JPH10113713A - Production of steel plate of controlled cooling - Google Patents

Production of steel plate of controlled cooling

Info

Publication number
JPH10113713A
JPH10113713A JP26861196A JP26861196A JPH10113713A JP H10113713 A JPH10113713 A JP H10113713A JP 26861196 A JP26861196 A JP 26861196A JP 26861196 A JP26861196 A JP 26861196A JP H10113713 A JPH10113713 A JP H10113713A
Authority
JP
Japan
Prior art keywords
steel sheet
cooling
width direction
controlled cooling
descaling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP26861196A
Other languages
Japanese (ja)
Inventor
Hideto Tonai
秀人 藤内
Atsushi Miyawaki
淳 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP26861196A priority Critical patent/JPH10113713A/en
Publication of JPH10113713A publication Critical patent/JPH10113713A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Control Of Heat Treatment Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a temp. distribution of in the steel plate width direction uniform when stopping controlled cooling. SOLUTION: When producing the steel plate of controlled cooling to cool down to a prescribed temp. on-line after hot rolling, descaling is conducted before start of controlled cooling while varying a colliding pressure of water at descaling in the steel plate width direction, a thickness distribution of a scale layer of front/rear faces of the steel plate before start of controlled cooling is regulated, successively, by conducting controlled cooling, a temp. distribution in the steel plate width direction at stopping of controlled cooling is made uniform.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延鋼板の製
造技術に関し、詳しくは制御圧延鋼板の製造技術分野に
属するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for manufacturing a hot-rolled steel sheet, and more particularly to a technique for manufacturing a control-rolled steel sheet.

【0002】[0002]

【従来の技術】熱間圧延された鋼板の機械的性質の向上
や合金元素の低減を目的として、熱間圧延終了後オンラ
インで所定の温度まで冷却する制御冷却法が実用化され
ている。しかし、制御冷却を行う際、鋼板幅方向端部に
おいては、冷却水が鋼板の幅方向に流れるため、鋼板幅
方向端部が強く冷やされ、また、鋼板幅方向端部は鋼板
の側面からの冷却も加わり、過剰に冷却される。この結
果、制御冷却停止時の鋼板幅方向中央部と端部で温度差
が生じ、鋼板幅方向の温度分布が不均一になる。
2. Description of the Related Art For the purpose of improving the mechanical properties of hot-rolled steel sheets and reducing alloying elements, a controlled cooling method for cooling to a predetermined temperature online after completion of hot rolling has been put to practical use. However, when performing controlled cooling, at the steel sheet width direction end, since the cooling water flows in the width direction of the steel sheet, the steel sheet width direction end is strongly cooled, and the steel sheet width direction end is viewed from the side of the steel sheet. Cooling is also added, resulting in excessive cooling. As a result, a temperature difference occurs between the central portion and the end portion in the width direction of the steel sheet when the control cooling is stopped, and the temperature distribution in the width direction of the steel sheet becomes uneven.

【0003】制御冷却停止時の鋼板幅方向の温度分布の
不均一は空冷後の残留歪みの発生原因となり、製品切断
時の変形を引き起こす。また、不均一な冷却は機械的性
質のばらつきの原因にもなる。そのため、制御冷却にお
ける鋼板幅方向の均一冷却は極めて重要である。鋼板幅
方向を均一に冷却する制御冷却の方法として、鋼板幅方
向端部の過剰冷却を防止するために、鋼板幅方向端部の
冷却水を遮蔽板で遮蔽する方法が特開昭61-238413 号公
報に提案されている。
[0003] The non-uniformity of the temperature distribution in the width direction of the steel sheet when the control cooling is stopped causes a residual strain after air cooling, and causes deformation when cutting the product. Non-uniform cooling also causes variations in mechanical properties. Therefore, uniform cooling in the width direction of the steel sheet in controlled cooling is extremely important. As a method of controlling cooling to uniformly cool the steel sheet in the width direction, a method of shielding cooling water at the steel sheet width direction end with a shielding plate in order to prevent excessive cooling at the steel sheet width direction end is disclosed in Japanese Patent Application Laid-Open No. 61-238413. No. 1993.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記の方法で
は鋼板幅方向端部の過剰冷却を十分に防ぐことができな
い場合がある。すなわち、遮蔽幅を広くすると、鋼板幅
方向最端部の温度降下量は小さくなるが、その内側では
冷却停止温度が目標冷却停止温度よりも高くなる。逆
に、遮蔽幅を狭くすると、鋼板幅方向最端部の過剰冷却
防止効果は低下する。このように、従来の技術では鋼板
幅方向を均一に冷却し、制御冷却停止時の温度分布を均
一にすることは困難であった。
However, there are cases where the above-described method cannot sufficiently prevent excessive cooling of the end portion in the width direction of the steel sheet. That is, when the shielding width is widened, the temperature drop amount at the end portion in the width direction of the steel sheet decreases, but the cooling stop temperature becomes higher than the target cooling stop temperature inside. Conversely, if the shielding width is reduced, the effect of preventing excessive cooling at the end portion in the width direction of the steel sheet decreases. As described above, it is difficult to uniformly cool the steel sheet in the width direction and make the temperature distribution uniform when the control cooling is stopped by the conventional technique.

【0005】本発明は、鋼板表面のスケール層の厚さの
違いによって鋼板の冷却速度が変化することに着目して
なされたもので、制御冷却開始前の鋼板表裏面のスケー
ル層の厚さ分布を調整することによって、制御冷却開始
時の冷却応答時間を制御し、制御冷却停止時の鋼板幅方
向の温度分布を均一にする制御冷却鋼板の製造方法を提
供することを目的とする。
The present invention has been made in view of the fact that the cooling rate of the steel sheet changes depending on the difference in the thickness of the scale layer on the surface of the steel sheet. It is an object of the present invention to provide a method for manufacturing a controlled cooling steel sheet in which the cooling response time at the start of controlled cooling is controlled by adjusting the temperature, and the temperature distribution in the steel sheet width direction when the controlled cooling is stopped is uniform.

【0006】[0006]

【課題を解決するための手段】その要旨は、熱間圧延終
了後オンラインで所定の温度まで冷却する制御冷却鋼板
の製造に際し、制御冷却開始前に鋼板幅方向にデスケー
リング時の水の衝突圧力を変えてデスケーリングを行
い、制御冷却開始前の鋼板表裏面のスケール層の厚さ分
布を調整し、その後、制御冷却を行うことにより制御冷
却停止時の鋼板幅方向の温度分布を均一にすることを特
徴とする。
SUMMARY OF THE INVENTION The point of the invention is that when producing a controlled cooling steel sheet which is cooled to a predetermined temperature online after completion of hot rolling, the collision pressure of water during descaling in the width direction of the steel sheet before the start of the controlled cooling. To control the thickness distribution of the scale layer on the front and back surfaces of the steel sheet before starting the control cooling, and then perform the control cooling to make the temperature distribution in the width direction of the steel sheet uniform when the control cooling is stopped. It is characterized by the following.

【0007】制御冷却開始時の鋼板の冷却速度はスケー
ル層厚が厚いと速く、スケール層厚が薄いと遅くなる。
従って、スケール層厚が厚い部分の制御冷却停止時の鋼
板温度は低く、逆に、スケール層厚が薄い部分の制御冷
却停止時の鋼板温度は高くなる。この現象については、
発明者らの一部によって特願平3-248250号に開示されて
いる。
[0007] The cooling rate of the steel sheet at the start of controlled cooling is high when the scale layer thickness is large, and is low when the scale layer thickness is small.
Therefore, the temperature of the steel sheet at the time of stopping the controlled cooling of the portion where the scale layer thickness is large is low, and conversely, the temperature of the steel sheet at the time of stopping the controlled cooling of the portion where the scale layer thickness is small becomes high. About this phenomenon,
It is disclosed by some of the inventors in Japanese Patent Application No. 3-248250.

【0008】熱間圧延中及び冷却中に鋼板表面に生成す
るスケール層の厚さは、空冷時間と鋼板表面温度から予
測することができ、その予測モデルは発明者らの一部に
よって特公平7-115061号公報に開示されている。予測モ
デルは下記のとおりである。
[0008] The thickness of the scale layer formed on the surface of the steel sheet during hot rolling and cooling can be predicted from the air cooling time and the steel sheet surface temperature. No. -115061. The prediction model is as follows.

【0009】 t=[a・τ・exp〔b/(T+273)〕]C ただし、t:スケール層の厚さ τ:空冷時間 T:鋼板表面温度 a、b、c:定数T = [a · τ · exp [b / (T + 273)]] C where t: thickness of scale layer τ: air cooling time T: steel sheet surface temperature a, b, c: constant

【0010】このスケール層厚の予測モデルと周知の差
分法による圧延温度の予測モデルを組み合わせることに
より、熱間圧延終了後の鋼板表面のスケール層の厚さを
シミュレーションすることができる。
By combining this scale layer thickness prediction model with a rolling temperature prediction model using a well-known difference method, it is possible to simulate the thickness of the scale layer on the steel sheet surface after the completion of hot rolling.

【0011】次に、制御冷却における冷却水量密度に応
じて、制御冷却開始前の鋼板表裏面のスケール層の厚さ
分布を調整する。スケール層の厚さ分布調整は、デスケ
ーリング時の水の衝突圧力を変えてデスケーリングする
ことで行う。デスケーリング時の鋼板幅方向の水の衝突
圧力の変化は、鋼板幅方向に配列されている各デスケー
リングヘッダの水圧調整、あるいは鋼板幅方向に配列さ
れている各デスケーリングヘッダと鋼板表裏面との間の
距離を調整することによって行う。
Next, the thickness distribution of the scale layer on the front and back surfaces of the steel sheet before the start of the controlled cooling is adjusted according to the cooling water amount density in the controlled cooling. The thickness distribution of the scale layer is adjusted by changing the collision pressure of water during descaling to perform descaling. The change in the collision pressure of water in the width direction of the steel sheet during descaling is adjusted by adjusting the water pressure of each descaling header arranged in the width direction of the steel sheet, or each descaling header and the front and back surfaces of the steel sheet arranged in the width direction of the steel sheet. This is done by adjusting the distance between

【0012】デスケーリング後の鋼板表面のスケール層
の厚さは、図6に示すように、デスケーリング時の水の
衝突圧力が高くなれば、空冷後のスケール層の厚さは薄
くなり、一方、衝突圧力が低くなれば、空冷後のスケー
ル層の厚さは厚くなる。このように、熱間圧延終了後、
鋼板幅方向に水の衝突圧力を変えてデスケーリングする
ことによって、制御冷却開始前の鋼板幅方向のスケール
層厚を調整することができる。
As shown in FIG. 6, the thickness of the scale layer on the surface of the steel sheet after descaling becomes smaller as the collision pressure of water at the time of descaling becomes higher. On the other hand, if the collision pressure is reduced, the thickness of the scale layer after air cooling is increased. Thus, after hot rolling,
By changing the collision pressure of water in the steel sheet width direction and performing descaling, the scale layer thickness in the steel sheet width direction before the start of the controlled cooling can be adjusted.

【0013】従って、制御冷却開始前に、強く冷却され
る鋼板幅方向端部の表裏面を高いデスケーリング水の衝
突圧力で、一方、鋼板幅方向中央部の表裏面を低いデス
ケーリング水の衝突圧力でデスケーリングし、スケール
厚を変化させることによって、制御冷却停止時の鋼板幅
方向端部と中央部の温度差をなくすことができる。
Therefore, before the start of the controlled cooling, the front and back surfaces of the steel plate width direction ends to be strongly cooled are subjected to high descaling water collision pressure, while the front and back surfaces of the steel plate width direction central portion are subjected to low descaling water collision. By descaling with pressure and changing the scale thickness, it is possible to eliminate the temperature difference between the end and the center in the width direction of the steel sheet when the control cooling is stopped.

【0014】上記のように、熱間圧延終了後、制御冷却
開始前に、デスケーリング時の水の衝突圧力が鋼板幅方
向に可変なデスケーリング設備を用いてデスケーリング
を行い、鋼板幅方向のスケール厚さ分布を調整し、その
後、制御冷却を行うことにより、制御冷却停止時の鋼板
幅方向の温度分布を均一にすることができる。
As described above, after the end of hot rolling and before the start of controlled cooling, descaling is performed using a descaling facility in which the collision pressure of water during descaling is variable in the width direction of the steel sheet. By adjusting the scale thickness distribution and then performing the controlled cooling, the temperature distribution in the steel sheet width direction when the controlled cooling is stopped can be made uniform.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施の形態例と
比較例について説明する。厚さ25mm、幅3000mm、長さ10
000mm の溶接構造用鋼板を 870℃で熱間圧延終了後、図
1に示すように、板幅方向に衝突圧力が一様なデスケー
リングヘッダに加えて、鋼板幅方向に移動可能な幅 200
mmの補助デスケーリングヘッダを配し、デスケーリング
時は、この補助デスケーリングヘッダの水の衝突圧力を
高めてデスケーリングを行った。すなわち、衝突圧力が
一様なデスケーリングヘッダ両端部を遮蔽板で遮蔽し、
鋼板幅方向に中心から両側の1300mm幅の間は、衝突圧力
が一様なデスケーリングヘッダで衝突圧力3.5MPaで、そ
の外側(鋼板両端部) 200mm幅を補助デスケーリングヘ
ッダで衝突圧力4.5MPaでデスケーリングを行った。その
後、 850℃から制御冷却を開始し、 450℃で制御冷却を
停止した。この間の水量密度は 0.6m3/min・m2である。
この時の制御冷却停止時の鋼板表面幅方向の温度分布を
図2に示す。なお、熱間圧延終了時のスケール層厚は、
予測モデルから30μm で、デスケーリング後のスケール
層厚は水の衝突圧力3.5MPaで25μm 、4.5MPaで 8μm で
あった。
Embodiments of the present invention and comparative examples will be described below. Thickness 25mm, width 3000mm, length 10
After hot-rolling a 000 mm welded steel sheet at 870 ° C, as shown in Fig. 1, in addition to a descaling header with a uniform impact pressure in the sheet width direction, a width 200 mm capable of moving in the sheet width direction is applied.
An auxiliary descaling header of mm was provided, and at the time of descaling, the descaling was performed by increasing the collision pressure of water in the auxiliary descaling header. In other words, both ends of the descaling header where the collision pressure is uniform are shielded by shielding plates,
Between 1300mm width on both sides from the center in the width direction of the steel plate, the collision pressure is 3.5MPa with a uniform descaling header and the outer 200mm width (both ends of the steel plate) is 4.5MPa with an auxiliary descaling header. Descaling was performed. Thereafter, controlled cooling was started at 850 ° C, and stopped at 450 ° C. The water density during this time is 0.6m 3 / min · m 2 .
FIG. 2 shows the temperature distribution in the width direction of the steel sheet when the control cooling is stopped at this time. The scale layer thickness at the end of hot rolling is
According to the prediction model, it was 30 μm, and the scale layer thickness after descaling was 25 μm at 3.5 MPa impact pressure and 8 μm at 4.5 MPa impact pressure.

【0016】比較例は、上記と同様に、厚さ25mm、幅30
00mm、長さ10000mm の溶接構造用鋼板を 870℃で熱間圧
延終了後、鋼板幅方向に水の衝突圧力を変えずに、デス
ケーリング時の水の衝突圧力4.5MPaでデスケーリングを
行った。その後、 850℃から制御冷却を開始し、 450℃
で制御冷却を停止した。この間の水量密度は 0.6m3/min
・m2である。制御冷却時は、鋼板幅両端部分に遮蔽板な
し、遮蔽板幅 100mm、遮蔽板幅 200mmの3種類の条件で
制御冷却を行った。制御冷却停止時の鋼板表面幅方向の
温度分布を図3、4、5に示す。なお、熱間圧延終了時
のスケール層厚は、予測モデルから35μm で、デスケー
リング後のスケール層厚は 7μm であった。
The comparative example has a thickness of 25 mm and a width of 30 mm as described above.
After hot rolling a 00 mm, 10000 mm long welded structural steel sheet at 870 ° C, the steel was subjected to descaling at a water collision pressure of 4.5 MPa during descaling without changing the water collision pressure in the width direction of the steel sheet. After that, start controlled cooling from 850 ° C and 450 ° C
To stop controlled cooling. The water density during this time is 0.6m 3 / min
- a m 2. At the time of controlled cooling, controlled cooling was performed under three conditions: no shield plate at both ends of the steel plate width, a shield plate width of 100 mm, and a shield plate width of 200 mm. The temperature distribution in the width direction of the steel sheet when the control cooling is stopped is shown in FIGS. The scale layer thickness at the end of hot rolling was 35 μm from the prediction model, and the scale layer thickness after descaling was 7 μm.

【0017】本発明に係わる製造方法における制御冷却
停止時の鋼板幅方向の表面温度分布は、図2に示すよう
に、制御冷却開始前に、鋼板幅方向にデスケーリング時
の水の衝突圧力を変えてデスケーリングを行い、鋼板幅
端部のスケール層厚を薄く、鋼板幅方向中央部のスケー
ル層厚を厚く調整しているため、鋼板幅方向の表面温度
分布はほぼ均一で、鋼板幅方向端部と中央部との温度偏
差は23℃である。
In the manufacturing method according to the present invention, the surface temperature distribution in the width direction of the steel sheet when the control cooling is stopped is, as shown in FIG. The scale layer thickness at the end of the steel sheet width is reduced and the thickness of the scale layer at the center in the sheet width direction is adjusted thicker, so that the surface temperature distribution in the steel sheet width direction is almost uniform and the steel sheet width direction The temperature deviation between the end and the center is 23 ° C.

【0018】これに対して、比較例は制御冷却開始前の
スケール層厚さが鋼板幅方向に一定であるため、制御冷
却時、鋼板幅両端部分に遮蔽板なしの場合は、図3に示
すように、制御冷却停止時の鋼板幅方向端部と中央部と
の温度偏差は72℃である。また、制御冷却時、鋼板幅両
端部分の遮蔽板幅が 100mmの場合は、図4に示すよう
に、制御冷却停止時の鋼板幅方向端部と中央部との温度
偏差は48℃である。また、制御冷却時、鋼板幅両端部分
の遮蔽板幅が 200mmの場合は、図5に示すように、制御
冷却停止時の鋼板幅方向端部と中央部との温度偏差は43
℃と小さくなっているが、鋼板幅端部の内側の温度は、
遮蔽板の幅が広いためその部分の冷却が阻害され、目標
の制御冷却停止温度の 450℃よりも15℃程度高くなって
いる。このように、制御冷却時、遮蔽板を用いる方法で
は、制御冷却停止時の鋼板幅方向の温度分布を均一に制
御することは難しい。なお、制御冷却停止時の鋼板表面
温度は赤外線放射温度計で測定した。
On the other hand, in the comparative example, since the thickness of the scale layer before the start of the controlled cooling is constant in the width direction of the steel sheet, FIG. As described above, the temperature deviation between the end portion and the center portion in the width direction of the steel sheet when the control cooling is stopped is 72 ° C. Further, when the width of the shielding plate at both ends of the steel sheet width is 100 mm during the controlled cooling, as shown in FIG. 4, the temperature deviation between the end and the central part in the width direction of the steel sheet when the controlled cooling is stopped is 48 ° C. In addition, when the width of the shielding plate at both ends of the steel sheet width is 200 mm during the controlled cooling, as shown in FIG.
℃, but the temperature inside the steel sheet width end is
The large width of the shielding plate hinders cooling of that part, and is about 15 ° C higher than the target controlled cooling stop temperature of 450 ° C. As described above, it is difficult to uniformly control the temperature distribution in the width direction of the steel sheet when the controlled cooling is stopped by the method using the shielding plate during the controlled cooling. In addition, the steel plate surface temperature at the time of control cooling stop was measured with the infrared radiation thermometer.

【0019】上記の実施の形態例では、補助デスケーリ
ングヘッダを用いた例を挙げて説明したが、デスケーリ
ングヘッダを細分割しデスケーリング時の水の衝突圧力
を変えることにより、制御冷却停止時の鋼板幅方向の温
度分布の均一性を高めることができる。また、当然のこ
とながら、熱間圧延終了後、表面に温度偏差のある鋼板
に対しても、制御冷却開始前に、表面の温度偏差に応じ
て、制御冷却停止時の鋼板表面の温度分布が均一になる
ように、デスケーリング時の水の衝突圧力を変え、スケ
ール層厚を調整することにより、制御冷却停止時の鋼板
表面の温度分布を均一にすることができる。
In the above-described embodiment, an example using the auxiliary descaling header has been described. However, by subdividing the descaling header and changing the collision pressure of water at the time of descaling, the control cooling stop is stopped. Can improve the uniformity of the temperature distribution in the width direction of the steel sheet. Naturally, even after the end of hot rolling, even for a steel sheet having a temperature deviation on the surface, before the start of control cooling, the temperature distribution on the steel sheet surface when the control cooling is stopped depends on the surface temperature deviation. By changing the collision pressure of water at the time of descaling and adjusting the thickness of the scale layer so as to be uniform, the temperature distribution on the surface of the steel sheet when the control cooling is stopped can be made uniform.

【0020】[0020]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、制御冷却開始前に鋼板表裏面のスケー
ル層厚さ分布を調整するため、制御冷却開始時の鋼板の
冷却応答時間の制御が可能となり、制御冷却停止時の鋼
板幅方向の温度分布を均一にすることができる。
As is apparent from the above description,
According to the present invention, it is possible to control the cooling response time of the steel sheet at the start of control cooling to adjust the scale layer thickness distribution on the front and back surfaces of the steel sheet before the start of control cooling, and to control the steel sheet width direction at the time of control cooling stop. The temperature distribution can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

【図1】補助デスケーリングヘッダを用いて、デスケー
リング時の水の衝突圧力を変えたデスケーリング設備の
説明図である。
FIG. 1 is an explanatory diagram of a descaling facility in which the collision pressure of water during descaling is changed using an auxiliary descaling header.

【図2】本発明に係わる製造方法における制御冷却停止
時の鋼板幅方向の表面温度分布を示す図である。
FIG. 2 is a diagram showing a surface temperature distribution in a width direction of a steel sheet when controlled cooling is stopped in the manufacturing method according to the present invention.

【図3】比較例における鋼板両端部分に遮蔽板なしのと
きの制御冷却停止時の鋼板幅方向の表面温度分布を示す
図である。
FIG. 3 is a diagram illustrating a surface temperature distribution in a width direction of a steel sheet when control cooling is stopped when there is no shielding plate at both ends of the steel sheet in a comparative example.

【図4】比較例における鋼板両端部分の遮蔽板幅が 100
mmのときの制御冷却停止時の鋼板幅方向の表面温度分布
を示す図である。
FIG. 4 shows a comparative example in which the shielding plate width at both ends of the steel plate is 100.
FIG. 4 is a diagram showing a surface temperature distribution in the width direction of the steel sheet when control cooling is stopped when the value is mm.

【図5】比較例における鋼板両端部分の遮蔽板幅が 200
mmのときの制御冷却停止時の鋼板幅方向の表面温度分布
を示す図である。
FIG. 5: The width of the shielding plate at both ends of the steel plate in the comparative example is 200
FIG. 4 is a diagram showing a surface temperature distribution in the width direction of the steel sheet when control cooling is stopped when the value is mm.

【図6】熱間圧延終了後、デスケーリング設備を用いて
デスケーリングを行い、その後空冷し、空冷後の鋼板表
面のスケール層の厚さを測定した結果を示す図である。
FIG. 6 is a view showing a result of performing descaling using a descaling facility after completion of hot rolling, and then air cooling, and measuring the thickness of the scale layer on the steel sheet surface after air cooling.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延終了後オンラインで所定の温度
まで冷却する制御冷却鋼板の製造に際し、制御冷却開始
前に鋼板幅方向にデスケーリング時の水の衝突圧力を変
えてデスケーリングを行い、制御冷却開始前の鋼板表裏
面のスケール層の厚さ分布を調整し、その後、制御冷却
を行うことにより制御冷却停止時の鋼板幅方向の温度分
布を均一にすることを特徴とする制御冷却鋼板の製造方
法。
In the production of a controlled cooling steel sheet which is cooled to a predetermined temperature online after the end of hot rolling, descaling is performed by changing the collision pressure of water at the time of descaling in the width direction of the steel sheet before the start of controlled cooling, A controlled cooling steel sheet characterized by adjusting the thickness distribution of the scale layer on the front and back surfaces of the steel sheet before starting the control cooling, and then performing the control cooling to make the temperature distribution in the width direction of the steel sheet uniform when the control cooling is stopped. Manufacturing method.
JP26861196A 1996-10-09 1996-10-09 Production of steel plate of controlled cooling Withdrawn JPH10113713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26861196A JPH10113713A (en) 1996-10-09 1996-10-09 Production of steel plate of controlled cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26861196A JPH10113713A (en) 1996-10-09 1996-10-09 Production of steel plate of controlled cooling

Publications (1)

Publication Number Publication Date
JPH10113713A true JPH10113713A (en) 1998-05-06

Family

ID=17460955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26861196A Withdrawn JPH10113713A (en) 1996-10-09 1996-10-09 Production of steel plate of controlled cooling

Country Status (1)

Country Link
JP (1) JPH10113713A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285724A (en) * 1998-04-01 1999-10-19 Sumitomo Metal Ind Ltd Method for cooling thick steel plate
WO2010110473A1 (en) * 2009-03-25 2010-09-30 Jfeスチール株式会社 Steel plate manufacturing equipment and method of manufacturing
JP2013147733A (en) * 2011-12-21 2013-08-01 Jfe Steel Corp High tensile strength steel sheet having excellent strength-elongation balance and method for producing the same
CN105102142A (en) * 2013-03-27 2015-11-25 杰富意钢铁株式会社 Thick steel plate manufacturing device and manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285724A (en) * 1998-04-01 1999-10-19 Sumitomo Metal Ind Ltd Method for cooling thick steel plate
WO2010110473A1 (en) * 2009-03-25 2010-09-30 Jfeスチール株式会社 Steel plate manufacturing equipment and method of manufacturing
JP2010247228A (en) * 2009-03-25 2010-11-04 Jfe Steel Corp Equipment and method for manufacturing thick steel plate
EP2412455A1 (en) * 2009-03-25 2012-02-01 JFE Steel Corporation Steel plate manufacturing equipment and method of manufacturing
CN102361704A (en) * 2009-03-25 2012-02-22 杰富意钢铁株式会社 Steel plate manufacturing equipment and method of manufacturing
EP2412455A4 (en) * 2009-03-25 2013-05-29 Jfe Steel Corp Steel plate manufacturing equipment and method of manufacturing
JP2013147733A (en) * 2011-12-21 2013-08-01 Jfe Steel Corp High tensile strength steel sheet having excellent strength-elongation balance and method for producing the same
CN105102142A (en) * 2013-03-27 2015-11-25 杰富意钢铁株式会社 Thick steel plate manufacturing device and manufacturing method

Similar Documents

Publication Publication Date Title
WO2001036122A1 (en) Metal plate flatness controlling method and device
JP6720894B2 (en) Steel sheet cooling method, steel sheet cooling device, and steel sheet manufacturing method
JP2008238241A (en) Manufacturing method of aluminum metal sheet
JPH10113713A (en) Production of steel plate of controlled cooling
JPS60243226A (en) Method and device for controlling quality of hot rolled material
JP3596460B2 (en) Heat treatment method for thick steel plate and heat treatment equipment
JPH02274823A (en) Equipment and method for continuously annealing metal sheet
JP2004237291A (en) Method of manufacturing continuous casting slab and steel material obtained by working the cast slab
JP2000233266A (en) Production of steel plate having good surface characteristic
JPH06254615A (en) Manufacture of thick steel plate excellent in shape and device therefor
JPH06254616A (en) Manufacture of thick steel plate excellent in shape and device therefor
JPS5944367B2 (en) Water quenching continuous annealing method
JP3526763B2 (en) Warpage prevention method in steel plate rolling
JPS63171255A (en) Non-solidified rolling method
JPH02211903A (en) Controlled rolling method for thick steel plate
JPS6363521A (en) Cooling method for strip
JP2002178005A (en) Method for manufacturing hot-rolled steel strip
JPH09300004A (en) Method for rolling hot rolled steel strip
JP2832100B2 (en) Manufacturing method of controlled cooling steel sheet
KR20000041276A (en) Method of temperature control rolling of thick steel plate
JP2005169458A (en) Method for heat-treating steel sheet
JPH0450368B2 (en)
JPS62118907A (en) Method and apparatus for rolling clad plate
JP2004098068A (en) Hot rolling method of steel plate
JP2002241845A (en) Method for cooling steel strip

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106