JP5447702B2 - Production method of direct quenching type thin wall steel plate - Google Patents
Production method of direct quenching type thin wall steel plate Download PDFInfo
- Publication number
- JP5447702B2 JP5447702B2 JP2013023109A JP2013023109A JP5447702B2 JP 5447702 B2 JP5447702 B2 JP 5447702B2 JP 2013023109 A JP2013023109 A JP 2013023109A JP 2013023109 A JP2013023109 A JP 2013023109A JP 5447702 B2 JP5447702 B2 JP 5447702B2
- Authority
- JP
- Japan
- Prior art keywords
- steel plate
- cooling device
- temperature
- cooling
- quenching
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 167
- 239000010959 steel Substances 0.000 title claims description 167
- 238000010791 quenching Methods 0.000 title claims description 46
- 230000000171 quenching effect Effects 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 238000001816 cooling Methods 0.000 claims description 195
- 238000005096 rolling process Methods 0.000 claims description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 10
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 229910052720 vanadium Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 230000002441 reversible effect Effects 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000013459 approach Methods 0.000 claims description 2
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 239000000498 cooling water Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 11
- 238000005496 tempering Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Metal Rolling (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Description
本発明は通過型冷却装置を用いた薄肉厚鋼板の製造方法に関し、特に直接焼入れで鋼板長手方向の材料特性の均質性に優れた、板長さの長い薄肉厚鋼板の製造が可能な方法に関する。 The present invention relates to a method for producing a thin-walled steel plate using a through-type cooling device, and more particularly to a method capable of producing a thin-walled steel plate having a long plate length that is excellent in homogeneity of material properties in the longitudinal direction of the steel plate by direct quenching. .
引張強さ600MPa以上の高張力鋼の製造方法として、焼入れ−焼戻し処理による製造が一般的に用いられる。従来は熱間圧延により所定の板厚に圧延した後、常温まで冷却された鋼板を再加熱し、焼入れを行っていたが、近年では熱間圧延後、直ちに焼入れを行う直接焼入れ−焼戻しプロセスが用いられている。 As a method for producing high-tensile steel having a tensile strength of 600 MPa or more, production by quenching and tempering is generally used. In the past, after rolling to a predetermined thickness by hot rolling, the steel sheet cooled to room temperature was reheated and quenched, but in recent years there is a direct quenching-tempering process in which quenching is performed immediately after hot rolling. It is used.
しかしながら、直接焼入れ−焼戻しプロセスは通過型冷却装置によるオンライン熱処理であるがゆえに板厚が薄い場合や板長が大きい場合、鋼板の先端と尾端で大きな焼入れ開始温度差が生じる。 However, since the direct quenching-tempering process is an on-line heat treatment using a pass-through cooling device, when the plate thickness is thin or the plate length is large, a large quenching start temperature difference occurs between the front end and the tail end of the steel plate.
すなわち、焼入れ冷却において圧延速度が遅い場合や鋼板の板長が数十mにおよぶ場合、鋼板を全て同時に冷却を開始することは困難で、鋼板の搬送速度と板長によって鋼板の先端と尾端で冷却開始までの時間差が発生するため、その結果、冷却開始の温度差が発生する。 That is, when the rolling speed is low in quenching cooling or when the plate length of the steel plate reaches several tens of meters, it is difficult to start cooling all the steel plates at the same time. Therefore, a time difference until the start of cooling occurs, and as a result, a temperature difference at the start of cooling occurs.
焼入れ時の冷却開始温度はミクロ組織に影響を与え、鋼板の長手方向で均質な材質を得ることが困難である。材質の変動幅が所定の範囲に入るように板厚に応じて板長を制限したり、再加熱焼入れ−焼戻しプロセスで製造することは、製造効率を低下させたり、製造コストを上昇させ、望ましくない。そのため、材質のばらつきを軽減する種々の方法が提案されている。 The cooling start temperature during quenching affects the microstructure, and it is difficult to obtain a homogeneous material in the longitudinal direction of the steel sheet. It is desirable to limit the plate length according to the plate thickness so that the fluctuation range of the material falls within a predetermined range, or to manufacture by a reheating quenching-tempering process, which decreases manufacturing efficiency and increases manufacturing cost. Absent. For this reason, various methods for reducing the variation in material have been proposed.
例えば、特許文献1は、冷却速度の制御により材質の変化が少ない鋼材を製造することを提案し、鋼板の板厚方向や鋼材間での均質性を向上させることが記載されている。しかしながら、特許文献1記載の発明では冷却開始温度や圧延の仕上げ温度が変化した場合には材質変化を抑制することはできない。 For example, Patent Document 1 proposes to manufacture a steel material with little change in material by controlling the cooling rate, and describes that the thickness direction of the steel plate and the homogeneity between steel materials are improved. However, in the invention described in Patent Document 1, the material change cannot be suppressed when the cooling start temperature or the finishing temperature of rolling changes.
また、特許文献2では鋼材の四周部の温度低下を事前の冷却方法にて抑制し、材料の全体が均一な温度の状態で圧延することが記載されている、圧延仕上げ温度は一定にできるものの、その後の冷却開始温度については板長の先尾端で差が出るために焼入れ材および加速冷却材での適用は均質性を高めることができない問題がある。
In addition,
さらに特許文献3に開示の技術は鋼材間のばらつきを抑えるためには有効であるが、同一鋼板内での板長方向の材質を均質にすることには十分でない。
Furthermore, although the technique disclosed in
以上のように従来開示されている技術においては鋼板の長手方向の温度変化を制御できないために、冷却の際の冷却開始温度が一定に保てないため、材質のばらつきが大きくなる。 As described above, in the technology disclosed heretofore, since the temperature change in the longitudinal direction of the steel sheet cannot be controlled, the cooling start temperature at the time of cooling cannot be kept constant.
上述したように、通過型焼入れ装置を用いた直接焼入れ−焼戻しプロセスでは鋼板長手方向で冷却開始温度差を無くすことが困難で、強度および靭性が大きくばらつき、鋼板の板厚や板長を制限するか、再加熱焼き入れ−焼戻しプロセスにて高コスト製造を余儀なくされていた。 As described above, in the direct quenching-tempering process using the pass-through quenching apparatus, it is difficult to eliminate the cooling start temperature difference in the longitudinal direction of the steel sheet, the strength and toughness vary greatly, and the thickness and length of the steel sheet are limited. Or, the reheating quenching-tempering process forced high-cost manufacturing.
そこで、本発明は直接焼入れ−焼戻しプロセスで、鋼板の先端部と尾端部で引張強度(TS)が±25MPa、靱性の指標である延性−脆性破面遷移温度(vTrs)が±10℃と、鋼板の長手方向での強度および靭性の均質性に優れる直接焼入れ型薄肉厚鋼板およびその製造方法を提供することを目的とする。直接焼入れ型とは直接焼入れ後、焼戻しを行って製造するものを指す。 Therefore, the present invention is a direct quenching-tempering process in which the tensile strength (TS) is ± 25 MPa at the tip and tail ends of the steel sheet, and the ductility-brittle fracture surface transition temperature (vTrs), which is an indicator of toughness, is ± 10 ° C. An object of the present invention is to provide a direct-quenching thin-walled steel plate having excellent strength and toughness uniformity in the longitudinal direction of the steel plate and a method for producing the same. The direct quenching type refers to those that are manufactured by tempering after direct quenching.
本発明者等は上記課題の解決手段として、熱間圧延機近傍の下流側に冷却領域の短い冷却装置を配して、その後の焼入れ前に適切な温度勾配を鋼板長手方向に付与することを想到し、実機操業においても、鋼板長手方向に安定した材質が得られことを知見した。 As a means for solving the above-mentioned problems, the inventors have arranged a cooling device with a short cooling region on the downstream side in the vicinity of the hot rolling mill to give an appropriate temperature gradient in the longitudinal direction of the steel plate before subsequent quenching. As a result, it has been found that a stable material can be obtained in the longitudinal direction of the steel plate even in actual operation.
本発明は得られた知見を基に更に検討を加えてなされたもので、すなわち、本発明は、
1.可逆式熱間圧延機の下流側に第1の通過型冷却装置と第2の通過型冷却装置を順に配置する圧延ー冷却装置を用いた、以下の工程を備えた直接焼入れ型薄肉厚鋼板の製造方法。
(1)仕上げ圧延後の鋼板を、第2の通過型冷却装置で冷却する前に第1の通過型冷却装置で前記鋼板の長手方向に温度勾配を付与する工程。
(2)前記鋼板を、第2の通過型冷却装置を一定速度で、通板して焼入れする工程。
2.第1の通過型冷却装置で、冷却する際、搬送速度および/または注水量を変化させることによって、冷却後の鋼板先端と尾端の温度差ΔTを(1)式を満足するように冷却することを特徴とする1記載の直接焼入れ型薄肉厚鋼板の製造方法。
15L/(hv)≦ΔT≦55L/(hv) ・・・・(1)
但し、h:板厚(mm)、L:長さ(m)、v:第2の通過型冷却装置への進入速度(m/s)
3.前記工程2で第2の通過型冷却装置で焼入れする際、鋼板の先端部および尾端部での冷却開始温度がAr3点以上または二相域温度となるように、前記工程1で前記鋼板長手方向の先端部の温度と尾端部の温度を調整することを特徴とする1または2記載の直接焼入れ型薄肉厚鋼板の製造方法。
4.前記工程2で第2の通過型冷却装置で焼入れする際、鋼板の先端部と尾端部での冷却開始温度の差が50℃以内となるように、前記工程1で前記鋼板長手方向の先端部の温度と尾端部の温度を調整することを特徴とする1乃至3のいずれか一つに記載の直接焼入れ型薄肉厚鋼板の製造方法。
5.前記鋼板の成分組成が、質量%で、C:0.01〜0.20%、Si:0.01〜0.80%、Mn:0.50〜2.50%、P:0.020%以下、S:0.0070%以下、sol.Al:0.004〜0.100%を含有し、残部がFeおよび不可避的不純物からなる組成であることを特徴とする1乃至4のいずれか一つに記載の直接焼入れ型薄肉厚鋼板の製造方法。
6.更に、成分組成として、鋼組成に、更に、Ti:0.005−0.20%、Cu:0.01−2.0%、Ni:0.01−4.0%、Cr:0.01−2.0%、Mo:0.01−2.0%、Nb:0.003−0.1%、V:0.003−0.5%、W:0.003−0.7%、B:0.0005−0.0040%、Ca:0.0001−0.0060%、Mg:0.0001−0.0060%、REM:0.0001−0.0200%の1種または2種以上を含有することを特徴とする5記載の直接焼入れ型薄肉厚鋼板の製造方法。
The present invention was made by further study based on the obtained knowledge, that is, the present invention is
1. A direct quenching type thin steel plate having the following steps using a rolling-cooling device in which a first passing type cooling device and a second passing type cooling device are arranged in order on the downstream side of a reversible hot rolling mill. Production method.
(1) A step of applying a temperature gradient in the longitudinal direction of the steel sheet with the first passage type cooling device before cooling the steel plate after finish rolling with the second passage type cooling device.
(2) A step of quenching the steel sheet by passing a second passage type cooling device at a constant speed.
2. When cooling with the first passage type cooling device, the temperature difference ΔT between the steel plate front end and the tail end after cooling is cooled so as to satisfy the expression (1) by changing the conveyance speed and / or the amount of water injection. 2. The method for producing a direct-quenching thin-walled steel plate according to 1, wherein
15L / (hv) ≦ ΔT ≦ 55L / (hv) (1)
However, h: board thickness (mm), L: length (m), v: approach speed (m / s) to 2nd passage type cooling device
3. When quenching with the second passage type cooling device in the
4). When quenching with the second passage type cooling device in the
5. The composition of the steel sheet is mass%, C: 0.01 to 0.20%, Si: 0.01 to 0.80%, Mn: 0.50 to 2.50%, P: 0.020%. Hereinafter, S: 0.0070% or less, sol. The production of a direct quenching type thin-walled steel plate according to any one of 1 to 4, wherein Al: 0.004 to 0.100% is contained, and the balance is composed of Fe and inevitable impurities Method.
6). Further, as a component composition, steel: Ti: 0.005-0.20%, Cu: 0.01-2.0%, Ni: 0.01-4.0%, Cr: 0.01 -2.0%, Mo: 0.01-2.0%, Nb: 0.003-0.1%, V: 0.003-0.5%, W: 0.003-0.7%, One or more of B: 0.0005-0.0040%, Ca: 0.0001-0.0060%, Mg: 0.0001-0.0060%, REM: 0.0001-0.0200% 5. The method for producing a direct-quenching thin-walled steel plate according to 5, wherein:
なお、本発明で圧延仕上げ温度、冷却開始温度、冷却停止温度などの鋼板温度は、特に断わらない限り、放射温度計で鋼板表面の温度を測定して得られた温度を言う。 In the present invention, the steel sheet temperature such as the rolling finish temperature, the cooling start temperature, and the cooling stop temperature refers to a temperature obtained by measuring the temperature of the steel sheet surface with a radiation thermometer unless otherwise specified.
また、本発明において、先端部と先端とは、互いに区別することなく、いずれも鋼板の進行方向の先端近傍であって、製品に用いられる定常部の先端を含む領域を指すものとする。同様に、尾端部と尾端とは、互いに区別することなく、いずれも鋼板の進行方向の後端近傍であって、製品に用いられる定常部の後端を含む領域を指すものとする。 Moreover, in this invention, a front-end | tip part and a front-end | tip shall refer to the area | region containing the front-end | tip of the stationary part used for a product, all near the front-end | tip of the advancing direction of a steel plate, without distinguishing each other. Similarly, the tail end and the tail end are both in the vicinity of the rear end in the traveling direction of the steel sheet and are not distinguished from each other, and indicate a region including the rear end of the steady portion used in the product.
本発明によれば板厚6mm〜25mmで板長20m〜50mの鋼板の通過型焼入れ装置を用いた直接焼入れ処理で、焼き入れ時の冷却開始温度を鋼板の長手方向で一定にすることが可能となり、鋼板の長手方向の均質性に優れる高強度・高靭性鋼が得られ、産業上極めて有用である。 According to the present invention, it is possible to make the cooling start temperature constant during quenching in the longitudinal direction of the steel sheet by direct quenching treatment using a plate-type quenching apparatus for a steel sheet having a thickness of 6 mm to 25 mm and a plate length of 20 m to 50 m. Thus, a high-strength and high-toughness steel having excellent longitudinal uniformity of the steel sheet can be obtained, which is extremely useful industrially.
本発明は、仕上げ圧延後の鋼板を、通過型の直接焼入れ装置で冷却する際、冷却開始温度が、鋼板尾端側で先端側より降下することを、直接焼入れ装置に鋼板を搬入する前に、鋼板の尾端側の温度を降下分だけ補償することによって解決することを特徴とする。
以下、図面を用いて本発明を詳細に説明する。
In the present invention, when the steel sheet after finish rolling is cooled by a pass-through type direct quenching device, the cooling start temperature is lowered from the tip side on the steel plate tail end side, before the steel plate is directly carried into the quenching device. The problem is solved by compensating the temperature on the tail end side of the steel plate by the amount of the drop.
Hereinafter, the present invention will be described in detail with reference to the drawings.
図1は、本発明を適用する圧延ー冷却設備における圧延機、冷却装置の配置を模式的に示し、図において12は加熱炉、9は圧延機、10は圧延機9の下流側に配置した第1の通過型冷却装置で、(10)内は圧延機9の上流側に配置した場合、11は第2の通過型冷却装置を示す。尚、圧延機9の加熱炉12側を圧延機9の上流側、第2通過型冷却装置11側を下流側と称す。
FIG. 1 schematically shows the arrangement of rolling mills and cooling devices in a rolling-cooling facility to which the present invention is applied. In the figure, 12 is a heating furnace, 9 is a rolling mill, and 10 is arranged downstream of the rolling mill 9. In the first passage type cooling device, when (10) is arranged on the upstream side of the rolling mill 9, 11 denotes a second passage type cooling device. The
厚鋼板(図示しない)は、加熱炉12で圧延のために加熱され、仕上げ圧延後、第1通過型冷却装置10で、鋼板長手方向に適切な温度勾配が付与される。
A thick steel plate (not shown) is heated for rolling in the
仕上げ圧延終了後の鋼板は、焼入れのため、第2通過型水冷装置11に搬送されるが、鋼板長手方向で冷却開始温度が略同一となるように、予め、第1通過型冷却装置10を通過する際、鋼板長手方向に適切な温度勾配を付与される。
The steel plate after the finish rolling is transferred to the second passage type water cooling device 11 for quenching, but the first passage
図2は、本発明に係る鋼板の製造方法における圧延ー冷却方法を説明する模式図で、P1〜P4はパスを指し、P3が最終(仕上げ)パス、P2が最終パスP3の直前のパス、P1がP2の直前のパス、P4は仕上げ圧延後、または仕上げ圧延、水冷後の鋼板を圧延機9を通過させるための空パスを示す。 FIG. 2 is a schematic diagram for explaining a rolling-cooling method in the steel sheet manufacturing method according to the present invention, P1 to P4 indicate paths, P3 is a final (finishing) path, P2 is a path immediately before the final path P3, P1 is a pass immediately before P2, and P4 is an empty pass for passing the steel sheet after finish rolling or finish rolling and water cooling through the rolling mill 9.
aは圧延機9による圧延作業、b1、b2は第1通過型冷却装置10による水冷作業、cは第2通過型冷却装置11による水冷作業を示す。図においても、鋼板は図示しない。
a is a rolling operation by the rolling mill 9, b1 and b2 are water cooling operations by the first passage
図2(a)は圧延機9の下流側に第1通過型冷却装置10、第2通過型冷却装置11を順に配置し、仕上げ圧延後の鋼板を順次通過させて冷却する場合(Case1),図2(b)は圧延機9の上流側に第1通過型冷却装置10、圧延機9の下流側に第2通過型冷却装置11を配置し、仕上げ圧延(P3)後の鋼板は、空パス(P4)で第1通過型冷却装置10で冷却後、空パス(P4)で圧延機9を通過して第2通過型冷却装置11で冷却される場合(Case2),図2(c)は圧延機9の下流側に通過型冷却装置(本説明では第1の通過型冷却装置10)を配置し、一端、冷却させた後、逆送しつつ前記通過型冷却装置で冷却する場合(Case3)を示す。
FIG. 2A shows a case where the first passage
図3は、図2に示すCase1〜3における鋼板長手方向の温度分布を模式的に示す。図において、矢印の方向に鋼板は進行するものとし、説明では、鋼板の進行方向側を鋼板の先端部、反対方向を鋼板の尾端部と称する。以後、図2,3を適宜、参照しつつ、本発明を説明する。 FIG. 3 schematically shows the temperature distribution in the longitudinal direction of the steel sheet in Cases 1 to 3 shown in FIG. In the drawing, it is assumed that the steel plate proceeds in the direction of the arrow, and in the description, the traveling direction side of the steel plate is referred to as the front end portion of the steel plate, and the opposite direction is referred to as the tail end portion of the steel plate. Hereinafter, the present invention will be described with reference to FIGS.
Case1の場合、鋼板は最終パスP3で、所定の板厚とされた後、第1通過型冷却装置10で水冷b1された後、第2通過型冷却装置11で水冷cされ、所望の性能が付与される。
In the case 1, the steel sheet is subjected to the final pass P3, and after having a predetermined thickness, the steel sheet is water-cooled b1 by the first passage
水冷b1は、第2通過型冷却装置11で水冷cされる際、冷却開始温度が鋼板長手方向で略同一となるように、鋼板長手方向において尾端部を先端部よりΔTだけ高温となる温度勾配を付与する。 The water cooling b1 is a temperature at which the tail end portion becomes higher than the tip end portion by ΔT in the longitudinal direction of the steel plate so that the cooling start temperature becomes substantially the same in the longitudinal direction of the steel plate when the water cooling is performed by the second passage type cooling device 11. Give a gradient.
第2通過型冷却装置11で水冷cを施す際、鋼板は一定速度で第2通過型冷却装置11内に進入させ、冷却停止温度を鋼板長手方向で略同一とする。 When water cooling c is performed by the second passage type cooling device 11, the steel sheet is allowed to enter the second passage type cooling device 11 at a constant speed, and the cooling stop temperature is made substantially the same in the longitudinal direction of the steel sheet.
Case2の場合、鋼板は圧延機9により,最終パスP3で、所定の板厚とされた後、第1通過型冷却装置10で水冷b1された後、空パスP4で圧延機9を通過し、第2通過型冷却装置11で水冷cされ、所望の性能が付与される。
In
水冷b1は、第2通過型冷却装置11で水冷cされる際、冷却開始温度が鋼板長手方向で略同一となるように、鋼板長手方向において尾端部を先端部よりΔTだけ高温とする。第2通過型冷却装置11で水冷cを施す際、鋼板は一定速度で第2通過型冷却装置11内に進入させ、冷却停止温度を鋼板長手方向で略同一とする。 When the water-cooling b1 is water-cooled by the second passage type cooling device 11, the tail end is set to a temperature higher than the tip by ΔT in the longitudinal direction of the steel plate so that the cooling start temperature is substantially the same in the longitudinal direction of the steel plate. When water cooling c is performed by the second passage type cooling device 11, the steel sheet is allowed to enter the second passage type cooling device 11 at a constant speed, and the cooling stop temperature is made substantially the same in the longitudinal direction of the steel sheet.
尚、Case1,2では、鋼板を第1通過型冷却装置10を加速しつつ通過させることにより鋼板長手方向において尾端部を先端部よりΔTだけ高温とすることが可能である。
In
Case3の場合、鋼板は最終パスP3で、所定の板厚とされた後、第1通過型冷却装置10で水冷b1後、再び、第1通過型冷却装置10を逆送しつつ水冷b2される。
In
水冷b1は、鋼板長手方向において先端部を尾端部よりΔTだけ高温とする。水冷b1を行う場合、鋼板は、第1通過型冷却装置10を減速しつつ通過させることにより先端部を尾端部よりΔTだけ高温とすることが可能である。
In the water cooling b1, the tip is heated at a higher temperature by ΔT than the tail end in the longitudinal direction of the steel sheet. When water cooling b1 is performed, the steel sheet can be heated at a temperature higher than the tail end by ΔT by passing the first
逆送しつつ水冷b2される場合は、前記尾端部が先端部となり、前記先端部が尾端部となることより冷却開始温度が鋼板長手方向で略同一となる。 When water cooling b2 is performed while feeding back, the tail end portion becomes the tip portion, and the tip end portion becomes the tail end portion, so that the cooling start temperature is substantially the same in the longitudinal direction of the steel sheet.
逆送しつつ第1通過型冷却装置10で水冷b2を施す際、鋼板は一定速度で第1通過型冷却装置10内に進入させ、冷却停止温度を鋼板長手方向で略同一とする。逆送とは、圧延機9の下流側から上流側に鋼板を搬送する場合を指す。
When water cooling b2 is performed by the first passage
Case1〜3において、鋼板長手方向の尾端部と先端部に付与する温度差ΔTは、第2通過型冷却装置11または逆送して行う第1通過型冷却装置10によるその後の冷却において、鋼板尾端部での冷却開始温度が、先端部と同じ温度となるように付与する。
In Cases 1 to 3, the temperature difference ΔT applied to the tail end and the tip end in the longitudinal direction of the steel plate is the steel plate in the subsequent cooling by the second passage type cooling device 11 or the first passage
なお、図3に示すように、温度勾配を鋼板の長手方向で直線的に変化させることが好ましいが、温度勾配を鋼板の長手方向で階段状に変化させてもよい。 As shown in FIG. 3, it is preferable to change the temperature gradient linearly in the longitudinal direction of the steel sheet, but the temperature gradient may be changed stepwise in the longitudinal direction of the steel sheet.
ここで、図5の実線は、熱間圧延した鋼板の温度が700℃、850℃、1000℃における板厚と鋼板が空冷によって冷える時の冷却速度の関係を伝熱計算で求めた一例を示したものである。実線がその計算結果である。板厚が薄いほど熱容量が小さいので、また鋼板温度が高いほど輻射放熱が多くなるので、冷却速度は高くなる。 Here, the solid line in FIG. 5 shows an example in which the relationship between the thickness of the hot-rolled steel plate at 700 ° C., 850 ° C. and 1000 ° C. and the cooling rate when the steel plate is cooled by air cooling is obtained by heat transfer calculation. It is a thing. The solid line is the calculation result. The smaller the plate thickness, the smaller the heat capacity, and the higher the steel plate temperature, the more radiation and heat radiation, so the cooling rate increases.
冷却速度は、搬送の形態や雰囲気によって多少異なるが、例えば、板厚が30mmで鋼板表面温度が800℃の場合の冷却速度は、0.8℃/s程度となる。 Although the cooling rate differs somewhat depending on the form of transport and atmosphere, for example, the cooling rate when the plate thickness is 30 mm and the steel plate surface temperature is 800 ° C. is about 0.8 ° C./s.
一般に、第1の通過型冷却装置で冷却した後、第2の通過型冷却装置や、再び第1の冷却設備で引続き冷却する時の加速冷却や焼入れの開始温度は700℃以上であるので、冷却速度は図5における15/h(℃/mm)の破線以上である。 Generally, after cooling with the first passage type cooling device, the start temperature of accelerated cooling or quenching when the second passage type cooling device or the first cooling facility again cools is 700 ° C. or higher, The cooling rate is not less than the broken line of 15 / h (° C./mm) in FIG.
一方、加速冷却や焼入れの開始温度は1000℃を超えることはほとんどないので、冷却速度は同様に55/h(℃/mm)の破線以下である。
従って、加速冷却や焼入れ開始温度が700℃以上1000℃以下の場合、冷却速度は15/h以上55/h以下の範囲にあることから長手方向に付与する温度勾配の先尾端の温度差ΔTは、
15L/(hv)≦ΔT≦55L/(hv) (1)
の関係を満足させることが好ましい。但し、h(mm):鋼板の板厚、L(m):鋼板の長さ、v(m/s):第1通過型冷却設備で鋼板長手方向に温度勾配を付与した後、続いて行う冷却設備に進入するときの鋼板の搬送速度。
On the other hand, since the start temperature of accelerated cooling or quenching hardly exceeds 1000 ° C., the cooling rate is similarly below the broken line of 55 / h (° C./mm).
Therefore, when the accelerated cooling or quenching start temperature is 700 ° C. or more and 1000 ° C. or less, the cooling rate is in the range of 15 / h or more and 55 / h or less, and therefore the temperature difference ΔT at the leading end of the temperature gradient applied in the longitudinal direction. Is
15L / (hv) ≦ ΔT ≦ 55L / (hv) (1)
It is preferable to satisfy this relationship. However, h (mm): the thickness of the steel plate, L (m): the length of the steel plate, v (m / s): a temperature gradient in the longitudinal direction of the steel plate by the first passage type cooling equipment, and then performed. The steel sheet transport speed when entering the cooling facility.
一例として、鋼板の製品の長さがL=30m、搬送速度がv=1m/sである場合、先端と尾端では冷却開始がL/v=30s違うので、尾端部は先端部によりも30s間分余計に空冷される。 As an example, when the length of the steel sheet product is L = 30 m and the conveyance speed is v = 1 m / s, the cooling start is different at the tip and the tail, so the tail end is different from the tip. Air-cooled for an additional 30 s.
板厚がh=30mmの場合は鋼板表面温度が800℃での冷却速度は、0.8℃/s程度となるので、尾端部は先端部よりも0.8×L/v=24℃低くなる。よって、先端を34℃冷やし、尾端を10℃冷やせば、尾端が先端より温度が24℃高い温度差がつくので、冷却開始温度がほぼ一定となる。 When the plate thickness is h = 30 mm, the cooling rate when the steel plate surface temperature is 800 ° C. is about 0.8 ° C./s, so that the tail end portion is 0.8 × L / v = 24 ° C. than the tip end portion. Lower. Therefore, if the tip is cooled by 34 ° C. and the tail end is cooled by 10 ° C., the temperature difference at the tail end is 24 ° C. higher than the tip, so that the cooling start temperature is substantially constant.
尚、第1または第3通過型冷却装置として、冷却領域以外の鋼板搬送方向に冷却水が流れ出さない水切り性に優れた冷却装置を使用することが好ましい。 In addition, it is preferable to use the cooling device excellent in the draining property which does not flow out cooling water in the steel plate conveyance direction other than a cooling area as a 1st or 3rd passage type cooling device.
図4(a),(b),(c)は、水切り性に優れた冷却装置の一例を示し、図において1は冷却槽、2は鋼板4上に滞留した冷却水、3は上方冷却水噴射ノズル、4は鋼板、5は搬送ロール、6は下部冷却水ノズル、7は冷却領域、13は棒状冷却水、8は水切りロールを示す。
4 (a), 4 (b), and 4 (c) show an example of a cooling device excellent in draining performance, in which 1 is a cooling tank, 2 is cooling water staying on the
(a)は、冷却槽1にとりつけた上方冷却水噴射ノズル3から棒状冷却水13を対向するように噴出させ、鋼板4上に冷却水2を滞留させる冷却装置、(b)は水切りロール8と搬送ロール5を鋼板4を挟んで対向させ、一方向から棒状冷却水13を噴出し、水切りロール8でせき止める冷却装置、(c)は水切りロール8と搬送ロール5を2対とし、ロール対間において、鋼板4上に冷却水2を滞留させる冷却装置を示す。尚、せき止め効果を得るため、棒状冷却水13は4m3/m2min以上の水量密度とすることが好ましい。
(A) is a cooling device which ejects the rod-shaped
第1通過型冷却装置(case3の通過型冷却装置の場合も含む)で冷却領域の搬送方向の距離は0.4m〜4mとするのが好ましい。0.4m未満では鋼板を冷却するために冷却領域への滞留時間を長く取る必要があり、鋼板全体を通過させるのに時間がかかりすぎ、十分な温度勾配をつけるのが困難となる。
It is preferable that the distance in the conveyance direction of the cooling region is 0.4 m to 4 m in the first passing type cooling device (including the
一方、4mを超えると冷却領域での冷却の均一性を持たせるのが困難であるのと、板長の短い鋼板では十分な温度勾配を付与することが困難であるために4m以下に制限する。 On the other hand, if it exceeds 4 m, it is difficult to provide uniform cooling in the cooling region, and it is difficult to provide a sufficient temperature gradient with a steel plate with a short plate length, so it is limited to 4 m or less. .
尚、図4(a),(b),(c)における冷却領域7を鋼板の黒塗り部で示す。また、冷却領域は、冷却槽やノズルの数を増減させたり、または、図4(a),(b),(c)を一つの冷却装置ユニットとしてその数を増減させたりして適宜設定することが可能である。
In addition, the cooling area |
第1通過型冷却装置で温度勾配を付与するには、冷却領域での鋼板の通過速度を制御するのが、制御の応答性に優れるので好ましい。第1通過型冷却装置の注水量などの冷却設備能力を制御してもよく、通過速度と冷却能力の両方を用いてもよい。 In order to provide a temperature gradient with the first passing type cooling device, it is preferable to control the passing speed of the steel sheet in the cooling region because of excellent control responsiveness. The cooling facility capacity such as the water injection amount of the first passage type cooling device may be controlled, and both the passage speed and the cooling capacity may be used.
第2通過型冷却装置は、所要の冷却能力を持ち均一冷却できるものであればよく特に限定しない。 The second passage type cooling device is not particularly limited as long as it has a required cooling capacity and can be uniformly cooled.
冷却開始温度は、所望する特性に応じて、Ar3点以上、二相域温度を適宜選定する。 As the cooling start temperature, an Ar 3 point or more and a two-phase region temperature are appropriately selected according to desired characteristics.
これは、オーステナイト相を含む温度域から焼入れあるいは加速冷却によりマルテンサイトやベイナイトなどの変態相を生成し所望の強度を確保する上で、焼入れや加速冷却の冷却開始温度は、Ar3変態点以上あるいは二相域温度というオーステナイト相が存在する温度域でなければならないからであるが、具体的な冷却開始温度は、所望の強度に応じて適宜選択すればよい。 This is because, in order to secure the desired strength by generating a transformation phase such as martensite or bainite by quenching or accelerated cooling from the temperature range including the austenite phase, the cooling start temperature of quenching or accelerated cooling is higher than the Ar 3 transformation point. Or it is because it must be a temperature range in which the austenite phase exists, that is, a two-phase temperature range, but a specific cooling start temperature may be appropriately selected according to a desired strength.
なお、焼入れした鋼板は、焼戻しすることが好ましい。焼戻しは常法により実施すればよく、たとえば、オフラインの雰囲気炉、あるいは、オンラインの誘導加熱装置などを使用することができ、焼戻し温度は、オーステナイト相が生成しない温度域であるAc1変態点以下の温度であることが好ましい。 In addition, it is preferable to temper the hardened steel plate. Tempering may be carried out by a conventional method. For example, an off-line atmosphere furnace or an on-line induction heating device can be used, and the tempering temperature is below the Ac 1 transformation point, which is a temperature range in which an austenite phase is not generated. It is preferable that it is the temperature of.
本発明で、第1通過型冷却装置で鋼板長手方向に温度勾配を付与した後、第2通過型冷却装置での冷却開始温度、冷却停止温度のいずれもが鋼板の長手方向におけるその最大値と最小値の差が50℃以下とするのが好ましい。 In the present invention, after giving a temperature gradient in the longitudinal direction of the steel sheet with the first passage type cooling device, both the cooling start temperature and the cooling stop temperature in the second passage type cooling device are the maximum value in the longitudinal direction of the steel plate. The difference between the minimum values is preferably 50 ° C. or less.
上記の温度差が50℃を越えると、先端と尾端の強度差や靭性の差が大きくなる。より好ましくは30℃以下とする。尚、Case3では、第1通過型冷却装置10による冷却b2で、焼入れを実施する。
When the temperature difference exceeds 50 ° C., the difference in strength and toughness between the tip and tail ends becomes large. More preferably, it shall be 30 degrees C or less. In
本発明に係る冷却方法は、焼入れ焼戻しに適した組成の鋼板であれば適用可能であるが、以下に述べる、直接焼入れを前提とした成分組成が好ましい。成分組成における%は質量%とする。 The cooling method according to the present invention is applicable to any steel sheet having a composition suitable for quenching and tempering, but the component composition based on direct quenching described below is preferred. % In the component composition is mass%.
C:0.01−0.20%
Cは鋼板の強度を確保するため、少なくとも0.01%は必要であり0.20%を越えて添加すると著しく溶接性を低下させるため、0.01%以上、0.20%以下(以下、0.01−0.20%)とする。
C: 0.01-0.20%
In order to secure the strength of the steel sheet, at least 0.01% is necessary for C, and if added over 0.20%, the weldability is remarkably lowered, so 0.01% or more and 0.20% or less (hereinafter, 0.01-0.20%).
Si:0.01−0.80%
Siは脱酸に必要な元素であるが、0.01%未満ではその効果は少なく、0.80%を越えて添加すると溶接性および母材靭性を著しく低下させるため、0.01−0.80%とする。
Si: 0.01-0.80%
Si is an element necessary for deoxidation, but if less than 0.01%, the effect is small, and if added over 0.80%, the weldability and the base metal toughness are remarkably lowered, so 0.01-0. 80%.
Mn:0.5−2.50%
MnはCと同様に鋼板の強度を確保するために必要であり、過剰に添加すると溶接性を損なうため、0.5−2.50%とする。
Mn: 0.5-2.50%
Mn is necessary for securing the strength of the steel sheet in the same manner as C. If excessively added, the weldability is impaired, so 0.5-2.50% is set.
P:0.020%以下、S:0.0070%以下
P、Sは不純物として鋼中に不可避的に含有される元素であり、鋼母材や、溶接熱影響部の靭性を劣化させるため、経済性を考慮して可能な範囲で低減する事が好ましく、P:0.020%以下、S:0.0070%以下とする。
P: 0.020% or less, S: 0.0070% or less P and S are elements inevitably contained in the steel as impurities, in order to deteriorate the toughness of the steel base material and the weld heat affected zone. It is preferable to reduce as much as possible in consideration of economy, and P: 0.020% or less, S: 0.0070% or less.
Al:0.004−0.10%以下
Alは脱酸元素であり、0.004%未満ではその効果は十分ではなく、過剰に添加すると靭性の劣化をもたらすため、0.004−0.10%以下とする。
Al: 0.004-0.10% or less Al is a deoxidizing element. If it is less than 0.004%, its effect is not sufficient, and if added excessively, toughness is deteriorated, so 0.004-0.10 % Or less.
本発明の好ましい基本成分組成は以上であるが、更に所望の特性を向上させる場合、Ti、Cu、Ni、Cr、Mo、Nb、V、W、B、Ca、Mg、REMの1種または2種以上を選択元素として添加する。 Although the preferable basic component composition of the present invention is as described above, when further improving desired characteristics, one or two of Ti, Cu, Ni, Cr, Mo, Nb, V, W, B, Ca, Mg, and REM are used. More than seeds are added as selective elements.
Ti:0.005−0.20%
Tiは母材の靭性確保や溶接熱影響部での靭性確保の観点から所定の範囲が良好であるが、0.20%を超えて添加すると靭性の著しい低下をもたらすため、添加する場合は、0.005−0.20%とする。
Ti: 0.005-0.20%
Ti has a predetermined range from the viewpoint of ensuring the toughness of the base metal and ensuring the toughness in the heat affected zone, but if added over 0.20%, the toughness is significantly reduced. 0.005 to 0.20%.
Cu:0.01−2.0%
Cuは強度を増加させるための元素で0.01%以上でその効果を発揮し、2.0%を超えて添加すると熱間脆性により鋼板表面の性状を劣化するため、添加する場合は、0.01−2.0%とする。
Cu: 0.01-2.0%
Cu is an element for increasing the strength and exerts its effect at 0.01% or more, and if added over 2.0%, the steel sheet surface properties deteriorate due to hot brittleness. 0.01-2.0%.
Ni:0.01−4.0%
Niは母材の強度を増加させつつ靭性も向上させることが可能で0.01%以上で効果を発揮し、4.0%以上では効果が飽和し経済的に不利であるため、添加する場合は、0.01−4.0%とする。
Ni: 0.01-4.0%
Ni can improve the toughness while increasing the strength of the base metal, and exhibits an effect at 0.01% or more, and the effect is saturated and economically disadvantageous at 4.0% or more. Is 0.01 to 4.0%.
Cr:0.01−2.0%、Mo:0.01−2.0%
Cr,Moはいずれも強度を増加するのに有効であり、0.01%以上でその効果を発揮し、それぞれ2.0%を越えて添加すると著しく靭性を劣化させるため、添加する場合は、それぞれ0.01−2.0%とする。
Cr: 0.01-2.0%, Mo: 0.01-2.0%
Both Cr and Mo are effective in increasing the strength, and when 0.01% or more, the effect is exerted. When added over 2.0%, the toughness deteriorates remarkably. Each is 0.01-2.0%.
Nb:0.003−0.1%、V:0.003−0.5%
Nb、Vは母材の強度と靭性を向上させる元素であり、0.003%以上の添加で効果を発揮する。またそれぞれ0.1%,0.5%を越えるとかえって靭性の低下を招くおそれがあるため、添加する場合は、Nb:0.003−0.1%、V:0.003−0.5%とする。
Nb: 0.003-0.1%, V: 0.003-0.5%
Nb and V are elements that improve the strength and toughness of the base material, and exhibit an effect when added in an amount of 0.003% or more. Further, if it exceeds 0.1% and 0.5%, respectively, the toughness may be lowered. Therefore, when added, Nb: 0.003-0.1%, V: 0.003-0.5 %.
W:0.003−0.7%
Wは強度および耐食性を向上させる元素であり0.003%未満では効果はなく、0.7%を超えると溶接熱影響部靭性を劣化させるおそれがある。よって、添加する場合は、0.003−0.7%とする。
W: 0.003-0.7%
W is an element that improves strength and corrosion resistance. If it is less than 0.003%, there is no effect, and if it exceeds 0.7%, the weld heat affected zone toughness may be deteriorated. Therefore, when adding, it is set as 0.003-0.7%.
B:0.0005−0.0040%
Bは焼入れ性の向上によって強度を増加させる事ができる。この効果は0.0005%以上で顕著になり0.0040%を越えて添加しても効果は飽和するため、添加する場合は、0.0005−0.0040%とする。
B: 0.0005-0.0040%
B can increase the strength by improving the hardenability. This effect becomes prominent at 0.0005% or more, and the effect is saturated even if added over 0.0040%. Therefore, when added, the content is made 0.0005-0.0040%.
Ca:0.0001−0.0060%、Mg:0.0001−0.0060%、REM:0.0001−0.0200%
Ca、Mg、REMは鋼中のSを固定して鋼板の靭性を向上させる働きがあり、0.0001%以上の添加で効果がある。しかし、それぞれ0.0060%、0.0060%、0.0200%を越えて添加すると鋼中の介在物量が増加し靭性をかえって劣化させるため、添加する場合は、Ca:0.0001−0.0060%、Mg:0.0001−0.0060%、REM:0.0001−0.0200%とする。
Ca: 0.0001-0.0060%, Mg: 0.0001-0.0060%, REM: 0.0001-0.0200%
Ca, Mg, and REM have a function of fixing S in steel and improving the toughness of the steel sheet, and are effective when added in an amount of 0.0001% or more. However, when adding over 0.0060%, 0.0060%, and 0.0200%, respectively, the amount of inclusions in the steel increases and deteriorates the toughness, so when added, Ca: 0.0001-0. 0060%, Mg: 0.0001-0.0060%, REM: 0.0001-0.0200%.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。鋼板とする場合は、上記組成を有する溶鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊−分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。
本発明が対象とする薄肉厚鋼板は、建機用として好適な、寸法が板厚6mm〜25mmで板長20m〜50m、機械的性能は、引張強度が600MPa以上、鋼板の先端部と尾端部で引張強度の差が±25MPa、延性―脆性破面遷移温度(靭性)(vTrs)の差が±10℃の範囲内のものである。
The balance other than the components described above consists of Fe and inevitable impurities. In the case of a steel plate, the molten steel having the above composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and steel such as a slab by a conventional method such as a continuous casting method or an ingot-bundling method. It is preferable to use a raw material. The melting method and the casting method are not limited to the methods described above.
The thin-walled steel plate targeted by the present invention is suitable for construction machinery, has a plate thickness of 6 to 25 mm, a plate length of 20 to 50 m, a mechanical performance of 600 MPa or more, a steel plate tip and tail. The difference in tensile strength is ± 25 MPa and the difference in ductile-brittle fracture surface transition temperature (toughness) (vTrs) is within ± 10 ° C.
板厚6mm未満では、空冷速度が大きいために、圧延温度・冷却開始温度・停止温度のすべてをそれぞれ均一にすることができない。また、板厚25mm以上では、空冷時の冷却速度が小さいため、本発明の温度勾配制御法を用いなくても鋼板の先端と尾端の温度差が小さい。鋼板の板長については、20m未満では、必要な製品の長さが取れないことがある場合や、生産性に劣り、また、本発明の温度勾配制御法を用いなくても、鋼板の先端と尾端の温度差が小さい。また、鋼板の板長が50mを超える場合には、圧延や冷却に時間がかかり鋼板の尾端の温度低下が大きく、鋼板の先端と尾端の温度差が大きく、本発明による温度勾配制御法によっても、鋼板の先端と尾端の温度差を縮めることが困難となる。 If the plate thickness is less than 6 mm, the air cooling rate is high, and therefore, the rolling temperature, the cooling start temperature, and the stop temperature cannot all be made uniform. Further, when the plate thickness is 25 mm or more, the cooling rate at the time of air cooling is small, so that the temperature difference between the tip and tail ends of the steel plate is small without using the temperature gradient control method of the present invention. Regarding the plate length of the steel plate, if it is less than 20 m, the required product length may not be obtained, or the productivity is inferior, and even without using the temperature gradient control method of the present invention, The temperature difference at the tail end is small. Also, when the plate length of the steel plate exceeds 50 m, it takes time for rolling and cooling, the temperature drop at the tail end of the steel plate is large, the temperature difference between the tip and tail ends of the steel plate is large, and the temperature gradient control method according to the present invention This also makes it difficult to reduce the temperature difference between the tip and tail of the steel plate.
鋼板の先端部と尾端部の引張強度の差が±25MPaを外れる場合や延性―脆性破面遷移温度の差が±10℃を外れる場合には、鋼板全体の引張強度や靭性を目標範囲(材料規格)の範囲に制御できる確率が低下し、鋼板の合格率が低下するとともに、鋼板内の加工性などが不均一となる。また、必要以上に圧延仕上げ温度や冷却停止温度などの製造条件を制約するので生産性を阻害する。 If the difference in tensile strength between the tip and tail ends of the steel plate is outside ± 25 MPa, or if the difference in ductile-brittle fracture surface transition temperature is outside ± 10 ° C, the tensile strength and toughness of the entire steel plate will be within the target range ( The probability that it can be controlled within the range of (material standard) is lowered, the acceptance rate of the steel sheet is lowered, and the workability in the steel sheet becomes non-uniform. In addition, the production conditions such as the rolling finishing temperature and the cooling stop temperature are more constrained than necessary, which impedes productivity.
本発明に係る製造方法で厚鋼板を製造し、鋼板全長における機械的性質(強度、靭性)を調査した。図1に示す圧延ー冷却設備において、第1通過型冷却装置は、2つの水切りロール間1mを冷却領域とする冷却設備(図4(C))を使用し、第2通過型冷却装置としては、直接焼入れ設備を使用した。 A thick steel plate was manufactured by the manufacturing method according to the present invention, and the mechanical properties (strength and toughness) of the entire length of the steel plate were investigated. In the rolling-cooling facility shown in FIG. 1, the first passage type cooling device uses a cooling facility (FIG. 4C) in which the cooling area is 1 m between two draining rolls, and the second passage type cooling device is Direct quenching equipment was used.
本実施例では板厚250mm断面スラブから種々の熱間圧延条件を用いて板厚6〜25mmの厚鋼板を製造し、得られた厚鋼板の最先端および最後端からそれぞれ500mm近傍の位置において、全厚の引張試験片を採取して、JIS Z 2241(1998)の規定に準拠して引張試験を実施し、引張強さTSを求めた。 In this example, a steel plate having a thickness of 6 to 25 mm was produced from a 250 mm cross-section slab using various hot rolling conditions, and at a position in the vicinity of 500 mm from the foremost end and the end of the obtained steel plate, Tensile test pieces having a full thickness were collected and subjected to a tensile test in accordance with JIS Z 2241 (1998) to determine the tensile strength TS.
また、同様に、板厚方向1/2の位置からJIS Z 2202(1998)の規定に準拠して、Vノッチ標準寸法のシャルピー衝撃試験片を採取して、JIS Z 2242(1998)の規定に準拠して衝撃試験を実施し、延性−脆性破面遷移温度vTrsを求めた。但し、板厚11mmt以下についてはハーフサイズのシャルピー試験片にてvTrsを求めた。 Similarly, a Charpy impact test specimen having a V-notch standard dimension is taken from the position in the plate thickness direction 1/2 in accordance with the provisions of JIS Z 2202 (1998), and the JIS Z 2242 (1998) is designated. In accordance with the impact test, the ductile-brittle fracture surface transition temperature vTrs was determined. However, for a plate thickness of 11 mmt or less, vTrs was obtained using a half-size Charpy test piece.
表1に供試鋼の成分組成を、表2、3に製造条件および得られた鋼板の強度、靭性を示す。本発明例(No.1〜26)は、先端と尾端のTS差が25MPa以内で均一となり、靭性差(vTrs差)も±10℃以内と良好であった。一方、比較例(No.27〜39)は、先端と尾端のTS差、および/または靭性差が大きく均一な鋼板が得られなかった。 Table 1 shows the component composition of the test steel, and Tables 2 and 3 show the manufacturing conditions and the strength and toughness of the obtained steel sheet. In the inventive examples (Nos. 1 to 26), the TS difference between the tip and the tail became uniform within 25 MPa, and the toughness difference (vTrs difference) was also good within ± 10 ° C. On the other hand, in the comparative examples (Nos. 27 to 39), a uniform steel sheet with a large difference in TS and / or toughness between the tip and tail ends was not obtained.
1 冷却槽
2 滞留した冷却水
3 上方冷却水噴射ノズル
4 鋼板
5 搬送ロール
6 下部冷却水ノズル
7 冷却領域
8 水切りロール
9 圧延機
10 第1通過型冷却装置
11 第2通過型冷却装置
12 加熱炉
13 棒状冷却水
DESCRIPTION OF SYMBOLS 1
Claims (6)
1.仕上げ圧延後の鋼板を、第2の通過型冷却装置で冷却する前に第1の通過型冷却装置で前記鋼板の長手方向に温度勾配を付与する工程。
2.前記鋼板を、第2の通過型冷却装置を一定速度で、通板して焼入れする工程。 A direct quenching type thin steel plate having the following steps using a rolling-cooling device in which a first passing type cooling device and a second passing type cooling device are arranged in order on the downstream side of a reversible hot rolling mill. Production method.
1. A step of applying a temperature gradient in the longitudinal direction of the steel plate with the first passage type cooling device before cooling the steel plate after finish rolling with the second passage type cooling device.
2. A step of quenching the steel sheet by passing a second passage type cooling device at a constant speed.
15L/(hv)≦ΔT≦55L/(hv) ・・・・(1)
但し、h:板厚(mm)、L:長さ(m)、v:第2の通過型冷却装置への進入速度(m/s) When cooling with the first passage type cooling device, the temperature difference ΔT between the steel plate front end and the tail end after cooling is cooled so as to satisfy the expression (1) by changing the conveyance speed and / or the amount of water injection. The method for producing a direct-quenching thin-walled steel sheet according to claim 1.
15L / (hv) ≦ ΔT ≦ 55L / (hv) (1)
However, h: board thickness (mm), L: length (m), v: approach speed (m / s) to 2nd passage type cooling device
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013023109A JP5447702B2 (en) | 2007-03-05 | 2013-02-08 | Production method of direct quenching type thin wall steel plate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007053880 | 2007-03-05 | ||
JP2007053880 | 2007-03-05 | ||
JP2013023109A JP5447702B2 (en) | 2007-03-05 | 2013-02-08 | Production method of direct quenching type thin wall steel plate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008051947A Division JP5911164B2 (en) | 2007-03-05 | 2008-03-03 | Direct quenching type thin wall steel for construction machinery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013139056A JP2013139056A (en) | 2013-07-18 |
JP5447702B2 true JP5447702B2 (en) | 2014-03-19 |
Family
ID=39973666
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008051947A Active JP5911164B2 (en) | 2007-03-05 | 2008-03-03 | Direct quenching type thin wall steel for construction machinery |
JP2013023109A Active JP5447702B2 (en) | 2007-03-05 | 2013-02-08 | Production method of direct quenching type thin wall steel plate |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008051947A Active JP5911164B2 (en) | 2007-03-05 | 2008-03-03 | Direct quenching type thin wall steel for construction machinery |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5911164B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143459A (en) * | 2010-01-15 | 2011-07-28 | Jfe Steel Corp | Method for manufacturing thick steel plate |
JP2011143462A (en) * | 2010-01-15 | 2011-07-28 | Jfe Steel Corp | Method for manufacturing thick steel plate |
JP2011143460A (en) * | 2010-01-15 | 2011-07-28 | Jfe Steel Corp | Method for manufacturing thick steel plate |
JP2011143461A (en) * | 2010-01-15 | 2011-07-28 | Jfe Steel Corp | Method for manufacturing thick steel plate |
JP5621730B2 (en) * | 2011-08-08 | 2014-11-12 | 新日鐵住金株式会社 | Thick steel plate manufacturing method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6383225A (en) * | 1986-09-26 | 1988-04-13 | Kawasaki Steel Corp | Manufacture of high hardness steel sheet |
JPS63223125A (en) * | 1987-03-10 | 1988-09-16 | Sumitomo Metal Ind Ltd | Manufacture of high-tensile steel plate with high-toughness |
JPH11319907A (en) * | 1998-05-18 | 1999-11-24 | Nkk Corp | Equipment for manufacturing thick steel plate and manufacture of thick steel plate |
JP2001064725A (en) * | 1999-08-26 | 2001-03-13 | Nkk Corp | Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging |
JP2001342520A (en) * | 2000-06-02 | 2001-12-14 | Nippon Steel Corp | Method for manufacturing high tension steel of low yield ratio and superior toughness with little fluctuation of material property |
JP4273453B2 (en) * | 2003-04-22 | 2009-06-03 | 住友金属工業株式会社 | Thick steel plate rolling method |
JP2005002372A (en) * | 2003-06-09 | 2005-01-06 | Nippon Steel Corp | Method for producing thick steel plate having small anisotropic characteristic and variation in material quality |
JP2006272437A (en) * | 2005-03-30 | 2006-10-12 | Jfe Steel Kk | Material quality control cooling method in steel plate |
JP5634662B2 (en) * | 2008-02-07 | 2014-12-03 | Jfeスチール株式会社 | Accelerated cooling type thin wall steel plate with excellent homogeneity |
-
2008
- 2008-03-03 JP JP2008051947A patent/JP5911164B2/en active Active
-
2013
- 2013-02-08 JP JP2013023109A patent/JP5447702B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013139056A (en) | 2013-07-18 |
JP2008248383A (en) | 2008-10-16 |
JP5911164B2 (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102666884B (en) | Production method for thick steel plate | |
CN102666885B (en) | Production method for thick steel plate | |
JP5867651B2 (en) | H-section steel and its manufacturing method | |
JP5447702B2 (en) | Production method of direct quenching type thin wall steel plate | |
JP2006183139A (en) | Automobile member and its production method | |
CN104053805A (en) | Steel strip for coiled tubing and method for producing same | |
KR101998952B1 (en) | Ultra high strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality, and method for manufacturing the same | |
JP5447703B2 (en) | Accelerated cooling type thin wall steel plate manufacturing method with excellent homogeneity | |
EP2806042B1 (en) | Process for producing tapered plate | |
JP2013104124A (en) | Directly quenched and tempered high tensile strength steel sheet having excellent bendability and method for producing the same | |
JP5692305B2 (en) | Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method | |
WO2008108483A1 (en) | Thin steel sheet excelling in strength and toughness uniformity, process for producing the same, and apparatus therefor | |
JP5565102B2 (en) | Steel for machine structure and manufacturing method thereof | |
CN113453817A (en) | Square steel pipe, method for producing same, and building structure | |
JPWO2018025778A1 (en) | Seamless steel pipe and manufacturing method thereof | |
JPWO2019050010A1 (en) | Steel sheet and manufacturing method thereof | |
JP5891748B2 (en) | High-strength, high-toughness thick-walled steel plate with excellent material uniformity in the steel plate and method for producing the same | |
CN111910128B (en) | Steel plate for Q690-grade coal mine hydraulic support and production method thereof | |
WO2013084265A1 (en) | Steel for mechanical structures and manufacturing method therefor | |
JP4742617B2 (en) | Manufacturing method of high-strength steel sheet with excellent weld heat-affected zone toughness | |
JP6028759B2 (en) | High tensile steel plate with high Young's modulus in the rolling direction on the surface of the steel plate and method for producing the same | |
JP2005298962A (en) | Method for manufacturing high-strength steel plate superior in workability | |
JP4412099B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP4273825B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same | |
JP4273824B2 (en) | High strength steel plate with excellent weld heat affected zone toughness and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5447702 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |