JP2610019B2 - Cooling method of hot steel plate - Google Patents

Cooling method of hot steel plate

Info

Publication number
JP2610019B2
JP2610019B2 JP61155049A JP15504986A JP2610019B2 JP 2610019 B2 JP2610019 B2 JP 2610019B2 JP 61155049 A JP61155049 A JP 61155049A JP 15504986 A JP15504986 A JP 15504986A JP 2610019 B2 JP2610019 B2 JP 2610019B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
steel sheet
width
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61155049A
Other languages
Japanese (ja)
Other versions
JPS6313610A (en
Inventor
廣機 宮脇
弘 上鍛治
英孝 上尾
純 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61155049A priority Critical patent/JP2610019B2/en
Publication of JPS6313610A publication Critical patent/JPS6313610A/en
Application granted granted Critical
Publication of JP2610019B2 publication Critical patent/JP2610019B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は熱鋼板、特に熱間圧延された厚鋼板等の良
形状かつ均一な材質を得るための強制冷却方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a forced cooling method for obtaining a good shape and uniform material such as a hot steel plate, particularly a hot-rolled thick steel plate.

(従来の技術) 最近の厚板製造プロセスにおいては、合金元素の低
減、省熱処理、新鋼種の開発を目的として、加熱条件の
制御並びにコントロールド圧延直後の強制冷却を組み合
せた、いわゆる調質冷却プロセスの研究が盛んであり、
既に鉄鋼各社で種々の調質冷却設備が実機化されてい
る。
(Prior art) In recent thick plate manufacturing processes, so-called temper cooling, which combines heating condition control and forced cooling immediately after controlled rolling for the purpose of reducing alloy elements, saving heat treatment, and developing new steel types. Process research is active,
Various tempering cooling facilities have already been commercialized at steel companies.

これ等の加熱から冷却に至る一連の制御は、厚鋼板の
変態組成の制御と機械的性質の向上を狙ったものである
が、加熱、圧延制御技術は長年の研究により冶金的機構
の解明と共にほゞオンライン製造技術として確立された
ものであるのに対し、強制冷却技術は、冶金的な機構は
解明しているものの、冷却制御技術、特に形状制御技術
に関しては未だ不充分な状態である。
These series of controls, from heating to cooling, are aimed at controlling the transformation composition of steel plates and improving mechanical properties.However, heating and rolling control technology has been elucidated by metallurgical mechanisms through years of research. While it has been established as an on-line manufacturing technology, the forced cooling technology, although its metallurgical mechanism has been elucidated, is still inadequate in terms of cooling control technology, especially shape control technology.

即ち、熱鋼板の強制冷却は圧延機後面又は、熱間矯正
機後面の熱鋼板の通板ライン上に熱鋼板の上下面に配置
したノズル群より、熱鋼板上下面に冷却水を噴射して行
なうが、この時に板幅方向に一様に冷却水を噴射する
と、板側端部は冷却開始時の温度が板幅中央部より低い
こと及び、板上水の落下、端面冷却により板幅中央部よ
りも冷却速度が速くなり、板幅方向に温度差が生じて板
形状が著しく損なわれることが知られている。
That is, the forced cooling of the hot steel sheet is performed by injecting cooling water onto the upper and lower surfaces of the hot steel sheet from a group of nozzles arranged on the upper and lower surfaces of the hot steel sheet on the rear surface of the rolling mill or the hot steel straightening machine on the hot steel sheet passing line. At this time, if cooling water is sprayed uniformly in the plate width direction, the temperature at the plate side end is lower than the center of the plate width at the start of cooling. It is known that the cooling rate is higher than that of the part, and a temperature difference occurs in the width direction of the plate, thereby significantly impairing the plate shape.

このような問題を解決する方法として、板端部の冷却
水を遮閉する方法が特開昭60−174833号公報に開示され
ている。その冷却方法は、冷却開始直前の鋼板が圧延中
及び強制冷却装置への搬送中に空冷によって鋼板端部の
温度は中央部より下がり、すでに板幅方向に温度偏差を
持っており、強制冷却によってこの温度偏差が更に拡大
されるため、この温度偏差拡大を鋼板端部の所定域の冷
却水を遮閉して鋼板端部の冷却を阻止し、冷却途中又は
冷却完了時の板幅方向の温度を均一化し、良形状でか
つ、材質の均一な鋼板を得ることを目的としたものであ
る。
As a method for solving such a problem, Japanese Patent Laid-Open No. Sho 60-174833 discloses a method of shutting off cooling water at a plate edge. The cooling method is that the temperature at the end of the steel sheet is lower than the center by air cooling during rolling and transportation to the forced cooling device immediately before the start of cooling, and the steel sheet already has a temperature deviation in the sheet width direction. Since this temperature deviation is further increased, the temperature deviation is increased by blocking the cooling water in a predetermined area at the end of the steel plate to prevent the cooling of the end of the steel plate, and during the cooling or at the time of completion of cooling, the temperature in the width direction of the steel plate. And to obtain a steel plate having a good shape and a uniform material.

(発明が解決しようとしている問題点) 前記の従来技術の冷却方法は、鋼板端部の冷却水をノ
ズル単位でオン・オフ制御を行なうため第11図に示すよ
うに、遮閉機能のない強制冷却時に発生する鋼板端部の
冷却完了時の温度偏差傾向と、遮閉機能を有する場合の
冷却完了後の温度回復傾向が異なり、鋼板端部と中央部
の境界部に温度回復が不十分な温度降下部が発生する。
この境界部温度降下が生じると、例え板幅中央と端部の
温度差がなくても強制冷却後の鋼板形状が損なわれ耳波
形状になり易い。
(Problems to be Solved by the Invention) According to the cooling method of the prior art described above, since the cooling water at the end of the steel plate is turned on and off in nozzle units, as shown in FIG. The temperature deviation tendency at the time of completion of cooling of the steel sheet edge at the time of cooling is different from the temperature recovery tendency after the completion of cooling with the shielding function, and the temperature recovery at the boundary between the steel sheet edge and the center is insufficient. A temperature drop occurs.
When the temperature drop at the boundary occurs, even if there is no temperature difference between the center and the end of the sheet width, the shape of the steel sheet after the forced cooling is deteriorated, and the shape of the steel sheet tends to become an ear wave shape.

但し、境界部温度降下があっても、値が小さい場合
(例えばΔT≦30℃)は、冷却後の鋼板形状は良好であ
るが、成品切断時に板幅方向にスリット状に分割して使
用する場合は、切断後に反り、曲り等が発生し、矯正が
必要となる。なお、この境界部温度降下は、冷却完了温
度(板厚平均)が500℃以下の場合に特に発生し易く、5
50℃以上ではほとんど発生しない。
However, even if there is a temperature drop at the boundary, if the value is small (for example, ΔT ≦ 30 ° C.), the steel sheet shape after cooling is good, but it is used by dividing it into slits in the sheet width direction when cutting a product. In such a case, warping or bending occurs after cutting, and correction is required. This temperature drop at the boundary is particularly likely to occur when the cooling completion temperature (average thickness) is 500 ° C or less.
It hardly occurs above 50 ° C.

又、従来技術の冷却方法のもう1つの問題点を第12図
(a)に示す。冷却装置の長手方向を3ゾーンに分割
し、各ゾーンの遮閉長さ(鋼板側端部からの距離lで示
す)は、図中に斜線で示すが、冷却装置出側になるにし
たがって、遮閉長さlは小さくなっている。このような
遮閉方法では、鋼板端部の冷却遮閉部分が、各冷却ゾー
ンにつき1直線上になるため、冷却遮閉部の冷却能と非
遮閉部の冷却能の差の大き過ぎ、温度パターンがステッ
プ的になる。冷却途中でこのような温度パターンが発生
した鋼板は、冷却停止時の温度が均一であっても、鋼板
端部に波及び反りが発生し易い。
FIG. 12A shows another problem of the conventional cooling method. The longitudinal direction of the cooling device is divided into three zones, and the closing length (indicated by the distance 1 from the steel plate side end) of each zone is indicated by oblique lines in the figure. The shielding length l is small. In such a shielding method, since the cooling shielding part at the end of the steel plate is on one straight line for each cooling zone, the difference between the cooling ability of the cooling shielding part and the cooling ability of the non-shielding part is too large. The temperature pattern becomes step-like. In a steel sheet having such a temperature pattern generated during cooling, even when the temperature at the time of cooling stop is uniform, a wave and a warp are easily generated at the end of the steel sheet.

これを解決する方法として例えば前記の特開昭60−17
4833号公報には、第12図(b)に示すような遮閉方法が
開示されている。すなわち鋼板の上,下及び通板方向の
遮閉ノズル個数を冷却装置長手方向に増減して設定する
方法が提案されている。しかし、この方法は、強制冷却
装置が十分に長く、遮閉装置の数が多い場合にのみ、あ
る程度の補正が可能となるが、設備費がかかり、かつ鋼
板端部の波および反りに対して完全ではない。
As a method for solving this, for example, the above-mentioned Japanese Patent Application Laid-Open No.
No. 4833 discloses a shielding method as shown in FIG. 12 (b). That is, a method has been proposed in which the number of closed nozzles in the upper, lower, and sheet passing directions of the steel plate is increased or decreased in the longitudinal direction of the cooling device. However, this method allows a certain degree of correction only when the forced cooling device is sufficiently long and the number of blocking devices is large, but it requires equipment cost and prevents wave and warpage at the end of the steel plate. incomplete.

以上説明したように従来の板幅方向の冷却制御方法
で、かなりの冷却形状改善が計れたが、依然として問題
を含むものである。
As described above, the conventional cooling control method in the width direction of the plate has considerably improved the cooling shape, but still has a problem.

(問題点を解決するための手段) そこで本発明は、このような従来技術がもつ問題点に
鑑み、水冷過程の鋼板幅方向、特に鋼板端部の温度パタ
ーンに注目し、その温度パターンが所定の温度偏差内で
冷却できるように鋼板端部近傍の冷却水量を、ノズル単
位で増減し、良好な形状を有する鋼板を製造することを
目的とするもので、その要旨は、 熱鋼板の搬送ライン上で熱鋼板を長手方向に移送しな
がら複数の冷却ゾーンを通過させると共に、冷却ゾーン
内にて熱鋼板の上下の板幅方向及び長手方向に沿って板
面に指向するように配置された多数のノズルから前記鋼
板に冷却水を吹き付けて冷却する冷却方法において、 鋼板の冷却ゾーン入側の代表温度実測値並びに所定の
冷却速度及び冷却完了温度に基づいて板幅中央部につい
ての各冷却ゾーンにおける冷却条件と板幅中央部におけ
る冷却開始からの温度変化を演算して決定し、 次いで鋼板の入側幅方向温度実測値、前記の板幅中央
部の冷却条件並びに仮設定した幅方向ノズル流量制御パ
ターンに基づき板幅側端部近傍における冷却開始からの
温度変化を演算するとともに、 前記板幅中央部における冷却開始からの温度変化とこ
れに対応する板幅側端部近傍における冷却開始からの温
度変化を比較してその温度差の絶対量が目標値以下にな
るような幅方向ノズル流量制御パターンを決定し、 この決定した幅方向ノズル流量制御パターンに応じて
冷却ゾーン内の各ノズルの流量を個別に制御する ことを特徴とする熱鋼板の冷却方法。である。
(Means for Solving the Problems) In view of the problems of the conventional technology, the present invention focuses on the temperature pattern in the width direction of the steel sheet during the water cooling process, particularly, on the temperature pattern at the end of the steel sheet. The purpose is to increase or decrease the amount of cooling water in the vicinity of the end of the steel sheet in nozzle units so that it can be cooled within the temperature deviation of the steel sheet, and to manufacture a steel sheet having a good shape. While passing the hot steel sheet in the longitudinal direction above, it passes through a plurality of cooling zones, and a number of hot steel sheets are arranged in the cooling zone so as to be directed to the plate surface along the upper and lower width directions and the longitudinal direction of the hot steel sheet. The cooling method of spraying cooling water onto the steel sheet from the nozzles described above to cool the steel sheet at the center of the sheet width based on the actual measured value of the representative temperature of the steel sheet at the cooling zone entrance side and a predetermined cooling rate and cooling completion temperature. The cooling condition at the center of the steel sheet and the temperature change from the start of cooling at the center of the sheet width are calculated and determined. The temperature change from the start of cooling in the vicinity of the plate width side end is calculated based on the flow rate control pattern, and the temperature change from the start of cooling in the center of the plate width and the start of cooling in the vicinity of the plate width side end corresponding thereto. The width direction nozzle flow control pattern is determined such that the absolute amount of the temperature difference is equal to or less than the target value by comparing the temperature changes of the nozzles in the cooling zone according to the determined width direction nozzle flow control pattern. A method for cooling a hot steel sheet, wherein the flow rate is individually controlled. It is.

(作用) 板厚と冷却速度との関係は第4図に示す通り、板厚が
厚くなると急激に冷却速度が減少し、水量密度が低下す
るにしたがって冷却速度も低下する。
(Operation) As shown in FIG. 4, the relationship between the plate thickness and the cooling rate is such that when the plate thickness is increased, the cooling rate is rapidly reduced, and the cooling rate is reduced as the water density is reduced.

板幅と板幅方向注水量パターンとの関係は第5図に示
す通り、板幅の広い材料は冷却開始時の板側端部の温度
降下域が大の傾向にあるので、注水量零の領域を増加さ
せ、板幅の狭い材料は板側端部の温度降下域が小の傾向
にあるので、注水量零の領域はなくてもよい。
As shown in FIG. 5, the relationship between the plate width and the water injection pattern in the plate width direction is as shown in FIG. 5, since a material having a large plate width tends to have a large temperature drop region at the plate side end at the start of cooling. Since the area is increased and the material having a small width of the plate tends to have a small temperature drop region at the end on the side of the plate, there is no need to provide a region where the water injection amount is zero.

板側端部の過冷却と冷却速度との関係を第6図(a)
に、板側端部の過冷却と冷却完了温度との関係を第6図
(b)に示す。第6図(a)より冷却速度が大きい程、
板側端部の過冷却は大きくなり、第6図(b)より冷却
完了温度が高い程、板側端部の過冷却は小さくなること
が判明する。
FIG. 6 (a) shows the relationship between the supercooling of the plate side end and the cooling rate.
FIG. 6 (b) shows the relationship between the supercooling of the plate side end and the cooling completion temperature. 6 (a), the higher the cooling rate,
It is clear from FIG. 6 (b) that the supercooling at the plate-side end becomes large, and that the higher the cooling completion temperature, the smaller the supercooling at the plate-side end.

従って板側端部の過冷却を防止するためには、板厚、
板幅、冷却開始温度、冷却速度、冷却完了温度に応じ
て、ノズル注水量零の領域を増減し、かつ注水量パター
ンがステップ的になるのを防止するため、ノズル毎に注
水量を増減する。
Therefore, to prevent overcooling of the plate side end, the plate thickness,
In accordance with the plate width, the cooling start temperature, the cooling rate, and the cooling completion temperature, the area where the nozzle water injection amount is zero is increased / decreased, and the water injection amount is increased / decreased for each nozzle in order to prevent the water injection amount pattern from becoming stepwise. .

(実施例) 次いで、本発明を図示の実施例に基づいて詳細に説明
する。第1図は本発明の1実施例を示す冷却装置の全体
構成図である。
(Example) Next, the present invention will be described in detail based on an illustrated example. FIG. 1 is an overall configuration diagram of a cooling device showing one embodiment of the present invention.

熱鋼板1は熱間圧延後に冷却装置10で材質、寸法に応
じて所定の冷却条件で所定の温度迄冷却される。2は熱
鋼板1の搬送用ロール、3は搬送用ロール2と上下対に
配置された拘束用のロールであり、昇降装置(図示せ
ず)によって昇降自在に配置しており、熱鋼板の冷却中
にのみ、熱鋼板を拘束する位置に下降する。
After hot rolling, the hot steel sheet 1 is cooled to a predetermined temperature by a cooling device 10 under predetermined cooling conditions according to the material and dimensions. Reference numeral 2 denotes a transport roll for the hot steel sheet 1, and reference numeral 3 denotes a constraining roll which is disposed vertically above and below the transport roll 2, and is disposed so as to be able to move up and down by an elevating device (not shown). Only inside, it descends to the position that restrains the hot steel sheet.

熱鋼板を冷却するための冷却水は、給水ヘッダー7、
給水管6、水量制御弁5を経てスプレー装置4に供給さ
れる。なお水量制御弁5は給水管6を経て供給される冷
却水を各冷却制御ゾーン毎の所定の水量に制御して各冷
却制御ゾーンのスプレー装置に供給する。
The cooling water for cooling the hot steel plate is supplied by the water supply header 7,
The water is supplied to the spray device 4 through the water supply pipe 6 and the water amount control valve 5. In addition, the water amount control valve 5 controls the cooling water supplied through the water supply pipe 6 to a predetermined water amount for each cooling control zone, and supplies the water to the spray device of each cooling control zone.

入側温度計8は冷却装置10の入側に板幅方向に複数個
配置されており、熱鋼板1の冷却開始前の板幅方向温度
を検出し、入側温度演算装置11にインプットし、入側温
度演算装置11では冷却開始前の板幅方向温度分布を演算
する。
A plurality of inlet thermometers 8 are arranged on the inlet side of the cooling device 10 in the plate width direction, detect the temperature in the plate width direction before the cooling of the hot steel plate 1 is started, and input the detected temperature to the inlet-side temperature calculator 11. The entry-side temperature calculation device 11 calculates the temperature distribution in the plate width direction before the start of cooling.

更に冷却装置10の出側には出側温度計9が板幅方向に
複数個配置されてあり、熱鋼板1の冷却完了後(復熱
後)の板幅方向温度を検出し、出側温度演算装置13にイ
ンプットし、出側温度演算装置13では冷却完了後の板幅
方向温度分布を演算する。
Further, a plurality of outlet thermometers 9 are arranged on the outlet side of the cooling device 10 in the sheet width direction to detect the temperature in the sheet width direction after the cooling of the hot steel sheet 1 is completed (after recuperation), and the outlet side temperature is measured. The temperature is input to the arithmetic unit 13, and the outlet-side temperature arithmetic unit 13 calculates the temperature distribution in the sheet width direction after the cooling is completed.

12は冷却装置を制御するための冷却演算・制御装置で
あり、上位計算機14から与えられた被冷却材の鋼種、寸
法、目標冷却開始温度、冷却速度、冷却完了温度等の操
業条件から各冷却制御ゾーンの冷却水量及び通板速度を
演算し、更に温度演算装置11,13の被冷却熱鋼板の冷却
開始前温度及び前冷却材の冷却完了温度実績に基づいて
前記の冷却装置の制御条件を修正演算すると共に、スプ
レー装置の鋼板側端部周辺のノズル流量制御条件を演算
し、冷却装置10の各構成部分を制御する。
Numeral 12 is a cooling operation / control device for controlling the cooling device.The cooling operation / control device is provided based on operating conditions such as the steel type of the material to be cooled, dimensions, a target cooling start temperature, a cooling speed, and a cooling completion temperature given from the host computer 14. Calculate the cooling water amount and the passing speed of the control zone, and further control the cooling condition of the cooling device based on the temperature before the cooling start of the hot steel sheet to be cooled and the temperature of the cooling completion of the pre-coolant of the temperature calculating devices 11 and 13. In addition to the correction calculation, the nozzle flow control conditions around the steel plate side end of the spray device are calculated, and each component of the cooling device 10 is controlled.

なお、良好な鋼板形状を得るための冷却制御手段とし
ては、鋼板上下面の冷却制御及び鋼板先後端部の冷却制
御も重要であるが、これ等の冷却制御は公知の方法によ
る。又、冷却開始時の測温結果からの板幅方向温度パタ
ーンの演算方法、冷却条件からの単位時間当りの温度降
下量の演算方法及び板幅方向の温度降下量を均一にする
ための鋼板端部近傍ノズルの冷却水量の演算方法につい
ても公知の方法による。
In addition, as cooling control means for obtaining a good steel sheet shape, cooling control of the upper and lower surfaces of the steel sheet and cooling control of the front and rear end portions of the steel sheet are also important. These cooling controls are performed by a known method. Also, a method of calculating the temperature pattern in the sheet width direction from the temperature measurement result at the start of cooling, a method of calculating the amount of temperature drop per unit time from the cooling condition, and a steel sheet edge for equalizing the amount of temperature drop in the sheet width direction The method of calculating the amount of cooling water of the nozzle in the vicinity of the portion is also a known method.

15は搬送用ロール2の回転数を検出する回転数検出器
であり、冷却演算・制御装置12に接続している。
Reference numeral 15 denotes a rotation speed detector that detects the rotation speed of the transport roll 2, and is connected to the cooling operation / control device 12.

なお、各冷却制御ゾーン毎の必要冷却水量は、前記の
スプレー装置4の各ノズルの流量制御量によって変わる
ため、スプレー装置の各ノズルの流量制御量をフィード
バックして各冷却制御ゾーン毎の必要冷却水量を制御す
る。
Since the required amount of cooling water for each cooling control zone changes depending on the flow rate control amount of each nozzle of the spray device 4, the required flow rate control amount of each nozzle of the spray device is fed back to provide the required cooling amount for each cooling control zone. Control the amount of water.

次にスプレー装置4の構成について述べる。第2図、
第3図は鋼板側端部近傍のノズル流量制御のメカニズム
を示すものである。このノズル流量制御機構は、ノズル
ヘッダー21、ノズル25、ノズル毎の噴射水量を制御する
弁体22、弁体の回転軸に連結したレバー23、各弁体とノ
ズルを連結するノズル支管24、レバーを作動させ弁体の
開度を設定するためのストライカーブロック28、ストラ
イカーブロックを移動しレバーの回転角を制御するため
のスクリュー軸27、スクリュー軸の軸受26、スクリュー
軸を回転する駆動装置29及びスクリュー軸の回転数を検
出しストライカーブロックの位置を検出する回転検出器
29aで構成されており、各スプレー装置毎に鋼板側端部
のノズル流量を決められた値に制御する。
Next, the configuration of the spray device 4 will be described. FIG. 2,
FIG. 3 shows a mechanism of controlling the nozzle flow rate near the steel plate side end. The nozzle flow rate control mechanism includes a nozzle header 21, a nozzle 25, a valve element 22 for controlling the amount of jetted water for each nozzle, a lever 23 connected to the rotary shaft of the valve element, a nozzle branch pipe 24 connecting each valve element to the nozzle, a lever Actuating a striker block 28 to set the opening of the valve body, a screw shaft 27 for moving the striker block and controlling the rotation angle of the lever, a screw shaft bearing 26, a driving device 29 for rotating the screw shaft and A rotation detector that detects the rotation speed of the screw shaft and the position of the striker block
29a, which controls the nozzle flow rate at the steel plate side end to a predetermined value for each spray device.

又、ノズル流量制御用弁体22は第3図に示すように、
ノズルヘッダー21上にノズル25の水路を形成する如く連
設されており、ストライカーブロック28でレバー23を回
転方向に動かすことにより弁回転子20を回転させ水路を
閉じる全閉状態(a)、所定の水路を形成する中間開度
状態(b)、ノズル各量をフルに発揮させる水路を形成
する全開状態(c)を任意に選択できる構造としてお
り、更にストライカーブロック28内のストライカー距離
l1,l2,l3をノズルピッチ±Δlに設定することにより、
隣接ノズル毎のノズル噴射量を異なった値に制御するこ
とが可能である。
Further, as shown in FIG. 3, the nozzle flow control valve element 22 is
A water passage for the nozzle 25 is continuously formed on the nozzle header 21, and the lever 23 is moved in the rotating direction by the striker block 28 to rotate the valve rotor 20 to close the water passage. And a fully open state (c) that forms a water channel that makes full use of each nozzle amount. Further, the striker distance in the striker block 28 is selected.
By setting l 1 , l 2 , l 3 to the nozzle pitch ± Δl,
It is possible to control the nozzle injection amount for each adjacent nozzle to a different value.

次に第7図に基づいて冷却演算・制御装置12の制御条
件演算フローを説明する。なお冷却演算・制御装置12を
一点鎖線でしめす。
Next, a control condition calculation flow of the cooling calculation / control device 12 will be described with reference to FIG. Note that the cooling operation / control device 12 is indicated by a dashed line.

まず、上位計算機14から与えられる被冷却材(鋼板)
の鋼種、寸法、冷却開始温度、冷却速度、冷却完了温度
等の操業条件と、入側温度演算装置11から得られる冷却
ゾーン入側の幅方向温度分布における代表温度(例え
ば、板幅中央部の表面温度)とに基づいて、幅方向中央
部の冷却条件(冷却水量、上下水量比、通板速度)を仮
設定する(ブロック30)。次に、各冷却ゾーンの板幅中
央部における冷却水量、通板速度を演算した後(ブロッ
ク31)、先に与えられた冷却速度、冷却完了温度が演算
結果と合致するか否かを判断し(ブロック32)、合致し
た場合に板幅中央部の冷却条件が決まる(ブロック3
4)。合致していない場合には再度冷却条件を変更して
ブロック30に戻す。この冷却条件の決定の際には、板幅
中央部における冷却開始からの温度変化(温度降下)の
推移も得られる。なお、上位計算機14から与えられた冷
却開始温度は、圧延仕上り温度から計算した目標値であ
り、実績温度である入側温度計8からの入力により演算
した値との間に差があった場合は、再度修正演算を実施
する。
First, the material to be cooled (steel plate) given by the host computer 14
Operating conditions such as steel type, size, cooling start temperature, cooling rate, cooling completion temperature, and the representative temperature in the width direction temperature distribution on the inlet side of the cooling zone obtained from the inlet side temperature calculating device 11 (for example, Temporarily set cooling conditions (cooling water amount, water ratio, water passing speed) at the center in the width direction based on the surface temperature) (block 30). Next, after calculating the amount of cooling water and the passing speed at the center of the plate width in each cooling zone (block 31), it is determined whether or not the previously given cooling speed and cooling completion temperature match the calculation results. (Block 32), the cooling condition at the center of the plate width is determined if they match (Block 3)
Four). If they do not match, the cooling condition is changed again and the process returns to block 30. When the cooling conditions are determined, a change in temperature (temperature drop) from the start of cooling at the center of the plate width is also obtained. Note that the cooling start temperature given by the host computer 14 is a target value calculated from the finished rolling temperature, and there is a difference between the cooling start temperature and a value calculated by an input from the inlet thermometer 8 which is an actual temperature. Performs the correction operation again.

次いで、鋼板の入側幅方向温度実測値と前記の板幅中
央部の冷却条件により幅方向ノズル流量制御パターン、
即ち、上下の各ノズル毎の水量制御パターンを仮設定し
(ブロック35)、これに基づき板幅側端部近傍の冷却計
算を行い、ノズル流量制御装置の上下それぞれの使用
量、ノズルの流量制御量を演算する(ブロック36)。こ
こで板幅側端部近傍における冷却開始からの温度変化の
推移が得られる。
Next, the width-directional nozzle flow rate control pattern according to the measured values of the inlet side width direction temperature of the steel plate and the cooling condition of the plate width central portion,
That is, the water amount control pattern for each of the upper and lower nozzles is provisionally set (block 35), and based on this, the cooling near the plate width side end is calculated, and the upper and lower usage amounts of the nozzle flow control device and the nozzle flow control are controlled. The quantity is calculated (block 36). Here, the transition of the temperature change from the start of cooling in the vicinity of the end portion on the sheet width side is obtained.

最終的に板幅側端部近傍におけるノズル流量制御パタ
ーンを決定する場合には次の過程を経る。まず、鋼板の
最側端部近傍(板幅から約30mm)について、前記のブロ
ック34で求めた板幅中央部温度の冷却開始からの温度TN
(i)と、これに対応する最側端部近傍の冷却開始から
の温度TA(i)を比較し、その温度差の絶対量が目標値
ΔT(i)以下、即ち、|TN(i)−TA(i)|≦ΔT
(i)となるノズル流量制御装置の使用量及び各ノズル
流量制御装置毎の最側端部近傍のノズル流量ゼロのノズ
ル数を求める(ブロック37)。温度差の絶対量が目標値
ΔT(i)以下とならない場合は、ノズル流量制御パタ
ーンを変更して(ブロック38)再度冷却計算のブロック
36に戻す。
When the nozzle flow control pattern in the vicinity of the end on the plate width side is finally determined, the following process is performed. First, for the vicinity of the outermost end of the steel sheet (approximately 30 mm from the sheet width), the temperature TN from the start of cooling of the sheet width center temperature obtained in the block 34 described above.
(I) is compared with the corresponding temperature TA (i) from the start of cooling near the outermost end, and the absolute amount of the temperature difference is equal to or less than the target value ΔT (i), ie, | TN (i) −TA (i) | ≦ ΔT
The amount of use of the nozzle flow rate control device and the number of nozzles having a nozzle flow rate of zero near the outermost end of each nozzle flow control device are obtained (block 37). If the absolute amount of the temperature difference does not become equal to or smaller than the target value ΔT (i), the nozzle flow control pattern is changed (block 38) and the cooling calculation block is performed again.
Return to 36.

同様に側端部近傍の温度、即ち、第8図のB,C,,Dに対
応する位置に冷却開始からの温度TB(i)、TC(i)、
TD(i)と、板幅中央部温度の冷却開始からの温度TN
(i)とを比較し、|TN(i)−TB(i)|≦ΔT
(i)、|TN(i)−TC(i)|≦ΔT(i)、|TN
(i)−TD(i)|≦ΔT(i)となる各ノズルの流量
を求め、ノズル流量制御装置の制御量を決める(ブロッ
ク39)。このようにして最終的に幅方向ノズル流量制御
パターンが決定したなら、この決定した幅方向ノズル流
量制御パターンに応じて冷却ゾーン内の各ノズルの流量
を個別に制御する(ブロック40)。次いで、出側温度分
布を出側温度分布演算装置13から入力し、実際の温度分
布が目標値以下となっているか判断し(ブロック41)、
以下になっていればその時点で冷却演算制御操作は終了
する。目標値を超えていた場合には、再度冷却計算を修
正して新たな係数を算出し(ブロック42)、通常の学習
制御方式にそって当初からやり直せばよい。
Similarly, the temperatures TB (i), TC (i), TC (i), since the start of the cooling, at the temperature near the side end, that is, at the position corresponding to B, C, and D in FIG.
TD (i) and temperature TN from the start of cooling of the temperature at the center of the plate width
(I) and | TN (i) −TB (i) | ≦ ΔT
(I), | TN (i) −TC (i) | ≦ ΔT (i), | TN
(I) -TD (i) | ≦ ΔT (i) The flow rate of each nozzle is determined, and the control amount of the nozzle flow rate control device is determined (block 39). When the width direction nozzle flow rate control pattern is finally determined in this way, the flow rate of each nozzle in the cooling zone is individually controlled according to the determined width direction nozzle flow rate control pattern (block 40). Next, the outlet temperature distribution is input from the outlet temperature distribution calculating device 13 to determine whether the actual temperature distribution is equal to or less than the target value (block 41).
If it becomes the following, the cooling operation control operation ends at that point. If the target value has been exceeded, the cooling calculation is corrected again to calculate a new coefficient (block 42), and the process may be restarted from the beginning according to a normal learning control method.

なお、上記においてiは冷却開始からの経過時間を表
す。また、ΔT(i)は実用上は変態点近傍はΔT
(i)=+70〜+10℃、冷却完了時はΔT(i)=+30
〜−10℃とすればよい。さらに、板幅中央部のTN(i)
と比較する板幅側端部近傍の温度算出箇所の数は、実際
の板幅に応じて任意に増減すればよい。
In the above, i represents the elapsed time from the start of cooling. ΔT (i) is practically ΔT near the transformation point.
(I) = + 70 to + 10 ° C., ΔT (i) = + 30 when cooling is completed
The temperature may be set to ~ -10 ° C. Furthermore, TN (i) at the center of the board width
The number of temperature calculation points near the end portion on the plate width side to be compared with may be arbitrarily increased or decreased according to the actual plate width.

なお、鋼板側端部近傍のノズル流量からノズル制御装
置の制御量を求める場合は、事前に求めたノズル流量制
御用弁体22の流量特性から所定のノズル流量になるレバ
ー23の回転角を求め、各レバーの回転角が求めた角度に
なるように、ストライカーブロックの位置及びストライ
カー間距離l1,l2,l3の制御量を求める。
When obtaining the control amount of the nozzle control device from the nozzle flow rate in the vicinity of the steel sheet side end, the rotation angle of the lever 23 at which a predetermined nozzle flow rate is obtained from the flow rate characteristics of the nozzle flow control valve element 22 obtained in advance. Then, the control amounts of the position of the striker block and the distances l 1 , l 2 , l 3 between the strikers are determined so that the rotation angle of each lever is the determined angle.

冷却完了時の板幅方向の温度分布を均一にするために
は、第8図に示すように、Aノズル、Bノズル、Cノズ
ル、Dノズルと段階的に吐出流量を増すことが必要であ
るが、実用的には例えばAノズル=0%、Bノズル=50
%、Cノズル=75%、D〜Nノズル=100%を固定傾斜
量とすれば、ほゞ目的を達成することが可能であり、そ
の場合はl1,l2,l3は所定の傾斜を持ったノズル流量とな
るように固定的な値を持たせれば良い。
In order to make the temperature distribution in the plate width direction uniform at the time of completion of cooling, it is necessary to increase the discharge flow rate in steps A, B, C, and D as shown in FIG. However, practically, for example, A nozzle = 0%, B nozzle = 50
%, C nozzle = 75%, D to N nozzle = 100%, the fixed inclination amount can almost achieve the purpose. In this case, l 1 , l 2 , l 3 are predetermined inclination angles. What is necessary is just to give a fixed value so that it may become the nozzle flow rate having.

次に、前述の冷却装置を用いて25mm×3,000mm×40,00
0mmの熱鋼板を冷却する方法について述べる。
Next, using the cooling device described above, 25 mm x 3,000 mm x 40,00
A method for cooling a 0 mm hot steel plate will be described.

冷却条件は次の通りである。 The cooling conditions are as follows.

冷却開始温度;750℃ 冷却完了温度;450℃ 冷却時間;11sec ノズルの配置は第9図に示すように、搬送用ロール2
と拘束用ロール3との間に上下に配置し、板幅方向には
75mm間隔に配置した。ノズル毎の注水量は第1表に従来
法と共に示している。なお通板速度は60m/minであっ
た。
Cooling start temperature; 750 ° C Cooling complete temperature; 450 ° C Cooling time; 11 seconds As shown in FIG.
And vertically between the restraining roll 3 and in the plate width direction
They were arranged at intervals of 75 mm. The amount of water injected for each nozzle is shown in Table 1 together with the conventional method. The passing speed was 60 m / min.

冷却完了時の鋼板の温度を測定するため、第10図の位
置の板幅方向の温度を測定した。測温結果および鋼板変
形量の実測値を従来法と対比させて第1表の下方にしめ
す。
In order to measure the temperature of the steel sheet upon completion of cooling, the temperature in the sheet width direction at the position shown in FIG. 10 was measured. The temperature measurement results and the measured values of the steel sheet deformation are shown below Table 1 in comparison with the conventional method.

従来法の温度差が最大25℃、鋼板変形量が8mmに対
し、本実施例では温度差が最大5℃、鋼板変形量が2mm
と大幅に改善されていることがわかる。尚、第1表から
わかる通り、本実施例は従来法に比較して、注水量零の
ノズルがかなりあり、省エネルギーにもなっている。
The temperature difference of the conventional method is up to 25 ° C and the deformation of the steel sheet is 8mm, whereas in this embodiment the temperature difference is up to 5 ° C and the deformation of the steel sheet is 2mm
It can be seen that it is greatly improved. As can be seen from Table 1, in this embodiment, compared to the conventional method, there is a considerable number of nozzles with a zero water injection amount, which is also energy saving.

(発明の効果) 以上説明したように本発明による熱鋼板の冷却方法
は、熱間圧延した熱鋼板を強制冷却する際に、冷却前の
板幅方向の温度偏差及び冷却中に生じる板幅方向の偏冷
却による温度偏差を補正した板幅方向で均一な冷却をす
ることにより、冷却中及び冷却完了時に板幅方向に均一
な温度分布を持った鋼板の冷却方法が実現可能となり、
次の効果を得ることができる。
(Effects of the Invention) As described above, the method for cooling a hot steel sheet according to the present invention is characterized in that, when forcibly cooling a hot-rolled hot steel sheet, the temperature deviation in the sheet width direction before cooling and the sheet width direction generated during cooling. By performing uniform cooling in the sheet width direction with the temperature deviation due to uneven cooling of the steel sheet corrected, it is possible to realize a cooling method for a steel sheet having a uniform temperature distribution in the sheet width direction during cooling and upon completion of cooling.
The following effects can be obtained.

(1)板内強度分布の均一な鋼板を得ることができる。(1) A steel plate having a uniform strength distribution in the plate can be obtained.

(2)冷却後の形状の良好な鋼板を得ることができる。(2) A steel sheet having a good shape after cooling can be obtained.

(3)冷却後の板内残留応力が少なく、冷却後鋼板をス
リット状に切断しても、反り等の発生の少ない鋼板を得
ることができる。
(3) It is possible to obtain a steel sheet which has little residual stress in the sheet after cooling and has little occurrence of warpage or the like even if the steel sheet is cut into a slit shape after cooling.

(4)被冷却材の板幅より外側に配置したノズル流量を
零にすることができ不用な冷却水を流さないため省エネ
ルギーが計れる。
(4) The flow rate of the nozzle disposed outside the plate width of the material to be cooled can be reduced to zero, and unnecessary cooling water is not flown, thereby saving energy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の1実施例における冷却装置の全体構成
を示す図、第2図及び第3図はノズル注水量増減のメカ
ニズムを示す図、第4図は板厚と板厚平均冷却速度との
関係を示す図、第5図は板幅と板幅方向水量パターンと
の関係を示す図、第6図は板側端の過冷却に及ぼす冷却
速度、冷却完了温度の影響を示す図、第7図は本発明の
1実施例の注水量制御フローを示す図、第8図はノズル
レバー角度とノズル噴射量との関係を示す図、第9図は
スプレー装置内のノズル配置の1実施例を示す図、第10
図は出側温度計の配置を示す図、第11図は冷却水遮断機
能有無の場合の冷却完了時の鋼板温度を示す図、第12図
は従来の冷却水遮断パターンと冷却完了時の鋼板温度を
示す図である。 1……熱鋼板、2……搬送用ロール、3……拘束用ロー
ル、4……スプレー装置、5……水量制御弁、6……給
水管、7……ヘッダー、8……入側温度計、9……出側
温度計、10……冷却装置、11……入側温度演算装置、12
……冷却演算・制御装置、13……出側温度演算装置、14
……上位計算機、15……回転数検出器、21……ノズルヘ
ッダー、22……弁体、23……レバー、24……ノズル支
管、25……ノズル、26……軸受、27……スクリュー軸、
28……ストライカーブロック、29……駆動装置、29a…
…回転数検出器。
FIG. 1 is a view showing the overall configuration of a cooling apparatus according to one embodiment of the present invention, FIGS. 2 and 3 are views showing a mechanism for increasing / decreasing a nozzle water injection amount, and FIG. FIG. 5 is a diagram showing the relationship between the plate width and the water width pattern in the plate width direction, FIG. 6 is a diagram showing the effect of the cooling rate and the cooling completion temperature on the supercooling of the plate side end, FIG. 7 is a diagram showing a flow of controlling a water injection amount in one embodiment of the present invention, FIG. 8 is a diagram showing a relationship between a nozzle lever angle and a nozzle injection amount, and FIG. 9 is one embodiment of a nozzle arrangement in a spray device. Figure showing an example, 10th
Fig. 11 shows the arrangement of the outlet thermometer, Fig. 11 shows the temperature of the steel sheet when cooling is completed with or without the cooling water shutoff function, and Fig. 12 shows the conventional cooling water shutoff pattern and the steel sheet when cooling is completed. It is a figure showing temperature. DESCRIPTION OF SYMBOLS 1 ... Hot steel plate, 2 ... Conveying roll, 3 ... Constraining roll, 4 ... Spray device, 5 ... Water control valve, 6 ... Water supply pipe, 7 ... Header, 8 ... Inlet temperature 9… Outgoing thermometer 10… Cooling device 11… Incoming temperature computing device 12
…… Cooling calculation and control device, 13 …… Outlet temperature calculation device, 14
… Host computer, 15… Rotation speed detector, 21… Nozzle header, 22… Valve body, 23… Lever, 24… Nozzle branch pipe, 25… Nozzle, 26… Bearing, 27… Screw axis,
28 …… Striker block, 29 …… Drive device, 29a…
... Rotation speed detector.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上尾 英孝 大分県大分市大字西ノ洲1番地 新日本 製鐵株式会社大分製鐵所内 (72)発明者 秋元 純 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社八幡製鐵所内 (56)参考文献 特開 昭59−30412(JP,A) 特開 昭48−46554(JP,A) 特開 昭58−90314(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidetaka Ageo 1 Nishinosu, Oita, Oita, Nippon Steel Corporation Oita Works (72) Inventor Jun Akimoto 1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu-shi, Fukuoka Prefecture -1 Inside Nippon Steel Corporation Yawata Works (56) References JP-A-59-30412 (JP, A) JP-A-48-46554 (JP, A) JP-A-58-90314 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱鋼板の搬送ライン上で熱鋼板を長手方向
に移送しながら複数の冷却ゾーンを通過させると共に、
冷却ゾーン内にて熱鋼板の上下の板幅方向及び長手方向
に沿って板面に指向するように配置された多数のノズル
から前記鋼板に冷却水を吹き付けて冷却する冷却方法に
おいて、 鋼板の冷却ゾーン入側の代表温度実測値並びに所定の冷
却速度及び冷却完了温度に基づいて板幅中央部について
の各冷却ゾーンにおける冷却条件と板幅中央部における
冷却開始からの温度変化を演算して決定し、 次いで鋼板の入側幅方向温度実測値、前記の板幅中央部
の冷却条件並びに仮設定した幅方向ノズル流量制御パタ
ーンに基づき板幅側端部近傍における冷却開始からの温
度変化を演算するとともに、 前記板幅中央部における冷却開始からの温度変化とこれ
に対応する板幅側端部近傍における冷却開始からの温度
変化を比較してその温度差の絶対量が目標値以下になる
ような幅方向ノズル流量制御パターンを決定し、 この決定した幅方向ノズル流量制御パターンに応じて冷
却ゾーン内の各ノズルの流量を個別に制御する ことを特徴とする熱鋼板の冷却方法。
A hot steel sheet is passed through a plurality of cooling zones while being transported in a longitudinal direction on a hot steel sheet transport line.
A cooling method in which cooling water is sprayed on the steel sheet from a number of nozzles arranged so as to be directed to the sheet surface along the upper and lower sheet width directions and the longitudinal direction of the hot steel sheet in the cooling zone, thereby cooling the steel sheet. Based on the measured value of the representative temperature at the zone entrance side and the predetermined cooling rate and cooling completion temperature, the cooling conditions in each cooling zone for the central portion of the plate width and the temperature change from the start of cooling in the central portion of the plate width are calculated and determined. Next, the temperature change from the start of cooling in the vicinity of the end portion of the sheet width is calculated based on the measured value of the temperature in the width direction on the entry side of the steel sheet, the cooling condition in the center part of the sheet width, and the temporarily set width direction nozzle flow rate control pattern. Comparing the temperature change from the start of cooling in the center portion of the sheet width and the corresponding temperature change from the start of cooling in the vicinity of the end portion on the side of the sheet width, the absolute amount of the temperature difference is set to the target value. A method for cooling a hot steel sheet, comprising: determining a width-directional nozzle flow rate control pattern to be below, and individually controlling the flow rate of each nozzle in the cooling zone according to the determined width-directional nozzle flow rate control pattern. .
JP61155049A 1986-07-03 1986-07-03 Cooling method of hot steel plate Expired - Lifetime JP2610019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61155049A JP2610019B2 (en) 1986-07-03 1986-07-03 Cooling method of hot steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61155049A JP2610019B2 (en) 1986-07-03 1986-07-03 Cooling method of hot steel plate

Publications (2)

Publication Number Publication Date
JPS6313610A JPS6313610A (en) 1988-01-20
JP2610019B2 true JP2610019B2 (en) 1997-05-14

Family

ID=15597554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61155049A Expired - Lifetime JP2610019B2 (en) 1986-07-03 1986-07-03 Cooling method of hot steel plate

Country Status (1)

Country Link
JP (1) JP2610019B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447315A (en) * 2012-05-31 2013-12-18 宝山钢铁股份有限公司 Method and device for ACC (accelerate cooling control) flow control based on plate shape
US20160052033A1 (en) * 2013-04-15 2016-02-25 Primetals Technologies Austria GmbH Cooling device with breadth-dependent cooling action

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT406834B (en) * 1997-12-18 2000-09-25 Voest Alpine Ind Anlagen COOLING DEVICE FOR COOLING A HOT MOVING METAL STRIP
JP4119928B2 (en) 2006-08-18 2008-07-16 新日本製鐵株式会社 Steel plate cooling method
JP4238260B2 (en) * 2006-09-19 2009-03-18 新日本製鐵株式会社 Steel plate cooling method
JP6558060B2 (en) * 2015-05-07 2019-08-14 日本製鉄株式会社 Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
KR101746985B1 (en) * 2015-12-23 2017-06-14 주식회사 포스코 Cooling apparatus and method
JP7077574B2 (en) * 2017-10-13 2022-05-31 日本製鉄株式会社 Manufacturing method of heat-treated steel sheet and steel sheet cooling device
CN110125192B (en) * 2018-02-09 2020-07-28 宝山钢铁股份有限公司 Hot-rolled laminar cooling device with internal driving plunger and internal driving method thereof
CN109092911B (en) * 2018-07-31 2019-09-27 燕山大学 The top cooling manifold of width direction changeable flow

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136710B2 (en) * 1971-10-18 1976-10-09
JPS5890314A (en) * 1981-11-24 1983-05-30 Hitachi Ltd Device of spray cooling in hot rolling
JPS5930412A (en) * 1982-08-10 1984-02-18 Kawasaki Steel Corp Controlling method for cooling hot rolled steel strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447315A (en) * 2012-05-31 2013-12-18 宝山钢铁股份有限公司 Method and device for ACC (accelerate cooling control) flow control based on plate shape
CN103447315B (en) * 2012-05-31 2015-10-28 宝山钢铁股份有限公司 A kind of ACC flow control methods based on plate shape and device
US20160052033A1 (en) * 2013-04-15 2016-02-25 Primetals Technologies Austria GmbH Cooling device with breadth-dependent cooling action
US9868142B2 (en) * 2013-04-15 2018-01-16 Primetals Technologies Austria GmbH Cooling device with breadth-dependent cooling action

Also Published As

Publication number Publication date
JPS6313610A (en) 1988-01-20

Similar Documents

Publication Publication Date Title
JP5218435B2 (en) Controlled cooling method for thick steel plate
US6225609B1 (en) Coiling temperature control method and system
JP4119928B2 (en) Steel plate cooling method
JPS6315329B2 (en)
US4785646A (en) Method of cooling hot-rolled steel plate
JP2610019B2 (en) Cooling method of hot steel plate
JP4604564B2 (en) Method and apparatus for controlling cooling of thick steel plate
JP5327140B2 (en) Method for cooling hot rolled steel sheet
JP2006281300A (en) Cooling control method, device, and computer program
JPH1034226A (en) Method for cooling high-temperature metallic sheet and device therefor
JP4709615B2 (en) Method for cooling hot rolled steel sheet
JPS61253112A (en) Control method for cooling steel plate
JPH0729139B2 (en) Cooling control device for hot rolled steel sheet
JP2001300633A (en) Low temperature coiling method of high strength hot rolled steel strip
JP3624680B2 (en) Method for cooling inner and outer surfaces of steel pipe and inner and outer surface cooling device
KR970004960B1 (en) Method of acceleration cooling
JPS6115926A (en) Cooling method of hot steel sheet
JPS61219412A (en) Uniform cooling method of hot steel plate and its apparatus
JPS62166014A (en) Cooling method for hot steel plate with different thickness
JPS5944367B2 (en) Water quenching continuous annealing method
JPS62112733A (en) Cooling method for hot rolled steel sheet
JP3282714B2 (en) Cooling method for hot steel sheet
JP2979903B2 (en) Metal strip cooling method
JP3284911B2 (en) High temperature steel plate cooling system
JPS6317896B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term