JP5217509B2 - Manufacturing method and equipment for thick steel plate - Google Patents
Manufacturing method and equipment for thick steel plate Download PDFInfo
- Publication number
- JP5217509B2 JP5217509B2 JP2008051948A JP2008051948A JP5217509B2 JP 5217509 B2 JP5217509 B2 JP 5217509B2 JP 2008051948 A JP2008051948 A JP 2008051948A JP 2008051948 A JP2008051948 A JP 2008051948A JP 5217509 B2 JP5217509 B2 JP 5217509B2
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steel plate
- cooling device
- passage
- type cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 160
- 239000010959 steel Substances 0.000 title claims description 160
- 238000004519 manufacturing process Methods 0.000 title claims description 32
- 238000001816 cooling Methods 0.000 claims description 299
- 238000005096 rolling process Methods 0.000 claims description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 230000002441 reversible effect Effects 0.000 claims description 19
- 238000005098 hot rolling Methods 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 13
- 239000000498 cooling water Substances 0.000 description 22
- 238000010791 quenching Methods 0.000 description 11
- 230000000171 quenching effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Description
本発明は可逆式圧延機と通過型冷却装置を用いた厚鋼板の製造方法、なかでも熱間圧延後に直接焼入れあるいは加速冷却を施す製造方法に関し、特に鋼板長手方向の材料特性の均質性に優れた厚鋼板の製造に好適な圧延ー冷却方法に関する。 The present invention relates to a method for producing a thick steel plate using a reversible rolling mill and a passing type cooling device, and in particular, a production method for directly quenching or accelerating cooling after hot rolling, and particularly excellent in material property uniformity in the longitudinal direction of the steel plate. The present invention relates to a rolling-cooling method suitable for manufacturing a thick steel plate.
厚鋼板の材質は、ミクロ組織に依存し、ミクロ組織を均一にするためには、例えば加速冷却を施す場合には圧延仕上げ温度−冷却開始温度−冷却停止温度の全てをそれぞれ一定にすることが重要であり、また、直接焼入れを施す場合には圧延仕上げ温度−冷却開始温度をそれぞれ一定にすることが重要である。 The material of the thick steel plate depends on the microstructure, and in order to make the microstructure uniform, for example, when performing accelerated cooling, all of the rolling finishing temperature, the cooling start temperature, and the cooling stop temperature must be made constant. In addition, when direct quenching is performed, it is important to keep the rolling finishing temperature and the cooling start temperature constant.
圧延仕上げ温度が変わると結晶粒の大きさや形、あるいは圧延歪により形成されるフェライトの核生成サイト数などが大きく異なるために最終的に得られる組織形態が変化し、強度や靭性が大きく変化する。 When the rolling finishing temperature changes, the size and shape of the crystal grains, or the number of ferrite nucleation sites formed by rolling strain, etc., vary greatly, resulting in a change in the final form of the structure, resulting in significant changes in strength and toughness. .
また、冷却開始温度も組織に重大な影響を与える。強度を確保するためにAr3点以上のオーステナイト領域から冷却する場合、鋼板尾端が冷却設備に進入する前に温度が低下しAr3点を下回ると、フェライトが生成し始めるために強度低下が起こり、安定した材質確保が困難である。 The cooling start temperature also has a significant effect on the tissue. When cooling from an austenite region of Ar 3 points or more in order to ensure strength, the temperature decreases before the tail end of the steel sheet enters the cooling facility, and when the temperature falls below the Ar 3 point, ferrite starts to form and the strength decreases. It is difficult to secure a stable material.
フェライトを一部生成させた領域から焼き入れて、二相組織を得る場合においても鋼板の先尾端での温度差はフェライトとオーステナイトの二相分率を変化させ強度や靭性に大きく影響する。 Even when a two-phase structure is obtained by quenching from a region where ferrite is partially formed, the temperature difference at the leading end of the steel sheet changes the two-phase fraction of ferrite and austenite and greatly affects the strength and toughness.
さらに冷却停止温度は、特に加速冷却プロセスの場合に規定され、得られる組織の変態率を一定にするために極めて重要であり、圧延仕上げ温度−冷却開始温度−冷却停止温度の全てをそれぞれ一定にすることが材質の均一性を保つ上で重要である。 Further, the cooling stop temperature is specified particularly in the case of the accelerated cooling process, and is extremely important for making the transformation rate of the obtained structure constant, and the rolling finishing temperature, the cooling start temperature, and the cooling stop temperature are all kept constant. It is important to maintain the uniformity of the material.
ところが、圧延後の直接焼入れや加速冷却においては冷却開始温度が鋼板の先端と尾端で相違し、加速冷却の場合にはさらに冷却設備内の通過冷却処理において冷却停止温度が板長手方向でばらつき、材質を均一に造り込むことが困難であった。 However, in the direct quenching and accelerated cooling after rolling, the cooling start temperature differs between the tip and tail of the steel sheet, and in the case of accelerated cooling, the cooling stop temperature varies further in the longitudinal direction of the plate in the passing cooling process in the cooling facility. It was difficult to make the material uniform.
加速冷却では冷却開始から終了まで温度を数百℃降下させるが、限られた冷却設備長で所望の温度まで冷却させるため、搬送速度は圧延速度(2〜4m/s)よりも遅くする場合が多く、鋼板の長手方向の温度差を生じる原因となる。 In accelerated cooling, the temperature is lowered by several hundred degrees C from the start to the end of cooling, but in order to cool to a desired temperature with a limited cooling facility length, the conveyance speed may be slower than the rolling speed (2 to 4 m / s). In many cases, this causes a temperature difference in the longitudinal direction of the steel sheet.
例えば鋼板の製品の長さがL=30m、搬送速度がv=1m/secである場合、先端と尾端では冷却開始がL/v=30secも違うので、尾端部は先端部よりも30sec間余計に空冷される。 For example, if the length of the steel plate product is L = 30 m and the conveyance speed is v = 1 m / sec, the cooling start is different by L / v = 30 sec at the tip and tail, so the tail end is 30 sec than the tip. It is air-cooled excessively.
そこで、特許文献1には冷却装置入り側へ温度計を設置して鋼板の長手方向の温度を実測し、冷却装置への進入速度をステップ的に増速させて、冷却停止温度を均一化することで材質の安定を図る方法が開示されている。
Therefore, in
特許文献1記載の方法は、上述したように材質の安定化は冷却停止温度だけでなく、冷却開始温度にも著しく影響を受けるため、十分な材質均一の効果が得られない。
In the method described in
特許文献2には鋼板長手方向において冷却開始温度を一定にする方法が開示されている。熱間圧延途中において冷却装置へ鋼板を挿入し、鋼板長手方向に温度分布をつけておくことで、圧延終了時に鋼板の先尾端で温度傾斜が付き、その後の冷却設備への挿入時に冷却開始温度を一定にする。
したがって、特許文献2記載の方法では、鋼板の靭性に影響を与える最も重要な圧延仕上げ温度が鋼板の長手方向で大きく異なり、鋼板長手方向において一定の靭性を得ることができない。
ところで、上述したように、製品の長さがL=30m程度と長くなる場合は、圧延速度より、冷却時の鋼板搬送速度が遅いため、鋼板の材質均一性に及ぼす影響は鋼板の先端部、尾端部での仕上げ温度差の影響より、冷却開始温度差、停止温度差の方が大きい。 By the way, as described above, when the length of the product is as long as about L = 30 m, the steel plate conveyance speed at the time of cooling is slower than the rolling speed, so the effect on the material uniformity of the steel sheet is the tip of the steel sheet, The cooling start temperature difference and stop temperature difference are larger than the effect of the finishing temperature difference at the tail end.
そこで、本発明は鋼板長さが長い場合において、鋼板の冷却開始温度、冷却停止温度が鋼板の全長において均一で、強度および靭性の均質性に優れた厚鋼板が得られる、製造方法を提供することを目的とする。 Therefore, the present invention provides a manufacturing method in which, when the steel plate length is long, a steel plate with a cooling start temperature and a cooling stop temperature that are uniform over the entire length of the steel plate and excellent in strength and toughness uniformity can be obtained. For the purpose.
本発明者等は熱間圧延の圧延仕上げ温度およびその後の冷却開始温度と冷却停止温度をそれぞれ一定にする圧延ー冷却工程について種々検討し、熱間圧延機近傍に冷却領域の短い冷却装置を配して、熱間圧延や焼入れや加速冷却の前に適切な温度勾配を鋼板長手方向に付与することが実機操業において最も安定した効果が得られ有効なことを見出した。 The present inventors have studied various rolling-cooling processes in which the rolling finishing temperature of hot rolling and the subsequent cooling start temperature and cooling stop temperature are made constant, and a cooling device with a short cooling region is arranged near the hot rolling mill. Thus, it has been found that applying an appropriate temperature gradient in the longitudinal direction of the steel sheet before hot rolling, quenching or accelerated cooling is most effective and effective in actual machine operation.
本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.仕上げ圧延後の鋼板を通過型冷却装置を用いて水冷する際、前記鋼板の長手方向に予め温度勾配を付与するように第1の水冷を行い、前記第1の水冷後に第2の水冷を一定の通過速度で行うことを特徴とする厚鋼板の製造方法。
2.可逆式熱間圧延機の上流側に第1の通過型冷却装置を配置した場合は、前記可逆式熱間圧延機の下流側に第2の通過型冷却装置を配置し、可逆式熱間圧延機の下流側に第1の通過型冷却装置を配置した場合は、前記第1の通過型冷却装置の下流側に第2の通過型冷却装置を配置する圧延ー冷却装置を用いた厚鋼板の製造方法であって、前記可逆式熱間圧延機で仕上げ圧延された鋼板は、前記第1の通過型冷却装置での冷却で、長手方向に温度勾配が付与され、前記鋼板は前記第2の通過型冷却装置を一定速度で通過することを特徴とする厚鋼板の製造方法。
3.前記第2の通過型冷却装置で冷却する際、鋼板の先端部および尾端部での冷却開始温度がAr3点以上または二相域温度となるように、前記第1の通過型冷却装置で温度勾配を付与することを特徴とする2記載の厚鋼板の製造方法。
4.前記第2の通過型冷却装置で冷却する際、鋼板の先端部および尾端部での冷却開始温度差が50℃以内となるように、前記第1の通過型冷却装置で温度勾配を付与することを特徴とする2または3記載の厚鋼板の製造方法。
5.可逆式熱間圧延機の下流側または上流側に通過型冷却装置を配置する圧延ー冷却装置を用いた厚鋼板の製造方法であって、前記可逆式熱間圧延機で仕上げ圧延された鋼板は、前記通過型冷却装置で最初に冷却された後、逆送されつつ次の冷却が施され、前記最初の冷却で長手方向に温度勾配が付与され、前記次の冷却における、鋼板の逆送速度は一定速度であることを特徴とする厚鋼板の製造方法。
6.前記通過型冷却装置で冷却する際、次の冷却における鋼板の先端部および尾端部での冷却開始温度がAr3点以上または二相域温度となるように、前記最初の冷却で温度勾配を付与することを特徴とする5記載の厚鋼板の製造方法。
7.前記通過型冷却装置で冷却する際、次の冷却における鋼板の先端部および尾端部での冷却開始温度差が50℃以内となるように、前記最初の冷却で温度勾配を付与することを特徴とする5または6記載の厚鋼板の製造方法。
8.2に記載の第1の通過型冷却装置または5に記載の可逆式圧延機の下流側または上流側に配置される通過型冷却装置の冷却領域の鋼板搬送方向の長さが0.4m〜4mであることを特徴とする2乃至7のいずれか一つに記載の厚鋼板の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. When water-cooling the steel sheet after the finish rolling using a pass-type cooling device, the first water cooling is performed so as to preliminarily impart a temperature gradient in the longitudinal direction of the steel sheet, and the second water cooling is kept constant after the first water cooling. The manufacturing method of the thick steel plate characterized by performing by the passage speed of.
2. When the first passage type cooling device is arranged upstream of the reversible hot rolling mill, the second passage type cooling device is arranged downstream of the reversible hot rolling mill, and reversible hot rolling When the first passage type cooling device is arranged on the downstream side of the machine, the thick steel plate using the rolling-cooling device in which the second passage type cooling device is arranged on the downstream side of the first passage type cooling device. In the manufacturing method, the steel plate finish-rolled by the reversible hot rolling mill is cooled by the first passage type cooling device, and a temperature gradient is given in the longitudinal direction. A method for producing a thick steel plate, characterized by passing through a passing-type cooling device at a constant speed.
3. When cooling with the second passage-type cooling device, the first passage-type cooling device is configured such that the cooling start temperature at the tip and tail ends of the steel plate is Ar 3 point or higher or a two-phase region temperature. 3. The method for producing a thick steel plate according to 2, wherein a temperature gradient is applied.
4). When cooling with the second passage-type cooling device, a temperature gradient is applied by the first passage-type cooling device so that the cooling start temperature difference between the front end portion and the tail end portion of the steel sheet is within 50 ° C. A method for producing a thick steel plate according to 2 or 3, wherein:
5. A method of manufacturing a thick steel plate using a rolling-cooling device in which a passage type cooling device is disposed downstream or upstream of a reversible hot rolling mill, and the steel plate finish-rolled by the reversible hot rolling mill is After the first cooling by the passing type cooling device, the next cooling is performed while being reversely fed, and a temperature gradient is given in the longitudinal direction by the first cooling, and the reverse feeding speed of the steel plate in the next cooling Is a method of manufacturing a thick steel plate, characterized by a constant speed.
6). When cooling with the passage type cooling device, the temperature gradient is set in the first cooling so that the cooling start temperature at the tip and tail ends of the steel plate in the next cooling becomes Ar 3 points or more or the two-phase region temperature. 6. The method for producing a thick steel plate according to 5, wherein:
7). When cooling with the passage type cooling device, a temperature gradient is imparted in the first cooling so that a cooling start temperature difference between the leading end and the tail end of the steel plate in the next cooling is within 50 ° C. The manufacturing method of the thick steel plate of 5 or 6.
The length of the cooling region of the first passage type cooling device described in 8.2 or the reversible rolling mill described in 5 on the downstream side or upstream side of the passing type cooling device is 0.4 m in the steel sheet conveyance direction. The method for producing a thick steel plate according to any one of 2 to 7, wherein the thickness is 4 m.
なお、本発明で言う圧延仕上げ温度、冷却開始温度、冷却停止温度などの鋼板温度は、特に断わらない限り、放射温度計で鋼板表面の温度を測定して得られた温度を言う。 The steel sheet temperatures such as the rolling finishing temperature, the cooling start temperature, and the cooling stop temperature referred to in the present invention are temperatures obtained by measuring the temperature of the steel sheet surface with a radiation thermometer unless otherwise specified.
また、本発明において、先端部と先端とは、互いに区別することなく、いずれも鋼板の進行方向の先端近傍であって、製品に用いられる定常部の先端を含む領域を指すものとする。同様に、尾端部と尾端とは、互いに区別することなく、いずれも鋼板の進行方向の後端近傍であって、製品に用いられる定常部の後端を含む領域を指すものとする。 Moreover, in this invention, a front-end | tip part and a front-end | tip shall refer to the area | region containing the front-end | tip of the stationary part used for a product, all near the front-end | tip of the advancing direction of a steel plate, without distinguishing each other. Similarly, the tail end and the tail end are both in the vicinity of the rear end in the traveling direction of the steel sheet and are not distinguished from each other, and indicate a region including the rear end of the steady portion used in the product.
本発明によれば、厚鋼板の圧延ー冷却工程で、圧延仕上げ温度、冷却開始温度、冷却停止温度の全てが鋼板の全長においてそれぞれ均一で、強度・靭性の均質性に優れた厚鋼板が得られ産業上極めて有用である。 According to the present invention, in the rolling-cooling process of a thick steel plate, a rolling steel plate having excellent uniformity of strength and toughness is obtained in which the rolling finishing temperature, the cooling start temperature, and the cooling stop temperature are all uniform over the entire length of the steel plate. It is extremely useful in industry.
本発明は、仕上げ圧延機の上流側の近傍および/または下流側の近傍に鋼板長手方向の温度が調整可能な冷却設備を配置し、更に当該冷却設備の下流側に焼入れ、または、加速冷却が可能な水冷設備を配置した鋼板の熱間圧延ー冷却設備を用いて、圧延仕上げ温度、冷却開始温度、冷却停止温度の全てを鋼板の全長においてそれぞれ均一にすることを特徴とする。以下、図面を用いて本発明を詳細に説明する。 In the present invention, a cooling facility capable of adjusting the temperature in the longitudinal direction of the steel sheet is disposed in the vicinity of the upstream side and / or the downstream side of the finish rolling mill, and further, quenching or accelerated cooling is performed on the downstream side of the cooling facility. It is characterized in that all of the rolling finishing temperature, the cooling start temperature, and the cooling stop temperature are made uniform over the entire length of the steel sheet by using a hot rolling-cooling equipment for the steel sheet provided with possible water cooling equipment. Hereinafter, the present invention will be described in detail with reference to the drawings.
図1は、本発明を適用する圧延ー冷却設備における圧延機、冷却装置の配置を模式的に示し、図において12は加熱炉、9は圧延機、10は圧延機9の上流または下流側に配置した第1の通過型冷却装置で、(10)内は圧延機9の上流側に配置した場合、11は第2の通過型冷却装置を示す。尚、圧延機9の加熱炉12側を圧延機9の上流側、第2通過型冷却装置11側を下流側と称す。
FIG. 1 schematically shows the arrangement of rolling mills and cooling devices in a rolling-cooling facility to which the present invention is applied. In the figure, 12 is a heating furnace, 9 is a rolling mill, and 10 is upstream or downstream of the rolling mill 9. When the first passage type cooling device is arranged, the inside of (10) is arranged on the upstream side of the rolling
厚鋼板(図示しない)は、加熱炉12で圧延のために加熱され、仕上げ圧延後、第1通過型冷却装置10で、鋼板長手方向に適切な温度勾配を付与する。
A thick steel plate (not shown) is heated for rolling in the
仕上げ圧延終了後の鋼板は、焼入れ、加速冷却などのため、第2通過型水冷装置11に搬送されるが、鋼板長手方向で冷却開始温度が略同一となるように、予め、第1通過型冷却装置10を通過する際、鋼板長手方向に適切な温度勾配を付与する。
The steel plate after finish rolling is conveyed to the second passage type
図2は、本発明に係る鋼板の製造方法における圧延ー冷却方法を説明する模式図で、P1〜P4はパスを指し、P3が最終(仕上げ)パス、P2が最終パスP3の直前のパス、P1がP2の直前のパス、P4は仕上げ圧延後、または仕上げ圧延、水冷後の鋼板を圧延機9を通過させるための空パスを示す。 FIG. 2 is a schematic diagram for explaining a rolling-cooling method in the steel sheet manufacturing method according to the present invention, P1 to P4 indicate paths, P3 is a final (finishing) path, P2 is a path immediately before the final path P3, P1 is a pass immediately before P2, and P4 is an empty pass for passing the steel sheet after finish rolling or finish rolling and water cooling through the rolling mill 9.
aは圧延機9による圧延作業、b1、b2は第1通過型冷却装置による水冷作業、cは第2通過型冷却装置による水冷作業を示す。図においても、鋼板は図示しない。 a is a rolling operation by the rolling mill 9, b1 and b2 are water cooling operations by the first passage type cooling device, and c is a water cooling operation by the second passage type cooling device. Also in the figure, the steel plate is not shown.
図2(a)は圧延機9の下流側に第1通過型冷却装置10、第2通過型冷却装置11を順に配置し、仕上げ圧延後の鋼板を順次通過させて冷却する場合(Case1),図2(b)は圧延機9の上流側に第1通過型冷却装置10、圧延機9の下流側に第2通過型冷却装置11を配置し、仕上げ圧延(P3)後の鋼板は、空パス(P4)で第1通過型冷却装置10で冷却後、空パス(P4)で圧延機9を通過して第2通過型冷却装置11で冷却される場合(Case2),図2(c)は圧延機9の下流側に通過型冷却装置(本説明では第1の通過型冷却装置10)を配置し、一端、冷却させた後、逆送しつつ前記通過型冷却装置で冷却する場合(Case3)を示す。
FIG. 2A shows a case where the first passage
上記(Case1),(Case3)において、P3を最終(仕上げ)パスとして説明したが、P2を最終(仕上げ)パスとし、P3のパスでは圧延機9を空パスすることも可能である。 In the above (Case 1) and (Case 3), P3 is described as the final (finishing) pass. However, it is also possible to pass P2 as the final (finishing) pass and to pass the rolling mill 9 in the P3 pass.
また、図2(c)では第1通過型冷却装置10を圧延機9の下流側に設けた場合を示しているが、第1通過型冷却装置10を圧延機9の上流側に設けてP2を最終(仕上げ)パスとすることも可能である。
2C shows a case where the first passage
図3は、図2に示すCase1〜3における鋼板長手方向の温度分布を模式的に示す。図において、矢印の方向に鋼板は進行するものとし、説明では、鋼板の進行方向側を鋼板の先端部、反対方向を鋼板の尾端部と称する。以後、図2,3を適宜、参照しつつ、本発明を説明する。
FIG. 3 schematically shows the temperature distribution in the longitudinal direction of the steel sheet in
Case1の場合、鋼板は最終パスP3で、所定の板厚とされた後、第1通過型冷却装置10で水冷b1された後、第2通過型冷却装置11で水冷cされ、所望の性能が付与される。水冷b1は、第2通過型冷却装置11で水冷cされる際、冷却開始温度が鋼板長手方向で略同一となるように、鋼板長手方向において尾端部を先端部よりΔTだけ高温とする。第2通過型冷却装置11で水冷cを施す際、鋼板は一定速度で第2通過型冷却装置11内に進入させ、冷却停止温度を鋼板長手方向で略同一とする。
In
Case2の場合、鋼板は圧延機9により,最終パスP3で、所定の板厚とされた後、第1通過型冷却装置10で水冷b1された後、空パスP4で圧延機9を通過し、第2通過型冷却装置11で水冷cされ、所望の性能が付与される。
In
水冷b1は、第2通過型冷却装置11で水冷cされる際、冷却開始温度が鋼板長手方向で略同一となるように、鋼板長手方向において尾端部を先端部よりΔTだけ高温とする。第2通過型冷却装置11で水冷cを施す際、鋼板は一定速度で第2通過型冷却装置11内に進入させ、冷却停止温度を鋼板長手方向で略同一とする。
When the water-cooling b1 is water-cooled by the second passage
尚、Case1,2では、鋼板を第1通過型冷却装置10を加速しつつ通過させることにより鋼板長手方向において尾端部を先端部よりΔTだけ高温とすることが可能である。
In
Case3の場合、鋼板は最終パスP3で、所定の板厚とされた後、第1通過型冷却装置10で水冷b1後、再び、第1通過型冷却装置10を逆送しつつ水冷b2される。水冷b1は、鋼板長手方向において先端部を尾端部よりΔTだけ高温とする。水冷b1を行う場合、鋼板は、第1通過型冷却装置10を減速しつつ通過させることにより先端部を尾端部よりΔTだけ高温とすることが可能である。
In
逆送しつつ水冷b2される場合は、前記尾端部が先端部となり、前記先端部が尾端部となることより冷却開始温度が鋼板長手方向で略同一となる。逆送しつつ第1通過型冷却装置10で水冷b2を施す際、鋼板は一定速度で第1通過型冷却装置10内に進入させ、冷却停止温度を鋼板長手方向で略同一とする。逆送とは、圧延機9の下流側から上流側に鋼板を搬送する場合を指す。
When water cooling b2 is performed while feeding back, the tail end portion becomes the tip portion, and the tip end portion becomes the tail end portion, so that the cooling start temperature is substantially the same in the longitudinal direction of the steel sheet. When water cooling b2 is performed by the first passage
Case1〜3において、鋼板長手方向の尾端部と先端部に付与する温度差ΔTは、第2通過型冷却装置11または逆送して行う第1通過型冷却装置10によるその後の冷却において、鋼板尾端部での冷却開始温度が、先端部と同じ温度となるように付与する。
In
なお、図3に示すように、温度勾配を鋼板の長手方向で直線的に変化させることが好ましいが、温度勾配を鋼板の長手方向で階段状に変化させてもよい。 As shown in FIG. 3, it is preferable to change the temperature gradient linearly in the longitudinal direction of the steel sheet, but the temperature gradient may be changed stepwise in the longitudinal direction of the steel sheet.
また、鋼板長手方向に温度勾配を付与した後に行う冷却の設備能力を一定にしてその冷却時の搬送速度を一定にするのが、冷却開始温度および冷却停止温度を略同一にするのに適した方法であるが、冷却能力をコントロールできるのであれば、鋼板長手方向の搬送速度を一定にしなくてもよい。 In addition, it is suitable to make the cooling start temperature and the cooling stop temperature substantially the same by making the cooling equipment capacity constant after making the temperature gradient in the longitudinal direction of the steel plate and making the conveyance speed at the time of cooling constant. Although it is a method, if the cooling capacity can be controlled, the conveying speed in the longitudinal direction of the steel sheet may not be constant.
たとえば、本願発明の特徴である、第2通過型冷却装置における冷却開始温度と冷却停止温度とを鋼板長手方向に対してそれぞれ略同一に制御するという技術的特徴を達成できるのであるならば、すなわち、搬送速度を増加させながら冷却水量を増して冷却能力を増加させる、あるいはこの逆に、搬送速度を低減させながら冷却水量を減らして冷却能力を減少させる、などの方法を採用することにより、鋼板長手方向の搬送速度を変化させながらも冷却開始温度および冷却停止温度をそれぞれ略同一にすることができれば、本願発明の目標である、鋼板長手方向強度や靭性の均質性に優れた鋼板を製造することができる。 For example, if it is possible to achieve the technical feature of controlling the cooling start temperature and the cooling stop temperature in the second passage type cooling device substantially the same with respect to the longitudinal direction of the steel sheet, which is a feature of the present invention, that is, By adopting methods such as increasing the cooling water amount while increasing the conveying speed and increasing the cooling capacity, or conversely decreasing the cooling water amount while decreasing the conveying speed and reducing the cooling capacity, etc. If the cooling start temperature and the cooling stop temperature can be made substantially the same while changing the conveyance speed in the longitudinal direction, a steel sheet excellent in steel sheet longitudinal strength and toughness uniformity, which is the target of the present invention, is manufactured. be able to.
ここで、図5の実線は、熱間圧延した鋼板の温度が700℃、850℃、1000℃における板厚と鋼板が空冷によって冷える時の冷却速度の関係を伝熱計算で求めた一例を示す。実線がその計算結果である。板厚が薄いほど熱容量が小さいので、また鋼板温度が高いほど輻射放熱が多くなるので、冷却速度は高くなる。 Here, the solid line in FIG. 5 shows an example in which the relationship between the thickness of the hot-rolled steel plate at 700 ° C., 850 ° C., and 1000 ° C. and the cooling rate when the steel plate is cooled by air cooling is obtained by heat transfer calculation. . The solid line is the calculation result. The smaller the plate thickness, the smaller the heat capacity, and the higher the steel plate temperature, the more radiation and heat radiation, so the cooling rate increases.
冷却速度は、搬送の形態や雰囲気によって多少異なるが、例えば、板厚が30mmで鋼板表面温度が800℃の場合の冷却速度は、0.8℃/s程度となる。 Although the cooling rate differs somewhat depending on the form of transport and atmosphere, for example, the cooling rate when the plate thickness is 30 mm and the steel plate surface temperature is 800 ° C. is about 0.8 ° C./s.
一般に、第1の通過型冷却装置で冷却した後、第2の通過型冷却装置や、再び第1の冷却設備で引続き冷却する時の加速冷却や焼入れの開始温度は700℃以上であるので、冷却速度は図5における、15/h(℃/mm)の破線以上である。 Generally, after cooling with the first passage type cooling device, the start temperature of accelerated cooling or quenching when the second passage type cooling device or the first cooling facility again cools is 700 ° C. or higher, The cooling rate is not less than the broken line of 15 / h (° C./mm) in FIG.
一方、加速冷却や焼入れの開始温度は1000℃を超えることはほとんどないので、冷却速度は同様に55/h(℃/mm)の破線以下である。 On the other hand, since the start temperature of accelerated cooling or quenching hardly exceeds 1000 ° C., the cooling rate is similarly below the broken line of 55 / h (° C./mm).
従って、加速冷却や焼入れ開始温度が700℃以上1000℃以下の場合、鋼板長手方向に付与する温度勾配の先尾端の温度差ΔTは、
15L/(hv)≦ΔT≦55L/(hv) (1)
の関係を満足させることが好ましい。
但し、h(mm):鋼板の板厚、L(m):鋼板の長さ、v(m/s):第1通過型冷却設備で鋼板長手方向に温度勾配を付与した後、続いて行う冷却設備に進入するときの鋼板の搬送速度。
Accordingly, when the accelerated cooling or quenching start temperature is 700 ° C. or higher and 1000 ° C. or lower, the temperature difference ΔT at the leading end of the temperature gradient applied in the longitudinal direction of the steel sheet is:
15L / (hv) ≦ ΔT ≦ 55L / (hv) (1)
It is preferable to satisfy this relationship.
However, h (mm): the thickness of the steel plate, L (m): the length of the steel plate, v (m / s): a temperature gradient in the longitudinal direction of the steel plate by the first passage type cooling equipment, and then performed. The steel sheet transport speed when entering the cooling facility.
一例として、鋼板の製品の長さがL=30m、搬送速度がv=1m/sである場合、先端と尾端では冷却開始がL/v=30s違うので、尾端部は先端部によりも30s間分余計に空冷される。 As an example, when the length of the steel sheet product is L = 30 m and the conveyance speed is v = 1 m / s, the cooling start is different at the tip and the tail, so the tail end is different from the tip. Air-cooled for an additional 30 s.
板厚がh=30mmの場合は鋼板表面温度が800℃での冷却速度は、0.8℃/s程度となるので、尾端部は先端部よりも0.8×L/v=24℃低くなる。よって、先端を34℃冷やし、尾端を10℃冷やせば、尾端が先端より温度が24℃高い温度差がつくので、冷却開始温度がほぼ一定となる。 When the plate thickness is h = 30 mm, the cooling rate when the steel plate surface temperature is 800 ° C. is about 0.8 ° C./s, so that the tail end portion is 0.8 × L / v = 24 ° C. than the tip end portion. Lower. Therefore, if the tip is cooled by 34 ° C. and the tail end is cooled by 10 ° C., the temperature difference at the tail end is 24 ° C. higher than the tip, so that the cooling start temperature is substantially constant.
尚、第1または第2通過型冷却装置として、冷却領域以外の鋼板搬送方向に冷却水が流れ出さない水切り性に優れた冷却装置を使用することが好ましい。 In addition, it is preferable to use the cooling device excellent in the draining property which does not flow out the cooling water in the steel plate conveyance direction other than the cooling region as the first or second passing type cooling device.
図4(a),(b),(c)は、水切り性に優れた冷却装置の一例を示し、図において1は冷却槽、2は鋼板4上に滞留した冷却水、3は上方冷却水噴射ノズル、4は鋼板、5は搬送ロール、6は下部冷却水ノズル、7は冷却領域、8は水切りロール、13は棒状冷却水を示す。
4 (a), 4 (b), and 4 (c) show an example of a cooling device excellent in draining performance, in which 1 is a cooling tank, 2 is cooling water staying on the
(a)は、冷却槽1にとりつけた上方冷却水噴射ノズル3から棒状冷却水15を対向するように噴出させ、鋼板4上に冷却水2を滞留させる冷却装置、(b)は水切りロール8と搬送ロール5を鋼板4を挟んで対向させ、一方向から棒状冷却水13を噴出し、水切りロール8でせき止める冷却装置、(c)は水切りロール8と搬送ロール5を2対とし、ロール対間において、鋼板4上に冷却水2を滞留させる冷却装置を示す。尚、せき止め効果を得るため、棒状冷却水13は4m3/m2min以上の水量密度とすることが好ましい。
(A) is a cooling device which ejects the rod-shaped
第1通過型冷却装置(case3の通過型冷却装置の場合も含む)で冷却領域7の搬送方向の距離は0.4m〜4mとするのが好ましい。0.4m未満では鋼板を冷却するために冷却領域への滞留時間を長く取る必要があり、鋼板全体を通過させるのに時間がかかりすぎ、十分な温度勾配をつけるのが困難となる。
It is preferable that the distance in the transport direction of the
一方、4mを超えると冷却領域7での冷却の均一性を持たせるのが困難であるのと、板長の短い鋼板では十分な温度勾配を付与することが困難であるために4m以下に制限する。尚、図4(a),(b),(c)における冷却領域を鋼板の黒塗り部で示す。
On the other hand, if it exceeds 4 m, it is difficult to provide uniform cooling in the
また、冷却領域7は、冷却槽やノズルの数を増減させたり、または、図4(a),(b),(c)を一つの冷却装置ユニットとしてその数を増減させたりして適宜設定することが可能である。
The
第1通過型冷却装置で温度勾配を付与するには、冷却領域での鋼板の通過速度を制御するのが、制御の応答性に優れるので好ましい。第1通過型冷却装置の注水量などの冷却設備能力を制御してもよく、通過速度と冷却能力の両方を用いてもよい。 In order to provide a temperature gradient with the first passing type cooling device, it is preferable to control the passing speed of the steel sheet in the cooling region because of excellent control responsiveness. The cooling facility capacity such as the water injection amount of the first passage type cooling device may be controlled, and both the passage speed and the cooling capacity may be used.
第2通過型冷却装置は、所要の冷却能力を持ち均一冷却できるものであればよく特に限定しない。 The second passage type cooling device is not particularly limited as long as it has a required cooling capacity and can be uniformly cooled.
冷却開始温度は、所望する特性に応じて、Ar3点以上、二相域温度を適宜選定する。 As the cooling start temperature, an Ar 3 point or more and a two-phase region temperature are appropriately selected according to desired characteristics.
冷却後の鋼板は、所望する特性に応じて適宜焼戻しする。焼戻しは常法により実施すればよく、たとえば、オフラインの雰囲気炉、あるいは、オンラインの誘導加熱装置などを使用することができ、焼戻し温度は、オーステナイト相が生成しない温度域であるAc1変態点以下の温度であることが好ましい。 The cooled steel sheet is appropriately tempered according to desired characteristics. Tempering may be carried out by a conventional method. For example, an off-line atmosphere furnace or an on-line induction heating device can be used, and the tempering temperature is below the Ac 1 transformation point, which is a temperature range in which an austenite phase is not generated. It is preferable that it is the temperature of.
本発明で、第1通過型冷却装置で鋼板長手方向に温度勾配を付与した後、第2通過型冷却装置での冷却開始温度、冷却停止温度のいずれもが鋼板の長手方向におけるその最大値と最小値の差が50℃以下とするのが好ましい。 In the present invention, after giving a temperature gradient in the longitudinal direction of the steel sheet with the first passage type cooling device, both the cooling start temperature and the cooling stop temperature in the second passage type cooling device are the maximum value in the longitudinal direction of the steel plate. The difference between the minimum values is preferably 50 ° C. or less.
上記の温度差が50℃を越えると、先端と尾端の強度差や靭性の差が大きくなる。より好ましくは30℃以下とする。 When the temperature difference exceeds 50 ° C., the difference in strength and toughness between the tip and tail ends becomes large. More preferably, it shall be 30 degrees C or less.
尚、Case3では、第1通過型冷却装置10による冷却b2で、焼入れまたは加速冷却などを実施する。
In
本発明のCase1に係る圧延−冷却方法で厚鋼板を製造し、鋼板全長における機械的性質(強度、靭性)を調査した。図1に示す圧延−冷却設備において、第1通過型冷却装置は、2つの水切りロール間1mを冷却領域とする冷却設備(図4(C))を使用し、第2通過型冷却装置としては、従来の加速冷却設備を使用した。
A thick steel plate was manufactured by the rolling-cooling method according to
本実施例では板厚215mm断面スラブを用いて1150℃加熱後980℃以上の温度で累積圧下率50%の再結晶域圧延を行い、900℃〜800℃において累積圧下率50%の制御圧延を行い、板厚30mm、板長30mの厚鋼板を製造した。 In this example, using a slab having a plate thickness of 215 mm, heating at 1150 ° C. and then performing recrystallization zone rolling at a temperature of 980 ° C. or higher with a cumulative reduction ratio of 50%, controlled rolling with a cumulative reduction ratio of 50% at 900 ° C. to 800 ° C. A thick steel plate having a plate thickness of 30 mm and a plate length of 30 m was manufactured.
本実施例では、Case1により、第1通過型冷却装置で温度勾配を付与するとともに、第2通過型冷却装置での冷却開始温度および冷却停止温度の先端と尾端の差を50℃以下にした製造条件と第1通過型冷却装置を使用せず、第2通過型冷却装置のみで冷却を行う製造条件により厚鋼板を製造した。いずれの製造条件においても第2通過型冷却装置での冷却搬送速度は1m/sで一定とした。
In this embodiment,
得られた厚鋼板の最先端および最後端からそれぞれ500mm近傍の位置において、全厚の引張試験片を採取して、JIS Z 2241(1998)の規定に準拠して引張試験を実施し、引張強さTSを求めた。また、板厚方向1/2の位置からJIS Z 2202(1998)の規定に準拠して、Vノッチ標準寸法のシャルピー衝撃試験片を採取して、JIS Z 2242(1998)の規定に準拠して衝撃試験を実施し、延性−脆性破面遷移温度vTrsを求めた。
Tensile test specimens of full thickness are sampled at positions near 500 mm from the foremost and rearmost ends of the obtained thick steel plates, and subjected to a tensile test in accordance with the provisions of JIS Z 2241 (1998). We asked for TS. In addition, a Charpy impact test piece having a V-notch standard dimension was taken from a position in the
表1に供試鋼の成分組成を、表2に製造条件と得られた鋼板の強度、靭性を示す。第1通過型冷却装置で先端と尾端の温度差ΔTを付与したNo1,2,6,7,11,12は、先端と尾端のYSおよびTS差が25MPa以内で均一となり、靭性も良好であった。 Table 1 shows the component composition of the test steel, and Table 2 shows the manufacturing conditions and the strength and toughness of the obtained steel sheet. For Nos. 1, 2, 6, 7, 11, and 12, which gave the temperature difference ΔT between the tip and tail in the first-pass type cooling device, the YS and TS differences between the tip and tail are uniform within 25 MPa, and the toughness is also good. Met.
一方、一方向の低速圧延により仕上げ温度の先端と尾端の温度差が大きいNo3、8,13は先端の靭性が低下した。温度勾配を付与しないで増速して冷却し、冷却開始温度の先端と尾端の温度差が大きいNo4,9,14は先端と尾端のYSおよびTS差が大きく、また尾端の靱性も低下し、均一な鋼板が得られなかった。 On the other hand, No. 3, 8, and 13 having a large temperature difference between the tip end and the tail end due to low-speed rolling in one direction had reduced tip toughness. No4,9,14 with large temperature difference between the tip and tail of cooling start temperature and large YS and TS difference between tip and tail, and toughness of tail A uniform steel sheet could not be obtained.
温度勾配を付与しないで第2通過型冷却装置での冷却停止温度の先端と尾端の差が大きいNo5,10,15は先端と尾端のYSおよびTS差が大きく、また、先端あるいは尾端の靭性が低下した。 Nos. 5, 10, and 15 have a large difference between the tip and tail of the cooling stop temperature in the second passage type cooling device without giving a temperature gradient, and the difference between YS and TS between the tip and tail is large. The toughness of the steel decreased.
1 冷却槽
2 滞留した冷却水
3 上方冷却水噴射ノズル
4 鋼板
5 搬送ロール
6 下部冷却水ノズル
7 冷却領域
8 水切りロール
9 圧延機
10 第1通過型冷却装置
11 第2通過型冷却装置
12 加熱炉
13 棒状冷却水
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008051948A JP5217509B2 (en) | 2007-03-05 | 2008-03-03 | Manufacturing method and equipment for thick steel plate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007053879 | 2007-03-05 | ||
JP2007053879 | 2007-03-05 | ||
JP2008051948A JP5217509B2 (en) | 2007-03-05 | 2008-03-03 | Manufacturing method and equipment for thick steel plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008246579A JP2008246579A (en) | 2008-10-16 |
JP5217509B2 true JP5217509B2 (en) | 2013-06-19 |
Family
ID=39972145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008051948A Active JP5217509B2 (en) | 2007-03-05 | 2008-03-03 | Manufacturing method and equipment for thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5217509B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105057356B (en) * | 2015-08-05 | 2017-09-01 | 中冶华天工程技术有限公司 | The technique that two sections of controlled rollings and cooling control after rolling produce screw-thread steel |
JP6233613B2 (en) * | 2016-01-26 | 2017-11-22 | Jfeスチール株式会社 | Production line for hot-rolled steel strip and method for producing hot-rolled steel strip |
JP6233614B2 (en) * | 2016-01-27 | 2017-11-22 | Jfeスチール株式会社 | Production line for hot-rolled steel strip and method for producing hot-rolled steel strip |
JP6447836B2 (en) * | 2016-06-30 | 2019-01-09 | Jfeスチール株式会社 | Hot-rolled steel strip manufacturing method and hot-rolled steel strip manufacturing equipment |
CN106734197B (en) * | 2016-12-29 | 2019-03-12 | 广东技术师范学院 | A kind of manufacturing method solving technical pure titanium plate cold rolling roll banding |
JP2021133400A (en) * | 2020-02-27 | 2021-09-13 | Jfeスチール株式会社 | Steel plate cooling method and device, and steel plate manufacturing method |
JP7207358B2 (en) * | 2020-03-30 | 2023-01-18 | Jfeスチール株式会社 | Manufacturing method of low yield ratio high tensile steel plate |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5686622A (en) * | 1979-12-18 | 1981-07-14 | Nippon Kokan Kk <Nkk> | On-line accelerated cooling method of steel plate |
JPS61213327A (en) * | 1985-03-15 | 1986-09-22 | Sumitomo Metal Ind Ltd | Method for controlling uniform cooling of traveling high-temperature material |
JPS61238413A (en) * | 1985-04-16 | 1986-10-23 | Nippon Steel Corp | Uniform cooling method for thickness-controlled rolling material |
JPH0890042A (en) * | 1994-09-28 | 1996-04-09 | Kawasaki Steel Corp | Cooling method of steel plate |
JP2001335847A (en) * | 2000-05-24 | 2001-12-04 | Nkk Corp | Steel cooling method |
JP2005074480A (en) * | 2003-09-01 | 2005-03-24 | Sumitomo Metal Ind Ltd | Facility for producing hot-rolled steel plate, and its production method |
-
2008
- 2008-03-03 JP JP2008051948A patent/JP5217509B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008246579A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5217509B2 (en) | Manufacturing method and equipment for thick steel plate | |
JP5655852B2 (en) | Manufacturing method and manufacturing apparatus for hot-rolled steel sheet | |
KR20050042260A (en) | Process and production line for manufacturing ultrathin hot rolled strips based on the thin slab technique | |
CN104053805A (en) | Steel strip for coiled tubing and method for producing same | |
KR101506442B1 (en) | Process for hot rolling steel strips and hot rolling train | |
WO1996012574A1 (en) | Method of manufacturing seamless steel pipes and manufacturing equipment therefor | |
WO2010122847A1 (en) | Method of producing seamless pipe and apparatus for performing the same | |
JP5327140B2 (en) | Method for cooling hot rolled steel sheet | |
JP2005021984A (en) | Controlled cooling method and equipment for thick steel plate | |
JP6693498B2 (en) | Equipment and method for manufacturing thick steel plate | |
JP5447702B2 (en) | Production method of direct quenching type thin wall steel plate | |
JP5447703B2 (en) | Accelerated cooling type thin wall steel plate manufacturing method with excellent homogeneity | |
CN105734235B (en) | A kind of intensive cooling control method of hot-continuous-rolling strip steel | |
JP6699688B2 (en) | Hot rolled steel sheet manufacturing method | |
JP2015217411A (en) | Method of manufacturing thick steel plate | |
WO2017130765A1 (en) | Production equipment line for hot-rolled steel strips and production method for hot-rolled steel strip | |
US20170275729A1 (en) | Method of and for producing heavy plates | |
JP5482365B2 (en) | Steel sheet cooling method, manufacturing method and manufacturing equipment | |
KR950009142B1 (en) | Method for suppressing fluctation of width in hot rolled strip | |
WO2017130767A1 (en) | Production equipment line for hot-rolled steel strips and production method for hot-rolled steel strip | |
CN113652601A (en) | High-speed wire threaded steel with small strength fluctuation difference in same circle and surface oxidized iron sheet thickness of more than 10 mu m and production method thereof | |
JP6295387B1 (en) | Controlled cooling method for hot-rolled steel bars | |
US20200377967A1 (en) | Steel material cooling device and cooling method | |
JP6447836B2 (en) | Hot-rolled steel strip manufacturing method and hot-rolled steel strip manufacturing equipment | |
JP4111144B2 (en) | Cooling method for high temperature steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110128 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130218 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160315 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5217509 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |