JPS58120745A - Continuous heat treatment for high tensile cold-rolled steel strip - Google Patents

Continuous heat treatment for high tensile cold-rolled steel strip

Info

Publication number
JPS58120745A
JPS58120745A JP272682A JP272682A JPS58120745A JP S58120745 A JPS58120745 A JP S58120745A JP 272682 A JP272682 A JP 272682A JP 272682 A JP272682 A JP 272682A JP S58120745 A JPS58120745 A JP S58120745A
Authority
JP
Japan
Prior art keywords
cooling
hot water
steel strip
temperature
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP272682A
Other languages
Japanese (ja)
Inventor
Masao Morimoto
森本 磨瑳雄
Ichiro Shinbashi
新橋 一郎
Kozaburo Ichida
市田 弘三郎
Koichi Sakurai
桜井 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP272682A priority Critical patent/JPS58120745A/en
Publication of JPS58120745A publication Critical patent/JPS58120745A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To make the economization of blank material alloys possible without reheating and to cool a steel strip with good shapes by incorporating a cooling method by immersion in static hot water and a cooling method by hot water jets in hot water of prescribed temp. in the post stage to a primary cooling method after soaking. CONSTITUTION:In a primary cooling stage of titled treatment consisting of heating, soaking primary cooling and post-treatment stages, the steel strip S after holding at temp. Ac1-Ac3 is immersed in static hot water W kept at >=90 deg.C, and is cooled down to 710-550 deg.C at 20-90 deg.C/sec cooling rate. As the 2nd stage, the steel strip is cooled by the hot water jets from underwater headers 23 immediately down to the Ms point lower than 200 deg.C at 100-500 deg.C/sec cooling rate in the hot water W' kept at 60-75 deg.C. Since the steel strip can be cooled without cutting the nose of CCT curves by the 2nd stage of the quick cooling, the blank material alloys can be economized. The shape of the steel strip is assured by the above-mentioned selection of the inflection point of the two-stage cooling. If the steel strip after soaking is slowly cooled with gaseous jets down to about 800-600 deg.C in the fore stage of the primary cooling, the shapes of the steel strip is assured and the easy tendency to cutting of the nose of the CCT curves is prevented.

Description

【発明の詳細な説明】 本発明は高張力冷延鋼帯の連続熱処理方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous heat treatment method for high tensile strength cold rolled steel strip.

近年、冷延鋼帯を製造する方法として、非能率なパッチ
焼鈍法に代9、連続焼鈍法が実用化畜れつつある。そし
てその連続焼鈍法は加熱−均熱後の一次冷却の方式によ
りて分類される。
In recent years, as a method for producing cold-rolled steel strips, continuous annealing has been replaced by the inefficient patch annealing method. The continuous annealing method is classified according to the method of primary cooling after heating and soaking.

現在実用化されている一次冷却方式は、ガスジェット冷
却(以下GJCと略記する)と、水焼入れ冷却(以下W
Qと略記する)の二つである。
The primary cooling methods currently in practical use are gas jet cooling (hereinafter abbreviated as GJC) and water quench cooling (hereinafter referred to as W
(abbreviated as Q).

GJC法における代表的な焼鈍サイクルパターンを、加
工用冷延鋼帯について$11 FIAOb、に、高張力
冷延鋼帯にっ匹て第zaob、に示す、また、WQ法に
おける代表的な焼鈍サイクルパターンt1加工用冷延鋼
帯について$1111の12に、高張力冷延鋼帯につい
てJl!2図b2図示2゜これらの実施態様は、それぞ
れ特公昭51−5335号公報にGJe法が、4111
昭52−18415号公報にWQ法が示されている。
Typical annealing cycle patterns in the GJC method are shown in $11 FIAOb for cold-rolled steel strips for processing, and in Zaob for high-tensile cold-rolled steel strips, and typical annealing cycles in the WQ method. 12 of $1111 for cold rolled steel strip for pattern t1 processing, Jl for high tensile strength cold rolled steel strip! Figure 2b2 Diagram 2゜These embodiments are described in Japanese Patent Publication No. 51-5335, the GJe method and 4111, respectively.
The WQ method is disclosed in Publication No. 18415/1983.

しかしながら、これら三方式は各々問題を含んでいる。However, each of these three methods includes problems.

即ち、 (1J  GJC法においては、その冷却速[が1Qp
−のオーダーであシ、冷却を任意の温度(例えば過時効
温度)で停止する、いわゆる終点温度制御が可能なため
、過時効帯の前に再加熱帯t−置く必要もなく、設備費
とエネルギーコストが安いという利点がある一方で、そ
の低い冷却速度ゆえに、近年lll要が高まっている高
張力冷延鋼帯(41に二相組織11M)の製造に際して
素材の合金量を高くしなければならず製品製造コストが
割高になるとiう問題があ(2)WQ法にかいては、そ
の冷却速度が1,000卆−のオーダーであシ、高張力
鋼販の製造に際して低い合金の素材を使用できるという
利点がある一方で、そOX濾過ぎる冷却速度ゆえに、加
工用冷延鋼帯の製造において終点温度制御できないのみ
ならず、高張力冷延鋼帯(4Iに二相組織型)の製造に
おいても冶金学的な必要から焼戻しをする必要があり、
結局いずれの品種の製造においても再加熱CaF2図と
第2図のR部)が不可欠となり設備費とエネルギーコス
トを押上げる結果となっている。そればかりでなくWQ
法におけるこの再加熱は結晶粒内に微細な貴化物七分布
させ、加工用冷延鋼帯と高張力冷延鋼帯を問わず、その
加工性(とくに延性)1i:劣化させる傾向にある。
That is, (1J In the GJC method, the cooling rate [is 1Qp
It is possible to control the so-called end point temperature by stopping the cooling at an arbitrary temperature (for example, the overaging temperature), so there is no need to place a reheating zone before the overaging zone, which reduces equipment costs. While it has the advantage of low energy costs, due to its low cooling rate, it is necessary to increase the alloy content of the material when producing high-strength cold-rolled steel strip (41 and 11M dual-phase structure), which has become increasingly important in recent years. (2) With the WQ method, the cooling rate is on the order of 1,000 liters, and it is difficult to use low alloy materials when manufacturing high-strength steel. Although it has the advantage of being able to use the During manufacturing, it is necessary to temper due to metallurgical requirements.
In the end, reheating CaF (Fig. 2 and section R in Fig. 2) is indispensable in the production of any type of product, resulting in increased equipment costs and energy costs. Not only that but WQ
This reheating in the process causes fine noble compounds to be distributed within the grains, which tends to deteriorate the workability (especially ductility) of both cold-rolled steel strips and high-strength cold-rolled steel strips.

以上のような既存方式の間at解決する別の冷却方式と
して、最近静止温水浸漬冷却法が考えられている。この
冷却法は、%開昭52−93619号公報に見られるよ
うに静止し九沸点に近い温水に鋼帯t−浸漬冷却す、6
ものである。これによル高温域では銅帯表面に均一な1
膜沸騰#を起重せて、40 c/41!c程度の少しば
かり急速な冷却を行ない、低温域では銅帯表面の1核沸
騰”によ多、150!−程度の急速冷却を行なう所の「
二段冷却」が自然に行われる。
A static hot water immersion cooling method has recently been considered as another cooling method that solves the problem of existing methods as described above. This cooling method is as shown in Japanese Patent Publication No. 52-93619, in which the steel strip is cooled by immersion in hot water with a boiling point close to 9.
It is something. This results in uniform 1 on the surface of the copper strip in the high temperature range.
Raise the film boiling #, 40 c/41! In the low-temperature region, rapid cooling of about 150 cm is performed, and rapid cooling of about 150 cm is performed.
"Two-stage cooling" occurs naturally.

この静止温水浸漬冷却法の狙いは、加工用冷延鋼帯製造
の際には過時効温度(約400℃)での冷却終点温度制
御を行ない、を九高張力冷延鋼帯製造の際には穏やかな
急速冷却で以って、再加熱なしに素材合金を節減しよう
とするものであるが、実は後者の狙いに若干の問題があ
る。即ち、上記二段冷却の変曲点が自然の状態では約3
00℃であるため、その温度まで40$程度のめまり早
くない冷却が続くことになる・すると、高張力冷延鋼帯
(とくに二相組織’fJ)製造時の冷却において、素材
によっては冷却曲線が連続冷却変態曲線(以下OCTカ
ーブと略記する)のノーズを切りてしま−(第3図の曲
線d参照)、合金節減の効果が思うように得られないこ
とになる。
The purpose of this static hot water immersion cooling method is to control the cooling end point temperature at the overaging temperature (approximately 400°C) when producing cold rolled steel strip for processing, and to attempts to save the raw material alloy without reheating by gentle rapid cooling, but there are actually some problems with the latter aim. That is, the inflection point of the two-stage cooling is about 3 in the natural state.
Since the temperature is 00°C, cooling of about 40 degrees will continue to reach that temperature, which is not rapid. Therefore, depending on the material, cooling during production of high-strength cold-rolled steel strip (especially dual-phase structure 'fJ) may be difficult. The curve cuts off the nose of the continuous cooling transformation curve (hereinafter abbreviated as OCT curve) (see curve d in FIG. 3), and the desired effect of alloy saving cannot be obtained.

tた、静止温水浸漬冷却においては、形状確保上の必要
性から浴温は沸点に極く近い温度に限られる結果、冷却
**は銅帯板厚によって一義的に定ま夕、従りて冷却速
度も、二段冷却の変曲点もま九非可変である。これは、
今後の流動的な高張力冷延鋼帯への特性要求を考えると
き、7レキシビリテイに欠け、好ましめとは言えない。
In addition, in static hot water immersion cooling, the bath temperature is limited to a temperature extremely close to the boiling point due to the need to maintain the shape, so the cooling** is uniquely determined by the thickness of the copper strip. The cooling rate and the inflection point of two-stage cooling are also non-variable. this is,
When considering future characteristics requirements for fluid high-tensile cold-rolled steel strips, it lacks flexibility and cannot be said to be desirable.

さらに、静止温水への自然浸漬冷却で起きる二段冷却の
変曲点は、その前後の冷却速度の差が大きいために銅帯
の形状をこわす恐れがある(鉄と鋼、62(1976)
6、「冷延ストリップの水焼入技術の開発JP636参
照)。
Furthermore, the inflection point of two-stage cooling, which occurs during natural immersion cooling in still hot water, may destroy the shape of the copper strip due to the large difference in cooling rate before and after the inflection point (Tetsu to Hagane, 62 (1976)).
6. ``Development of water quenching technology for cold rolled strips'' (see JP636).

以上11とめれば、単純な静止温水浸漬冷却法は、高張
力冷延鋼帯YcIlll造する際に、従来のGJC法、
WQ法に比べて利点が少ないのみならず満足な形状の製
品も得られない可能性があるということになる。
Based on the above 11, the simple static hot water immersion cooling method is suitable for the conventional GJC method,
This means that not only is there less advantage than the WQ method, but there is also a possibility that a product with a satisfactory shape cannot be obtained.

本発明の目的は、前述の静止温水浸漬冷却法における問
題点を解決しうる、高張力冷延鋼帯の連続熱処理方法を
提供することにある。
An object of the present invention is to provide a continuous heat treatment method for high-strength cold-rolled steel strip, which can solve the problems of the above-mentioned static hot water immersion cooling method.

上記目的に鑑み、本発明者らは次の点に着目した。即ち
、高張力冷延鋼帯の連続熱処理における均熱後の一次冷
却法において、二段冷却型とし、少くとも後段には静止
温水浸漬冷却流以外の冷却法を用いることによ夕、静止
温水冷却法の難点を回避しようとするものである。
In view of the above object, the present inventors focused on the following points. That is, in the primary cooling method after soaking in continuous heat treatment of high-strength cold-rolled steel strip, a two-stage cooling type is used, and at least in the latter stage, a cooling method other than immersion cooling flow in still hot water is used. This method attempts to avoid the drawbacks of cooling methods.

本発明者らは種々検討した結果「浸漬冷却法」を採用す
るが、前述のような静止温水浸漬冷却法の轍1−*まず
に形状良く銅帯を冷却するには、銅帯表面の蒸気膜を均
一に除去してやらねばならないので、後段の冷却におい
て温水中で噴流を銅帯に吹付ける方法をとった。その際
水温が低過ぎると、銅帯の冷却は過度の急冷となシ前記
したように焼戻しの九めの再加熱が必要となるので、冷
却速度t 500 C/−以下に抑えるため、水は60
℃以上の温度の温水が望ましく、一方水温が高過ぎても
冷却効果が落ち、設備費が高くなるのみならず、焼入組
織が得られる100ルー以上の冷却速度が得られないの
で75℃以下の温度の温水が望ましい。
The inventors of the present invention adopted the "immersion cooling method" as a result of various studies, but the above-mentioned stationary hot water immersion cooling method was adopted. Since the film had to be removed uniformly, a method was used in which a jet was blown onto the copper strip in hot water during the subsequent cooling step. At that time, if the water temperature is too low, the copper strip will be cooled too rapidly and will require the ninth reheating of the tempering process as described above. Therefore, in order to keep the cooling rate below t 500 C/-, water is 60
It is preferable to use hot water with a temperature of ℃ or higher.On the other hand, if the water temperature is too high, the cooling effect will decrease and the equipment cost will not only increase, but also it will not be possible to obtain a cooling rate of 100 Roux or higher to obtain a hardened structure, so the temperature should not exceed 75℃. Preferably hot water at a temperature of .

以上をまとめると、後段冷却法としてa、60℃以上7
5℃以下の温水を用いた水中噴流冷却法(以下温水噴流
冷却法と略記する)がi!に遍であるということになる
To summarize the above, the post-cooling method is a, 60℃ or higher, 7
The underwater jet cooling method (hereinafter abbreviated as the hot water jet cooling method) using hot water of 5°C or less is i! This means that it is uniform.

この冷却法を後段に用いれば、その冷却速度は、100
〜500!−の範囲にあシ、後段冷却の開始点t−40
0℃以上にとれば、CCTカーゾのノーズを切ることな
く冷却でき(第3図の曲線−参糺ひいては素材合金の節
減ができる。また、後段冷却の開始温度は可変であるの
で、冷却曲線も7レキシプルなものとすることができる
。この温水噴流冷却法と前述の静止温水浸漬冷却法とを
合わせて温水冷却法と呼ぶ。
If this cooling method is used in the latter stage, the cooling rate will be 100
~500! -, starting point of post-cooling t-40
If the temperature is set to 0°C or above, the CCT Curzo can be cooled without cutting the nose (see the curve in Figure 3), and the material alloy can be saved.Also, since the starting temperature of the post-cooling is variable, the cooling curve can also be changed. This hot water jet cooling method and the static hot water immersion cooling method described above are collectively referred to as the hot water cooling method.

一方、−次冷却の前段冷却法としては、前記した如く静
止温水浸漬冷却法を用いる。この冷却法は20〜90′
CS−程度の緩やかな冷却であ夛、高張力冷延鋼帯の製
造においてはオーステナイト相への炭素や合金元素の拡
散濃縮を促し、後段での急冷でマルテンサイト化を容易
にするので好ましい。冷却速度が20!−未満ではCC
Tのノーズを切9易く合金節減の効果がうすれ、s o
 ’c+ i超えると1相へのCなどの合金元素の濃縮
効果がうすれる。
On the other hand, as the pre-cooling method for the second cooling, the static hot water immersion cooling method is used as described above. This cooling method is 20~90'
In the production of high-strength cold-rolled steel strips, gradual cooling at CS- level is preferred because it promotes diffusion and concentration of carbon and alloying elements into the austenite phase and facilitates martensite formation by rapid cooling in the subsequent stage. Cooling rate is 20! - less than CC
It is easy to cut the nose of the T, and the effect of alloy saving is diminished, so
If it exceeds 'c+i, the effect of concentrating alloying elements such as C into one phase will be diminished.

この二段冷却において、変曲点は550℃以上、とする
ことによって合金節減効果は大きくなる。
In this two-stage cooling, by setting the inflection point to 550° C. or higher, the alloy saving effect becomes greater.

しかし高温度にすると固溶限の関係から上記拡散′aI
k11の効果がうすれてしまうので710℃以下が必要
である。
However, at high temperatures, due to the solid solubility limit, the above diffusion 'aI
Since the effect of k11 is lost, a temperature of 710°C or lower is required.

本発明の方法に基〈大まかな焼鈍サイクルパターンを第
2図の1に示す。この焼鈍サイクルにより、M5点以下
の温度までの穏やかな急速冷却によシ再加熱なしに素材
合金を節減することができる。
Based on the method of the present invention, the rough annealing cycle pattern is shown in 1 in FIG. This annealing cycle allows the material alloy to be saved by gentle rapid cooling to temperatures below the M5 point without reheating.

高張力冷延鋼帯(とくに二相組織型)の製造に際して一
次冷却の最終段における温水噴流冷却においては、第3
図における曲線Cが示すように、銅帯温度がM、点を完
全に切るように冷却場れなければならない。
In the hot water jet cooling at the final stage of primary cooling when producing high tensile strength cold rolled steel strip (especially of the two-phase structure type), the third
As shown by curve C in the figure, the cooling field must be set so that the copper strip temperature completely cuts through the point M.

素材成分にも依るが、通常M、点は300℃前後にあり
、これを完全に下まわるためには温水噴流冷却の終点温
度は200C以下であるべきである。
Although it depends on the material composition, the M point is usually around 300°C, and in order to completely lower this temperature, the end point temperature of hot water jet cooling should be 200°C or less.

とくに、この温水を用いる噴流冷却では、冷水を用いる
場合とことなり冷却速度が過度に高くない穏やかな急速
冷却が行われるため、製品の加工性を確保するための冷
却後の焼戻しも不要でありそれに要する再加熱エネルギ
ーも節約石れ、また、この温度域(〜200℃)での困
難な終点制御も不要であるとめう利点がある。
In particular, in jet cooling using hot water, unlike when using cold water, the cooling rate is not excessively high and gentle rapid cooling is performed, so there is no need for post-cooling tempering to ensure the workability of the product. There are advantages in that the reheating energy required for this is saved, and difficult end point control in this temperature range (~200°C) is not required.

一次冷却設備としては、静止温水浸漬冷却のみでは、膜
沸騰から核沸騰への変曲点が約300℃とな、り CO
T曲線のノーズを切シ、マルテンサイトとならない、そ
のため550℃以上、71O℃以下の温度から、100
〜500Q−の冷却速度がとれるよう、かつ蒸気膜を銅
帯両面から均一に除来して形状を確保するため、はぼ画
直に搬送される鋼帯表面に60〜75℃の温水t−噴流
として吹付けるノズルを設けられるよう竪型槽を採用す
る・横型ではライン長が延びて設備費が高くなるばかり
でなく銅帯上下面の冷却状況(気泡の発生と除却に差異
を生じ、銅帯の形状がこわれやすい。
As a primary cooling facility, if only static hot water immersion cooling is used, the inflection point from film boiling to nucleate boiling is approximately 300°C.
If the nose of the T curve is cut, it will not become martensite, so from a temperature of 550℃ or higher and 71O℃ or lower,
In order to obtain a cooling rate of ~500Q-, and to uniformly remove the vapor film from both sides of the copper strip to ensure its shape, hot water at 60-75℃ is applied to the surface of the steel strip, which is conveyed directly to the surface of the copper strip. A vertical tank is used so that a nozzle can be installed to spray the jet stream. ・A horizontal tank not only increases the line length and increases equipment costs, but also increases the cooling condition of the upper and lower surfaces of the copper strip (causing differences in the generation and removal of air bubbles, The shape of the belt is easily broken.

本発明の第2の特徴に従って一次冷却の前段においてガ
スジェット冷却による徐冷を行なう理由を説明する。
The reason for performing slow cooling by gas jet cooling in the preceding stage of primary cooling according to the second feature of the present invention will be explained.

温水浸漬開始時O鋼帯温度を冶金的な理由及び銅帯の形
状の確保に必要な温度まで低くするため、本発明の第2
の特徴に従って均熱後の銅帯を、温水冷却槽以前でガス
ジェット冷却装置を用いて冷却するが、5℃/露以下で
は設備が過大とな〉、30″’CAC以上では冶金的な
、または形状確保上の徐冷効果が出ないのでガスジェッ
ト冷却装置を用いて5Q4a:以上30”A@eJJ、
下の冷却速度で600℃以上800℃以下の温度まで冷
却後、温水冷却槽に浸漬する。
In order to lower the O steel strip temperature at the start of hot water immersion to a temperature necessary for metallurgical reasons and to ensure the shape of the copper strip, the second method of the present invention
The copper strip after soaking is cooled using a gas jet cooling device before the hot water cooling tank according to the characteristics of Or, since there is no slow cooling effect to secure the shape, use a gas jet cooling device.5Q4a: 30"A@eJJ,
After cooling to a temperature of 600°C or more and 800°C or less at the cooling rate shown below, it is immersed in a hot water cooling tank.

前記した如く本発明の第2の特徴に従って、ガスジェッ
ト冷却による均熱温度からの冷却を800℃以下600
℃以上の温度とする理由は静止温水浸漬冷却を開始する
温度が800℃を超えると鋼帯形状がこわれ、また60
0℃より低い温度までGJCで冷却すると、CCTのノ
ーズを切シャすく折角の合金節減効果がうすれるからで
ある。
As described above, according to the second feature of the present invention, the cooling from the soaking temperature by gas jet cooling is reduced to 800°C or less.
The reason why the temperature is higher than 800°C is that if the temperature at which static hot water immersion cooling starts exceeds 800°C, the shape of the steel strip will be broken.
This is because if the GJC is used to cool the CCT to a temperature lower than 0° C., the alloy saving effect that has been achieved by cutting the nose of the CCT will be lost.

以下本発明についての実施例を図面を用いて詳述する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は、本発F!Aft実施するための連続焼鈍設備
の全体を示すもので、1は捲戻機、2は溶接機、3は洗
浄装置、4は入側ルーパー、5は加熱帯、6は均熱帯、
7は本発明の主体を成す一次冷却装置であり、また、1
1は出側ルーパー、12は調質圧延機、13は検査精整
部、14は剪断機、15は捲取機である。
Figure 4 shows the original F! This shows the entire continuous annealing equipment for performing Aft, where 1 is an unwinding machine, 2 is a welding machine, 3 is a cleaning device, 4 is an entrance looper, 5 is a heating zone, 6 is a soaking zone,
7 is a primary cooling device which constitutes the main body of the present invention, and 1
1 is an exit looper, 12 is a temper rolling mill, 13 is an inspection and finishing section, 14 is a shearing machine, and 15 is a winding machine.

第4図において炉全体がすべて竪型パスよシ構成される
竪型炉であることは、スペース・セーヴイングの点から
このラインが大能力高速ラインに通していることを示し
ている。
In FIG. 4, the fact that the entire furnace is a vertical furnace constructed entirely of vertical paths indicates that this line is connected to a high-capacity, high-speed line from the point of view of space saving.

次に第4図における一次冷却装置7の実施態様を第5図
に示す。この−次冷却装置は基本的には、連結された2
槽の温水浸漬槽より成る0図において21ど211は各
々第一と第二の温水浸漬槽、22と221は鋼帯SYI
:浸漬させつつ転回する装置(例えばジンクロール)、
23は第二浸漬槽21&の下りパスに設置された水中噴
流ヘッダーである。第一浸漬槽21の水性浴Wはほぼ沸
点に保たれ、浴面りの上下か、転回装置22の上下によ
り鋼帯Sの浸漬長さを調節し、終点制御を可能ならしめ
ている。第二浸漬槽21mの水性浴Vは通常例えば70
℃程獣詳しくは60℃以上、また好ましくは75℃以η
の浴温に保たれると共に、場合によってはその浴面L′
を転回装置22aの下まで下けて、銅帯St1空通し”
することができる。この装置の使用法は次の通りである
。即ち、前段冷却を第一槽21の静止沸騰浴wt−用い
て行なった後、後段冷却を第二槽21mの水中ヘッダー
23を働かせた水性浴W′(浴温は70℃前後氷用いて
温水噴流冷却により行なう。この二段冷却の変曲点は、
冶金学的な理由または形状確保上の必要性から選ばれ、
通常450〜710℃の範囲にあるが、合金節約のため
には高い方が良く、550℃以上であることが望ましい
Next, an embodiment of the primary cooling device 7 shown in FIG. 4 is shown in FIG. This secondary cooling system basically consists of two
In figure 0, 21 and 211 are the first and second hot water immersion tanks, respectively, and 22 and 221 are the steel strips SYI.
: Equipment that rotates while dipping (e.g. zinc roll),
23 is an underwater jet header installed on the downstream path of the second immersion tank 21&. The aqueous bath W in the first immersion tank 21 is maintained at approximately the boiling point, and the immersion length of the steel strip S is adjusted by raising and lowering the bath surface or by raising and lowering the turning device 22, making it possible to control the end point. The aqueous bath V of the second immersion tank 21m is usually, for example, 70 m.
℃ more specifically 60℃ or higher, preferably 75℃ or higher
The bath temperature is maintained at the bath temperature, and in some cases, the bath surface L'
Lower it to the bottom of the turning device 22a and pass the copper strip St1 through the air.
can do. The method of using this device is as follows. That is, after the first-stage cooling is performed using the stationary boiling bath wt- in the first tank 21, the second-stage cooling is performed in the second tank 21m using an aqueous bath W' (the bath temperature is around 70°C using ice and heated water) using the submersible header 23. This is done by jet cooling.The inflection point of this two-stage cooling is
Selected for metallurgical reasons or the need to secure shape,
The temperature is usually in the range of 450 to 710°C, but in order to save alloy, the higher the temperature, the better, and preferably 550°C or higher.

均熱温度が高目(例えば800℃以上)の場合には形状
確保のために、本発明の第2の特徴に従って均熱帯6と
該−次冷却装置70間に一次徐冷帯6&を設置する。
When the soaking temperature is high (for example, 800° C. or higher), a primary cooling zone 6& is installed between the soaking zone 6 and the secondary cooling device 70 in accordance with the second feature of the present invention to ensure the shape. .

本発明を実施する装置の他の実施態様を第6図に示す。Another embodiment of the apparatus for carrying out the invention is shown in FIG.

基本的には、互いに連接した複数の温水浸漬槽よシ成C
121mと21bは温水浸漬冷却槽、211!は水中噴
流ヘッダー23をもつ温水噴流冷却槽である。(この例
では温水噴流冷却槽は一槽であるが、基本的には複数で
もよい、)各々複数の温水浸漬冷却槽と温水噴流冷却槽
をもつことにより大能力のラインに適用できる。
Basically, it consists of multiple hot water immersion tanks connected to each other.
121m and 21b are hot water immersion cooling tanks, 211! is a hot water jet cooling tank with an underwater jet header 23. (In this example, there is one hot water jet cooling tank, but basically there may be a plurality of hot water jet cooling tanks.) By having a plurality of hot water immersion cooling tanks and hot water jet cooling tanks, respectively, it can be applied to a large capacity line.

第6図に示される実施態様のもう一つの特徴は、「空送
部」がないことである、即ち、種間は隔壁26で仕切ら
れているのみで互いに密接しており、また槽上部の上部
転回ロール(デフレクタ−ロール)27に種間で一本の
みであり、且つ自身の上部にもう一本のμmル28をも
ってピンチロールのような形になってお夛、鋼帯Sが浴
匣りがら空中に露出することなく連続して水中で冷却さ
れるようになっている。これによp1冷却途中での外気
遮断7−ドが不要となり、また、実質的に冷却速vを低
めることになる冷却曲線上の「棚」をなくすことができ
る。
Another feature of the embodiment shown in FIG. 6 is that there is no "pneumatic section", i.e. the species are in close contact with each other, separated only by partition walls 26, and The upper turning roll (deflector roll) 27 has only one roller between the seeds, and has another μm roll 28 on the upper part of itself to form a pinch roll-like shape, and the steel strip S is shaped like a bathtub. It is designed to be continuously cooled underwater without being exposed to the air. This eliminates the need to shut off the outside air during cooling p1, and also eliminates the "shelf" on the cooling curve that would substantially reduce the cooling speed v.

なお水中噴流へ、グーについて説明すると水中噴流ヘッ
ダー23への温水供給は、噴流水供給ポンf25により
、例えば、温水浸漬槽21内の温水を引出して供給する
。即ち、内部循環型の噴流システムとなっているので、
噴流系が作動するだけで、浴面水位中浴温が変化するこ
とはなく、安定した操業を続けることができる。
In addition, to explain the goo to the underwater jet, hot water is supplied to the underwater jet header 23 by drawing out, for example, hot water in the hot water immersion tank 21 by a jet water supply pump f25. In other words, since it is an internal circulation jet system,
Just by operating the jet system, the bath surface water level and bath temperature do not change, allowing stable operation to continue.

又第6図における浴面水位りの調節の概略系統図を第7
図に示す。21は温水浸漬槽、31は温水浸漬槽21よ
り下部に位置するリザーブタンク、32は温水浸漬槽2
1より上部に位置するヘッドタンク、33は揚水ポンプ
、34と35は弁である。
In addition, the schematic system diagram for adjusting the bath surface water level in Figure 6 is shown in Figure 7.
As shown in the figure. 21 is a hot water immersion tank, 31 is a reserve tank located below the hot water immersion tank 21, and 32 is a hot water immersion tank 2.
A head tank is located above 1, 33 is a water pump, and 34 and 35 are valves.

温水浸漬槽21の浴面水位Lt上げるときは弁34’に
開けて、21内の水を重力により速やかにリザーブタン
ク31へ落す。リザーブタンク31へ落した水は、温水
浸漬槽21で低水位操業をしている間にボンデ33によ
シヘッドタンク32へ上げておく、そして温水浸漬槽2
1の水位Lt上けるときは弁35t−開けて、再び重力
によシ速やかに、ヘッドタンク32内の水を温水浸漬槽
24へ落す。
When raising the bath surface water level Lt of the hot water immersion tank 21, the valve 34' is opened and the water in the bath 21 is quickly dropped into the reserve tank 31 by gravity. The water dropped into the reserve tank 31 is raised to the head tank 32 through the bonder 33 while the hot water immersion tank 21 is operating at a low water level.
When raising the water level Lt of 1, the valve 35t is opened and the water in the head tank 32 is quickly dropped into the hot water immersion tank 24 by gravity again.

この重力を利用する方法によル、浴面りの水位の制御を
行なうことができる。
By using this method of gravity, the water level at the bath surface can be controlled.

温水噴流冷却槽においては、高張力冷延鋼帯の冷却に際
し、前述のように例えば60℃以上75℃以下の一定温
度に浴温tm節する必要がある。
In a hot water jet cooling tank, when cooling a high-tensile cold-rolled steel strip, it is necessary to maintain the bath temperature tm at a constant temperature of, for example, 60° C. or higher and 75° C. or lower, as described above.

この浴温調節の具体的な方法としては、例えば、第8図
のような間接冷却法がある。
A specific method for adjusting the bath temperature is, for example, an indirect cooling method as shown in FIG.

21mは温水浸漬槽(第5図に示す第二槽)、41は循
環ボンデ、42は熱変換器、43は外部冷却水系統、4
4は三方弁、45は浴温検出器である。温水浸漬槽21
a内の水はボンデ41に吸い出されて熱交換器42で外
部冷却水43により冷却てれた後、再び温水浸漬槽21
mへ戻る。その際、浴温検出器45により浴温を検出し
て三方弁44を調節し、熱又換器42へ行く外部冷却水
量を制御する。これにより、浴Vは鋼帯Sが持込む熱量
を外部へ排出し、自身は一定の浴温を保つことができる
21m is a hot water immersion tank (second tank shown in Figure 5), 41 is a circulation bonder, 42 is a heat converter, 43 is an external cooling water system, 4
4 is a three-way valve, and 45 is a bath temperature detector. Hot water immersion tank 21
The water in a is sucked out by the bonder 41 and cooled by external cooling water 43 in the heat exchanger 42, and then returned to the hot water immersion tank 21.
Return to m. At this time, the bath temperature is detected by the bath temperature detector 45 and the three-way valve 44 is adjusted to control the amount of external cooling water going to the heat exchanger 42. Thereby, the bath V discharges the heat brought in by the steel strip S to the outside, and can maintain a constant bath temperature.

第9図は、本発明の第2の特徴に従って一次冷却に初期
徐冷が必要な場合の設備配列を示す。
FIG. 9 shows an equipment arrangement when initial slow cooling is required for primary cooling according to the second feature of the invention.

21は温水浸漬槽、51はガスジェットクーラーである
。鋼帯Sは、ガスジェットクーラー51により徐冷され
た後、温水浸漬槽21で所要の冷却速度で冷却される。
21 is a hot water immersion tank, and 51 is a gas jet cooler. After being slowly cooled by the gas jet cooler 51, the steel strip S is cooled at a required cooling rate in the hot water immersion tank 21.

その際、鋼帯Sが温水浸漬槽21内の浴W中で冷却され
るまでは外気ta断じておく必要があるのでその先端が
浴W内に没しているフード521に設置し、ま次温水浸
漬槽21内で発生し念水蒸気がガスノ、ットクーラー5
1の方へ逆流しないよう、スロート53を設置する。
At that time, it is necessary to cut off the outside air until the steel strip S is cooled in the bath W in the hot water immersion tank 21, so the steel strip S is installed in a hood 521 whose tip is submerged in the bath W, and then the hot water Steam generated in the immersion tank 21 is sent to the gas cooler 5.
A throat 53 is installed to prevent the flow from flowing backwards toward the flow direction.

以上の説明から明らかなように本発明に従い静止沸騰浴
浸漬冷却と温水噴流吹付浸漬冷却とを巧みに組合わせる
ことによル過度に過ぎない急速冷却を実現し、且つその
冷却過程において、変曲点温度の可変な2段冷却を可能
ならしめるものである。これにより優れた特性をもつ高
張力冷延鋼帯を安価な製造コストで生産する設備として
安価な投資で実現される。さらにそのフレキシブルな焼
鈍サイクルは将来に向けての新製品開発の高いボテンシ
アルを提供する。
As is clear from the above description, by skillfully combining static boiling bath immersion cooling and hot water jet immersion cooling according to the present invention, extremely rapid cooling can be achieved, and in the cooling process, inflection This enables two-stage cooling with variable point temperature. This makes it possible to produce high-strength cold-rolled steel strip with excellent properties at a low manufacturing cost and with a low investment cost. Furthermore, its flexible annealing cycle provides high potential for new product development in the future.

以下に、本発明による効果について、従来法との比較に
おいて詳述する。従来法としてはGJC法とWQ法を採
夛上げる。
Below, the effects of the present invention will be explained in detail in comparison with conventional methods. As conventional methods, the GJC method and the WQ method are adopted.

まず、製品品質の比較評価を具体的実施例に基いて行な
う。
First, a comparative evaluation of product quality will be made based on specific examples.

実施例 本実施例では引張強さが60−2クラスで、二相組織を
有する良加工性高張力冷延鋼帯の製造を目標に行なった
。素材の基本成分は、c : 0.079憾、Si:0
.58憾、 p:o、ots憾。
EXAMPLE In this example, the objective was to manufacture a high-strength cold-rolled steel strip having a tensile strength of 60-2 class and having a two-phase structure and good workability. The basic components of the material are c: 0.079, Si: 0.
.. 58 regrets, p:o, ots regrets.

S : 0.009憾、 At:0.0611# N:
0.0052憾であシ、所定の引張強さ60#/l1l
t″もたせるため、連続焼鈍方法に応じて、Mu含有量
ka11表に示す如く変えた。
S: 0.009, At: 0.0611# N:
0.0052 Sorry, specified tensile strength 60#/l1l
In order to increase the t'', the Mu content was changed as shown in Table ka11 depending on the continuous annealing method.

これらの鋼を仕上温度890℃、捲取温度610℃で板
厚2.31111に熱間圧延し、酸洗後0.7騙厚みに
冷間圧延し、次いで本発明の連続焼鈍方法と従来法の連
続焼鈍方法にて連続焼鈍して製品とした。
These steels were hot-rolled to a thickness of 2.31111 at a finishing temperature of 890°C and a winding temperature of 610°C, and after pickling, cold-rolled to a thickness of 0.7mm, and then subjected to the continuous annealing method of the present invention and the conventional method. The product was made by continuous annealing using the continuous annealing method.

その際の焼鈍サイクルパターンはg2mElに示すよう
なものであり、aが本発明に、b、がGJC法に、b2
がWQ法に相当する。
The annealing cycle pattern at that time is as shown in g2mEl, where a is for the present invention, b is for the GJC method, and b2
corresponds to the WQ method.

その結果を、連続焼鈍条件とともに第1表に示す、なお
、−次冷却における浸漬槽の浴温は、第一槽で98C1
同じく第二槽で68℃、ま九、従来法−2(WQ法)で
約40℃であっ九。
The results are shown in Table 1 together with the continuous annealing conditions.The bath temperature of the immersion tank in the second cooling was 98C1 in the first tank.
Similarly, the second tank was heated to 68°C, and the conventional method-2 (WQ method) was heated to about 40°C.

この第1表から明らかなように、本発明の連続焼鈍方法
では、従来法−2(WQ法)に比較して、過度に過ぎな
い急速冷却が達成されるので、所要合金Mn量はやや高
いながらも、再加熱−焼戻しをする8袈がなく、且つ、
材質的にも加工性が格段に優れた良加工性高張力冷延鋼
帯が製造できることがわかる。
As is clear from Table 1, the continuous annealing method of the present invention achieves extremely rapid cooling compared to conventional method-2 (WQ method), so the required amount of alloy Mn is slightly higher. However, there is no reheating and tempering process, and
It can be seen that a high-strength cold-rolled steel strip with excellent workability and excellent workability can be produced in terms of material.

また従来法−1(GJC法)と比較すると、とくに後段
冷却速度が急速なものになっていることから、素材合金
成分が大幅に節減されることがわかる。
Furthermore, when compared with Conventional Method-1 (GJC method), it can be seen that the material alloy components are significantly reduced, especially since the cooling rate in the latter stage is rapid.

次に上述の実施例を踏まえ、本発明による方法と従来法
(GJC法及びWQ法)の間の総合的な比較評価を試み
る。
Next, based on the above examples, a comprehensive comparative evaluation will be attempted between the method according to the present invention and the conventional methods (GJC method and WQ method).

第2表に、製品材質、製造コスト、設備費についての上
記方法間の比較評価を示す。第2表の内容を詳述すれば
次の通シである。即ち、1)  g品材質:本発明の方
法では従来法−21’Q法)とi4なp−気急冷後の再
加熱−焼戻しがない(実施例参照)ので、従来法−1C
GJC法)同様の優れた加工性をもつ製品が得られる。
Table 2 shows a comparative evaluation of the above methods regarding product materials, manufacturing costs, and equipment costs. The details of Table 2 are as follows. That is, 1) G-product material: In the method of the present invention, there is no conventional method-21'Q method) and i4 p-reheating after air quenching-tempering (see Examples), so conventional method-1C
(GJC method) A product with similar excellent workability can be obtained.

2)  14品、製造コスト: 実施例に見るように本発明では従来法−1(GJC法)
に比べ素材合金成分量が節減されるので素材コスト、ひ
いては製品製造コストが低減畜れる。従来法−2(WQ
法)に比べると本発明では再加熱がないので慾料コスト
は節減されるが、製品グレードによっては、第1表に示
すようにやや長目の素材合金成分量を要するので素材コ
ストが嵩むことがある。
2) 14 products, manufacturing cost: As seen in the examples, in the present invention, conventional method-1 (GJC method)
Since the amount of alloy components in the material is reduced compared to the previous method, the material cost and, ultimately, the product manufacturing cost can be reduced. Conventional method-2 (WQ
Compared to the method (method), the present invention does not require reheating, so the cost of fertilizers is reduced; however, depending on the product grade, as shown in Table 1, a slightly longer material alloy content is required, which increases the material cost. There is.

3)設備投資額:本発F!4を実施する連続焼鈍設備の
所要投資額は、従来法−2(WQ法)に比べ、割高な再
加熱帯がない九めにかなり安価である。
3) Capital investment amount: Main F! The required investment amount for continuous annealing equipment for carrying out step 4 is considerably cheaper than conventional method-2 (WQ method), which does not require a relatively expensive reheating zone.

以上の説明かられかるように、本発明は、高張力冷延鋼
帯の製品特性、製品製造コスト、所要設備投資額のいず
れの面でも従来法(GJC法、WQ法)に勝る有用なグ
ロセス【提供するものである。
As can be seen from the above explanation, the present invention provides a useful gross process that is superior to conventional methods (GJC method, WQ method) in terms of product characteristics, product manufacturing cost, and required capital investment for high-strength cold-rolled steel strip. [This is what we provide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加工用冷延鋼帯の焼鈍冷却サイクルの概略図、
第2図は高張力冷延鋼帯の熱処理サイクルの概略図、第
3図は高張力冷延鋼帯を連続熱処理する場合の連続冷却
曲線図、第4図は本発明の連続熱処理設備を含む冷延鋼
帯連続処理設備の全体図、第5図は第4図における一次
冷却装置7の詳細図、fs6図は第4図における一次冷
却装置7の他の実施態様図、第7図は冷却槽浴面の水位
制御装置の概略図、第8図は一次冷却槽の温度制御装置
の概略図、第9図はガスジェットクーラーを設置した一
次冷却装置の概略図である。 第1図 す。 算2図 第5 圀 g 第ら 図 第7図
Figure 1 is a schematic diagram of an annealing and cooling cycle for cold-rolled steel strip for processing.
Figure 2 is a schematic diagram of a heat treatment cycle for high-strength cold-rolled steel strips, Figure 3 is a continuous cooling curve diagram for continuous heat treatment of high-strength cold-rolled steel strips, and Figure 4 includes continuous heat treatment equipment of the present invention. An overall view of the cold rolled steel strip continuous processing equipment, FIG. 5 is a detailed view of the primary cooling device 7 in FIG. 4, fs6 is a diagram of another embodiment of the primary cooling device 7 in FIG. 4, and FIG. 7 is a cooling FIG. 8 is a schematic diagram of a water level control device for the bath surface, FIG. 8 is a schematic diagram of a temperature control device for a primary cooling tank, and FIG. 9 is a schematic diagram of a primary cooling device equipped with a gas jet cooler. Figure 1. Mathematics 2 Figure 5 Kuni g Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)加熱、均熱、−次冷却、後処理工程からなる高張
力冷延鋼帯の連続熱処理方法において、ムe1変態点以
上% A、3変態点以下の温度に均熱後の銅帯を、−次
冷却の第一段階として90℃以上の静止温水に浸漬し、
710℃以下、550℃以上の温fまで20′C/4H
!−以上、9 Q ’Q7hag、以下の冷却速度で冷
却し、第二段階として60℃以上、75℃以下の温水中
で噴流冷却を行い、100Q−以上、500!−以下の
冷却速度で200℃以下の温度まで冷却することt−特
徴とする高張力冷延鋼帯の連続熱処理方法
(1) In a continuous heat treatment method for high-strength cold-rolled steel strip consisting of heating, soaking, secondary cooling, and post-treatment steps, the copper strip after soaking is heated to a temperature of %A, 3 or higher than the transformation point of M e1. , immersed in still hot water of 90°C or higher as the first stage of cooling,
20'C/4H up to temperature f below 710℃ and above 550℃
! - or above, 9 Q 'Q7hag, cool at a cooling rate of below, and as a second step, perform jet cooling in hot water of 60°C or above and 75°C or below, 100Q- or above, 500! - Continuous heat treatment method for high-strength cold-rolled steel strip characterized by cooling to a temperature of 200°C or less at the following cooling rate:
(2)加熱、均熱、−次冷却、後処理工程からなる高張
力冷延鋼帯の連続熱処理方法において、Ae1変態点以
上、ム。5変態点以下の温度に均熱後OS帯を1−次冷
却開始前の段階で800℃以下600℃以上の温度まで
5!−以上30φ−以下の冷却速度でガスジェット冷却
によジ徐冷した後、−次冷却の第一段階として90c以
上の静止温水に浸漬し、710℃以下550℃以上の温
[iで20を一以上、9QcS以下の冷却速度で冷却し
、第二段階として60℃以上、75℃以下の温水中で噴
流冷却を行ない、100′Cy4mc以上5 Q Q 
’Cym以下の冷却速度で200℃以下の温tLtで冷
却することt物像とする高張力冷延鋼帯の連続熱処理方
法。
(2) In a continuous heat treatment method for high tensile strength cold rolled steel strip consisting of heating, soaking, secondary cooling, and post-treatment steps, the temperature is higher than the Ae1 transformation point. 5 After soaking to a temperature below the transformation point, the OS zone is heated to a temperature of 800°C or lower and 600°C or higher before starting the primary cooling.5! -After slow cooling by gas jet cooling at a cooling rate of -30φ or less, the first step of the next cooling is immersion in still hot water of 90C or more, and the Cool at a cooling rate of 1 or more and 9QcS or less, and as a second step, perform jet cooling in hot water of 60°C or more and 75°C or less to achieve a cooling rate of 100'Cy4mc or more5 Q Q
A method for continuous heat treatment of high-strength cold-rolled steel strip, which aims at cooling at a temperature tLt of 200° C. or less at a cooling rate of `Cym or less.
JP272682A 1982-01-13 1982-01-13 Continuous heat treatment for high tensile cold-rolled steel strip Pending JPS58120745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP272682A JPS58120745A (en) 1982-01-13 1982-01-13 Continuous heat treatment for high tensile cold-rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP272682A JPS58120745A (en) 1982-01-13 1982-01-13 Continuous heat treatment for high tensile cold-rolled steel strip

Publications (1)

Publication Number Publication Date
JPS58120745A true JPS58120745A (en) 1983-07-18

Family

ID=11537310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP272682A Pending JPS58120745A (en) 1982-01-13 1982-01-13 Continuous heat treatment for high tensile cold-rolled steel strip

Country Status (1)

Country Link
JP (1) JPS58120745A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210549A (en) * 2018-05-30 2019-12-12 Jfeスチール株式会社 Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet
JP2020105630A (en) * 2018-12-26 2020-07-09 Jfeスチール株式会社 Method for cooling steel sheet, method for manufacturing steel sheet, and cooling system for steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210549A (en) * 2018-05-30 2019-12-12 Jfeスチール株式会社 Method for cooling steel sheet, cooling system for steel sheet, and method for manufacturing steel sheet
JP2020105630A (en) * 2018-12-26 2020-07-09 Jfeスチール株式会社 Method for cooling steel sheet, method for manufacturing steel sheet, and cooling system for steel sheet

Similar Documents

Publication Publication Date Title
JP3365469B2 (en) Primary cooling method in continuous annealing of steel strip
CN109097534B (en) Very thin precise stainless steel strip busbar bright annealing technology
CN111424149A (en) Gear steel strip-shaped structure control process
CN107245656A (en) The fin steel and its CSP production technologies of a kind of excellent surface quality
EP0216434B1 (en) Method and apparatus for the treatment of steel wires
JPH0310023A (en) Method for directly rapid-cooling hot rolled steel wire rod
US4052235A (en) Method of preventing oxidation during water quenching of steel strip
JPS58120748A (en) Continuous heat treatment installation for cold-rolled steel strip for working and high tensile cold-rolled steel strip
US4360390A (en) Method for direct heat treating austenitic stainless steel wire rod
JPS58120745A (en) Continuous heat treatment for high tensile cold-rolled steel strip
US4332630A (en) Continuous cooling of low carbon steel wire rod
US4770722A (en) Methods for heat treatment of steel rods
JP5245746B2 (en) Metal strip cooling device and metal strip cooling method
JP2020514540A (en) Lead-free patenting process and equipment
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
JPS58120743A (en) Continuous heat treatment for high tensile cold rolled steel strip
EP0803583B2 (en) Primary cooling method in continuously annealing steel strips
JPS5842254B2 (en) Continuous annealing equipment
JPS58120747A (en) Continuous heat treatment installation for cold-rolled steel strip for working and high tensile cold-rolled steel strip
JPS58120744A (en) Continuous heat treatment for high tensile cold rolled steel strip
JP2612452B2 (en) Manufacturing method of high ductility and high strength cold rolled steel sheet
JPS58120746A (en) Continuous heat treatment installation for cold-rolled steel strip for working and high tensile cold-rolled steel strip
US4313772A (en) Continuous heat-treatment process for steel strip
JPH05117765A (en) Manufacture of high toughness direct patenting wire rod
JP2002038219A (en) Method for producing martensitic stainless steel tube