JP7060003B2 - Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment - Google Patents

Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment Download PDF

Info

Publication number
JP7060003B2
JP7060003B2 JP2019213009A JP2019213009A JP7060003B2 JP 7060003 B2 JP7060003 B2 JP 7060003B2 JP 2019213009 A JP2019213009 A JP 2019213009A JP 2019213009 A JP2019213009 A JP 2019213009A JP 7060003 B2 JP7060003 B2 JP 7060003B2
Authority
JP
Japan
Prior art keywords
cooling
steel sheet
steel
plate
transport direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019213009A
Other languages
Japanese (ja)
Other versions
JP2020105630A (en
Inventor
広和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020105630A publication Critical patent/JP2020105630A/en
Application granted granted Critical
Publication of JP7060003B2 publication Critical patent/JP7060003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

本発明は、連続焼鈍ラインの冷却帯を通板しながら鋼板の冷却を行う、鋼板の冷却方法および鋼板の製造方法ならびに鋼板の冷却設備に関する。 The present invention relates to a method for cooling a steel sheet, a method for manufacturing a steel sheet, and a cooling facility for a steel sheet, which cool the steel sheet while passing through a cooling zone of a continuous annealing line.

鋼板を製造する際には、連続焼鈍設備において、加熱後に鋼板を冷却し、相変態を起こさせるなどして材質の造り込みを行う。近年、自動車業界では車体の軽量化と衝突安全性の両立を目的として、高張力鋼板(ハイテン)の適用が進んでおり、そのような需要動向に対応するために、高張力鋼板の製造に有利な急速冷却(急冷)技術の重要性が増している。最も冷却速度が速い水焼入れ法としては、加熱された高温の鋼板を水中に浸漬させると同時に、水中内に設けられたクエンチノズルにより冷却水を鋼板に噴射し、急冷を行う方法が一般的である。しかしながら、その急冷の際に、鋼板に反りや波状変形などの面外変形による形状不良が発生することが、問題となっている。 When manufacturing a steel sheet, the material is built in by cooling the steel sheet after heating in a continuous annealing facility to cause a phase transformation. In recent years, the application of high-strength steel sheets (HITEN) has been progressing in the automobile industry for the purpose of achieving both weight reduction of the vehicle body and collision safety, and it is advantageous for manufacturing high-strength steel sheets in order to meet such demand trends. Rapid cooling (quenching) technology is becoming more important. As a water quenching method with the fastest cooling rate, a method of immersing a heated high-temperature steel sheet in water and at the same time injecting cooling water onto the steel sheet by a quench nozzle provided in the water to quench the steel sheet is common. be. However, there is a problem that the steel sheet has a shape defect due to out-of-plane deformation such as warpage and wavy deformation during the rapid cooling.

このような問題に対して、特許文献1では、連続焼鈍炉での急冷焼入時に生じる鋼板の波状変形を抑制するために、急冷焼入工程に付される鋼板の張力を変えることができる張力変更手段として、ブライドルロールを急冷焼入部前後に設ける手法が提案されている。 In response to such a problem, in Patent Document 1, in order to suppress the wavy deformation of the steel sheet that occurs during quenching in a continuous annealing furnace, the tension of the steel sheet applied to the quenching and quenching step can be changed. As a means of change, a method of providing bridle rolls before and after the quenching and quenching part has been proposed.

また、特許文献2では、焼入れ開始点(冷却開始点)において、鋼板幅方向で圧縮方向の熱応力が発生し、鋼板が座屈することによって形状不良が発生することに着目し、冷却により板幅方向での圧縮応力が発生している領域またはその近傍領域で、鋼板両面側から拘束することにより面外変形を抑制する手法が提案されている。 Further, in Patent Document 2, attention is paid to the fact that thermal stress in the compression direction is generated in the width direction of the steel sheet at the quenching start point (cooling start point), and the steel sheet buckles, resulting in a shape defect. A method of suppressing out-of-plane deformation by restraining from both sides of a steel sheet in a region where compressive stress is generated in the direction or a region in the vicinity thereof has been proposed.

また、特許文献3では、急冷焼入れ装置内に一対の拘束ロールを配置し、この拘束ロールで鋼板を両面側から拘束することにより、面外変形を抑制する手法が提案されている。 Further, Patent Document 3 proposes a method of suppressing out-of-plane deformation by arranging a pair of restraint rolls in a quenching and quenching apparatus and restraining a steel sheet from both sides with the restraint rolls.

特開2011-184773号公報Japanese Unexamined Patent Publication No. 2011-184773 特開2003-277833号公報Japanese Patent Application Laid-Open No. 2003-277833 WO2016/084283号公報WO2016 / 084283 Gazette

しかしながら、特許文献1に記載された方法では、高温の鋼板に大きな張力をかけるため、鋼板の破断が起きるおそれがあった。また、高温の鋼板に接触する急冷焼入部前のブライドルロールには、大きなサーマルクラウンが発生するため、ブライドルロールと鋼板がブライドルロールの幅方向に不均一に接触し、その結果、鋼板に座屈や疵が発生し、鋼板形状を改善することができないという問題があった。 However, in the method described in Patent Document 1, a large tension is applied to the high-temperature steel sheet, so that the steel sheet may be broken. In addition, a large thermal crown is generated on the bridle roll before the quenching and quenching part that comes into contact with the high-temperature steel sheet, so that the bridle roll and the steel sheet contact unevenly in the width direction of the bridle roll, and as a result, buckle on the steel sheet. There was a problem that the shape of the steel sheet could not be improved due to the occurrence of flaws.

また、特許文献2に記載された方法では、ピンチロールが1対しかなく、鋼板の形状矯正効果が小さいと考えられる。 Further, in the method described in Patent Document 2, there is only one pair of pinch rolls, and it is considered that the shape correction effect of the steel sheet is small.

また、特許文献3の急冷焼入れ装置を用いると、急冷時の鋼板の変形を防止できるものの、冷却水を噴射する噴射装置を鋼板が通過する際に、一時的に鋼板の冷却速度が低下することで、鋼板の特性が低下する。具体的には、鋼板の冷却速度の低下に起因して、所望の鋼板の材料特性、例えば所望の引張強度を有する鋼板が得られない場合がある。 Further, although the quenching quenching device of Patent Document 3 can be used to prevent the steel sheet from being deformed during quenching, the cooling rate of the steel sheet temporarily decreases when the steel sheet passes through the injection device for injecting cooling water. Therefore, the characteristics of the steel sheet deteriorate. Specifically, due to the decrease in the cooling rate of the steel sheet, it may not be possible to obtain a steel sheet having desired material properties of the steel sheet, for example, a desired tensile strength.

本発明はかかる事情に鑑みて完成されたものであって、高温の鋼板の急冷時に鋼板に発生する形状不良を抑制しつつ、所望の材質特性を有する鋼板の冷却方法および鋼板の製造方法ならびに鋼板の冷却設備を提供することを課題とする。 The present invention has been completed in view of such circumstances, and is a method for cooling a steel sheet having desired material characteristics, a method for manufacturing the steel sheet, and a steel sheet while suppressing shape defects that occur in the steel sheet during rapid cooling of the high temperature steel sheet. The challenge is to provide cooling equipment for the steel sheet.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、以下のような知見を得た。 As a result of diligent studies to solve the above problems, the present inventors have obtained the following findings.

Ms点からMf点にかけてマルテンサイト変態が生じるが、この温度域での鋼板の冷却速度が低下すると、鋼板の材料特性(例えば引張強度)も低下する。なお、Ms点とはマルテンサイト変態が開始する温度(マルテンサイト変態開始温度)のことであり、Mf点とはマルテンサイト変態が終了する温度(マルテンサイト変態終了温度)のことである。 Martensitic transformation occurs from the Ms point to the Mf point, but when the cooling rate of the steel sheet in this temperature range decreases, the material properties (for example, tensile strength) of the steel sheet also decrease. The Ms point is the temperature at which martensitic transformation starts (martensite transformation start temperature), and the Mf point is the temperature at which martensitic transformation ends (martensite transformation end temperature).

材料特性を維持するためには、Ms点以下の冷却速度を維持する必要があるが、Ms点より高い温度については、浸漬冷却程度の冷却速度が必要ではなく、マルテンサイト以外の強度が低い組織である、フェライト、パーライト、ベイナイトが生じない程度の冷却速度で十分である。 In order to maintain the material properties, it is necessary to maintain a cooling rate below the Ms point, but for temperatures higher than the Ms point, a cooling rate similar to that of immersion cooling is not required, and the structure has low strength other than martensite. A cooling rate that does not generate ferrite, pearlite, or bainite is sufficient.

一方、冷却速度が大きいと、熱収縮が大きいため、鋼板が変形し、製品形状が劣化する。熱収縮を小さくするためには、鋼板長手方向の温度勾配を小さくすることが重要であり、そのため、鋼板長手方向において、段階的に冷却速度を増加させると良い。 On the other hand, when the cooling rate is high, the heat shrinkage is large, so that the steel sheet is deformed and the product shape is deteriorated. In order to reduce the heat shrinkage, it is important to reduce the temperature gradient in the longitudinal direction of the steel sheet, and therefore, it is preferable to gradually increase the cooling rate in the longitudinal direction of the steel sheet.

冷却速度を段階的に変化させる際、冷却領域(冷却エリア)を区分するため、鋼板を押さえつけるロールを設置することが好ましい。ロールを使用することにより、鋼板上での冷却エリア間の冷媒移動を抑制することができ、また、ロールで鋼板を押さえつけることができるので、鋼板の変形を抑制する効果も期待できる。 When the cooling rate is changed stepwise, it is preferable to install a roll that presses the steel plate in order to divide the cooling area (cooling area). By using the roll, the movement of the refrigerant between the cooling areas on the steel sheet can be suppressed, and since the steel sheet can be pressed by the roll, the effect of suppressing the deformation of the steel sheet can be expected.

以上より、本発明者らは、急冷前に、必要かつ十分な冷却速度でMs点より高い温度まで鋼板を冷却し、Ms点以下では急冷を行うことにより、熱収縮により鋼板に与えられる応力を抑制し、形状不良(変形)を抑制しつつ、所望の引張強度等の材質特性を有する鋼板を製造することができると考えた。 From the above, the present inventors cool the steel sheet to a temperature higher than the Ms point at a necessary and sufficient cooling rate before quenching, and quench the steel sheet below the Ms point to apply stress to the steel sheet due to thermal shrinkage. It was considered that a steel sheet having desired material properties such as tensile strength could be manufactured while suppressing the shape defect (deformation).

本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1]連続焼鈍ラインの冷却帯で用いられる鋼板の冷却方法であって、
鋼板搬送方向上流側の領域における鋼板の冷却速度を緩冷とするとともに、鋼板搬送方向下流側の領域における鋼板の冷却速度を急冷とし、
かつ、前記鋼板搬送方向上流側および下流側の領域を、鋼板搬送方向に沿って複数の冷却領域とし、前記鋼板搬送方向下流側の冷却領域の冷却速度が前記鋼板搬送方向上流側の冷却領域の冷却速度以上とする鋼板の冷却方法。
[2]連続焼鈍ラインの冷却帯で用いられる鋼板の冷却方法であって、
鋼板搬送方向上流側の領域における鋼板の冷却速度を緩冷とするとともに、鋼板搬送方向下流側の領域における鋼板の冷却速度を急冷とし、
かつ、鋼板搬送方向に沿って、前記鋼板搬送方向上流側の領域を1つの緩冷の冷却領域とするとともに、前記鋼板搬送方向下流側の領域を1つの急冷の冷却領域とし、
前記鋼板搬送方向下流側の冷却領域の冷却速度が前記鋼板搬送方向上流側の冷却領域の冷却速度以上とする鋼板の冷却方法。
[3]前記緩冷では、鋼板のマルテンサイト変態開始温度より高い温度まで冷却する[1]または[2]に記載の鋼板の冷却方法。
[4]鋼板のマルテンサイト変態開始温度以上の温度から前記急冷での鋼板の冷却を開始し、前記急冷では、鋼板のマルテンサイト変態終了温度以下の温度まで冷却する[1]~[3]のいずれかに記載の鋼板の冷却方法。
[5]前記緩冷において、冷却前の組織から10%以上の組織変態を進行させないように冷却する、[1]~[4]のいずれかに記載の鋼板の冷却方法。
[6]前記緩冷は、気体、液体、および気体と液体の混合物のうちから選択されるいずれか1種の冷媒を鋼板に噴射する[1]~[5]のいずれかに記載の鋼板の冷却方法。
[7]前記急冷は、冷却液を鋼板に噴射する[1]~[6]のいずれかに記載の鋼板の冷却方法。
[8]鋼板を板厚方向に押さえつけるロールによって、前記鋼板搬送方向上流側および下流側の領域を区分する[1]~[7]のいずれかに記載の鋼板の冷却方法。
[9]前記冷却領域において、下記式(1)を満たす条件で冷却を行うことを特徴とする[1]~[8]のいずれかに記載の鋼板の冷却方法。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] A method for cooling a steel sheet used in a cooling zone of a continuous annealing line.
The cooling rate of the steel sheet in the region upstream in the steel sheet transport direction is slowed down, and the cooling rate of the steel sheet in the region downstream in the steel sheet transport direction is rapidly cooled.
Further, the regions on the upstream side and the downstream side in the steel sheet transport direction are set as a plurality of cooling regions along the steel sheet transport direction, and the cooling rate of the cooling region on the downstream side in the steel sheet transport direction is the cooling region on the upstream side in the steel sheet transport direction. A method for cooling steel sheets that is faster than the cooling rate.
[2] A method for cooling a steel sheet used in the cooling zone of a continuous annealing line.
The cooling rate of the steel sheet in the region upstream in the steel sheet transport direction is slowed down, and the cooling rate of the steel sheet in the region downstream in the steel sheet transport direction is rapidly cooled.
Further, along the steel sheet transport direction, the region on the upstream side in the steel sheet transport direction is designated as one slow cooling cooling region, and the region on the downstream side in the steel plate transport direction is designated as one quenching cooling region.
A method for cooling a steel plate, wherein the cooling rate of the cooling region on the downstream side in the steel plate transport direction is equal to or higher than the cooling rate of the cooling region on the upstream side in the steel plate transport direction.
[3] The method for cooling a steel sheet according to [1] or [2], wherein in the slow cooling, the steel sheet is cooled to a temperature higher than the martensitic transformation start temperature of the steel sheet.
[4] Cooling of the steel sheet by the rapid cooling is started from a temperature equal to or higher than the martensite transformation start temperature of the steel sheet, and in the rapid cooling, the steel sheet is cooled to a temperature equal to or lower than the martensite transformation end temperature of the steel sheet [1] to [3]. The method for cooling a steel plate according to any one.
[5] The method for cooling a steel sheet according to any one of [1] to [4], wherein in the slow cooling, the structure is cooled so as not to proceed with a structure transformation of 10% or more from the structure before cooling.
[6] The slow cooling of the steel sheet according to any one of [1] to [5], wherein the slow cooling is performed by injecting a refrigerant of any one selected from gas, liquid, and a mixture of gas and liquid onto the steel sheet. Cooling method.
[7] The method for cooling a steel sheet according to any one of [1] to [6], wherein the quenching is a method of injecting a cooling liquid onto a steel sheet.
[8] The method for cooling a steel sheet according to any one of [1] to [7], wherein the regions on the upstream side and the downstream side in the steel sheet transport direction are divided by a roll that presses the steel sheet in the plate thickness direction.
[9] The method for cooling a steel sheet according to any one of [1] to [8], wherein the cooling region is cooled under the condition of satisfying the following formula (1).

Figure 0007060003000001
Figure 0007060003000001

[10][1]~[9]のいずれかに記載の鋼板の冷却方法を用いる、鋼板の製造方法。
[11]連続焼鈍ラインの冷却帯で用いられる鋼板の冷却装置であって、
鋼板搬送方向上流側の領域における鋼板の冷却速度を緩冷として鋼板を冷却する緩冷却装置と、
鋼板搬送方向下流側の領域における鋼板の冷却速度を急冷として鋼板を冷却する急冷装置とを備え、
前記鋼板搬送方向上流側および下流側の領域を、鋼板搬送方向に沿って複数の冷却領域とし、前記鋼板搬送方向下流側の冷却領域の冷却速度が前記鋼板搬送方向上流側の冷却領域の冷却速度以上とする鋼板の冷却設備。
[12]鋼板を板厚方向に押さえつけるロールによって、前記鋼板搬送方向上流側および下流側の領域を区分する[11]に記載の鋼板の冷却設備。
[13]前記緩冷却装置は、鋼板表裏面に設置されて、気体、液体、および気体と液体の混合物のうちから選択されるいずれか1種である冷媒を噴射する冷媒噴射装置を備え、
前記急冷装置は、表裏面に設置されて、冷却液を噴射する冷却液噴射装置を備える[11]または[12]に記載の鋼板の冷却設備。
[10] A method for manufacturing a steel sheet using the method for cooling a steel sheet according to any one of [1] to [9].
[11] A steel plate cooling device used in the cooling zone of a continuous annealing line.
A slow cooling device that cools the steel sheet by slowing down the cooling rate of the steel sheet in the area upstream of the steel sheet transport direction.
It is equipped with a quenching device that cools the steel sheet by quenching the cooling rate of the steel sheet in the area downstream in the steel sheet transport direction.
The regions on the upstream side and the downstream side in the steel sheet transport direction are defined as a plurality of cooling regions along the steel sheet transport direction, and the cooling rate of the cooling region on the downstream side in the steel sheet transport direction is the cooling rate of the cooling region on the upstream side in the steel sheet transport direction. The above steel sheet cooling equipment.
[12] The steel sheet cooling equipment according to [11], wherein the regions on the upstream side and the downstream side in the steel plate transport direction are divided by a roll that presses the steel plate in the plate thickness direction.
[13] The slow cooling device includes a refrigerant injection device installed on the front and back surfaces of a steel sheet and injecting a refrigerant which is one of a gas, a liquid, and a mixture of a gas and a liquid.
The steel plate cooling equipment according to [11] or [12], wherein the quenching device is installed on the front and back surfaces and includes a coolant injection device for injecting a coolant.

本発明によれば、形状不良を抑制しつつ、所望の材質特性を有する鋼板を製造することができる。 According to the present invention, it is possible to manufacture a steel sheet having desired material characteristics while suppressing shape defects.

図1は、本発明の冷却装置を示す模式図である。FIG. 1 is a schematic view showing a cooling device of the present invention. 図2は、引張強度1500MPa級鋼のCCT線図を示す模式図である。FIG. 2 is a schematic diagram showing a CCT diagram of a steel having a tensile strength of 1500 MPa.

以下、本発明について、図面に基づいて説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments.

図1は、本発明の冷却設備100を示す模式図である。本発明の冷却設備は、連続焼鈍炉の均熱帯の出側に設けられた冷却設備に適用される。なお、図1中の矢印は、鋼板Sの搬送方向を示す。 FIG. 1 is a schematic view showing the cooling equipment 100 of the present invention. The cooling equipment of the present invention is applied to the cooling equipment provided on the outside of the soothing tropics of the continuous annealing furnace. The arrow in FIG. 1 indicates the transport direction of the steel plate S.

本発明の冷却設備100は、緩冷却装置1と急冷装置2とを備える。連続的に通板しながら加熱、均熱、冷却および再加熱を行う連続焼鈍炉の均熱帯から排出された高温の鋼板Sが、緩冷却装置1にて冷却された後、急冷装置2にて冷却される。なお、急冷装置2での冷却後、鋼板Sはロール6により搬送方向が変更されて、後工程に導かれる。 The cooling equipment 100 of the present invention includes a slow cooling device 1 and a quenching device 2. The high-temperature steel plate S discharged from the soaking tropics of the continuous annealing furnace, which heats, soaks, cools, and reheats while continuously passing through the plate, is cooled by the slow cooling device 1 and then by the quenching device 2. It will be cooled. After cooling by the quenching device 2, the steel sheet S is guided to a subsequent process by changing the transport direction by the roll 6.

本発明では、緩冷却装置1は、鋼板搬送方向上流側の領域における鋼板Sの冷却速度を緩冷として鋼板Sを冷却する。急冷装置2は、鋼板搬送方向下流側の領域における鋼板Sの冷却速度を緩冷として鋼板Sを冷却する。 In the present invention, the slow cooling device 1 cools the steel sheet S by slowly cooling the steel sheet S in the region on the upstream side in the steel sheet transport direction. The quenching device 2 cools the steel plate S by slowly cooling the cooling speed of the steel plate S in the region downstream in the steel plate transport direction.

本発明では、鋼板搬送方向上流側および下流側の領域を、鋼板搬送方向に沿って複数の冷却領域とし、鋼板搬送方向下流側の冷却領域の冷却速度が鋼板搬送方向上流側の冷却領域の冷却速度以上となるように、鋼板を冷却する。冷却速度が大きいと、熱収縮が大きいため、鋼板が変形し、製品形状が劣化する。熱収縮を小さくするためには、鋼板長手方向の温度勾配を小さくすることが重要である。本発明では、鋼板長手方向において上流側よりも下流側の冷却速度を増加させることにより、従来のような高温の鋼板の急冷時に鋼板に発生し得る形状不良を抑制することができる。 In the present invention, the regions on the upstream side and the downstream side in the steel sheet transport direction are set as a plurality of cooling regions along the steel sheet transport direction, and the cooling rate of the cooling region on the downstream side in the steel sheet transport direction is the cooling of the cooling region on the upstream side in the steel sheet transport direction. Cool the steel sheet so that it exceeds the speed. When the cooling rate is high, the heat shrinkage is large, so that the steel sheet is deformed and the product shape is deteriorated. In order to reduce the heat shrinkage, it is important to reduce the temperature gradient in the longitudinal direction of the steel sheet. In the present invention, by increasing the cooling rate on the downstream side rather than the upstream side in the longitudinal direction of the steel sheet, it is possible to suppress the shape defect that may occur in the steel sheet during rapid cooling of the high temperature steel sheet as in the conventional case.

また、本発明では、緩冷の冷却領域と急冷の冷却領域がそれぞれ1つずつの場合でも、複数の冷却領域の場合と同様に、鋼板長手方向において上流側よりも下流側の冷却速度を増加させることができ、従来のような高温の鋼板の急冷時に鋼板に発生し得る形状不良を抑制することができる。 Further, in the present invention, even when there is one cooling region for slow cooling and one cooling region for rapid cooling, the cooling rate on the downstream side is increased in the longitudinal direction of the steel sheet as in the case of a plurality of cooling regions. It is possible to suppress the shape defect that may occur in the steel sheet when the high temperature steel sheet is rapidly cooled as in the conventional case.

冷却速度を鋼板搬送方向上流側よりも鋼板搬送方向下流側の方が大きくなるように変化させる際、複数の冷却領域(冷却エリア)を区分するため、鋼板Sを板厚方向に押さえつけるロール3を設置することが好ましい。例えば図1に示すように、鋼板Sの表裏面にロール3を設置することにより、鋼板S上での冷却エリアZ(Z1、Z2、Z3、Z4)間の冷媒移動を抑制することができ、また、ロール3で鋼板Sを押さえつけることができるので、鋼板の変形を抑制する効果も期待できる。ロール3の設置数(すなわち冷却エリアZの数)については特に制限がない。なお、鋼板Sの表裏面に少なくとも1対のロール3を設置するのが好ましく、ロール3をオフセットさせてもよい。オフセットさせる場合は、鋼板Sの長手方向にロール3の直径以下となるようにオフセットさせることが好ましい。また、冷却エリア(=ロールピッチ)の長さについては、冷却速度が速いほど変形しやすく、また、ロールピッチが短いほど変形を抑制しやすい、という2点から、緩冷側(鋼板搬送方向上流側)は冷却エリアを長くとっても鋼板の変形が生じにくくなる。したがって、緩冷側(鋼板搬送方向上流側)の冷却エリアのエリア長を長くしても、特に問題ない。 When changing the cooling rate so that the downstream side in the steel plate transport direction is larger than the upstream side in the steel plate transport direction, a roll 3 for pressing the steel plate S in the plate thickness direction is used to divide a plurality of cooling regions (cooling areas). It is preferable to install it. For example, as shown in FIG. 1, by installing the rolls 3 on the front and back surfaces of the steel plate S, it is possible to suppress the movement of the refrigerant between the cooling areas Z (Z1, Z2, Z3, Z4) on the steel plate S. Further, since the steel plate S can be pressed by the roll 3, the effect of suppressing the deformation of the steel plate can be expected. There is no particular limitation on the number of rolls 3 installed (that is, the number of cooling areas Z). It is preferable to install at least one pair of rolls 3 on the front and back surfaces of the steel plate S, and the rolls 3 may be offset. When offsetting, it is preferable to offset the steel plate S in the longitudinal direction so as to be equal to or smaller than the diameter of the roll 3. Regarding the length of the cooling area (= roll pitch), the faster the cooling speed, the easier it is to deform, and the shorter the roll pitch, the easier it is to suppress deformation. On the side), even if the cooling area is long, the steel plate is less likely to be deformed. Therefore, there is no particular problem even if the area length of the cooling area on the slow cooling side (upstream side in the steel sheet transport direction) is lengthened.

なお、一例として、図1では、緩冷却装置1と急冷装置2との境界に1対のロール3が設置されており、緩冷却装置1および急冷装置2において、いずれも2対のロール3が設置されている。これにより4つの冷却エリアZ1~Z4ができ、Z1もしくはZ2の冷却速度より、Z3もしくはZ4の冷却速度の方が大きいという設定になる。 As an example, in FIG. 1, a pair of rolls 3 is installed at the boundary between the slow cooling device 1 and the quenching device 2, and in both the slow cooling device 1 and the quenching device 2, two pairs of rolls 3 are installed. is set up. As a result, four cooling areas Z1 to Z4 are created, and the cooling rate of Z3 or Z4 is set to be higher than the cooling rate of Z1 or Z2.

緩冷却装置1において緩冷する際、気体、液体、および気体と液体の混合物のうちから選択されるいずれか1種の冷媒を鋼板Sに噴射することが好ましい。冷媒の具体的な種類は鋼板Sに含有される化学成分に応じて選択すれば良い。必要以上に鋼板Sを酸化させたくない場合は、窒素などの不活性ガスを気体として使用すれば良い。 When slowing down in the slow cooling device 1, it is preferable to inject one of a refrigerant selected from a gas, a liquid, and a mixture of gas and liquid into the steel sheet S. The specific type of the refrigerant may be selected according to the chemical composition contained in the steel sheet S. If the steel sheet S is not to be oxidized more than necessary, an inert gas such as nitrogen may be used as a gas.

緩冷却装置1において緩冷する場合、例えば、図1に示すように、各冷却エリアZ内に設置される冷媒噴射装置4を用いて、鋼板Sの表裏面に冷媒を噴射すればよい。なお、冷媒噴射装置4は冷媒を噴射するノズルを有している。図1は、冷媒噴射装置4が鋼板Sの表裏面および幅方向に複数設置されている一例であるが、このような配置に限定されない。
鋼板表裏面での冷却能力が同等であれば、ロール3間において冷媒噴射装置4は相対して設置する必要はない。
In the case of slow cooling in the slow cooling device 1, for example, as shown in FIG. 1, the refrigerant injection device 4 installed in each cooling area Z may be used to inject the refrigerant onto the front and back surfaces of the steel plate S. The refrigerant injection device 4 has a nozzle for injecting the refrigerant. FIG. 1 is an example in which a plurality of refrigerant injection devices 4 are installed on the front and back surfaces of the steel plate S and in the width direction, but the arrangement is not limited to this.
If the cooling capacities on the front and back surfaces of the steel sheet are the same, it is not necessary to install the refrigerant injection devices 4 facing each other between the rolls 3.

次に、緩冷却装置1で緩冷にて冷却された後の鋼板Sは、急冷装置2に搬送されて急冷される。急冷装置2で急冷する際、例えば、図1に示すように、各冷却エリアZ内に設置される複数の冷却液噴射装置5を用いて、鋼板Sの表裏面に冷却液を噴射すればよい。なお、冷却液噴射装置5は冷却液を噴射するノズルを有している。冷却液噴射装置5は鋼板Sの表裏面および幅方向に複数設置され、鋼板Sの両面に冷却液を噴射すればよい。冷却液としては、例えば冷却水が好ましい。このように冷却液の噴射により例えば冷却液の温度まで冷却された鋼板は、次の工程へと搬送される。 Next, the steel sheet S after being slowly cooled by the slow cooling device 1 is conveyed to the quenching device 2 and rapidly cooled. When quenching with the quenching device 2, for example, as shown in FIG. 1, a plurality of coolant injection devices 5 installed in each cooling area Z may be used to inject the coolant onto the front and back surfaces of the steel sheet S. .. The coolant injection device 5 has a nozzle for injecting the coolant. A plurality of coolant spraying devices 5 may be installed on the front and back surfaces of the steel plate S and in the width direction, and the coolant may be sprayed on both surfaces of the steel plate S. As the coolant, for example, cooling water is preferable. The steel sheet cooled to, for example, the temperature of the coolant by the injection of the coolant is conveyed to the next step.

鋼板Sは、緩冷却装置1および急冷装置2によって急冷されることにより熱収縮する。特に、鋼板Sがマルテンサイト変態を生じるような材料の場合には、鋼板Sの温度がマルテンサイト変態開始温度であるMs点からマルテンサイト変態が終了する温度であるMf点となったときに、鋼板Sに急激な熱収縮と変態膨張が同時に生じ、鋼板Sに働く応力が大きくなり、形状が崩れやすい。 The steel sheet S is thermally shrunk by being rapidly cooled by the slow cooling device 1 and the quenching device 2. In particular, in the case of a material in which the steel sheet S causes a martensitic transformation, when the temperature of the steel sheet S changes from the Ms point, which is the martensitic transformation start temperature, to the Mf point, which is the temperature at which the martensitic transformation ends. Rapid thermal contraction and transformational expansion occur simultaneously in the steel sheet S, the stress acting on the steel sheet S increases, and the shape tends to collapse.

特許文献3に記載されるように、従来技術では、焼鈍炉から出た鋼板は、炉内雰囲気で放冷された後、急冷装置で冷却される。その場合、焼鈍温度から少し温度が低下した状態から水温まで急冷されるため、非常に大きな熱収縮が生じる。 As described in Patent Document 3, in the prior art, the steel sheet from the annealing furnace is allowed to cool in the atmosphere inside the furnace and then cooled by a quenching device. In that case, since the temperature is rapidly cooled from the annealing temperature to the water temperature, a very large heat shrinkage occurs.

鋼板の変形を抑制するために、本発明では、Ms点より高い温度については、急冷装置2よりも遅い冷却速度で緩冷却装置1にて緩冷で冷却し、Ms点以上の温度から急冷装置2で急冷を行うことが好ましい。すなわち、緩冷却装置1での緩冷による鋼板Sの冷却は、Ms点より高い温度で行うことが好ましい。また、急冷装置2での急冷による鋼板Sの冷却は、鋼板SのMs点以上の温度から急冷での鋼板の冷却を開始し、鋼板のMf点以下の温度まで急冷で鋼板を冷却することが好ましい。 In order to suppress the deformation of the steel sheet, in the present invention, the temperature higher than the Ms point is cooled by the slow cooling device 1 at a cooling rate slower than that of the quenching device 2, and the quenching device is cooled from the temperature above the Ms point. It is preferable to perform quenching in step 2. That is, it is preferable that the steel plate S is cooled by the slow cooling in the slow cooling device 1 at a temperature higher than the Ms point. Further, in the cooling of the steel sheet S by quenching in the quenching device 2, the cooling of the steel sheet by quenching is started from the temperature above the Ms point of the steel sheet S, and the steel sheet is cooled by quenching to the temperature below the Mf point of the steel sheet. preferable.

なお、Ms点やMf点の温度は、鋼板の成分組成から推定することができる。例えば、引張強度1500MPa級の鋼の場合、図2に示すようなCCT線図から、緩冷却装置1での緩冷による冷却は、420℃より高い温度で停止することが好ましい。急冷装置2による急冷は、420℃以上から開始し、50℃以下まで冷却することが好ましい。また、鋼板の温度は、鋼板に熱電対を取り付ける等の方法により測定することができる。 The temperature at the Ms point and the Mf point can be estimated from the component composition of the steel sheet. For example, in the case of steel having a tensile strength of 1500 MPa class, it is preferable that the cooling by the slow cooling in the slow cooling device 1 is stopped at a temperature higher than 420 ° C. from the CCT diagram as shown in FIG. The quenching by the quenching device 2 is preferably started from 420 ° C. or higher and cooled to 50 ° C. or lower. Further, the temperature of the steel sheet can be measured by a method such as attaching a thermocouple to the steel sheet.

変形を抑制し、良好な鋼板形状にするためには、前述のようにロールで区切られた冷却エリアと冷却速度を制御すれば良いが、本発明者らが解析および実験から求めた下記の判定式(1)を用いて判断すれば良い。 In order to suppress deformation and obtain a good steel plate shape, it is sufficient to control the cooling area and the cooling rate separated by rolls as described above, but the following determinations obtained by the present inventors from analysis and experiment The judgment may be made using the equation (1).

Figure 0007060003000002
Figure 0007060003000002

式(1)において、Vは通板速度(m/s)、νはポアソン比(=0.3)、αは線膨張係数(=12×10-6/℃)、Cvtは冷却速度と板厚の積(単位は℃・m/s)、kは変形係数(=840)、πは円周率、Lはロールで区切られた冷却エリア長(単位はm)、tは板厚(単位はm)である。各冷却エリアにおいて上式で判定を行い、すべての冷却エリアで上式を満足するようにすれば、鋼板の変形を抑制することが可能である。 In equation (1), V is the plate passing speed (m / s), ν is the Poisson's ratio (= 0.3), α is the linear expansion coefficient (= 12 × 10 -6 / ° C), and C vt is the cooling rate. Product of plate thickness (unit is ° C.m / s), k is deformation coefficient (= 840), π is pi, L is cooling area length separated by roll (unit is m), t is plate thickness (unit: m) The unit is m). It is possible to suppress the deformation of the steel sheet by making a judgment by the above formula in each cooling area and satisfying the above formula in all the cooling areas.

なお、式の導出については、以下のとおりである。
冷却により鋼板にかかる応力は下記式(2)で表される。
The derivation of the equation is as follows.
The stress applied to the steel sheet by cooling is expressed by the following equation (2).

Figure 0007060003000003
Figure 0007060003000003

ここでσは応力、ΔTは冷却前後の温度差である。また、Eはヤング率(Pa)である。
ロール間の温度差については、ΔTであることから、以下の式(3)で表される。
Here, σ is the stress and ΔT is the temperature difference before and after cooling. Further, E is Young's modulus (Pa).
Since the temperature difference between the rolls is ΔT, it is expressed by the following equation (3).

Figure 0007060003000004
Figure 0007060003000004

上記2式より、以下の式(4)を導き出すことができる。 The following equation (4) can be derived from the above two equations.

Figure 0007060003000005
Figure 0007060003000005

また、文献:座屈設計のガイドライン作成小委員会、鋼構造シリーズ2 座屈設計ガイドライン、土木学会、1987年 より、以下の式(5)が知られている。 In addition, the following formula (5) is known from the literature: Buckling Design Guideline Development Subcommittee, Steel Structure Series 2 Buckling Design Guideline, Japan Society of Civil Engineers, 1987.

Figure 0007060003000006
Figure 0007060003000006

ここで、σcrは座屈が生じる限界応力、πは円周率である。
σ>σcrで座屈が生じるため、それを回避できる条件は、以下の式(1)となる。
Here, σ cr is the critical stress at which buckling occurs, and π is the pi.
Since buckling occurs when σ> σ cr , the condition for avoiding it is the following equation (1).

Figure 0007060003000007
Figure 0007060003000007

本発明において、緩冷却装置1での緩冷による冷却は、マルテンサイトを含めて急冷前に10%以上の組織変態が生じないように冷却速度を制御することが望ましい。本発明において、急冷状態(急冷装置2での急冷)における組織は、100%変態が生じたマルテンサイトであることが望ましい。したがって、緩冷において、冷却前の組織から10%以上の組織変態を進行させないように冷却することが好ましい。図2に示す引張強度1500MPa級鋼のCCT線図のように、例えば、この鋼については、冷却開始後、約10秒でフェライト変態やベイナイト変態が生じ、Ms点が420℃である。図2に示すように、Ms点以上でも長時間が経過するとフェライト変態やベイナイト変態が生じる。したがって、そのような変態を10%未満にすることが好ましい。なお、図2において、焼鈍温度850℃だと、約10秒でMs点の420℃まで冷却するために、平均冷却速度が約45℃/s以上であることが好ましい。 In the present invention, it is desirable to control the cooling rate of the cooling by slow cooling in the slow cooling device 1 so that the tissue transformation of 10% or more does not occur before quenching including martensite. In the present invention, it is desirable that the structure in the quenching state (quenching in the quenching device 2) is martensite in which 100% transformation has occurred. Therefore, in slow cooling, it is preferable to cool the tissue before cooling so as not to promote tissue transformation of 10% or more. As shown in the CCT diagram of a steel having a tensile strength of 1500 MPa shown in FIG. 2, for example, in this steel, ferrite transformation and bainite transformation occur about 10 seconds after the start of cooling, and the Ms point is 420 ° C. As shown in FIG. 2, ferrite transformation and bainite transformation occur after a long period of time even at the Ms point or higher. Therefore, it is preferable that the transformation rate is less than 10%. In FIG. 2, when the annealing temperature is 850 ° C., the average cooling rate is preferably about 45 ° C./s or more in order to cool to the Ms point of 420 ° C. in about 10 seconds.

なお、変態開始までの時間については、フォーマスタ等の装置で測定することが可能であり、また、緩冷却装置1と急冷装置2との間に特開平8-62181号公報に記載される変態率センサを設置することにより、望ましい組織になっているかを確認しながら、急冷前の冷却速度を制御すれば良い。 The time until the start of transformation can be measured by an apparatus such as Formaster, and the transformation described in JP-A-8-62181 between the slow cooling device 1 and the quenching device 2. By installing a rate sensor, the cooling rate before quenching may be controlled while confirming that the structure is desirable.

また、緩冷却装置1での緩冷の際の冷却速度については、気体もしくは液体の流量を変化させる、流速を変化させる、混合比を変化させる、といった手法により制御すれば良い。 Further, the cooling rate at the time of slow cooling in the slow cooling device 1 may be controlled by a method such as changing the flow rate of gas or liquid, changing the flow velocity, or changing the mixing ratio.

また、冷却速度が速いほど、熱収縮により鋼板Sが受ける応力が大きくなるため、緩冷において、下限に近い冷却速度、すなわち緩冷で変態を生じない最低限の冷却速度で冷却することが好ましい。なお、緩冷却装置1での緩冷と急冷装置2での急冷について、緩冷は10℃/s以上500℃/s未満であることが好ましく、急冷は500~2000℃/sであることが好ましい。 Further, the faster the cooling rate, the greater the stress applied to the steel sheet S due to heat shrinkage. Therefore, in slow cooling, it is preferable to cool at a cooling rate close to the lower limit, that is, at the minimum cooling rate at which slow cooling does not cause transformation. .. Regarding the slow cooling in the slow cooling device 1 and the quenching in the quenching device 2, the slow cooling is preferably 10 ° C./s or more and less than 500 ° C./s, and the quenching is 500 to 2000 ° C./s. preferable.

また、図1では、鋼板通板ラインの両側にそれぞれ4つずつノズル4、5を設けた場合であるが、鋼板Sを両面側から冷却できればよく、鋼板S通板ラインの両側に最低2つずつ(緩冷却装置1に最低1つ、急冷装置2に最低1つ)でも、それぞれ複数設けられていてもよい。 Further, in FIG. 1, four nozzles 4 and 5 are provided on both sides of the steel plate passing line, but it is sufficient that the steel plate S can be cooled from both sides, and at least two nozzles are provided on both sides of the steel plate S passing line. A plurality of each (at least one for the slow cooling device 1 and at least one for the quenching device 2) may be provided.

以上より、本発明によれば、形状不良を抑制しつつ、所望の材質特性を有する鋼板を得ることができる。すなわち、本発明の冷却方法を鋼板の製造設備に適用することにより、形状不良を抑制しつつ、所望の材質特性を有する鋼板を製造することができる。 From the above, according to the present invention, it is possible to obtain a steel sheet having desired material characteristics while suppressing shape defects. That is, by applying the cooling method of the present invention to the steel sheet manufacturing equipment, it is possible to manufacture a steel sheet having desired material characteristics while suppressing shape defects.

以下に、本発明の更なる理解のために実施例を用いて説明する。なお、実施例はなんら本発明を限定するものではない。 Hereinafter, examples will be described for further understanding of the present invention. The examples do not limit the present invention in any way.

図1の冷却設備を用いて、板厚1.0~2.0mm、板幅1000mm、引張強度1500MPa級の冷延鋼板を製造した。鋼板の焼鈍炉直後の温度が850℃、冷却完了温度30℃(水温)の条件で冷却を行った。なお、鋼板のMs点は420℃、Mf点は200℃である。 Using the cooling equipment shown in FIG. 1, a cold-rolled steel sheet having a plate thickness of 1.0 to 2.0 mm, a plate width of 1000 mm, and a tensile strength of 1500 MPa was manufactured. Cooling was performed under the conditions that the temperature immediately after the annealing furnace of the steel sheet was 850 ° C. and the cooling completion temperature was 30 ° C. (water temperature). The Ms point of the steel sheet is 420 ° C., and the Mf point is 200 ° C.

発明例1では、板厚1.2mm、通板速度167mpmとし、表1の条件で冷却を行った。 In Invention Example 1, the plate thickness was 1.2 mm, the plate passing speed was 167 mmp, and cooling was performed under the conditions shown in Table 1.

発明例2では、板厚1.8mm、通板速度111mpmとし、表2の条件で冷却を行った。 In Invention Example 2, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 2.

発明例3では、板厚1.2mm、通板速度167mpmとし、表3の条件で冷却を行った。 In Invention Example 3, the plate thickness was 1.2 mm, the plate passing speed was 167 mmp, and cooling was performed under the conditions shown in Table 3.

発明例4では、板厚1.8mm、通板速度111mpmとし、表4の条件で冷却を行った。 In Invention Example 4, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 4.

発明例5では、板厚1.2mm、通板速度167mpmとし、表5の条件で冷却を行った。 In Invention Example 5, the plate thickness was 1.2 mm, the plate passing speed was 167 mmp, and cooling was performed under the conditions shown in Table 5.

発明例6では、板厚1.8mm、通板速度111mpmとし、表6の条件で冷却を行った。 In Invention Example 6, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 6.

発明例7では、板厚1.2mm、通板速度167mpmとし、表7の条件で冷却を行った。 In Invention Example 7, the plate thickness was 1.2 mm, the plate passing speed was 167 mpm, and cooling was performed under the conditions shown in Table 7.

発明例8では、板厚1.8mm、通板速度111mpmとし、表8の条件で冷却を行った。 In Invention Example 8, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 8.

発明例9では、板厚1.2mm、通板速度167mpmとし、表9の条件で冷却を行った。 In Invention Example 9, the plate thickness was 1.2 mm, the plate passing speed was 167 mpm, and cooling was performed under the conditions shown in Table 9.

発明例10では、板厚1.8mm、通板速度111mpmとし、表10の条件で冷却を行った。 In Invention Example 10, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 10.

比較例1では、急冷前の冷却装置は不使用とし、急冷のみを、板厚1.2mm条件では、167mpm(冷却速度1250℃/s)で行った。 In Comparative Example 1, the cooling device before quenching was not used, and only quenching was performed at 167 mpm (cooling rate 1250 ° C./s) under the condition of a plate thickness of 1.2 mm.

比較例2では、板厚1.2mm、通板速度167mpmとし、表11の条件で冷却を行った。 In Comparative Example 2, the plate thickness was 1.2 mm, the plate passing speed was 167 mmp, and cooling was performed under the conditions shown in Table 11.

比較例3では、板厚1.8mm、通板速度111mpmとし、表12の条件で冷却を行った。 In Comparative Example 3, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 12.

比較例4では、板厚1.2mm、通板速度167mpmとし、表13の条件で冷却を行った。 In Comparative Example 4, the plate thickness was 1.2 mm, the plate passing speed was 167 mmp, and cooling was performed under the conditions shown in Table 13.

比較例5では、板厚1.8mm、通板速度111mpmとし、表14の条件で冷却を行った。 In Comparative Example 5, the plate thickness was 1.8 mm, the plate passing speed was 111 mpm, and cooling was performed under the conditions shown in Table 14.

Figure 0007060003000008
Figure 0007060003000008

Figure 0007060003000009
Figure 0007060003000009

Figure 0007060003000010
Figure 0007060003000010

Figure 0007060003000011
Figure 0007060003000011

Figure 0007060003000012
Figure 0007060003000012

Figure 0007060003000013
Figure 0007060003000013

Figure 0007060003000014
Figure 0007060003000014

Figure 0007060003000015
Figure 0007060003000015

Figure 0007060003000016
Figure 0007060003000016

Figure 0007060003000017
Figure 0007060003000017

Figure 0007060003000018
Figure 0007060003000018

Figure 0007060003000019
Figure 0007060003000019

Figure 0007060003000020
Figure 0007060003000020

Figure 0007060003000021
Figure 0007060003000021

得られた鋼板について、引張強度および鋼板形状を評価した。引張強度は、引張方向が圧延方向となるように、JIS5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施して求めた。引張強度が1470MPa未満は×、1470MPa以上1500MPa未満は○、1500MPa以上は◎とした。 The tensile strength and the shape of the steel sheet were evaluated for the obtained steel sheet. The tensile strength was determined by collecting JIS No. 5 tensile test pieces and conducting a tensile test in accordance with the provisions of JIS Z 2241 so that the tensile direction is the rolling direction. When the tensile strength was less than 1470 MPa, it was evaluated as x, when it was 1470 MPa or more and less than 1500 MPa, it was evaluated as ◯, and when it was 1500 MPa or more, it was evaluated as ⊚.

また、鋼板形状については、式(1)を満足するか否かを以下の基準で判定した。
◎:緩冷、急冷ともに式(1)を満足し、その結果、鋼板の反りが0mm以上5mm未満となったもの
〇:急冷において式(1)を満足し、その結果、鋼板の反りが5mm以上10mm未満となったもの
×:緩冷、急冷ともに式(1)を満足せず、鋼板の反りが10mm以上となったもの
結果を表15に示す。
Further, regarding the shape of the steel plate, it was determined based on the following criteria whether or not the formula (1) was satisfied.
⊚: Both slow cooling and quenching satisfy the formula (1), and as a result, the warp of the steel sheet is 0 mm or more and less than 5 mm. More than 10 mm ×: The steel sheet did not satisfy the formula (1) in both slow cooling and quenching, and the warpage of the steel sheet was 10 mm or more. The results are shown in Table 15.

Figure 0007060003000022
Figure 0007060003000022

本発明例はいずれも引張強度および鋼板形状を満足した。一方で、比較例1では、急冷温度が高く、急冷による熱収縮が大きく、鋼板の反りが大きくなった。また、比較例2、3では、急冷温度が低く、マルテンサイト変態が不十分であり、鋼板の引張強度が低下した。また、急冷前の緩冷においても、一部の冷却領域で冷却速度が逆転しているため、形状も悪化した。 All of the examples of the present invention satisfied the tensile strength and the shape of the steel plate. On the other hand, in Comparative Example 1, the quenching temperature was high, the heat shrinkage due to the quenching was large, and the warp of the steel sheet was large. Further, in Comparative Examples 2 and 3, the quenching temperature was low, the martensitic transformation was insufficient, and the tensile strength of the steel sheet was lowered. Further, even in the slow cooling before quenching, the cooling rate is reversed in a part of the cooling region, so that the shape is also deteriorated.

1 緩冷却装置
2 急冷装置
3 ロール
4 冷媒噴射装置
5 冷却液噴射装置
6 ロール
100 冷却設備
S 鋼板
Z(Z1~Z4) 冷却エリア
1 Slow cooling device 2 Quench cooling device 3 roll 4 Refrigerant injection device 5 Coolant injection device 6 roll 100 Cooling equipment S Steel plate Z (Z1 to Z4) Cooling area

Claims (7)

連続焼鈍ラインの冷却帯で用いられる鋼板の冷却方法であって、
鋼板搬送方向上流側の領域において、鋼板のマルテンサイト変態開始温度より高い温度まで冷却速度10℃/s以上500℃/s未満で緩冷し、
鋼板搬送方向下流側の領域において、鋼板のマルテンサイト変態開始以上の温度から、鋼板のマルテンサイト変態終了温度以下の温度まで、鋼板の冷却速度500℃/s~2000℃/sで急冷し、
かつ、前記鋼板搬送方向上流側および下流側の領域を、鋼板を板厚方向に押さえつけるロールによって、鋼板搬送方向に沿ってさらに1以上の冷却エリアに区分し、1つの冷却エリアの冷却速度は、それよりも前段のすべての冷却エリアの冷却速度よりも大きく、
それぞれの冷却エリアにおいて、式(1)を満たすように、冷却を行う鋼板の冷却方法。
Figure 0007060003000023
式(1)において、Vは通板速度(m/s)、νはポアソン比(=0.3)、αは線膨張係数(=12×10-6/℃)、Cvtは冷却速度と板厚の積(単位は℃・m/s)、kは変形係数(=840)、πは円周率、Lはロールで区切られた冷却エリア長(単位はm)、tは板厚(単位はm)
It is a cooling method for steel sheets used in the cooling zone of continuous annealing lines.
In the region on the upstream side in the steel sheet transport direction, the steel sheet is slowly cooled to a temperature higher than the martensitic transformation start temperature at a cooling rate of 10 ° C./s or more and less than 500 ° C./s.
In the region downstream of the steel sheet transport direction, the steel sheet is rapidly cooled at a cooling rate of 500 ° C./s to 2000 ° C./s from the temperature above the start of martensitic transformation of the steel sheet to the temperature below the end temperature of martensitic transformation of the steel sheet.
Further, the regions on the upstream side and the downstream side in the steel plate transport direction are further divided into one or more cooling areas along the steel plate transport direction by a roll that presses the steel plate in the plate thickness direction, and the cooling rate of one cooling area is set. It is higher than the cooling rate of all the cooling areas in the previous stage,
A method for cooling a steel sheet that is cooled so as to satisfy the formula (1) in each cooling area.
Figure 0007060003000023
In equation (1), V is the plate passing speed (m / s), ν is the Poisson's ratio (= 0.3), α is the coefficient of linear expansion (= 12 × 10 -6 / ° C), and C vt is the cooling rate. Product of plate thickness (unit is ° C.m / s), k is coefficient of deformation (= 840), π is pi, L is cooling area length separated by roll (unit is m), t is plate thickness (unit: m) The unit is m)
前記緩冷において、冷却前の組織から変態率10%以上の組織変態を進行させないように冷却する、請求項1に記載の鋼板の冷却方法。 The method for cooling a steel sheet according to claim 1, wherein in the slow cooling, the structure before cooling is cooled so that the structure transformation having a transformation rate of 10% or more does not proceed. 前記緩冷は、気体、液体、および気体と液体の混合物のうちから選択されるいずれか1種の冷媒を鋼板に噴射する請求項1または2に記載の鋼板の冷却方法。 The method for cooling a steel sheet according to claim 1 or 2, wherein the slow cooling is performed by injecting one of a refrigerant selected from a gas, a liquid, and a mixture of a gas and a liquid onto the steel sheet. 前記急冷は、冷却液を鋼板に噴射する請求項1~3のいずれか一項に記載の鋼板の冷却方法。 The method for cooling a steel sheet according to any one of claims 1 to 3, wherein the quenching is a method of injecting a cooling liquid onto a steel sheet. 請求項1~4のいずれか一項に記載の鋼板の冷却方法を用いる、鋼板の製造方法。 A method for manufacturing a steel sheet using the method for cooling a steel sheet according to any one of claims 1 to 4. 連続焼鈍ラインの冷却帯で用いられる鋼板の冷却装置であって、
鋼板搬送方向上流側の領域において、鋼板のマルテンサイト変態開始温度より高い温度まで冷却速度10℃/s以上500℃/s未満で緩冷する緩冷却装置と、
鋼板搬送方向下流側の領域において、鋼板のマルテンサイト変態開始以上の温度から、鋼板のマルテンサイト変態終了温度以下の温度まで、鋼板の冷却速度500℃/s~2000℃/sで急冷する急冷装置とを備え、
前記鋼板搬送方向上流側および下流側の領域を、鋼板搬送方向に沿ってさらに1以上の冷却エリアに区分する、鋼板を板厚方向に押さえつけるロールと、を備え、
1つの冷却エリアの冷却速度は、それよりも前段のすべての冷却エリアの冷却速度よりも大きく、
それぞれの冷却エリアにおいて、式(1)を満たすように、冷却を行う鋼板の冷却設備。
Figure 0007060003000024
式(1)において、Vは通板速度(m/s)、νはポアソン比(=0.3)、αは線膨張 係数(=12×10-6/℃)、Cvtは冷却速度と板厚の積(単位は℃・m/s)、kは変形係数(=840)、πは円周率、Lはロールで区切られた冷却エリア長(単位はm)、tは板厚(単位はm)
A steel plate cooling device used in the cooling zone of a continuous annealing line.
In the region on the upstream side in the steel sheet transport direction, a slow cooling device that slowly cools the steel sheet to a temperature higher than the martensitic transformation start temperature at a cooling rate of 10 ° C./s or more and less than 500 ° C./s.
Quenching device that quenches the steel sheet at a cooling rate of 500 ° C / s to 2000 ° C / s from the temperature above the martensitic transformation start temperature of the steel sheet to the temperature below the martensitic transformation end temperature of the steel sheet in the region downstream in the steel sheet transport direction. And with
A roll for pressing the steel plate in the plate thickness direction, which further divides the upstream and downstream regions in the steel plate transport direction into one or more cooling areas along the steel plate transport direction, is provided.
The cooling rate of one cooling area is higher than the cooling rate of all the cooling areas in the previous stage.
A steel plate cooling facility that cools each cooling area so as to satisfy the formula (1).
Figure 0007060003000024
In equation (1), V is the plate passing speed (m / s), ν is the Poisson's ratio (= 0.3), α is the coefficient of linear expansion (= 12 × 10 -6 / ° C), and C vt is the cooling rate. Product of plate thickness (unit is ° C.m / s), k is coefficient of deformation (= 840), π is pi, L is cooling area length separated by roll (unit is m), t is plate thickness (unit: m) The unit is m)
前記緩冷却装置は、鋼板表裏面に設置されて、気体、液体、および気体と液体の混合物のうちから選択されるいずれか1種である冷媒を噴射する冷媒噴射装置を備え、
前記急冷装置は、表裏面に設置されて、冷却液を噴射する冷却液噴射装置を備える請求項6に記載の鋼板の冷却設備。
The slow cooling device includes a refrigerant injection device installed on the front and back surfaces of a steel sheet and injecting a refrigerant which is one of a gas, a liquid, and a mixture of a gas and a liquid.
The steel plate cooling equipment according to claim 6, wherein the quenching device is installed on the front and back surfaces and includes a coolant injection device for injecting a coolant.
JP2019213009A 2018-12-26 2019-11-26 Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment Active JP7060003B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018243229 2018-12-26
JP2018243229 2018-12-26

Publications (2)

Publication Number Publication Date
JP2020105630A JP2020105630A (en) 2020-07-09
JP7060003B2 true JP7060003B2 (en) 2022-04-26

Family

ID=71448401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213009A Active JP7060003B2 (en) 2018-12-26 2019-11-26 Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment

Country Status (1)

Country Link
JP (1) JP7060003B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273002A (en) 2004-02-27 2005-10-06 Jfe Steel Kk Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
JP2006077301A (en) 2004-09-10 2006-03-23 Nippon Steel Corp Method for restraining fluttering of steel sheet
JP2006124817A (en) 2004-11-01 2006-05-18 Kobe Steel Ltd Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JP2017043839A (en) 2015-08-24 2017-03-02 Jfeスチール株式会社 Water hardening device, continuous annealing equipment, and method for producing steel sheet
JP2019073754A (en) 2017-10-13 2019-05-16 新日鐵住金株式会社 Method for producing heat-treated steel sheet, and steel sheet cooling device
JP2019210549A (en) 2018-05-30 2019-12-12 Jfeスチール株式会社 Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575821A (en) * 1980-06-13 1982-01-12 Nippon Steel Corp Method and equipment for bright cooling of high temperature metal strip
JPS58120745A (en) * 1982-01-13 1983-07-18 Nippon Steel Corp Continuous heat treatment for high tensile cold-rolled steel strip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273002A (en) 2004-02-27 2005-10-06 Jfe Steel Kk Superhigh strength cold-rolled steel sheet having superior bendability and formability for extension flange and manufacturing method therefor
JP2006077301A (en) 2004-09-10 2006-03-23 Nippon Steel Corp Method for restraining fluttering of steel sheet
JP2006124817A (en) 2004-11-01 2006-05-18 Kobe Steel Ltd Cooling device with gas jet into steel sheet continuous annealing facility and its cooling control method
JP2017043839A (en) 2015-08-24 2017-03-02 Jfeスチール株式会社 Water hardening device, continuous annealing equipment, and method for producing steel sheet
JP2019073754A (en) 2017-10-13 2019-05-16 新日鐵住金株式会社 Method for producing heat-treated steel sheet, and steel sheet cooling device
JP2019210549A (en) 2018-05-30 2019-12-12 Jfeスチール株式会社 Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet

Also Published As

Publication number Publication date
JP2020105630A (en) 2020-07-09

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
JP6624113B2 (en) Quenching and quenching equipment
JP2017119912A (en) Quick-cooling quenching apparatus, and quick-cooling quenching method
JP6687084B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
EP3560616B1 (en) Method for cooling steel sheet and method for manufacturing steel sheet
JP5217509B2 (en) Manufacturing method and equipment for thick steel plate
JP6870701B2 (en) Steel sheet cooling method, steel sheet cooling device and steel sheet manufacturing method
JP7060003B2 (en) Steel sheet cooling method, steel sheet manufacturing method, and steel sheet cooling equipment
JP3656707B2 (en) Controlled cooling method for hot rolled steel sheet
EP3216881A1 (en) Steel sheet manufacturing method and steel sheet manufacturing device
EP2829618B1 (en) Method and apparatus for manufacturing high-strength cold-rolled steel sheet
JP4529517B2 (en) High carbon steel plate manufacturing method and manufacturing equipment
JP7314989B2 (en) Quenching device and method for manufacturing metal plate
JP2017052979A (en) Method for correcting high tensile strength steel sheet shape
JP6687090B2 (en) Quenching and quenching apparatus, quenching and quenching method, and method for manufacturing metal plate product
JP2019073754A (en) Method for producing heat-treated steel sheet, and steel sheet cooling device
EP4019650A1 (en) Manufacturing facility and manufacturing method for thick steel plate
JP6962084B2 (en) A method for determining the cooling rate of a steel pipe and a method for manufacturing a steel pipe using the method.
JPH0414173B2 (en)
JP6879429B2 (en) Quenching equipment, quenching method, and steel sheet manufacturing method
WO2023002741A1 (en) Metal sheet-quenching apparatus, continuous annealing facility, metal sheet-quenching method, cold-rolled steel sheet production method, and plated steel sheet production method
JP5991283B2 (en) Steel strip manufacturing method and manufacturing equipment
KR20240035542A (en) Quenching device and method and manufacturing method of metal plate
JP2004043878A (en) Method for manufacturing high-strength cold-rolled steel sheet
JPH0576935A (en) Method for leveling c-camber of steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7060003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150