JPS5930412A - Controlling method for cooling hot rolled steel strip - Google Patents

Controlling method for cooling hot rolled steel strip

Info

Publication number
JPS5930412A
JPS5930412A JP57137959A JP13795982A JPS5930412A JP S5930412 A JPS5930412 A JP S5930412A JP 57137959 A JP57137959 A JP 57137959A JP 13795982 A JP13795982 A JP 13795982A JP S5930412 A JPS5930412 A JP S5930412A
Authority
JP
Japan
Prior art keywords
strip
cooling
width
steel strip
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57137959A
Other languages
Japanese (ja)
Inventor
Masafumi Miyaguchi
雅史 宮口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57137959A priority Critical patent/JPS5930412A/en
Publication of JPS5930412A publication Critical patent/JPS5930412A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To reduce the degree of steep slope of a steel strip recoiled from a cooled coil, by controlling an intercepting width and an intercepting time by calculating the water injection cooling of the side edges of a hot rolled steel strip at the outlet side of a finish mill, basing on the temperature, dimension, and components, etc. of the strip. CONSTITUTION:Before coiling a hot rolled steel strip W rolled out from a finish mill 1 by a coiler 3, the strip W is cooled on a cooling table 2 to the prescribed temperature by pouring a cooling water from nozzles 6 of lower cooling headers 4, 5. Temperature detecting devices 9, 12 are respectively provided to the inlet side of a coiler 3 and to the outlet side of the mill 1 to output the detected temperature signal of the strip to an arithmetic device 10. At the device 10, the ratios of an intercepting width to the strip width and a cooling water intercepting time to the whole water cooling time are respectively calculated so as to obtain the optimum values for reducing the degree of steep slope of the strip W, basing on the informations about the dimensions and the components, etc. inputted from a computor 13 and the data of operating conditions; thereby controlling baffle plates 8A, B of cooling water, which reciprocate parallelly on rails 7 by a driving mechanism 14.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱延鋼帯の冷却制御方法に関する、更に詳しく
は熱延鋼帯の表面に注水して行はnる冷却に際し銅帯の
幅方向における温度分布を制御する方法に関する。 連続熱間圧延機により圧延さえしだ熱延銅帯は捲取機に
巻取られる前に、所定の捲朕ソ温度まで冷却するために
冷却テーブル上において注水により冷却される。冷却水
を使用する従前の冷却方法では、冷却テーブル上の熱延
鋼帯の全幅にわたり上下両面に均等に冷却水を吹付ける
のが通例である。 然しなから、圧延される銅帯の各側縁部分は板幅の中央
部分に比べ粗圧延、仕上圧延など作業中の温度降下が大
きく、仕上圧延機の出側では3CPC〜80Cの温度差
を生じている。この温度差は冷却工程において更に助長
される。熱延鋼帯の幅方向端縁と中央部との温度差なら
びに冷却速度の差のために、仕上圧延機出側から捲取機
までの鋼帯平坦度と、捲取ら1tたコイルの冷却後次工
程精整ライン入側で銅帯を捲戻した場合の平坦度とは相
違し、通常の場合は耳伸びが多く認めらオする。 、この平坦度の相違が発生する理由として巻取前の銅帯
幅方向端部と中央部との温度差により、捲取後冷却され
た銅帯に熱収縮差が発生し、銅帯の端部に発生する圧縮
応力が銅帯の臨界挫屈応力を越えるためと考えられる。 このような冷却水を使用する従前の鋼帯冷却方法に起る
板幅方向における温度分布の不均等を防止するために鋼
帯の側縁に隣接する部分を冷却水から遮断する銅帯冷却
方法が開発ぜられ、特願昭56−47233号に公表さ
れている。 然しながら、鋼帯の側縁隣接区域を冷却水から遮断しさ
えず1lltば常に満足な結果が得らnるものとは限ら
ないことが実験実操業等により見出されている。例へば
冷却水を遮断する鋼帯側縁部分の範囲、ならびに冷却水
を遮断する時間な考慮することなく上記出願の発明を実
施するときは側縁隣接部分が中央部よりも過度に高温に
なり腹のびの結果を生ずることも考えられる。本発明は
上記出願の発明に起るこのような問題の解決に役立つも
のである。 本発明の目的は、仕上圧延機の出側で注水冷却せられ捲
取機に捲取らitたコイルの冷却後、コイルから巻戻さ
れる銅帯の平坦度を所望の値に保つ如く板幅方向の温度
分布を発生させる冷却制御方法を得ることにある。 本発明によれば、仕上げ圧延機から出さ第1.捲取機に
送られる熱間圧延鋼帯の表面に注水冷却するに際し該鋼
帯の各側縁に隣接する区域を注水から遮断して冷却を制
御する方法であって、銅帯の寸法、成分、所定地点にお
けろ温度、熱伝導率などの条件をもとに遮断幅及び遮断
水冷時間る・パラノーターとして熱応力計算を行い、板
幅に対する遮断幅の比と、全水冷時間に対する遮断水冷
時間の比とを銅帯の急峻度の低減V−最最適値に整定ず
ろことを特徴とする熱延鋼帯の冷却方法が得られる。 さて本発明の実施例を添付図面について説明すると次の
如くである)。 第1及び第2図は本発明の方法に使用する装置15を示
すもので、仕上圧延機1の出側(左側)に冷却テーブル
2が設けらオt、冷却テーブル2の上部には冷却水ヘッ
ダー4が取付けられ、下部(・コは別α)(1〕却水ヘ
ツダー5が取付けられている。 各冷却水ヘッダ”−4,5は冷f’llテーブル2上を
走行する熱延鋼帯Wの板幅方向に配列さ2
The present invention relates to a method for controlling the cooling of a hot-rolled steel strip, and more particularly to a method for controlling the temperature distribution in the width direction of a copper strip during cooling by injecting water onto the surface of a hot-rolled steel strip. The hot rolled copper strip that has been rolled by a continuous hot rolling mill is cooled by water injection on a cooling table to cool it to a predetermined winding temperature before being wound up by a winding machine. In conventional cooling methods using cooling water, it is customary to spray the cooling water evenly over the entire width of the hot-rolled steel strip on the cooling table, both above and below. However, the temperature drop at each side edge part of the rolled copper strip during operations such as rough rolling and finish rolling is larger than that at the center part of the strip width, and the temperature difference on the exit side of the finishing mill is 3CPC to 80C. It is occurring. This temperature difference is further amplified during the cooling process. Due to the difference in temperature and cooling rate between the edges in the width direction and the center of the hot rolled steel strip, the flatness of the steel strip from the exit side of the finishing rolling mill to the winding machine and the cooling of the 1 ton coil after winding are The flatness is different from the flatness when the copper strip is rolled back at the entry side of the finishing line in the next process, and in the normal case, a lot of edge elongation is observed. The reason why this difference in flatness occurs is that due to the temperature difference between the ends of the copper strip in the width direction and the center before winding, a difference in heat shrinkage occurs in the copper strip that is cooled after winding. This is thought to be because the compressive stress generated in the copper strip exceeds the critical buckling stress of the copper strip. In order to prevent the uneven temperature distribution in the strip width direction that occurs in conventional steel strip cooling methods that use such cooling water, this copper strip cooling method shields the parts adjacent to the side edges of the steel strip from cooling water. was developed and published in Japanese Patent Application No. 56-47233. However, it has been found through experiments and actual operations that it is not always possible to obtain satisfactory results even if the area adjacent to the side edge of the steel strip is isolated from the cooling water. For example, if the invention of the above application is carried out without considering the range of the side edge portion of the steel strip that cuts off cooling water and the time to cut off the cooling water, the portion adjacent to the side edge becomes excessively hotter than the center portion. It is also conceivable that this may result in stretching. The present invention is useful for solving such problems that occur with the invention of the above application. An object of the present invention is to maintain the flatness of the copper strip at a desired value in the strip width direction after the coil is cooled by water injection on the exit side of the finishing rolling mill and wound up into the winding machine. The object of the present invention is to obtain a cooling control method that generates a temperature distribution of . According to the present invention, the first rolling mill removed from the finishing mill. A method for controlling cooling by injecting water onto the surface of a hot-rolled steel strip sent to a winding machine by blocking areas adjacent to each side edge of the steel strip from water injection, the method comprising controlling the dimensions and composition of the copper strip. Based on the conditions such as temperature and thermal conductivity at a given point, calculate the cut-off width and cut-off water cooling time. ・Calculate the thermal stress as a paranoter and calculate the ratio of the cut-off width to the plate width and the cut-off water cooling time to the total water cooling time. A method for cooling a hot-rolled steel strip is obtained, which is characterized in that the ratio of the steepness reduction of the copper strip is set to an optimum value. Embodiments of the present invention will now be described with reference to the accompanying drawings. 1 and 2 show an apparatus 15 used in the method of the present invention, in which a cooling table 2 is provided on the exit side (left side) of the finishing mill 1, and a cooling water is provided on the upper part of the cooling table 2. The header 4 is installed, and the lower part (* is separate α) (1) cooling water header 5 is installed. Arranged in the width direction of the band W2

【6だ多数の
ノズル6を備えた管体から成るもので、多数の管体が鋼
帯の」二部及び下部で鋼帯Wの進行方向に並べらnてい
る。以上は通例の冷却テーブルと冷却水ヘッダーとを示
すものである。 本発明の方法に使用する装置15は、上部〜ヘッダ゛−
・1の下部に板幅方向に取付けられた水平軌道7に往復
自在に装架された邪魔板8A 、8Bを備えている。捲
取機3の入側と、仕上圧延機1の出側てそれぞれ鋼帯W
の温度を測定する装置9,12が設けられている。上部
ヘッダー4の上側に位置する演算装置10がリード11
A、及びIIGによりそ2tぞ1を温度測定装置9.】
2に接続されている。上部ヘッダー4に隣接する位置に
前記邪魔板8A、8Bの駆動機構1・1が取付けらJt
ている。 この駆動機構14はリードIIBにより演算装置10に
接続さlttでいる。またこの演算装置10は上位の計
算機13にリード11Dにより接続さ、11ている。 本発明の冷却制御方法は次の如くである。まず温度測定
装置9,12から演算装置10にそnぞオを捲取機3人
側の鋼帯温度及び仕上圧延機1出側の鋼帯温度を送る。 また上位計算機13から板厚、板幅、成分などの銅帯の
性質に関する情報を演算装置101C送る。演算装置1
0はこ′Jtらの板厚、板幅、成分、捲取諦;7+、、
仕上圧延機出側の温度に関するデーターに基き、幅率(
板幅(・ζ対する遮断の比)と時間率(全水冷時間に対
する遮断水冷時間の比)とな求め、こ第1渇”、駆動機
構14に送る。 上記幅率と時間率とは相互に組合はされた数値であって
、捲取機3に捲取ら几たコイルの冷却後に・?l1Jl
 ’itF XVが捲戻さ扛るとき急峻度を所要範囲に
低減させるに最適な値のもυ−肪−選ばオ′シる。駆動
機構14は演算装置10から送られた指令に基と冷L1
j水から遮断されろ銅帯の範囲、ならびに遮断される時
間を定める。演算装置10から出される上記の幅率及び
時間率に関する数値は以下に示す如く実験及び熱応力計
算により前述の冷却後コイルから捲戻された鋼帯Wの急
峻度を許容範囲内に保持することができるものである。 従って、上記工程により冷却処理か几だ鋼帯Wは精整ラ
イン入側でコイルから巻戻されるとき、平坦度に関する
限り満足ずべきものとなる。 前述の如く、冷却後コイルがら巻戻さオtた鋼帯に起る
平坦度不良の原因は、仕上げ圧延直後の幅方向温度分布
と、冷却工程における幅方向1”if却不均−とによっ
て残留応力が発生し、この応力が鋼板の臨界挫屈応力を
越える場合と考えらf”Lる。 従って、銅帯の側縁部分に起る圧縮応力をへとし挫屈応
力を%とすると、両者の比7−は乎111度不良を判断
する指標と考えられ、この値が1に接近するとき平坦度
不良が起る。 第3図は熱応力計算モデルな用いて鋼帯の側縁部分に起
る圧縮応力を算出する方法の一例を示すもので、側線部
分に起る圧縮応力の総和Sを計算し、この総和Sなこの
部分の幅すにより際し平均圧縮応力S/bを求ン・5、
この¥均圧縮応力S/bと挫屈応力ことの比を前記の指
標とすることができる。 第4図は上記の熱応力割算により得られた比A6と銅帯
側縁部分の実測急峻度とをプロットしたもので、急峻度
が比Avx比″(4’1−fi−ることを示している。 で急峻度が許容し難い値になることを示す。 第5図は時間率(全水冷時間に対する遮断水冷時間の比
)を20%、60%、100%など種々の値に固定させ
た状態で、冷却後巻戻された銅帯の急峻度と幅手(板幅
に対する遮断幅の比)との関係を、板厚2−3mm、板
幅1200 ′nlIn、(巻取d171度55(fG
、仕上圧延温度850″Gの低炭材についての実験、ν
i果を・プロットし熱応力計算結果を実線で示したもの
でXX軸の−L%9[iが耳波の急峻度、下部が腹のび
の急峻度を示す。第4図の曲線を使用して熱応力計算の
結果、比 /cz、−より急峻度を表はすことかできる
ことがわかる。即ち急峻度−01%。−(L2  と7
’;(7,。 第4図の実線はこの式を示すものにほかならない。 このように熱応力計算の結果は実験結果によく一致する
ことがわかる。また耳波急峻度は各時間率について幅手
の変化に対しほぼ滑らかな曲線を描いている。腹のび急
峻度についても同様である。こ2’Lらの曲線から、耳
波ならびに腹のび両者の急峻度を1′d/j・にする幅
手と時間率との一組を選び出すことができ熱応力計算に
より上記のようなチャートを求めろ方法は以下のようで
ある。 熱応力計算は銅帯の長手方向の熱流は無視できるとし、
2次元のフーリエの熱伝導方程式を導き、こオtをIA
D法と呼ばれる特殊な差分法を用いて応力分イ↑1り・
計算している。第6図は熱応力計算のフローチャートを
示す。ここで中手を変える場合水冷時の熱伝達係数の分
布を第7図のJ:つに遮断部分で低くなるように変え、
時間率をかえる場合そのような熱伝達係数分布による冷
却の時間を変えることにより熱応力分布(すなわち第3
図)を求めることができろ。従って第5図のようにチャ
ートを熱応力計算で求めるためにはある時間率(例えば
時間率lo%)に対応する遮断水冷時間でさまざまな幅
手に対応する水冷時の熱伝導係数分布を与えそオtぞ2
1の比0路−を求め急峻度を予測C「 する。こ2tにより第8図のようなチャートが得られる
。 次に時間率をかえ(例えば時間率40チ)それに対応す
る遮断水冷時間で同様の計算をおこなう。 これをくりかえずことにより第5図のようなチャートを
求めることができる。 しかしながら、この熱応力計算モデルは収束計算を行な
うため時間がかかりすぎオンラインでは使用できない。 従って実際の計算は熱応力計算モデルの特性を有した簡
易モデルを用いて行う。 即ち、板厚、板幅、成分、巻取温度、仕上温度などのデ
ーターに関し固有の数値を持つ各銅帯について第5図と
同様のチャートを作成することにより、それぞれの銅帯
の巻戻し後の急峻度を低減させるに最適な値の幅手と時
間率との組合ばせを得ることができる。即ち電算機に各
銅帯について上記のデーターをもとに熱応力計算簡易モ
デルを用いて前記チャートを求め、これから時間率と幅
手の最適な組合せを電算機によってえらび出すのである
。 第9図は板厚1・5 mvr 、板幅1200mm、J
看取温度60σG、仕上げ圧延温度85σGの低炭柑に
ついて作成され第5図と同様の曲線であるが、これによ
り腹のびの急峻度と、耳波の急峻度とが最小となる。即
ち腹のび急峻度と、耳波急峻度とのそれぞれの曲線に挾
まれる幅の最も小さい時間率と幅手との組合はせはこの
場合幅手10係、時間率60チであって、こftが最適
値となる。 実施例1゜ 板厚1・6rmn、板幅1200mm、捲取温度60σ
G、仕上げ圧延温度85 d′Gの低炭材について第5
図の如きチャートを作成する熱応力計算簡易モデルによ
り求めた最適値の時間率60チ及び幅手10%に対し、
第1表の如き最適値とは異る種々の時間率と幅手とを採
用して水冷を行い、捲取られた銅帯の巻戻し後の平坦度
を調査した。その結果は第10図に示す如く最適値の時
間率及び幅手で遮断冷却した場合が平坦度改善の点で最
も優オtていることを示す。 以上に示す如く、本発明によれば、仕」二げ圧延機から
出され捲取機に送らオする途上で注水冷却された銅帯が
捲取り後にコイルから捲戻されるとき発生する耳波と腹
のびとによる平坦度不良を防止することができる。 第1図は本発明の方法に使用する装置の側面図、第2図
は第1図の線U−t+に沿う断面図、第3図は第1図の
装置により処理さnた鋼帯に発生する圧縮応力を示す線
図、 第4図は第3図に示す圧縮応力と銅帯の端部急峻度との
関係を示すグラフ、 第5図は時間率を所定値に固定させたとぎの幅手と銅帯
の急峻度との関係を示す曲線、第6図は時間率を一定に
保ち幅手を変えるときの急峻度の変化を示す曲線、 第7図は板幅方向における熱伝達係数の分布を示す曲線
、 第8図は熱応力計算の工程を示すフロー・チャ。 −ト、 第9図は第5図の銅帯とは異るW4帝について作成さj
tた幅手と急峻度との関係を示す曲線、第10図は本発
明の方法により水冷処理された鋼帯と1本発明の方法に
よることなく水冷処理された鋼帯との巻戻し後の急峻度
の比較を示す線図である。 1         仕上圧延機 2         冷却テーブル 3    捲取機 4         冷却水ヘッダー(上部)5   
      仝     (下部)6    ノズル 7          軌   道 8    邪魔板 9         温度測定装置 10         演算装置 11                リ −  ド1
2         温度測定装置 13     計算機 14      駆動機構 15         本発明に使用する装さt−65
− 第 2 丙 榮−71 手続補正書 昭和57年1防8 日 特許庁Jま官   若 杉 和 夫  殿1、事件の表
示 特願昭57−137959号 2、発明の名称 熱延鋼帯の冷却制御方法 3、補正をする者 事件との関係   特許出願人 住 所  兵庫県神戸市中央区北本町通1丁目1番28
号名称 125  川崎製鉄株式会社 4、代理人 5 補正命令の日付   昭和57年11月12日6 
補正の対象     四層1誉及び図面7、補正の内容
     別紙の通り 手続補正書 本願の明細書及び図面の記載を次の如く訂正する (1)明細書 第11頁第15行と第16行との間r(次の記載を挿入
する 第1表 (1j)図 面 第10図を別紙の如く訂正する
[6] It consists of a tube body equipped with a large number of nozzles 6, and the large number of tube bodies are arranged in the traveling direction of the steel strip W in the second and lower parts of the steel strip. The above shows a typical cooling table and cooling water header. The device 15 used in the method of the present invention includes a
・Equipped with baffle plates 8A and 8B that are reciprocatably mounted on a horizontal track 7 that is attached to the lower part of the plate in the width direction of the plate. Steel strips W are placed at the entrance side of the winding machine 3 and the exit side of the finishing rolling machine 1, respectively.
A device 9, 12 is provided for measuring the temperature of. The arithmetic unit 10 located above the upper header 4 is connected to the lead 11.
Temperature measuring device 9. ]
Connected to 2. The drive mechanisms 1 and 1 for the baffle plates 8A and 8B are installed at positions adjacent to the upper header 4.
ing. This drive mechanism 14 is connected to the arithmetic unit 10 by a lead IIB. Further, this arithmetic unit 10 is connected to a host computer 13 via a lead 11D. The cooling control method of the present invention is as follows. First, the temperature measuring devices 9 and 12 send the temperature of the steel strip on the three-man side of the winding machine and the temperature of the steel strip on the exit side of the finishing mill 1 to the computing device 10. The host computer 13 also sends information regarding the properties of the copper strip, such as plate thickness, plate width, and composition, to the arithmetic unit 101C. Arithmetic device 1
0 is the plate thickness, plate width, component, and winding details of Jt et al.;7+,,
Based on the data regarding the temperature at the exit side of the finishing mill, the width ratio (
The plate width (ratio of cut-off to ζ) and time rate (ratio of cut-off water cooling time to total water cooling time) are determined and sent to the drive mechanism 14. The combination is the numerical value, and after cooling the coil wound in winding machine 3, ?l1Jl
It is also possible to select the optimum value to reduce the steepness to the required range when the XV is unwound. The drive mechanism 14 operates based on the command sent from the arithmetic unit 10.
j Determine the area of the copper strip that is shielded from water and the time that it is shielded. The above-mentioned values regarding the width ratio and time ratio output from the arithmetic unit 10 are determined by experiments and thermal stress calculations as shown below to maintain the steepness of the steel strip W unwound from the coil after cooling within a permissible range. It is something that can be done. Therefore, when the steel strip W that has been cooled and refined through the above process is unwound from the coil at the entry side of the finishing line, it is satisfactory as far as flatness is concerned. As mentioned above, the cause of poor flatness that occurs in the steel strip that has been unwound from the coil after cooling is the temperature distribution in the width direction immediately after finishing rolling and the unevenness in the width direction that remains during the cooling process. It is assumed that stress is generated and this stress exceeds the critical buckling stress of the steel plate. Therefore, if the compressive stress occurring at the side edge portion of the copper strip is reduced and the buckling stress is expressed as %, then the ratio of the two is considered to be 7-111 degrees and is an index for determining failure, and when this value approaches 1, Poor flatness occurs. Figure 3 shows an example of a method for calculating the compressive stress occurring at the side edge portion of a steel strip using a thermal stress calculation model. Find the average compressive stress S/b when cutting the width of this part.・5,
The ratio of this uniform compressive stress S/b and buckling stress can be used as the above-mentioned index. Figure 4 is a plot of the ratio A6 obtained by the above thermal stress division and the actually measured steepness of the side edge portion of the copper strip. Figure 5 shows that the time ratio (ratio of cut-off water cooling time to total water cooling time) is fixed at various values such as 20%, 60%, and 100%. In this state, the relationship between the steepness and the width (ratio of cut-off width to the strip width) of the copper strip unwound after cooling is calculated using a strip thickness of 2 to 3 mm, strip width of 1200'nlIn, (winding d of 171 degrees). 55 (fG
, Experiment on low carbon material with finish rolling temperature of 850″G, ν
The results are plotted and the thermal stress calculation results are shown as a solid line, where -L%9 on the XX axis [i indicates the steepness of the ear wave, and the lower part indicates the steepness of the belly wave. As a result of thermal stress calculation using the curve in FIG. 4, it is found that the steepness can be expressed by the ratio /cz, -. That is, the steepness is -01%. -(L2 and 7
';(7,. The solid line in Figure 4 is nothing but the one that shows this equation. It can be seen that the results of thermal stress calculation agree well with the experimental results. Also, the ear wave steepness is determined for each time rate. It draws an almost smooth curve with respect to the change in width.The same is true for the steepness of the abdomen.From these 2'L and other curves, the steepness of both the ear wave and the abdomen can be calculated as 1'd/j・The method for calculating the thermal stress is as follows.The thermal stress calculation can ignore the heat flow in the longitudinal direction of the copper strip. year,
Derive the two-dimensional Fourier heat conduction equation and convert it into IA
A special difference method called the D method is used to calculate the stress component ↑1
I'm calculating. FIG. 6 shows a flowchart of thermal stress calculation. If you change the middle handle here, change the distribution of the heat transfer coefficient during water cooling so that it is lower at the cutoff part J in Figure 7,
When changing the time rate, the thermal stress distribution (i.e. the third
Figure). Therefore, in order to obtain the chart as shown in Figure 5 by thermal stress calculation, the distribution of the thermal conductivity coefficient during water cooling corresponding to various widths is given at a cutoff water cooling time corresponding to a certain time rate (for example, time rate lo%). That's it 2
Find the ratio 0 of 1 and predict the steepness C. Then, a chart like the one shown in Figure 8 is obtained. Perform similar calculations. By repeating this, a chart like the one shown in Figure 5 can be obtained. However, this thermal stress calculation model requires too much time to perform convergence calculations, so it cannot be used online. Therefore, it cannot be used online. Calculations are performed using a simple model that has the characteristics of a thermal stress calculation model. In other words, each copper strip has unique values for data such as plate thickness, plate width, composition, coiling temperature, finishing temperature, etc. as shown in Figure 5. By creating a chart similar to , it is possible to obtain the combination of width and time rate that is optimal for reducing the steepness of each copper strip after unwinding. Based on the above data for the copper strip, the above chart is obtained using a simple thermal stress calculation model, and from this, the optimal combination of time rate and width is selected by computer. Figure 9 shows the plate thickness 1. 5 mvr, board width 1200mm, J
A curve similar to that shown in FIG. 5 was created for a low charcoal cake with a starting temperature of 60σG and a finish rolling temperature of 85σG, and the steepness of the belly roll and the steepness of the ear waves are minimized. That is, in this case, the combination of the smallest width between the curves of the steepness of the belly and the steepness of the ear wave and the width is 10 parts for the width part and 60 parts for the time ratio, This value is the optimum value. Example 1゜Plate thickness 1.6rmn, plate width 1200mm, winding temperature 60σ
G, low carbon material with finish rolling temperature of 85 d'G.
For the optimum time rate of 60 cm and width of 10%, which was determined by a simple thermal stress calculation model that creates a chart as shown in the figure,
Water cooling was performed using various time rates and widths different from the optimum values shown in Table 1, and the flatness of the rolled copper strip after unwinding was investigated. The results show that, as shown in FIG. 10, the case where the cut-off cooling is performed at the optimal time rate and width is the most effective in terms of flatness improvement. As described above, according to the present invention, a copper strip that has been taken out from a finishing rolling mill and cooled by water injection while being sent to a winding machine is unwinded from the coil after winding. Poor flatness due to stretching can be prevented. FIG. 1 is a side view of the apparatus used in the method of the present invention, FIG. 2 is a sectional view taken along the line U-t+ in FIG. 1, and FIG. 3 shows a steel strip processed by the apparatus of FIG. Figure 4 is a graph showing the relationship between the compressive stress shown in Figure 3 and the edge steepness of the copper strip. Figure 5 is a graph showing the relationship between the compressive stress shown in Figure 3 and the edge steepness of the copper strip. A curve showing the relationship between the width and the steepness of the copper strip. Figure 6 is a curve showing the change in steepness when changing the width while keeping the time rate constant. Figure 7 is the heat transfer coefficient in the width direction of the strip. Figure 8 is a flowchart showing the process of thermal stress calculation. - Figure 9 was created for W4 Emperor, which is different from the copper belt in Figure 5.
Figure 10 is a curve showing the relationship between the width and steepness of a steel strip water-cooled by the method of the present invention and a steel strip water-cooled not by the method of the present invention after unwinding. FIG. 3 is a diagram showing a comparison of steepness. 1 Finishing rolling mill 2 Cooling table 3 Winding machine 4 Cooling water header (upper part) 5
(Lower) 6 Nozzle 7 Track 8 Baffle plate 9 Temperature measuring device 10 Arithmetic device 11 Lead 1
2 Temperature measuring device 13 Computer 14 Drive mechanism 15 Equipment used in the present invention T-65
- No. 2 Hei-ei-71 Procedural Amendment 1/8/1982 Kazuo Wakasugi, Official of the Japan Patent Office 1, Indication of the Case Patent Application No. 137959/1982 2, Name of the Invention Cooling of Hot-Rolled Steel Strip Control method 3, relationship with the case of the person making the amendment Patent applicant address 1-1-28 Kitahonmachi-dori, Chuo-ku, Kobe, Hyogo Prefecture
Title 125 Kawasaki Steel Corporation 4, Agent 5 Date of amendment order November 12, 1980 6
Subject of amendment: Four layers, 1 honor and drawing 7, Contents of amendment: As shown in the attached document, the description and drawings of the application are corrected as follows (1) Lines 15 and 16 of page 11 of the specification. (Table 1 (1j) drawing with the following entry amended as shown in the attached sheet, Figure 10)

Claims (1)

【特許請求の範囲】[Claims] 仕上圧延機から出さn捲取機に送られる熱間圧延鋼帯の
表面に注水冷却するに際し、該銅帯の各側縁に隣接する
区域を注水から遮断して冷却を制御する方法であって、
鋼帯の寸法、成分、所定地点における温度、熱伝導率な
どの条件をもとに遮断幅及び遮断水冷時間をパラメータ
ーとして熱応力計算を行い、板幅1、テ対する遮断幅の
比と、全水冷時間に対する遮断水冷時間の比とを銅帯の
急峻度の低減に最適の値に整定することをfi−edと
する熱延鋼帯の冷却方法。
A method for controlling cooling by blocking areas adjacent to each side edge of the copper strip from water injection when cooling the surface of a hot rolled steel strip taken out from a finishing mill and sent to a winding machine, the method comprising: ,
Thermal stress calculations are performed using the cut-off width and cut-off water cooling time as parameters based on conditions such as steel strip dimensions, composition, temperature at a predetermined point, and thermal conductivity, and the ratio of cut-off width to strip width 1, A method for cooling a hot-rolled steel strip in which the fi-ed method is to set the ratio of the cut-off water cooling time to the water cooling time to an optimal value for reducing the steepness of the copper strip.
JP57137959A 1982-08-10 1982-08-10 Controlling method for cooling hot rolled steel strip Pending JPS5930412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137959A JPS5930412A (en) 1982-08-10 1982-08-10 Controlling method for cooling hot rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137959A JPS5930412A (en) 1982-08-10 1982-08-10 Controlling method for cooling hot rolled steel strip

Publications (1)

Publication Number Publication Date
JPS5930412A true JPS5930412A (en) 1984-02-18

Family

ID=15210719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137959A Pending JPS5930412A (en) 1982-08-10 1982-08-10 Controlling method for cooling hot rolled steel strip

Country Status (1)

Country Link
JP (1) JPS5930412A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128914A (en) * 1984-11-28 1986-06-17 南崎茶業株式会社 Tea things
JPS6313610A (en) * 1986-07-03 1988-01-20 Nippon Steel Corp Cooling method for hot steel sheet
CN102397887A (en) * 2011-10-25 2012-04-04 攀钢集团西昌钢钒有限公司 Method restraining temperature fluctuation of strip steel tail part in laminar cooling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128914A (en) * 1984-11-28 1986-06-17 南崎茶業株式会社 Tea things
JPS6313610A (en) * 1986-07-03 1988-01-20 Nippon Steel Corp Cooling method for hot steel sheet
CN102397887A (en) * 2011-10-25 2012-04-04 攀钢集团西昌钢钒有限公司 Method restraining temperature fluctuation of strip steel tail part in laminar cooling

Similar Documents

Publication Publication Date Title
US11400542B2 (en) Method and device for producing a continuous strip-shaped composite material
JP6283617B2 (en) Method for producing hot rolled silicon steel
EP0153688B1 (en) Method of cooling hot steel plates
AU685541B2 (en) Continuous method for producing final gauge stainless steel product
EP3150290B1 (en) Method for manufacturing hot-rolled steel sheet
JPS5930412A (en) Controlling method for cooling hot rolled steel strip
JP2020138222A (en) Reheating system and reheating method for cast piece
JP2005270982A (en) Method for controlling cooling of material to be rolled in hot rolling
JP2008068267A (en) Method of cooling hot-rolled steel sheet
JP3806173B2 (en) Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process
JPS5924511A (en) Cooling method of material to be rolled
JP4453299B2 (en) Manufacturing method of steel strip with few surface defects
JPH0636930B2 (en) Hot rolling equipment
JPH0890046A (en) Cooling method of hot steel plate
JP3698088B2 (en) Manufacturing method of hot-rolled steel strip
JP7295419B2 (en) Rolling equipment and rolling method
JP2005288463A (en) Cooling device and cooling method for steel strip
KR100496824B1 (en) Cooling control method of hot strip using intermediate pyrometer on run-out table
JPS5997705A (en) Continuous rolling method
JPH10113713A (en) Production of steel plate of controlled cooling
JP3221561B2 (en) Manufacturing method of stainless steel sheet
JPH08277423A (en) Production of austenitic stainless steel thin sheet excellent in surface quality
JPH04305338A (en) Method for continuously casting billet for steel sheet
JP3872537B2 (en) Method for producing hot-rolled steel sheet with good surface properties and pickling properties
KR101376564B1 (en) Method of manufacturing ferritic stainless steel