plate dimensions (plate thickness) and the plate passing speed.

図3(a)および(b)は、上述のように、1次冷却帯のガスジェット冷却装置の前段側を緩冷却とし、後段側を急冷却の場合の鋼板冷却パターンを、2次冷却帯にロール冷却装置を用いる場合と、液体浸漬冷却装置を用いる場合について模式的に示したものである。また、図4(a)および(b)は、前記ガスジェット冷却の冷却ユニット全段を、緩急を付けずに等しい冷却能力で冷却した場合の鋼板冷却パターンを模式的に示したものである。これらの模式図から、2次冷却帯がロール冷却装置または液体浸漬装置のいずれの場合も、前段側で緩冷却、後段側で急冷却の2段冷却を行う方が、高強度鋼板(ハイテン材、超ハイテン材)で厳密な冷却速度のコントロール、即ち、急冷が必要な温度域(800〜500℃または800〜400℃)での冷却速度を大きくすることができ、均熱後の鋼板を効率的に冷却できることがわかる。この緩急2段冷却は、とくに前記温度域で、30℃/sとより急冷が必要な超ハイテン材に対して効果的である。   3A and 3B show, as described above, the steel plate cooling pattern in the case where the front side of the gas jet cooling device in the primary cooling zone is mildly cooled and the rear side is rapidly cooled, as shown in the secondary cooling zone. The case where a roll cooling device is used and the case where a liquid immersion cooling device is used are schematically shown. FIGS. 4 (a) and 4 (b) schematically show steel plate cooling patterns in the case where the entire cooling unit of the gas jet cooling is cooled with the same cooling capacity without being moderately slowed. From these schematic diagrams, in the case where the secondary cooling zone is either a roll cooling device or a liquid immersion device, a high-strength steel plate (high-tensile steel) is more likely to perform two-stage cooling of gentle cooling on the front side and rapid cooling on the rear side. , Ultra-high-tensile material), it is possible to control the cooling rate strictly, that is, to increase the cooling rate in the temperature range (800-500 ° C or 800-400 ° C) that requires rapid cooling, and the steel plate after soaking is efficient It can be seen that it can be cooled. This slow and rapid two-stage cooling is effective for an ultra-high tensile material that requires a quick cooling of 30 ° C./s, particularly in the temperature range.

図1に要部を示した連続焼鈍設備の急冷帯1の1次冷却帯に、図2に示した、冷却域の長さがいずれも同じである、前段側冷却ユニット7a、7b、後段側冷却ユニット7c、7dの4段のガスジェット冷却装置を配設し、処理対象の最大板厚寸法2.6mmで、冷却パスRQ用および冷却パスWQ用にそれぞれ成分設計した2種類の高強度鋼板(超ハイテン材)用被処理材を、いずれも冷却開始温度を900℃としてガスジェット冷却した後、2次冷却帯でロール冷却(冷却パスRQ)と水への浸漬冷却(冷却パスWQ)をそれぞれ施して、高強度鋼板(超ハイテン材)を製造した。その際のガスジェット冷却の詳細を表1に示す。冷却開始温度、即ち、冷却ユニット7aの入側の鋼板温度は、冷却パスRQ、WQともに900℃であり、最大通板速度はいずれの冷却パスの場合も60m/minであり、前段側冷却ユニット7a、7bと後段側の冷却ユニット7c、7dとの冷却能力比を、冷却パスRQでは1:1.5、冷却パスWQでは1:2とした。   The primary cooling zone of the quenching zone 1 of the continuous annealing equipment shown in FIG. 1 is the same as that of the cooling zone 7a, 7b, the rear side shown in FIG. Two types of high-strength steel plates with a four-stage gas jet cooling device of the cooling units 7c and 7d, each having a maximum thickness of 2.6 mm to be processed and components designed for the cooling path RQ and the cooling path WQ, respectively. All the materials to be processed (ultra-high tensile material) are cooled by gas jet at a cooling start temperature of 900 ° C., and then roll cooling (cooling path RQ) and immersion cooling in water (cooling path WQ) are performed in the secondary cooling zone. Each was applied to produce a high-strength steel plate (super high-tensile material). Details of gas jet cooling at that time are shown in Table 1. The cooling start temperature, that is, the steel plate temperature on the inlet side of the cooling unit 7a is 900 ° C. in both the cooling paths RQ and WQ, and the maximum plate passing speed is 60 m / min in any cooling path. The cooling capacity ratio between 7a and 7b and the rear cooling units 7c and 7d was 1: 1.5 in the cooling path RQ and 1: 2 in the cooling path WQ.

Figure 0004490789
Figure 0004490789

表2から、後段側の冷却ユニット7c、7dでの急冷により、冷却パスRQの場合は800〜500℃の温度域を、冷却パスWQの場合は800〜400℃の温度域を、いずれも超ハイテン材の製造に必要な冷却速度30℃/sが実現されているのがわかる。冷却パスRQの場合は、前段側の冷却ユニット7a、7bでは、冷却開始温度900℃からの緩冷却により、冷却ユニット7b出側温度である中間温度、即ち後段側での冷却開始温度を、通板速度を最大通板速度から低下させずに、800℃に調整することが可能となっている。一方、冷却パスWQの場合には、水への浸漬冷却による鋼板の変形を抑制するために、ガスジェット冷却終了温度を400℃と、冷却パスRQの場合よりも低くする必要があるため、実施例のガスジェット冷却装置の設備能力上の制約から、通板速度を最大通板速度から25%程度低下させている。この場合も、前段側冷却ユニット7a、7bと後段側冷却ユニット7c、7dの冷却能力比を1:2とした、前段側で冷却開始温度900℃からの緩冷却により、後段側での急冷開始温度を800℃に調整することが可能となっている。即ち、前段側の冷却ユニット7a、7bの冷却能力に対して、後段側の冷却ユニット7c、7dの冷却能力を2倍にまで高めることによって、前述の超ハイテン材に必要な冷却速度が実現可能となっている。なお、前記冷却能力比を1:2に保って、ガスジェット冷却能力の設備能力を実施例の場合の設備能力よりも上昇させることにより、冷却パスWQの場合にも、通板速度を最大通板速度から低下させずに、超ハイテン材の製造に必要な前述の冷却速度を実現することが可能である。   From Table 2, by the rapid cooling in the cooling units 7c and 7d on the rear stage side, the temperature range of 800 to 500 ° C. is exceeded in the case of the cooling path RQ, and the temperature range of 800 to 400 ° C. is exceeded in the case of the cooling path WQ. It can be seen that the cooling rate of 30 ° C./s necessary for the production of the high-tensile material is realized. In the case of the cooling path RQ, the cooling units 7a and 7b on the front stage side pass the intermediate temperature that is the outlet side temperature of the cooling unit 7b, that is, the cooling start temperature on the rear stage side by slow cooling from the cooling start temperature 900 ° C. It is possible to adjust the plate speed to 800 ° C. without reducing the plate speed from the maximum plate passing speed. On the other hand, in the case of the cooling pass WQ, in order to suppress deformation of the steel sheet due to immersion cooling in water, it is necessary to lower the gas jet cooling end temperature to 400 ° C. than in the case of the cooling pass RQ. Due to the restrictions on the facility capacity of the gas jet cooling apparatus of the example, the plate passing speed is reduced by about 25% from the maximum plate passing speed. Also in this case, the cooling capacity ratio of the first-stage cooling units 7a and 7b and the second-stage cooling units 7c and 7d is 1: 2, and the first-stage cooling starts from the cooling start temperature of 900 ° C. by the first-stage cooling. The temperature can be adjusted to 800 ° C. That is, by increasing the cooling capacity of the rear-stage cooling units 7c and 7d to twice the cooling capacity of the front-stage cooling units 7a and 7b, the cooling rate required for the above-mentioned ultra-high tensile material can be realized. It has become. It should be noted that by maintaining the cooling capacity ratio at 1: 2 and increasing the facility capacity of the gas jet cooling capacity to be higher than the facility capacity in the case of the embodiment, even in the case of the cooling path WQ, the plate passing speed can be maximized. It is possible to realize the above-mentioned cooling rate necessary for the production of the super high tensile material without lowering the plate speed.

これに対し、前段側緩冷却、後段側急冷却の2段冷却を行わず、冷却ユニット7a〜7dで一様に冷却した場合、即ち、前段側と後段側の冷却能力比を1:1とした場合、冷却パスRQでは、900〜500℃のガスジェット冷却温度域で冷却速度が約20℃/sとなり、所要の冷却速度30℃/sが得られない。また、冷却パスWQでは、900〜400℃の同冷却温度域で冷却速度が約15℃/sとなり、2次冷却として浸漬冷却を行う場合の所要の冷却速度30℃/sに到達しない。また、各冷却ユニットの冷却能力を一様に高めて所要の冷却速度を実現しようとすれば、ガスジェット冷却終了温度が低くなり過ぎ、超ハイテン材には有害な急冷組織が発生する虞か極めて高くなり、超ハイテン材に必要な組織が得られない。   On the other hand, when the cooling is performed uniformly by the cooling units 7a to 7d without performing the two-stage cooling of the first-stage-side gentle cooling and the second-stage-side rapid cooling, that is, the cooling capacity ratio between the first-stage and the second-stage is 1: 1. In this case, in the cooling path RQ, the cooling rate is about 20 ° C./s in the gas jet cooling temperature range of 900 to 500 ° C., and the required cooling rate of 30 ° C./s cannot be obtained. Further, in the cooling path WQ, the cooling rate is about 15 ° C./s in the same cooling temperature range of 900 to 400 ° C., and does not reach the required cooling rate of 30 ° C./s when performing immersion cooling as secondary cooling. In addition, if the cooling capacity of each cooling unit is increased uniformly to achieve the required cooling rate, the gas jet cooling end temperature becomes too low, and there is a risk that harmful quenching structures will be generated in the ultra-high tensile material. It becomes high and the structure necessary for ultra-high tensile materials cannot be obtained.

なお、緩冷却を行う前段側の冷却ユニット7a、7b、および急冷却を行う後段側の冷却ユニット7c、7dは、必ずしもそれぞれ2つの冷却ユニットで同じ冷却能力に設定する必要はなく、前段側、後段側ともに、冷却ユニットの冷却能力を個別に調節して、所要の冷却速度を実現することもできる。   The first-stage cooling units 7a and 7b that perform slow cooling and the second-stage cooling units 7c and 7d that perform rapid cooling do not necessarily have to be set to the same cooling capacity in two cooling units, respectively. It is also possible to achieve the required cooling rate by individually adjusting the cooling capacity of the cooling unit on both the rear stage side.

この発明は、高強度鋼板、中でも強度がおよそ1000MPaクラス以上の超ハイテン材の製造を可能とする薄鋼板の連続焼鈍処理方法として利用することができる。 The present invention can be used as a continuous annealing treatment method for a high-strength steel sheet, particularly a thin steel sheet that enables the manufacture of a super high-tensile material having a strength of approximately 1000 MPa or more .

鋼板連続焼鈍炉の要部を示す説明図である。It is explanatory drawing which shows the principal part of a steel plate continuous annealing furnace. 鋼板連続焼鈍炉のガスジェット冷却装置の説明図である。It is explanatory drawing of the gas jet cooling device of a steel plate continuous annealing furnace . 図2のガスジェット冷却装置による鋼板の冷却パターンの説明図である。It is explanatory drawing of the cooling pattern of the steel plate by the gas jet cooling device of FIG. 従来技術のガスジェット冷却装置による鋼板の冷却パターンの説明図である。It is explanatory drawing of the cooling pattern of the steel plate by the gas jet cooling device of a prior art.

符号の説明Explanation of symbols

1・・・連続焼鈍炉
2a・・・加熱帯
2b・・・均熱帯
3・・・急冷帯
3a・・・1次冷却帯
3b・・・2次冷却帯
4・・・再加熱帯
5・・・過時効帯
6・・・最終冷却帯
7a〜7d・・・冷却ユニット
8a〜8d・・・ファン
9・・・ガス冷却装置
10a〜10c・・・鋼板表面温度計
11・・・ロール冷却装置
11a・・・ロール
12・・・液体浸漬装置
D・・・ダクト
F・・・炉殻
GA、GB・・・ガスジェット冷却装置
P・・・鋼板
DESCRIPTION OF SYMBOLS 1 ... Continuous annealing furnace 2a ... Heating zone 2b ... Soaking zone 3 ... Quenching zone 3a ... Primary cooling zone 3b ... Secondary cooling zone 4 ... Reheating zone 5 .... Over-aging zone 6 ... Final cooling zones 7a-7d ... Cooling units 8a-8d ... Fan 9 ... Gas cooling devices 10a-10c ... Steel plate surface thermometer 11 ... Roll cooling Device 11a ... Roll 12 ... Liquid immersion device D ... Duct F ... Furnace shell GA, GB ... Gas jet cooling device P ... Steel plate

Claims (1)

少なくとも、加熱帯と、均熱帯と、10℃/s以下の冷却速度で鋼板を冷却する前段側の緩冷可能な冷却ユニットと30℃/s以上の冷却速度で鋼板を冷却する後段側の急冷可能な冷却ユニットからなるガスジェット冷却装置が配設された1次冷却帯と、2次冷却帯と、過時効帯とを備えた連続焼鈍設備を用いて、組織がオースティナイトとベイナイトからなる1000MPa以上の高強度鋼板を製造する鋼板の連続焼鈍処理方法において、鋼板を前記加熱帯により850〜900℃に加熱し、前記均熱帯により均熱した後、前記1次冷却帯におけるガスジェット冷却装置の前段側の冷却ユニットにより800℃までを10℃/s以下の冷却速度で緩冷し、次いで前記1次冷却帯におけるガスジェット冷却装置の後段側の冷却ユニットにより、ロール冷却を行う場合には800℃から500℃間を、また液体浸漬冷却を行う場合には800℃から400℃間を、30℃/s以上の冷却速度で急冷し、さらに前記2次冷却帯により2次冷却し、その後前記過時効帯により過時効処理を施すことを特徴とする組織がオースティナイトとベイナイトからなる1000MPa以上の高強度鋼板を製造する鋼板の連続焼鈍処理方法。 At least a heating zone, a soaking zone, a cooling unit that can cool the steel plate at a cooling rate of 10 ° C./s or less, and a quenching unit that cools the steel plate at a cooling rate of 30 ° C./s or more. The structure is composed of austenite and bainite using a continuous annealing facility having a primary cooling zone, a secondary cooling zone, and an overaging zone provided with a gas jet cooling device composed of a possible cooling unit. In the continuous annealing method of a steel plate for producing a high-strength steel plate of 1000 MPa or more, after heating the steel plate to 850 to 900 ° C. by the heating zone and soaking by the soaking zone, the gas jet cooling device in the primary cooling zone The cooling unit on the front side of the gas is slowly cooled to 800 ° C. at a cooling rate of 10 ° C./s or less, and then the cooling unit on the rear side of the gas jet cooling device in the primary cooling zone. Between 500 ° C. from 800 ° C. in the case of performing the roll cooling and between 400 ° C. from 800 ° C. in the case of performing the liquid immersion cooling, quenched with a cooling rate higher than 30 ° C. / s, further the secondary cooling zone A method of continuous annealing of a steel sheet for producing a high-strength steel sheet having a structure of austenite and bainite having a structure of austenite and bainite, wherein the structure is subjected to over-aging treatment by the above-described over-aging band.
JP2004318311A 2004-11-01 2004-11-01 Continuous annealing method for steel sheet Expired - Fee Related JP4490789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004318311A JP4490789B2 (en) 2004-11-01 2004-11-01 Continuous annealing method for steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004318311A JP4490789B2 (en) 2004-11-01 2004-11-01 Continuous annealing method for steel sheet

Publications (2)

Publication Number Publication Date
JP2006124817A JP2006124817A (en) 2006-05-18
JP4490789B2 true JP4490789B2 (en) 2010-06-30

Family

ID=36719835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004318311A Expired - Fee Related JP4490789B2 (en) 2004-11-01 2004-11-01 Continuous annealing method for steel sheet

Country Status (1)

Country Link
JP (1) JP4490789B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226965B2 (en) * 2007-04-04 2013-07-03 新日鉄住金エンジニアリング株式会社 Steel plate cooling method and steel plate continuous heat treatment equipment
WO2010049600A1 (en) * 2008-10-31 2010-05-06 Siemens Vai Metals Technologies Sas Furnace for a continuously-running steel strip thermal processing plant, and associated method
KR101075917B1 (en) 2008-12-22 2011-10-26 주식회사 포스코 Apparatus for cooling strip of bright annealing furnace
CN103265165B (en) * 2013-05-17 2016-08-03 中国建材国际工程集团有限公司 The double following current annealing process in float glass lehr A district
JP7060003B2 (en) * 2018-12-26 2022-04-26 Jfeスチール株式会社 Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934214B2 (en) * 1979-10-30 1984-08-21 川崎製鉄株式会社 Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace
JPS6130632A (en) * 1984-07-18 1986-02-12 Kawasaki Steel Corp Cooling method of steel strip
JPH03207821A (en) * 1990-01-09 1991-09-11 Kawasaki Steel Corp Controlling method for cooling strip in cooling zone of continuous annealing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934214B2 (en) * 1979-10-30 1984-08-21 川崎製鉄株式会社 Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace
JPS6130632A (en) * 1984-07-18 1986-02-12 Kawasaki Steel Corp Cooling method of steel strip
JPH03207821A (en) * 1990-01-09 1991-09-11 Kawasaki Steel Corp Controlling method for cooling strip in cooling zone of continuous annealing

Also Published As

Publication number Publication date
JP2006124817A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
JP5130733B2 (en) Continuous annealing equipment
US8075836B2 (en) Steel-sheet continuous annealing equipment and method for operating steel-sheet continuous annealing equipment
EP0815268A1 (en) Primary cooling method in continuously annealing steel strip
EP1359230B1 (en) Production method for steel plate and equipment therefor
JP2017514996A (en) Method and apparatus for making steel strip
JP4490789B2 (en) Continuous annealing method for steel sheet
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JPS59143028A (en) Cooler for metallic strip in continuous heat treating furnace
JP6948565B2 (en) Manufacturing method of martensitic stainless steel strip
JP2017043839A (en) Water hardening device, continuous annealing equipment, and method for producing steel sheet
JP4066652B2 (en) Heat treatment method and apparatus for steel
KR102362666B1 (en) Method for annealing non-oriented electrical steel sheet
JP7320512B2 (en) Method for softening high-strength Q&P steel hot-rolled coil
JPS6254373B2 (en)
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
JP2006144104A (en) Apparatus and method for continuously annealing steel sheet for hot dip galvanizing
JP4066603B2 (en) Heat treatment method for steel
WO2004110661A1 (en) Device and method for controllably cooling thick steel plate
JP5226965B2 (en) Steel plate cooling method and steel plate continuous heat treatment equipment
JP2778838B2 (en) Furnace for heat treatment and temperature control method of this furnace
JPS5944367B2 (en) Water quenching continuous annealing method
JP4547936B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4945853B2 (en) Heat treatment method and apparatus for steel sheet
JP3350372B2 (en) Copper alloy strip strain relief annealing method and bright annealing furnace
JPH0931541A (en) Production of high cr ferritic steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees