JPS5934214B2 - Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace - Google Patents

Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace

Info

Publication number
JPS5934214B2
JPS5934214B2 JP14099479A JP14099479A JPS5934214B2 JP S5934214 B2 JPS5934214 B2 JP S5934214B2 JP 14099479 A JP14099479 A JP 14099479A JP 14099479 A JP14099479 A JP 14099479A JP S5934214 B2 JPS5934214 B2 JP S5934214B2
Authority
JP
Japan
Prior art keywords
cooling
zone
temperature
plate temperature
annealing furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14099479A
Other languages
Japanese (ja)
Other versions
JPS5665935A (en
Inventor
邦昭 佐藤
振一郎 武藤
章也 柳島
雄二 下山
紘一 田原
隆嗣 仁藤
豈彦 増野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14099479A priority Critical patent/JPS5934214B2/en
Publication of JPS5665935A publication Critical patent/JPS5665935A/en
Publication of JPS5934214B2 publication Critical patent/JPS5934214B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は、均熱帯で均熱温度迄加熱されたストリップを
連続的に冷却するだめの、複数の冷却ゾーンからなる連
続焼鈍炉の急冷帯の冷却板温制御方法に係り、特に、広
範囲の冷却条件を、安定して、且つ精度良く実現できる
連続焼鈍炉の急冷帯の冷却板温制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling plate temperature control method in a quenching zone of a continuous annealing furnace consisting of a plurality of cooling zones, which is used to continuously cool a strip that has been heated to a soaking temperature in a soaking zone. In particular, the present invention relates to a cooling plate temperature control method for a quenching zone of a continuous annealing furnace that can stably and accurately realize a wide range of cooling conditions.

銅帯等のストリップ8を熱処理する連続焼鈍炉は、例え
ば第1図に示す如(、ペイオフリール10、溶接機12
、鋼帯洗浄装置14、プライドルロール16、入側ルー
バ18、プライドルロール20、テンションデバイス2
2、加熱帯24、均熱帯26、ガスジェット急冷帯28
、過時効帯30、冷却帯32、プライドルロー34、出
側ルーパ36、プライドルロール38、シャー40テン
シヨンリール42等から構成されている。
A continuous annealing furnace for heat-treating a strip 8 such as a copper strip is, for example, as shown in FIG.
, steel strip cleaning device 14, priddle roll 16, entry side louver 18, priddle roll 20, tension device 2
2. Heating zone 24, soaking zone 26, gas jet quenching zone 28
, an overaging zone 30, a cooling zone 32, a prydle row 34, an exit looper 36, a prydle roll 38, a shear 40, a tension reel 42, and the like.

このような連続焼鈍炉における、均熱帯26で均熱温度
迄加熱されたストリップを連続的に冷却するだめの急冷
帯28は、その内部において、例工ば第2図に示す如(
、第1冷却ゾーン28−1〜第5冷却ゾーン28−5の
5ゾーンに分割され、それぞれに対応して、ガスノズル
を有するプレナムが配置されている、このゾーン分割は
、特に多種類の銅帯を熱処理する場合における冷却条件
の変動に対処するだめ行なわれているものである。
In such a continuous annealing furnace, the quenching zone 28 for continuously cooling the strip heated to the soaking temperature in the soaking zone 26 has a quenching zone 28 as shown in FIG. 2, for example.
This zone division is divided into five zones, the first cooling zone 28-1 to the fifth cooling zone 28-5, and a plenum having a gas nozzle is arranged corresponding to each zone. This is done to cope with fluctuations in cooling conditions when heat-treating.

このような連続焼鈍炉において、加熱帯24、均熱帯2
6を通板して所定の均熱温度T8工壕で均熱された鋼帯
8は、ガスジェット急冷帯28において、所定の冷却温
度Tsoまで、所定の冷却速度CRで冷却され、銅帯が
軟質ブリキ原板或いは絞り用冷延鋼板である場合には、
第2図に示すパスラインAを通って過時効帯30で過時
効処理され次いで冷却帯32で出側の処理が可能な温度
1で冷却される。
In such a continuous annealing furnace, a heating zone 24, a soaking zone 2
The steel strip 8 passed through 6 and soaked at a predetermined soaking temperature T8 tunnel is cooled at a predetermined cooling rate CR to a predetermined cooling temperature Tso in a gas jet quenching zone 28, and the copper strip is heated to a predetermined cooling temperature Tso. In the case of soft tin plate or cold rolled steel sheet for drawing,
It passes through the pass line A shown in FIG. 2, undergoes an overaging treatment in an overaging zone 30, and is then cooled in a cooling zone 32 to a temperature 1 at which it can be processed on the exit side.

一方、高張力鋼板の場合は、第2冷却ゾーン28−2と
第3冷却ゾーン28−3の中間位置Btで1次冷却が行
なわれ、それ以降で2次冷却され、パスラインCを通っ
て直接炉外へ送り出される。
On the other hand, in the case of a high-tensile steel plate, primary cooling is performed at an intermediate position Bt between the second cooling zone 28-2 and the third cooling zone 28-3, and after that, secondary cooling is performed, and the cooling is performed through the pass line C. It is sent directly out of the furnace.

このような従来の連続焼鈍炉の急冷帯においては、その
入側及び出側に板温計50.52が配置されているのみ
であり、急冷帯の中間における精密な温度制御は全く行
なわれていなかった。
In the quenching zone of such a conventional continuous annealing furnace, only plate thermometers 50,52 are placed on the inlet and outlet sides, and precise temperature control in the middle of the quenching zone is not performed at all. There wasn't.

しかしこのような急冷帯出側温度にのみ基づく板温制御
では、最も板温に影響を及ぼす冷却開始ゾーンからの制
御遅れが大きく、安定した制御は困難であり、且つ精度
が悪いという欠点を有した。
However, such plate temperature control based only on the temperature at the outlet of the quenching zone has the disadvantage that there is a large control delay from the cooling start zone, which has the greatest effect on plate temperature, making stable control difficult and having poor accuracy. .

従って、冷却条件、即ち、冷却前後の板温と冷却速度の
厳しい条件が要求される鋼種では、良い材質が得られに
くかった。
Therefore, it has been difficult to obtain good quality materials for steel types that require strict cooling conditions, ie, plate temperature before and after cooling and cooling rate.

又、従来技術では、上記のような鋼板以外に、該ガスジ
ェット急冷帯28で冷却を完了する高張力冷延鋼板のよ
うに、急冷帯内の中間で所定の材質を得るだめの1次冷
却を実施し、その後材質を維持するだめの2次冷却を実
施する場合には、精度の良い板温の制御が困難であった
In addition, in the prior art, in addition to the above-mentioned steel sheets, primary cooling to obtain a predetermined material quality in the middle of the quenching zone, such as a high-tensile cold-rolled steel sheet that is completely cooled in the gas jet quenching zone 28, has been proposed. When carrying out secondary cooling to maintain the material quality after that, it was difficult to control the plate temperature with high accuracy.

本発明は、前記従来の欠点を解消するべくなされたもの
で、多くの冷却条件を精度よく実現することができる連
続焼鈍炉の急冷帯の冷却板温制御方法を提供することを
目的とする。
The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and an object of the present invention is to provide a cooling plate temperature control method for a quenching zone of a continuous annealing furnace that can realize many cooling conditions with high accuracy.

本発明は、均熱帯で均熱温度迄加熱されたストリップを
連続的に冷却するだめの、複数の冷却ゾーンからなる連
続焼鈍炉の急冷帯の冷却板温制御方法において、各冷却
ゾーン出側の板温を検出しこれが、ストリップの種類、
寸法、冷却条件等から予め求められた各冷均ゾーン出側
の設定板温と一致するよう、各冷却ゾーンを独立に制御
するようにして、前記目的を達成したものである。
The present invention relates to a cooling plate temperature control method of a quenching zone of a continuous annealing furnace consisting of a plurality of cooling zones, which continuously cools a strip heated to a soaking temperature in a soaking zone. The plate temperature is detected and this determines the type of strip,
The above object is achieved by independently controlling each cooling zone so as to match the set plate temperature on the outlet side of each cooling equalization zone, which is determined in advance from dimensions, cooling conditions, etc.

又、前記各冷却ゾーン出側の設定板温を、まずストリッ
プの種類、寸法、冷却条件からヒートサイクルを決定し
、次いで、ライン速度決定演算プログラムにより、ライ
ン速度及び使用冷却ゾーンを決定し、これらを用いて、
急冷帯冷却条件設定演算プログラムにより算出するよう
にしたものである。
In addition, the set plate temperature at the exit side of each cooling zone is determined by first determining the heat cycle from the type, size, and cooling conditions of the strip, and then determining the line speed and cooling zone to be used using a line speed determination calculation program. Using,
This is calculated using a rapid cooling zone cooling condition setting calculation program.

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

まず、本発明の方法において、各冷却ゾーン出側の設定
板温を決定する方法を、第3図を参照して詳細に説明す
る。
First, in the method of the present invention, a method for determining the set plate temperature on the outlet side of each cooling zone will be explained in detail with reference to FIG.

まず、連続焼鈍炉で熱処理する鋼板の寸法(板厚、板幅
)、成分から、鋼種に応じたヒートサイクル(加熱温度
TSH1均熱温度’f’ss、急冷帯出側温度TSCI
(高張力1次冷却温度)、’rsc 1′(高張力2
次冷却温度Tsc−1′)、過時効帯出側温度TSC2
、冷却帯出側温度Tsc 、3、均熱時間tss、過
時効時間tc−2、冷却速度範囲CRMIN〜CRMA
X)を決定する。
First, from the dimensions (plate thickness, plate width) and components of the steel plate to be heat-treated in a continuous annealing furnace, heat cycles according to the steel type (heating temperature TSH1 soaking temperature 'f'ss, quenching zone exit temperature TSCI
(high tension primary cooling temperature), 'rsc 1' (high tension 2
Next cooling temperature Tsc-1'), overaging zone exit temperature TSC2
, cooling zone outlet temperature Tsc, 3, soaking time tss, overaging time tc-2, cooling rate range CRMIN~CRMA
X) is determined.

次いで、決定されたヒートサイクルを達成できるライン
速度のうち、生産量が最大となるライン速度Lsを、ラ
イン速度決定演算プログラムにより決定するとともに、
ガスジェット急冷帯の使用ゾーン数も決定する。
Next, among the line speeds at which the determined heat cycle can be achieved, the line speed Ls at which the production amount is maximized is determined by the line speed determination calculation program, and
The number of zones in which the gas jet quench zone will be used will also be determined.

具体的には、まず、急冷帯28以外の各セクションにお
けるライン速度の最大値を次のようにして算出する。
Specifically, first, the maximum value of the line speed in each section other than the quenching zone 28 is calculated as follows.

即ち、加熱帯24におけるライン速度最大値L SH8
MAXを次式により算出する。
That is, the line speed maximum value L SH8 in the heating zone 24
MAX is calculated using the following formula.

ことに、TSHは、加熱帯24の出側板温、Dは板厚、
Wは板幅、A1〜A5は定数である。
In particular, TSH is the outlet side plate temperature of the heating zone 24, D is the plate thickness,
W is the plate width, and A1 to A5 are constants.

又、均熱帯26におけるライン速度最大値LSSSMA
Xを次式により算出する。
In addition, the line speed maximum value LSSSMA in the soaking zone 26
X is calculated using the following formula.

ここに、Asは均熱帯長さ、tssは均熱時間である。Here, As is the soaking zone length and tss is the soaking time.

更に、過時効帯30におけるライン速度最大値LSc−
2MAXを次式により算出する。
Furthermore, the line speed maximum value LSc- in the overaging zone 30
2MAX is calculated using the following formula.

ことに、1c−2は過時効帯長さ、tc−2は過時効時
間である。
In particular, 1c-2 is the overaging zone length and tc-2 is the overaging time.

又、冷却帯32におけるライン速度最大値L S C−
3MAXを次式により算出する。
Moreover, the maximum line speed value L S C- in the cooling zone 32
3MAX is calculated using the following formula.

ここで’I”sc 2は過時効帯出側板温、即ち、冷却
帯入側板温、’rsc 3は冷却帯出側板温、AIl
〜A16は定数である。
Here, 'I''sc 2 is the plate temperature on the exit side of the overaging zone, that is, the plate temperature on the entrance side of the cooling zone, 'rsc 3 is the plate temperature on the exit side of the cooling zone, AI
~A16 is a constant.

このようにして求められた急冷帯28以外の各セクショ
ンにおけるライン速度最大値から、次式により急冷帯以
外の各セクションにおける共通ライン速度最大値しSM
oを求める。
From the maximum line speed in each section other than the rapid cooling zone 28 obtained in this way, the common line speed maximum value in each section other than the rapid cooling zone is determined by the following formula SM
Find o.

LSMO=min(LSHsMAxy LSSSMA
X +LsC−2MAX、LSo−3MAX)・・・−
<5)次いで、鋼種が高張力鋼板以外である場合にはi
=5、高張力鋼板である場合にはi=3とおいて、次式
により急冷帯の冷却速度CRを算出する。
LSMO=min(LSHsMAXy LSSSMA
X +LsC-2MAX, LSo-3MAX)...-
<5) Next, if the steel type is other than high-strength steel plate, i
= 5, and in the case of a high-tensile steel plate, i = 3, and the cooling rate CR of the rapid cooling zone is calculated using the following formula.

ここでAiは、第i冷却ゾーン迄のゾーン総延長である
Here, Ai is the total zone extension up to the i-th cooling zone.

このようにして算出された冷却速度CRoが、冷却速度
下限CRminば越える迄iを減少させながら前記演算
を繰り返す。
The above calculation is repeated while decreasing i until the cooling rate CRo calculated in this manner exceeds the cooling rate lower limit CRmin.

CRoがCRmin より犬となったら、次にCRoと
冷却速度上限CRMAXとの大小関係を比較する。
When CRo is smaller than CRmin, the magnitude relationship between CRo and cooling rate upper limit CRMAX is compared.

CRo がCRMAXより小であれば、ライン速度LS
を前出(5)式で求められたLSMo に決定する。
If CRo is smaller than CRMAX, line speed LS
is determined to be LSMo determined by equation (5) above.

一方、冷却速度CRoがライン速度上限CRMAXより
犬である場合には、次式によりライン速度LSを決定す
る。
On the other hand, if the cooling rate CRo is lower than the line speed upper limit CRMAX, the line speed LS is determined by the following equation.

ここで、αは制御余裕しろで、1より小さい定数である
Here, α is a control margin and is a constant smaller than 1.

このようにして、ライン速度LS及び急冷帯28におけ
る使用ゾーン数iが決定される。
In this way, the line speed LS and the number i of zones used in the rapid cooling zone 28 are determined.

次いで、急冷帯冷却条件設定演算プログラムにより、使
用冷却ゾーンの冷却風量Qi@、プレナム圧力Pi、各
冷却ゾーン出側の板温Tso□〜iを算出する。
Next, the cooling air volume Qi@ of the used cooling zone, the plenum pressure Pi, and the plate temperature Tso□~i on the outlet side of each cooling zone are calculated by the rapid cooling zone cooling condition setting calculation program.

具体的には、まず、次式により使用冷却ゾーンの冷却風
量Qi@を算出する。
Specifically, first, the cooling air volume Qi@ of the used cooling zone is calculated using the following equation.

Qi=A3、T8、十A3□′rso+A33LS−D
+A34 TsI”+ A35 TSO2+ A36
TsITSO+A37(LS−D)2+A38T8□・
LS−D+A39Tso・LS ” D + A4 o
・・・・・・・・・・・・ (8)ここで
、A3□〜A40は定数である。
Qi=A3, T8, 10A3□'rso+A33LS-D
+A34 TsI”+ A35 TSO2+ A36
TsITSO+A37(LS-D)2+A38T8□・
LS-D+A39Tso・LS ” D + A4 o
(8) Here, A3□ to A40 are constants.

このようにして求められた冷却風量Qiから次式により
プレナム圧力Piを算出する。
The plenum pressure Pi is calculated from the cooling air volume Qi obtained in this way using the following equation.

P 1=A41XQi2 ・・・・・・・
・・・・・(9)ここでA4□は定数である。
P1=A41XQi2 ・・・・・・・・・
...(9) Here, A4□ is a constant.

次いで前出(8)式の逆関数Ql 1から、各冷却ゾ
ーン出側の板温TSOI〜iを算出する。
Next, the plate temperature TSOI~i on the outlet side of each cooling zone is calculated from the inverse function Ql 1 of the above equation (8).

銅帯が高張力鋼板以外である場合には、これで設定温度
の算出を終了する。
If the copper strip is made of a material other than a high-tensile steel plate, this completes the calculation of the set temperature.

銅帯が高張力鋼板である場合には、更に、急冷帯におけ
る第3冷却ゾーン〜第5ゾーンまでの冷却風量Q3〜.
(イ)、プレナム圧力P3−5、各冷却ゾーン出側の設
定板温’f’so 3〜.を、前出(8)式(9)式及
び(8)式の逆関数を用いて算出する。
When the copper strip is a high-tensile steel plate, the cooling air volume Q3 to the third to fifth cooling zones in the rapid cooling zone is further increased.
(a), plenum pressure P3-5, set plate temperature on the outlet side of each cooling zone 'f'so 3~. is calculated using equations (8), (9), and the inverse function of equation (8).

このようにして算出された各冷却ゾーン毎の冷却風量及
び設定板温を用いて、トラッキング設定プログラム等に
より設定値を下位制御系に与え、板温を制御するもので
ある。
Using the cooling air volume and set plate temperature for each cooling zone calculated in this way, set values are given to the lower control system by a tracking setting program or the like to control the plate temperature.

以上の計算は、例えばプロセス計算機により自動的に行
なわれ、通板する以前の複数種の鋼板を演算処理してい
る。
The above calculations are automatically performed, for example, by a process computer, and are processed on a plurality of types of steel sheets before they are threaded.

次に、本発明が適用される急冷帯及びその制御系の具体
例を説明する。
Next, a specific example of a rapid cooling zone and its control system to which the present invention is applied will be explained.

本発明が実施される急冷帯においては、第4図に示す如
く各冷却ゾーン28−1〜28〜4の出側にも板温計5
4−1〜54−4が配設されている点が従来例と異なる
In the rapid cooling zone in which the present invention is implemented, as shown in FIG.
The difference from the conventional example is that 4-1 to 54-4 are provided.

又、各冷却ゾーンにおける制御系は、第5図に示す如く
構成されており、循環ブロワ60より供給される冷却ガ
ス、例えば48〜51℃のHNXガスを、ガスジェット
ノズル62から噴射させるプレナム64と、噴出された
冷却ガスを再び吸引する吸引用配管66と、吸引された
冷却ガスを再び冷却する水冷クーラ68と、循環される
冷却ガス量を調整する、ダンパ等の流量調節弁70と、
プレナム64に供給される冷却ガスの圧力を検出する圧
力計72と、該圧力計72の出力に応じて前記流量調節
弁70を制御する圧力調節計74と前記プログラムの演
算結果に基いて、プレナム圧力Piの初期[直を前記圧
力調節計74に初期設定すると共に、当該冷却ゾーンの
出側に配設されだ板温計54の出力に応じて、プレナム
出側の銅帯温度が、前記プログラムで設定された設定板
温と一致するよう前記圧力調節計74をフィードバック
制御するコンピュータ76と、該コンピュータ76を使
用しない場合に、板温計54出力に応じてプレナム圧力
を直接制御するための、温度調節計78及び手動設定器
80とから構成されている。
The control system in each cooling zone is configured as shown in FIG. 5, and includes a plenum 64 that injects cooling gas supplied from a circulation blower 60, for example, HNX gas at a temperature of 48 to 51° C., from a gas jet nozzle 62. , a suction pipe 66 that sucks the ejected cooling gas again, a water cooler 68 that cools the sucked cooling gas again, and a flow rate adjustment valve 70 such as a damper that adjusts the amount of circulating cooling gas.
A pressure gauge 72 detects the pressure of the cooling gas supplied to the plenum 64, a pressure regulator 74 controls the flow rate regulating valve 70 according to the output of the pressure gauge 72, and the plenum is adjusted based on the calculation results of the program. In addition to initially setting the initial value of the pressure Pi in the pressure regulator 74, the temperature of the copper strip on the plenum outlet side is adjusted according to the output of the plate thermometer 54 disposed on the outlet side of the cooling zone. a computer 76 for feedback-controlling the pressure regulator 74 so as to match the set plate temperature set in , and a computer 76 for directly controlling the plenum pressure in accordance with the output of the plate temperature meter 54 when the computer 76 is not used. It is composed of a temperature controller 78 and a manual setting device 80.

この制御系において、プレナム64の圧力は、プレナム
64に接続された冷却ガス循環ブロア60の入側に設置
した流量調節弁70により調節され冷却ガスは、鋼帯8
を冷却した後吸引用配管66を介して水冷クーラ68に
導かれ、冷却された後循環ブロワ60によりプレナム6
4に供給されガスジェットノズル62より噴出される。
In this control system, the pressure in the plenum 64 is regulated by a flow control valve 70 installed on the inlet side of a cooling gas circulation blower 60 connected to the plenum 64, and the cooling gas is supplied to the steel strip 8.
After being cooled, it is guided to a water cooler 68 via a suction pipe 66, and after being cooled, it is passed through a circulation blower 60 to a plenum 6.
4 and is ejected from the gas jet nozzle 62.

又、板温計54からの偏差信号は、コンピュータ76に
伝送され、プレナム圧力を変化させるべく設定値を変更
する。
The deviation signal from plate thermometer 54 is also transmitted to computer 76, which changes the set point to change the plenum pressure.

又、手動の場合には、板温計54から温度調節計78、
手動設定器80を介して、直接プレナム圧力に制御信号
を与えるものである。
In addition, in the case of manual operation, from the plate thermometer 54 to the temperature controller 78,
A control signal is provided directly to the plenum pressure via a manual setter 80.

第1実施例 0.5%Cr−1,2%Mn含有A[キルド鋼からなる
板厚1.21n11L板幅1000mmの高張力鋼板を
、加熱温度TSH及び均熱温度T’ssが800℃、急
冷帯における高張力1次冷却温度T’sc 1が27
5℃高張力2次冷却温度T’sc 1/が120℃、
均熱時間tssの最小値が30秒、許容冷却速度範囲が
40〜b べく、本発明に従って計算したところ、ライン速度が7
0m/分、冷却風量割合Q1−5が90%、第1ゾーン
出側設定板温が510℃、第2ゾーン出側設定板温か2
75℃、第3ゾーン出側設定板温か210℃、第4ゾー
ン出側設定板温が170℃、第5ゾーン出側設定板温か
120℃となった。
First Example 0.5%Cr-1.2%Mn containing A [A high tensile strength steel plate made of killed steel and having a plate thickness of 1.21n11L and a width of 1000mm was heated at a heating temperature TSH and a soaking temperature T'ss of 800°C. High tension primary cooling temperature T'sc 1 in rapidly cooling zone is 27
5℃ High tension secondary cooling temperature T'sc 1/ is 120℃,
According to the calculation according to the present invention, the minimum value of the soaking time tss is 30 seconds and the allowable cooling rate range is 40~b.
0 m/min, cooling air volume ratio Q1-5 is 90%, 1st zone outlet set plate temperature is 510°C, 2nd zone outlet set plate temperature 2
The temperature of the third zone outlet setting plate was 210°C, the fourth zone outlet setting plate temperature was 170°C, and the fifth zone outlet setting plate temperature was 120°C.

この計算結果に基いて、実際に熱処理を行なった所、そ
の時の冷却曲線は、第6図に示す如くとなり800℃か
ら275℃迄の冷却速度44℃/秒が得られ、焼鈍後の
材質として、引張強さ44 kg/mm2、Q、 2%
耐耐力払抜21 kg/mm2、降伏伸び0%、伸び4
1%、降伏比0.48の良好な材質を得ることができた
Based on this calculation result, when heat treatment was actually performed, the cooling curve at that time was as shown in Figure 6, and a cooling rate of 44°C/sec from 800°C to 275°C was obtained, and the material after annealing was , tensile strength 44 kg/mm2, Q, 2%
Yield strength: 21 kg/mm2, yield elongation: 0%, elongation: 4
A good material with a yield ratio of 1% and a yield ratio of 0.48 was obtained.

第2実施例 A[ギルド鋼からなる、板厚1.2mm、板幅13QO
mmの絞り用冷延鋼板を、加熱温度TSH及び均熱温度
T’ssが800℃、急冷帯の第3冷却ゾーン出側温度
TsC−1′が400℃、過時効帯出側温度T’sc
2が350℃、冷却帯出側温度’I’sc 3が120
℃、均熱時間tssの最小値が30秒、過時効時間tC
2−の最小値が120秒、許容冷却速度範囲が30〜b するべく、本発明に従って計算したところ、ライン速度
が75m/分、冷却風量割合Q1−3が60%、第1ゾ
ーン出側設定板温が620℃、第2ゾーン出側設定板温
か490℃、第3ゾーン出側設定板温か400℃となっ
た。
Second Example A [Made of guild steel, plate thickness 1.2 mm, plate width 13QO
A cold-rolled steel sheet for drawing of mm is heated at a heating temperature TSH and a soaking temperature T'ss of 800°C, a third cooling zone exit temperature TsC-1' of the rapid cooling zone of 400°C, and an overaging zone exit temperature T'sc.
2 is 350℃, cooling zone outlet temperature 'I'sc 3 is 120
°C, minimum soaking time tss is 30 seconds, overaging time tC
According to the present invention, the minimum value of 2- is 120 seconds and the allowable cooling rate range is 30~b. According to the calculation according to the present invention, the line speed is 75 m/min, the cooling air volume ratio Q1-3 is 60%, and the first zone exit side setting is The plate temperature was 620°C, the second zone outlet side set plate temperature was 490°C, and the third zone outlet side set plate temperature was 400°C.

この計算結果に基いて、実際に熱処理を行なった所、そ
の時の冷却曲線は、第7図に示す如くとなり、800℃
から400℃迄の冷却速度34℃/秒が得られ、スキン
パス後の材質として、引張強さ33kg、7mm2、O
12%耐力降伏点22kg/mm”降伏伸び0%、伸び
43%の良好な材質を得ることができた。
Based on this calculation result, when heat treatment was actually performed, the cooling curve at that time was as shown in Figure 7, and the temperature was 800℃.
A cooling rate of 34°C/sec from
A good material with 12% yield strength, yield point of 22 kg/mm, yield elongation of 0%, and elongation of 43% could be obtained.

以上説明した通り、本発明によれば、ガスジェット急冷
帯の板温制御を安定して、且つ精度良〈実施することが
でき、広範囲の冷却条件を処理できるという優れた効果
を有する。
As explained above, according to the present invention, plate temperature control of the gas jet quenching zone can be carried out stably and with high precision, and a wide range of cooling conditions can be handled, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、連続焼鈍炉の全体構成を示す工程図第2は従
来の急冷帯を示す断面図、第3図は、本発明に係る連続
焼鈍炉の急冷帯の冷却板温制御方法における各冷却ゾー
ン出側の設定板温を算出するだめの手順を示す流れ図、
第4図は、本発明の実施例が適用される連続焼鈍炉の急
冷帯を示す断面図、第5図は、前記急冷帯における各冷
却ゾーン毎の制御系統を示すブロック線図、第6図は、
本発明に係る第1実施例の冷却曲線を示す線図、第7図
は、同じく第2実施例の冷却曲線を示す線図である。 8・・・鋼帯、26・・・均熱帯、28・・・ガスジェ
ット急冷帯、28−1〜28−6・・・冷却ゾーン、3
0・・・・・・過時効帯、32・・・・・・冷却帯、5
0,52゜54.54−1〜54−4・・・板温計、6
0・・・・・・循環ブロワ、62・・・・・・ガスジェ
ットノズル、64・・・プレナム、66・・・・・・吸
引用配管、68・・・・・・水冷クーラー、70・・・
・・・流量調節弁、72・・・・・・圧力計、74・・
・・・・圧力調節計。
Fig. 1 is a process diagram showing the overall configuration of a continuous annealing furnace, Fig. 2 is a sectional view showing a conventional quenching zone, and Fig. 3 is a process diagram showing the overall configuration of a continuous annealing furnace. A flowchart showing the procedure for calculating the set plate temperature on the outlet side of the cooling zone,
FIG. 4 is a sectional view showing a quenching zone of a continuous annealing furnace to which an embodiment of the present invention is applied, FIG. 5 is a block diagram showing a control system for each cooling zone in the quenching zone, and FIG. teeth,
FIG. 7 is a diagram showing the cooling curve of the first embodiment according to the present invention, and FIG. 7 is a diagram showing the cooling curve of the second embodiment. 8... Steel strip, 26... Soaking zone, 28... Gas jet quenching zone, 28-1 to 28-6... Cooling zone, 3
0... Overaging zone, 32... Cooling zone, 5
0,52°54.54-1 to 54-4... Plate thermometer, 6
0... Circulation blower, 62... Gas jet nozzle, 64... Plenum, 66... Suction piping, 68... Water cooling cooler, 70...・・・
...Flow control valve, 72...Pressure gauge, 74...
...Pressure regulator.

Claims (1)

【特許請求の範囲】 1 均熱帯で均熱温度迄加熱されたストIJツブを連続
的に冷却するだめの、複数の冷却ゾーンからなる連続焼
鈍炉の急冷帯の冷却板温制御方法において、各冷却ゾー
ン出側の板温を検出し、これが、ス) IJツブの種類
、寸法、冷却条件等から予め求められた各冷却ゾーン出
側の設定板温と一致するよう、各冷却ゾーンを独立に制
御するようにしたことを特徴とする連続焼鈍炉の急冷帯
の冷却板温制御方法。 2 前記各冷却ゾーン出側の設定板温か、まず、ストリ
ップの種類、寸法、冷却条件からヒートサイクルを決定
し、次いで、ライン速度決定演算プログラムにより、ラ
イン速度及び使用冷却ゾーンを決定し、これらを用いて
、急冷帯冷却条件設定演算プログラムにより算出された
ものである特許請求の範囲第1項に記載の連続焼鈍炉の
急冷帯の冷却板温制御方法。
[Scope of Claims] 1. A method for controlling the temperature of a cooling plate in a quenching zone of a continuous annealing furnace consisting of a plurality of cooling zones, which continuously cools a strike IJ tube heated to a soaking temperature in a soaking zone. The plate temperature on the exit side of the cooling zone is detected, and each cooling zone is adjusted independently so that this matches the set plate temperature on the outlet side of each cooling zone, which is determined in advance from the type, dimensions, cooling conditions, etc. of the IJ tube. 1. A cooling plate temperature control method in a quenching zone of a continuous annealing furnace. 2. Set plate temperature on the exit side of each cooling zone. First, determine the heat cycle from the strip type, dimensions, and cooling conditions. Then, use the line speed determination calculation program to determine the line speed and cooling zone to be used. 2. A cooling plate temperature control method for a quenching zone of a continuous annealing furnace according to claim 1, wherein the temperature is calculated by a quenching zone cooling condition setting calculation program.
JP14099479A 1979-10-30 1979-10-30 Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace Expired JPS5934214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14099479A JPS5934214B2 (en) 1979-10-30 1979-10-30 Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14099479A JPS5934214B2 (en) 1979-10-30 1979-10-30 Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace

Publications (2)

Publication Number Publication Date
JPS5665935A JPS5665935A (en) 1981-06-04
JPS5934214B2 true JPS5934214B2 (en) 1984-08-21

Family

ID=15281674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14099479A Expired JPS5934214B2 (en) 1979-10-30 1979-10-30 Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace

Country Status (1)

Country Link
JP (1) JPS5934214B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124817A (en) * 2004-11-01 2006-05-18 Kobe Steel Ltd Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726128A (en) * 1980-07-25 1982-02-12 Nippon Steel Corp Method for controlling cooling rate and cooling end point temperature of steel strip
JP4990448B2 (en) * 2001-07-10 2012-08-01 新日本製鐵株式会社 Continuous annealing furnace cooling zone in IF steel combined with continuous annealing and hot dipping.
KR100636396B1 (en) 2005-06-28 2006-10-18 주식회사 포스코 Temperature control method of continuous annealing furnace for high quality electrical strip marking
JP5226965B2 (en) * 2007-04-04 2013-07-03 新日鉄住金エンジニアリング株式会社 Steel plate cooling method and steel plate continuous heat treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124817A (en) * 2004-11-01 2006-05-18 Kobe Steel Ltd Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JP4490789B2 (en) * 2004-11-01 2010-06-30 株式会社神戸製鋼所 Continuous annealing method for steel sheet

Also Published As

Publication number Publication date
JPS5665935A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
CA1200474A (en) Method of controlled cooling for steel strip
JPS60174833A (en) Cooling method of hot steel sheet
US6264767B1 (en) Method of producing martensite-or bainite-rich steel using steckel mill and controlled cooling
JPS5934214B2 (en) Method for controlling cooling plate temperature in quenching zone of continuous annealing furnace
US11230749B2 (en) Method for operating an annealing furnace
US4725321A (en) Method for cooling a steel strip in a continuous annealing furnace
JP2002294351A (en) Manufacturing method for high-strength cold-rolled steel plate
JPH02179825A (en) Controller for cooling hot-rolled steel sheet
JPS61253112A (en) Control method for cooling steel plate
EP0128734B1 (en) Method for cooling a steel strip in a continuous-annealing furnace
US4724014A (en) Method for cooling a steel strip in a continuous annealing furnace
JPH0713271B2 (en) Metal plate continuous annealing equipment and metal plate continuous annealing method
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
JP2983366B2 (en) Carburizing and nitriding equipment in continuous annealing furnace
JPS6254373B2 (en)
JP2002172411A (en) Method and apparatus for heat-treating thick steel plate
US11779977B2 (en) Method for setting different cooling curves of rolling material over the strip width of a cooling stretch in a hot-strip mill or heavy-plate mill
JPH052728B2 (en)
JPH02255209A (en) Shape control method for warm or cold rolling of sheet
JPS5944367B2 (en) Water quenching continuous annealing method
JPH06238312A (en) Method for controlling cooling of hot rolled steel sheet
JPS61159213A (en) Method for controlling hardness of steel strip
JPS5831370B2 (en) Ondo Seigiyohou
JPH0115324B2 (en)
JPH0381009A (en) Method for controlling plate temperature in warm rolling of stainless steel strip